1
|
Bissoli I, Alabiso F, Cosentino C, Seragnoli Chystyakova A, Ferré F, Alviano F, Marrazzo P, Pignatti C, Agnetti G, Regazzi R, Flamigni F, D'Adamo S, Cetrullo S. Modeling heart failure by induced pluripotent stem cell-derived organoids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167861. [PMID: 40254266 DOI: 10.1016/j.bbadis.2025.167861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cardiac organoids offer significant advantages for in vitro studies, as their 3D structure and cellular composition more closely replicate tissue complexity compared to 2D models. This is particularly relevant for studying complex diseases like heart failure (HF), which involve multiple cell types and cardiac structures. Thus, the primary aim of this study was to produce self-assembled, scaffold-free cardiac organoids from induced pluripotent stem cells (iPSCs), capable of simulating key aspects of HF in vitro. Gene expression analysis confirmed a transition from stemness markers (OCT4, NANOG) to cardiac markers (TNNT2, DES), validating their cardiac phenotype. To induce hallmark HF features, endothelin-1 (ET-1) treatment was applied. Key findings indicate that this experimental model successfully reproduced HF pathological markers, including the upregulation of genes encoding atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and the cytoskeletal protein α-skeletal actin (ACTA1), along with changes in microRNA (miR) expression profiles. Functionally, ET-1 treatment reduced organoid contractility, indicating a decline in contractile function-a hallmark of HF. Furthermore, histological analyses by Thioflavin T (ThT) staining, ThT fluorescence assay and filter trap assay on protein extracts demonstrated protein aggregation following ET-1 treatment. Co-administration of various nutraceuticals was shown to mitigate these effects. These findings underscore the value of this ET-1-stimulated cardiac organoid model as a powerful platform for studying HF mechanisms and evaluating novel therapeutic approaches.
Collapse
Affiliation(s)
- Irene Bissoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| | - Francesco Alabiso
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Cosentino
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | - Fabrizio Ferré
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pasquale Marrazzo
- Department of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, Urbino, Italy
| | - Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulio Agnetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefania D'Adamo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy; Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Napolitano F, Fabozzi M, Montuori N. Non-Integrin Laminin Receptors: Shedding New Light and Clarity on Their Involvement in Human Diseases. Int J Mol Sci 2025; 26:3546. [PMID: 40332051 PMCID: PMC12026610 DOI: 10.3390/ijms26083546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic network of macromolecules that provides structural support for cells and orchestrates cell signaling, functions, and morphology. The basement membrane constitutes a peculiar sheet-like type of ECM located between epithelial tissues and underlying connective tissues. The major constituent of the basement membrane is laminin, which exerts a remarkable repertoire of biological functions such as cell differentiation, migration, adhesion, and wound healing. Laminin performs its functions by interacting with two main classes of receptors, the integrin and the non-integrin laminin receptors, creating a complex network essential for tissue integrity and regeneration. Dysfunctional actions of laminin are the cause of diverse human diseases, including cancer, infectious, and neurodegenerative diseases. This topic has attracted researchers for some time, but the diversity of cell-surface receptors, through which laminin signaling occurs, makes the role of laminin controversial. Moreover, different laminin isoforms were identified, and each specific tissue basement membrane differs from the others in their laminin composition. This review focuses on the structural and molecular basis and pathophysiological relevance of specific interactions between laminins and non-integrin receptors in development, health, and disease.
Collapse
Affiliation(s)
- Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80135 Naples, Italy; (F.N.); (M.F.)
| | - Maria Fabozzi
- Department of Translational Medical Sciences, University of Naples Federico II, 80135 Naples, Italy; (F.N.); (M.F.)
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples Federico II, 80135 Naples, Italy; (F.N.); (M.F.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80135 Naples, Italy
| |
Collapse
|
3
|
Szabo C. Role of cystathionine-β-synthase and hydrogen sulfide in down syndrome. Neurotherapeutics 2025:e00584. [PMID: 40187942 DOI: 10.1016/j.neurot.2025.e00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Down syndrome (DS) is a genetic condition where the person affected by it is born with an additional - full or partial - copy of chromosome 21. DS presents with characteristic morphological features and is associated with a wide range of biochemical alterations and maladaptations. Cystathionine-β-synthase (CBS) - one of the key mammalian enzymes responsible for the biogenesis of the gaseous transmitter hydrogen sulfide (H2S) - is located on chromosome 21, and people with DS exhibit a significant upregulation of this enzyme in their brain and other organs. Even though 3-mercaptopyruvate sulfurtransferase - another key mammalian enzyme responsible for the biogenesis of H2S and of reactive polysulfides - is not located on chromosome 21, there is also evidence for the upregulation of this enzyme in DS cells. The hypothesis that excess H2S in DS impairs mitochondrial function and cellular bioenergetics was first proposed in the 1990s and has been substantiated and expanded upon over the past 25 years. DS cells are in a state of metabolic suppression due to H2S-induced, reversible inhibition of mitochondrial Complex IV activity. The impairment of aerobic ATP generation in DS cells is partially compensated by an upregulation of glycolysis. The DS-associated metabolic impairment can be reversed by pharmacological CBS inhibition or CBS silencing. In rodent models of DS, CBS upregulation and H2S overproduction contribute to the development of cognitive dysfunction, alter brain electrical activity, and promote reactive gliosis: pharmacological inhibition or genetic correction of CBS overactivation reverses these alterations. CBS can be considered a preclinically validated drug target for the experimental therapy of DS.
Collapse
Affiliation(s)
- Csaba Szabo
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Switzerland.
| |
Collapse
|
4
|
Ouyang J, Wu P, Chen L, Tong J, Yan S, Li J, Tao F, Huang K. Impact of tea and coffee consumption during pregnancy on children's cognitive development. Sci Rep 2025; 15:8832. [PMID: 40087371 PMCID: PMC11909266 DOI: 10.1038/s41598-025-91982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025] Open
Abstract
Evidence on the association between maternal tea/coffee consumption and children's cognitive development is limited. This study included 1423 mother-child pairs from the Chinese National Birth Cohort (CNBC). Maternal tea/coffee consumption status was collected in the 1st, 2nd and 3rd trimesters of pregnancy. Cognitive development was assessed using the Bayley Scales of Infant and Toddler Development III (BSID-III) in children aged averagely 36-months. We utilized group-based trajectory modeling (GBTM) to fit trajectories of maternal tea/coffee consumption across the three trimesters of pregnancy. Linear regression models were used to analyze the association between maternal tea/coffee consumption and children's cognitive development scores. Positive associations between maternal tea consumption during pregnancy and children's cognitive development were observed. Children of mothers who belonged to a continuous tea drinking trajectory throughout pregnancy had higher cognition, fine motor, and gross motor scores than those whose mothers belonged to a trajectory of tea-drinking in the 1st trimester of pregnancy, only. Comparison of tea-drinkers (yes/no) in each trimester separately indicated that tea-drinking in the second and third trimesters were more strongly associated with the outcomes than tea-drinking in the 1st trimester. The second and third trimesters of pregnancy might be key periods regarding maternal tea consumption affecting children's cognitive development. No significant association were found between maternal coffee consumption during pregnancy and children's cognitive development. The GBTM modelling provides clues to truly reflect the status and trajectory of pregnant women's tea and coffee consumption across different trimesters as their lifestyles change dynamically throughout pregnancy, which provides new motivation to investigate the association between maternal life pattern with offspring's cognitive development.
Collapse
Affiliation(s)
- Jiajun Ouyang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Penggui Wu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lu Chen
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuangqin Yan
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Maternal and Child Health Care Center of Ma'anshan, No 24 Jiashan Road, Maanshan, 243011, Anhui, China
| | - Jiong Li
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
5
|
Kang Y, Xiong Y, Lu B, Wang Y, Zhang D, Feng J, Chen L, Zhang Z. Application of In Situ Mucoadhesive Hydrogel with Anti-Inflammatory and Pro-Repairing Dual Properties for the Treatment of Chemotherapy-Induced Oral Mucositis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35949-35963. [PMID: 38970482 DOI: 10.1021/acsami.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Chemotherapy-induced oral mucositis (CIOM) is a prevalent complication of chemotherapy and significantly affects the treatment process. However, effective treatment for CIOM is lacking due to the unique environment of the oral cavity and the single effect of current drug delivery systems. In this present study, we propose an innovative approach by combining a methacrylate-modified human recombinant collagen III (rhCol3MA) hydrogel system with hyaluronic acid-epigallocatechin gallate (HA-E) and dopamine-modified methacrylate-alginate (AlgDA-MA). HA-E is used as an antioxidant and anti-inflammatory agent and synergizes with AlgDA-MA to improve the wet adhesion of hydrogel. The results of rhCol3MA/HA-E/AlgDA-MA (Col/HA-E/Alg) hydrogel demonstrate suitable physicochemical properties, excellent wet adhesive capacity, and biocompatibility. Notably, the hydrogel could promote macrophage polarization from M1 to M2 and redress human oral keratinocyte (HOK) inflammation by inhibiting NF-κB activation. Wound healing evaluations in vivo demonstrate that the Col/HA-E/Alg hydrogel exhibits a pro-repair effect by mitigating inflammatory imbalances, fostering early angiogenesis, and facilitating collagen repair. In summary, the Col/HA-E/Alg hydrogel could serve as a promising multifunctional dressing for the treatment of CIOM.
Collapse
Affiliation(s)
- Yujie Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Yahui Xiong
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Bingxu Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Yunyi Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Danya Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| | - Jinghao Feng
- Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, P. R. China
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
| |
Collapse
|
6
|
Bahadar N, Bahadar S, Sajid A, Wahid M, Ali G, Alghamdi A, Zada H, Khan T, Ullah S, Sun Q. Epigallocatechin gallate and curcumin inhibit Bcl-2: a pharmacophore and docking based approach against cancer. Breast Cancer Res 2024; 26:114. [PMID: 38978121 PMCID: PMC11229278 DOI: 10.1186/s13058-024-01868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The protein Bcl-2, well-known for its anti-apoptotic properties, has been implicated in cancer pathogenesis. Identifying the primary gene responsible for promoting improved cell survival and development has provided compelling evidence for preventing cellular death in the progression of malignancies. Numerous research studies have provided evidence that the abundance of Bcl-2 is higher in malignant cells, suggesting that suppressing Bcl-2 expression could be a viable therapeutic approach for cancer treatment. In this study, we acquired a compound collection using a database that includes constituents from Traditional Chinese Medicine (TCM). Initially, we established a pharmacophore model and utilized it to search the TCM database for potential compounds. Compounds with a fitness score exceeding 0.75 were selected for further analysis. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis identified six compounds with favorable therapeutic characteristics. The compounds that successfully passed the initial screening process based on the pharmacodynamic model were subjected to further evaluation. Extra-precision (XP) docking was employed to identify the compounds with the most favorable XP docking scores. Further analysis using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method to calculate the overall free binding energy. The binding energy between the prospective ligand molecule and the target protein Bcl-2 was assessed by a 100 ns molecular dynamics simulation for curcumin and Epigallocatechin gallate (EGCG). The findings of this investigation demonstrate the identification of a molecular structure that effectively inhibits the functionality of the Bcl-2 when bound to the ligand EGCG. Consequently, this finding presents a novel avenue for the development of pharmaceuticals capable of effectively addressing both inflammatory and tumorous conditions.
Collapse
Affiliation(s)
- Noor Bahadar
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin University, Xiantai Street 126, 130033, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Renmin Street, Changchun, Jilin, 130024, China
| | - Sher Bahadar
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Sajid
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muqeet Wahid
- Department of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ghadir Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54700, Pakistan
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Hakeem Zada
- Mubarak Diagnostic Laboratory and Research Center, Peshawar, Pakistan
| | - Tamreez Khan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Shafqat Ullah
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Qingjia Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The China-Japan Union Hospital of Jilin University, Xiantai Street 126, 130033, Changchun, Jilin, China.
| |
Collapse
|
7
|
Reis FN, Câmara JVF, Dionizio A, Araujo TT, Gomes da Silva ND, Levy FM, Ximenes VF, Buzalaf MAR. Increase in plasma resveratrol levels and in acid-resistant proteins in the acquired enamel pellicle after use of resveratrol-containing orodispersible tablets. J Dent 2024; 143:104876. [PMID: 38367826 DOI: 10.1016/j.jdent.2024.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
OBJECTIVE This study evaluated the effect of administration of trans-resveratrol-containing orodispersible tablets on the protein composition of the AEP and on blood plasma trans-resveratrol concentrations. METHODS Ten volunteers participated in two crossover double-blind phases. In each phase, after dental prophylaxis, they received a trans-resveratrol (15 mg) orodispersible tablet, or a placebo tablet (without actives). The AEP formed after 120 min was collected with electrode filter papers soaked in 3 % citric acid. Blood samples were collected 30, 45, 60 and 120 min after the use of the tablet. After protein extraction, AEP samples were analyzed by shotgun labelfree quantitative proteomics and plasma samples were analyzed by high-performance liquid chromatography (HPLC). RESULTS Eight hundred and two proteins were identified in the AEP. Among them, 336 and 213 were unique to the trans-resveratrol and control groups, respectively, while 253 were common to both groups. Proteins with important functions in the AEP had increased expression in the trans-resveratroltreated group, such as neutrophil defensins, S100 protein isoforms, lysozyme C, cystatin-D, mucin-7, alphaamylase, albumin, haptoglobin and statherin. Trans-resveratrol was detected in the plasma at all the times evaluated, with the peak at 30 min. CONCLUSIONS The administration of trans-resveratrol in sublingual orodispersible tablets was effective both to increase the bioavailability of the polyphenol and the expression of antibacterial and acid-resistant proteins in the AEP, which might benefit oral and general health.
Collapse
Affiliation(s)
- Fernanda Navas Reis
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - João Victor Frazão Câmara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Flávia Mauad Levy
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | |
Collapse
|
8
|
Péter B, Szekacs I, Horvath R. Label-free biomolecular and cellular methods in small molecule epigallocatechin-gallate research. Heliyon 2024; 10:e25603. [PMID: 38371993 PMCID: PMC10873674 DOI: 10.1016/j.heliyon.2024.e25603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Small molecule natural compounds are gaining popularity in biomedicine due to their easy access to wide structural diversity and their proven health benefits in several case studies. Affinity measurements of small molecules below 100 Da molecular weight in a label-free and automatized manner using small amounts of samples have now become a possibility and reviewed in the present work. We also highlight novel label-free setups with excellent time resolution, which is important for kinetic measurements of biomolecules and living cells. We summarize how molecular-scale affinity data can be obtained from the in-depth analysis of cellular kinetic signals. Unlike traditional measurements, label-free biosensors have made such measurements possible, even without the isolation of specific cellular receptors of interest. Throughout this review, we consider epigallocatechin gallate (EGCG) as an exemplary compound. EGCG, a catechin found in green tea, is a well-established anti-inflammatory and anti-cancer agent. It has undergone extensive examination in numerous studies, which typically rely on fluorescent-based methods to explore its effects on both healthy and tumor cells. The summarized research topics range from molecular interactions with proteins and biological films to the kinetics of cellular adhesion and movement on novel biomimetic interfaces in the presence of EGCG. While the direct impact of small molecules on living cells and biomolecules is relatively well investigated in the literature using traditional biological measurements, this review also highlights the indirect influence of these molecules on the cells by modifying their nano-environment. Moreover, we underscore the significance of novel high-throughput label-free techniques in small molecular measurements, facilitating the investigation of both molecular-scale interactions and cellular processes in one single experiment. This advancement opens the door to exploring more complex multicomponent models that were previously beyond the reach of traditional assays.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| |
Collapse
|
9
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Alvarez-Cirerol FJ, Galván-Moroyoqui JM, Rodríguez-León E, Candía-Plata C, Rodríguez-Beas C, López-Soto LF, Rodríguez-Vázquez BE, Bustos-Arriaga J, Soto-Guzmán A, Larios-Rodríguez E, Martínez-Soto JM, Martinez-Higuera A, Iñiguez-Palomares RA. Monocyte (THP-1) Response to Silver Nanoparticles Synthesized with Rumex hymenosepalus Root Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:106. [PMID: 38202561 PMCID: PMC10780692 DOI: 10.3390/nano14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The study, synthesis, and application of nanomaterials in medicine have grown exponentially in recent years. An example of this is the understanding of how nanomaterials activate or regulate the immune system, particularly macrophages. In this work, nanoparticles were synthesized using Rumex hymenosepalus as a reducing agent (AgRhNPs). According to thermogravimetric analysis, the metal content of nanoparticles is 55.5% by weight. The size of the particles ranges from 5-26 nm, with an average of 11 nm, and they possess an fcc crystalline structure. The presence of extract molecules on the nanomaterial was confirmed by UV-Vis and FTIR. It was found by UPLC-qTOF that the most abundant compounds in Rh extract are flavonols, flavones, isoflavones, chalcones, and anthocyanidins. The viability and apoptosis of the THP-1 cell line were evaluated for AgRhNPs, commercial nanoparticles (AgCNPs), and Rh extract. The results indicate a minimal cytotoxic and apoptotic effect at a concentration of 12.5 μg/mL for both nanoparticles and 25 μg/mL for Rh extract. The interaction of the THP-1 cell line and treatments was used to evaluate the polarization of monocyte subsets in conjunction with an evaluation of CCR2, Tie-2, and Arg-1 expression. The AgRhNPs nanoparticles and Rh extract neither exhibited cytotoxicity in the THP-1 monocyte cell line. Additionally, the treatments mentioned above exhibited anti-inflammatory effects by maintaining the classical monocyte phenotype CD14++CD16, reducing pro-inflammatory interleukin IL-6 production, and increasing IL-4 production.
Collapse
Affiliation(s)
| | - José Manuel Galván-Moroyoqui
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Ericka Rodríguez-León
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Carmen Candía-Plata
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Luis Fernando López-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - José Bustos-Arriaga
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Adriana Soto-Guzmán
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Eduardo Larios-Rodríguez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Juan M. Martínez-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - Ramón A. Iñiguez-Palomares
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| |
Collapse
|
11
|
Zhang Y, Wu H, Xu C, Li S, Hu Y, Zhang Z, Wu G, Liu Y, Yang L, Huang Y, Lu W, Hu L. (-)-Epigallocatechin gallate alleviates chronic unpredictable mild stress-induced depressive symptoms in mice by regulating the mTOR autophagy pathway and inhibiting NLRP3 inflammasome activation. Food Sci Nutr 2024; 12:459-470. [PMID: 38268911 PMCID: PMC10804105 DOI: 10.1002/fsn3.3761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 01/26/2024] Open
Abstract
Depression is a global public health issue that is widely studied due to the large number of people it affects and its serious consequences. Clinical studies have shown that regular tea consumption may reduce depression risk. (-)-Epigallocatechin gallate (EGCG), the main tea polyphenol, was observed to alleviate depression, but the underlying mechanism has not been elucidated. In this study, chronic unpredictable mild stress (CUMS) was used to induce depression-like behavior in mice, and behavioral tests, such as sucrose preference test and forced swim test, were performed. Then, ELISA, western blot and QT-PCR tests were used to assess the expression of the key components of the NLRP3 inflammasome and its downstream inflammatory effectors (e.g., IL-1β, IL-18), autophagy markers (Beclin-1, LC3, P62) and apoptosis markers (Bax, Bcl-2) in mouse brain tissues. Changes in serum lipid levels were also assessed. EGCG alleviated CUMS-induced depression-like behavioral changes in mice, reduced activation of the NLRP3 inflammasome, inhibited the mTOR signaling pathway, restored autophagy levels, reduced apoptosis marker expression and attenuated abnormal changes in blood lipid levels. Our study demonstrates that EGCG exerts antidepressive effects through multiple mechanisms, providing new insight into the pathological mechanism of depression and laying the foundation for the development of new therapeutic measures.
Collapse
Affiliation(s)
- Yulin Zhang
- School of Public HealthGuilin Medical UniversityGuilinChina
- Department of NutritionSecond People's Hospital of Ya'an CityYa'an CitySichuan ProvinceChina
| | - Hongxian Wu
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Chaozhi Xu
- Medical Information Management, School of Humanities and ManagementGuilin Medical UniversityGuilinChina
| | - Shanqian Li
- School of Public HealthGuilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Environmental Exposomics and Whole Life Cycle HealthGuilinChina
- Key Cultivation Laboratory of Life Cycle Health Care ResearchGuilinChina
| | - Yue Hu
- Institute of Drug Inspection TechnologyShanxi Inspection and Testing CenterTaiyuanShanxi ProvinceChina
| | - Zongyi Zhang
- Communicable Disease Control BranchQingdao City Center for Disease Control and PreventionQingdaoChina
| | - Guixian Wu
- School of Public HealthGuilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Environmental Exposomics and Whole Life Cycle HealthGuilinChina
- Key Cultivation Laboratory of Life Cycle Health Care ResearchGuilinChina
| | - Yuling Liu
- School of Public HealthGuilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Environmental Exposomics and Whole Life Cycle HealthGuilinChina
- Key Cultivation Laboratory of Life Cycle Health Care ResearchGuilinChina
| | - Lin Yang
- School of Public HealthGuilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Environmental Exposomics and Whole Life Cycle HealthGuilinChina
- Key Cultivation Laboratory of Life Cycle Health Care ResearchGuilinChina
| | - Yue Huang
- Department of PediatricsThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenjun Lu
- General Practice DepartmentAffiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Lina Hu
- School of Public HealthGuilin Medical UniversityGuilinChina
- Guangxi Key Laboratory of Environmental Exposomics and Whole Life Cycle HealthGuilinChina
- Key Cultivation Laboratory of Life Cycle Health Care ResearchGuilinChina
| |
Collapse
|
12
|
Lekhak N, Bhattarai HK. Phytochemicals in Cancer Chemoprevention: Preclinical and Clinical Studies. Cancer Control 2024; 31:10732748241302902. [PMID: 39629692 PMCID: PMC11615997 DOI: 10.1177/10732748241302902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Phytochemicals, chemicals from plants, have garnered huge attention for their potential ability to prevent cancer. In vivo and preclinical models show that they do so often by affecting the hallmarks of cancer. Phytochemicals affect key pathways involved in the survival, genome maintenance, proliferation, senescence, and transendothelial migration of cancer cells. Some phytochemicals, namely antioxidants, can scavenge and quench reactive oxygen species (ROS) to prevent lipid peroxidation and DNA damage. They also trigger apoptosis by stopping the cell cycle at checkpoints to initiate the DNA damage response. Numerous in vitro and in vivo studies suggest that phytochemicals hinder cancer onset and progression by modifying major cell signaling pathways such as JAK/STAT, PI3K/Akt, Wnt, NF-kB, TGF-β, and MAPK. It is a well-known fact that the occurrence of cancer is in itself a very intricate process involving multiple mechanisms concurrently. Cancer prevention using phytochemicals is also an equally complex process that requires investigation and understanding of a myriad of processes going on in the cells and tissues. While many in vitro and preclinical studies have established that phytochemicals may be potential chemopreventive agents of cancer, their role in clinical randomized control trials needs to be established. This paper aims to shed light on the dynamics of chemoprevention using phytochemicals.
Collapse
Affiliation(s)
- Nitish Lekhak
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | |
Collapse
|
13
|
Kanlaya R, Kuljiratansiri R, Peerapen P, Thongboonkerd V. The inhibitory effects of epigallocatechin-3-gallate on calcium oxalate monohydrate crystal growth, aggregation and crystal-cell adhesion. Biomed Pharmacother 2024; 170:115988. [PMID: 38061137 DOI: 10.1016/j.biopha.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a predominant phytochemical in tea plant, has been reported to prevent kidney stone formation but with vague mechanism. We investigated modulatory effects of EGCG (at 0.1-100 µM) on calcium oxalate monohydrate (COM) crystals at various stages of kidney stone development. EGCG significantly increased crystal size (at 1-100 µM), but decreased crystal number (at 10-100 µM), resulting in unchanged crystal mass and volume. Interestingly, EGCG at 10-100 µM caused morphological change of the crystals from typical monoclinic prismatic to coffee-bean-like shape, which represented atypical/aberrant form of COM as confirmed by attenuated total reflection - Fourier transform infrared (ATR-FTIR) spectroscopy. EGCG at all concentrations significantly inhibited crystal growth in a concentration-dependent manner. However, only 100 µM and 10-100 µM of EGCG significantly inhibited crystal aggregation and crystal-cell adhesion, respectively. Immunofluorescence staining (without permeabilization) revealed that surface expression of heat shock protein 90 (HSP90) (a COM crystal receptor) on MDCK renal cells was significantly decreased by 10 µM EGCG, whereas other surface COM receptors (annexin A1, annexin A2, enolase 1 and ezrin) remained unchanged. Immunoblotting showed that 10 µM EGCG did not alter total level of HSP90 in MDCK cells, implicating that its decreased surface expression was due to translocation. Our data provide a piece of evidence explaining mechanism underlying the anti-lithiatic property of EGCG by inhibition of COM crystal growth, aggregation and crystal-cell adhesion via reduced surface expression of HSP90, which is an important COM crystal receptor.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
14
|
Gupta P, Neupane YR, Aqil M, Kohli K, Sultana Y. Lipid-based nanoparticle-mediated combination therapy for breast cancer management: a comprehensive review. Drug Deliv Transl Res 2023; 13:2739-2766. [PMID: 37261602 DOI: 10.1007/s13346-023-01366-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Priya Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yub Raj Neupane
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
- Lloyd Institute of Management & Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201308, India.
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
15
|
Kang S, Kim HY, Lee AY, Kim HS, Park JH, Moon BC, Nam HH, Chae SW, Jung B, Moon C, Shin IS, Kim JS, Seo YS. Camellia sinensis (L.) Kuntze Extract Attenuates Ovalbumin-Induced Allergic Asthma by Regulating Airway Inflammation and Mucus Hypersecretion. Pharmaceutics 2023; 15:2355. [PMID: 37765323 PMCID: PMC10537373 DOI: 10.3390/pharmaceutics15092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Asthma is a pulmonary disease induced by the inhalation of aeroallergens and subsequent inappropriate immune responses. Camellia sinensis (L.) Kuntze has been evaluated as an effective antioxidant supplement produced from bioactive compounds, including flavonoids. In this study, we aimed to determine the effects of Camellia sinensis (L.) Kuntze extract (CE) on ovalbumin-induced allergic asthma. The components of CE were analyzed using high-performance liquid chromatography (HPLC) chromatogram patterns, and asthmatic animal models were induced via ovalbumin treatment. The antioxidant and anti-inflammatory effects of CE were evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), and nitric oxide (NO) assays. Seven compounds were detected in the CE chromatogram. In the ovalbumin-induced mouse model, CE treatment significantly decreased the inflammation index in the lung tissue. CE also significantly decreased eosinophilia and the production of inflammatory cytokines and OVA-specific IgE in animals with asthma. Collectively, our results indicate that CE has anti-inflammatory and antioxidant activities, and that CE treatment suppresses asthmatic progression, including mucin accumulation, inflammation, and OVA-specific IgE production.
Collapse
Affiliation(s)
- Sohi Kang
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - Hyo Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
| | - Hyeon Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 56212, Jeollabuk-do, Republic of Korea;
| | - Sung-Wook Chae
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, Jeongeup 56212, Jeollabuk-do, Republic of Korea;
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea
| | - Bokyung Jung
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - In Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.K.); (B.J.); (C.M.); (I.S.S.)
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (H.-Y.K.); (A.Y.L.); (H.S.K.); (J.H.P.); (B.C.M.); (H.H.N.)
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea
| |
Collapse
|
16
|
Hodges JK, Sasaki GY, Vodovotz Y, Bruno RS. Gallation and B-Ring Dihydroxylation Increase Green Tea Catechin Residence Time in Plasma by Differentially Affecting Tissue-Specific Trafficking: Compartmental Model of Catechin Kinetics in Healthy Adults. Nutrients 2023; 15:4021. [PMID: 37764804 PMCID: PMC10536004 DOI: 10.3390/nu15184021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Catechins in green tea extract (GTE) (epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin (EC), epicatechin gallate (ECG)) vary in bioactivity. We developed a physiologically relevant mathematical model of catechin metabolism to test the hypothesis that fractional catabolic rates of catechins would be differentially affected by their structural attributes. Pharmacokinetic data of plasma and urine catechin concentrations were used from healthy adults (n = 19) who ingested confections containing 0.5 g GTE (290 mg EGCG, 87 mg EGC, 39 mg EC, 28 mg ECG). A 7-compartmental model of catechin metabolism comprised of the gastrointestinal tract (stomach, small and large intestine), liver, plasma, extravascular tissues, and kidneys was developed using a mean fraction dose of EGCG, ECG, EGC, and EC. Fitting was by iterative least squares regression analysis, and goodness of fit was ascertained by the estimated variability of parameters (FSD < 0.5). The interaction of gallation and B-ring dihydroxylation most greatly extended plasma residence time such that EGC > EC = EGCG > EGC. The interaction between gallation and B-ring dihydroxylation accelerated the transfer from the upper gastrointestinal tract to the small intestine but delayed subsequent transfers from the small intestine through the liver to plasma and from kidneys to urine. Gallation and B-ring dihydroxylation independently delayed the transfer from plasma to extravascular tissues, except the uptake to kidneys, which was slowed by gallation only. This multi-compartment model, to be validated in a future study, suggests that gallation and B-ring dihydroxylation affect catechin catabolism in a tissue-specific manner and thus their potential bioactivity.
Collapse
Affiliation(s)
- Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
18
|
Li D, Cao D, Cui Y, Sun Y, Jiang J, Cao X. The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front Pharmacol 2023; 14:1201085. [PMID: 37292151 PMCID: PMC10244546 DOI: 10.3389/fphar.2023.1201085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most notorious malignancies globally, has a high fatality and poor prognosis. Though remarkable breakthroughs have been made in the therapeutic strategies recently, the overall survival of HCC remains unsatisfactory. Consequently, the therapy of HCC remains a great challenge. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from the leaves of the tea bush, has been extensively investigated for its antitumor effects. In this review, we summarize the previous literature to elucidate the roles of EGCG in the chemoprophylaxis and therapy of HCC. Accumulating evidence has confirmed EGCG prevents and inhibits the hepatic tumorigenesis and progression through multiple biological mechanisms, mainly involving hepatitis virus infection, oxidative stress, proliferation, invasion, migration, angiogenesis, apoptosis, autophagy, and tumor metabolism. Furthermore, EGCG enhances the efficacy and sensitivity of chemotherapy, radiotherapy, and targeted therapy in HCC. In conclusion, preclinical studies have confirmed the potential of EGCG for chemoprevention and therapy of HCC under multifarious experimental models and conditions. Nevertheless, there is an urgent need to explore the safety and efficacy of EGCG in the clinical practice of HCC.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Development and Optimisation of Inhalable EGCG Nano-Liposomes as a Potential Treatment for Pulmonary Arterial Hypertension by Implementation of the Design of Experiments Approach. Pharmaceutics 2023; 15:pharmaceutics15020539. [PMID: 36839861 PMCID: PMC9965461 DOI: 10.3390/pharmaceutics15020539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Epigallocatechin gallate (EGCG), the main ingredient in green tea, holds promise as a potential treatment for pulmonary arterial hypertension (PAH). However, EGCG has many drawbacks, including stability issues, low bioavailability, and a short half-life. Therefore, the purpose of this research was to develop and optimize an inhalable EGCG nano-liposome formulation aiming to overcome EGCG's drawbacks by applying a design of experiments strategy. The aerodynamic behaviour of the optimum formulation was determined using the next-generation impactor (NGI), and its effects on the TGF-β pathway were determined using a cell-based reporter assay. The newly formulated inhalable EGCG liposome had an average liposome size of 105 nm, a polydispersity index (PDI) of 0.18, a zeta potential of -25.5 mV, an encapsulation efficiency of 90.5%, and a PDI after one month of 0.19. These results are in complete agreement with the predicted values of the model. Its aerodynamic properties were as follows: the mass median aerodynamic diameter (MMAD) was 4.41 µm, the fine particle fraction (FPF) was 53.46%, and the percentage of particles equal to or less than 3 µm was 34.3%. This demonstrates that the novel EGCG liposome has all the properties required to be inhalable, and it is expected to be deposited deeply in the lung. The TGFβ pathway is activated in PAH lungs, and the optimum EGCG nano-liposome inhibits TGFβ signalling in cell-based studies and thus holds promise as a potential treatment for PAH.
Collapse
|
20
|
Mustofa I, Susilowati S, Suprayogi TW, Oktanella Y, Purwanto DA, Akintunde AO. Combination of nanoparticle green tea extract in tris-egg yolk extender and 39 °c thawing temperatures improve the sperm quality of post-thawed Kacang goat semen. Anim Reprod 2023; 19:e20220025. [PMID: 36686855 PMCID: PMC9844672 DOI: 10.1590/1984-3143-ar2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Kacang goats are small ruminants produced by low-income households in smallholder and farm to reduce poverty and prevent undernutrition. Studies to find a cryopreservation protocol for Kacang goat semen are expected to multiplication of genetically superior animals selected by the paternal lineage. This study evaluated the effect of thawing temperature and supplementation of the green tea extract nanoparticle in skim milk-egg yolk (SM-EY) extender on post-thaw sperm quality of Kacang goat semen. Six ejaculates of Kacang goat were diluted in SM-EY supplemented or not (control group) with 0.001 mg/mL NPs GTE. The diluted semen was packaged with 0.25 mL straws (insemination dose: 60x106 sptz/mL) and cryopreserved. Then, six samples of the control group and NPs GTE groups were thawed at 37°C or 39°C sterile water for 30 s and submitted to sperm quality evaluations. The sperm viability, motility, and intact of the plasma membrane (IPM) were higher (p<0.05) in NPs GTE group than control group. In contrast, the NPs GTE group presented lower (p<0.05) malondialdehyde levels and sperm DNA fragmentation (SDF) compared with the control group. The catalase levels were not significantly different (p > 0.05) between the control and NPs GTE groups. Thawing at 39°C resulted in higher (p<0.05) sperm viability, motility, and IPM than thawing at 37°C. However, thawing at 39°C group presented lower (p<0.05) malondialdehyde levels compared with thawing at 37°C. SDF and catalase levels were similar (p>0.05) between thawing at 37°C and thawing at 37°C. In conclusion, supplementation of 0.001 mg/mL of NPs GTE in SM-EY extender and thawing temperature of 39°C resulted in a better quality of frozen-thawed Kacang goat semen.
Collapse
Affiliation(s)
- Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia,Corresponding author:
| | - Suherni Susilowati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Tri Wahyu Suprayogi
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Yudit Oktanella
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Djoko Agus Purwanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan-Remo, Ogun, Nigeria
| |
Collapse
|
21
|
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020525. [PMID: 36677584 PMCID: PMC9862901 DOI: 10.3390/molecules28020525] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1β. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Faculty of Health and Welfare Science, Nayoro City University, Nayoro 096-8641, Hokkaido, Japan
- Correspondence: (H.T.); (T.O.)
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women’s College of Liberal Arts, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu 410-0301, Shizuoka, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Correspondence: (H.T.); (T.O.)
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiko Unno
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
22
|
Zuhra K, Petrosino M, Gupta B, Panagaki T, Cecconi M, Myrianthopoulos V, Schneiter R, Mikros E, Majtan T, Szabo C. Epigallocatechin gallate is a potent inhibitor of cystathionine beta-synthase: Structure-activity relationship and mechanism of action. Nitric Oxide 2022; 128:12-24. [PMID: 35973674 DOI: 10.1016/j.niox.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 10/31/2022]
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine β-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 μM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Maria Petrosino
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Barkha Gupta
- Department of Biology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 10, Fribourg, 1700, Switzerland
| | - Theodora Panagaki
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Marco Cecconi
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 10, Fribourg, 1700, Switzerland
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Tomas Majtan
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland.
| | - Csaba Szabo
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland.
| |
Collapse
|
23
|
Ohishi T, Hishiki T, Baig MS, Rajpoot S, Saqib U, Takasaki T, Hara Y. Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2. PLoS One 2022; 17:e0271112. [PMID: 35830431 PMCID: PMC9278780 DOI: 10.1371/journal.pone.0271112] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
The outbreak of the coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 triggered a global pandemic where control is needed through therapeutic and preventive interventions. This study aims to identify natural compounds that could affect the fusion between the viral membrane (receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein) and the human cell receptor angiotensin-converting enzyme 2. Accordingly, we performed the enzyme-linked immunosorbent assay-based screening of 10 phytochemicals that already showed numerous positive effects on human health in several epidemiological studies and clinical trials. Among these phytochemicals, epigallocatechin gallate, a polyphenol and a major component of green tea, could effectively inhibit the interaction between the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein and the human cell receptor angiotensin-converting enzyme 2. Alternately, in silico molecular docking studies of epigallocatechin gallate and angiotensin-converting enzyme 2 indicated a binding score of −7.8 kcal/mol and identified a hydrogen bond between R393 and angiotensin-converting enzyme 2, which is considered as a key interacting residue involved in binding with the severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain, suggesting the possible blocking of interaction between receptor-binding domain and angiotensin-converting enzyme 2. Furthermore, epigallocatechin gallate could attenuate severe acute respiratory syndrome coronavirus 2 infection and replication in Caco-2 cells. These results shed insight into identification and validation of severe acute respiratory syndrome coronavirus 2 entry inhibitors.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
- * E-mail:
| | - Takayuki Hishiki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Simrol, Indore, India
| | - Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Simrol, Indore, India
| | - Uzma Saqib
- Department of Chemistry, Indian Institute of Technology (IIT), Simrol, Indore, India
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Yukihiko Hara
- Tea Solutions, Hara Office Inc., Sumida-ku, Tokyo, Japan
| |
Collapse
|
24
|
Noll C, Kandiah J, Moroy G, Gu Y, Dairou J, Janel N. Catechins as a Potential Dietary Supplementation in Prevention of Comorbidities Linked with Down Syndrome. Nutrients 2022; 14:2039. [PMID: 35631180 PMCID: PMC9147372 DOI: 10.3390/nu14102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Janany Kandiah
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, INSERM CNRS, Université Paris Cité, F-75013 Paris, France;
| | - Yuchen Gu
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Cité, F-75006 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| |
Collapse
|
25
|
Identification of circRNA/miRNA/mRNA regulatory network involving (+)-catechin ameliorates diabetic nephropathy mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Effect of taxifolin and epigallocatechin-3-gallate on biomineralization potential of stem cells from dental apical papilla. Arch Oral Biol 2022; 138:105413. [DOI: 10.1016/j.archoralbio.2022.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
|
27
|
Hung SW, Liang B, Gao Y, Zhang R, Tan Z, Zhang T, Chung PWJ, Chan TH, Wang CC. An In-Silico, In-Vitro and In-Vivo Combined Approach to Identify NMNATs as Potential Protein Targets of ProEGCG for Treatment of Endometriosis. Front Pharmacol 2021; 12:714790. [PMID: 34721014 PMCID: PMC8552031 DOI: 10.3389/fphar.2021.714790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022] Open
Abstract
Endometriosis is defined as endometrial tissues found outside the uterine cavity. ProEGCG is a prodrug of Epigallocatechin gallate (EGCG), a potent polyphenol found in green tea. It inhibits the development of endometriotic lesions of mouse model in vivo, with higher efficacy and more remarkable anti-oxidative ability than EGCG. Our study aims to identify the molecular binding targets and pharmacological actions of ProEGCG in treating endometriosis. Protein target interaction study is essential to fully characterize the mechanism of actions, related therapeutic effects, and side effects. We employed a combined approach, starting with an in silico reverse screening of protein targets and molecular docking, followed by in vitro cellular thermal shift assay (CESTA) to assess the stability of protein-small molecule complexes. Then microarray and immunostaining of endometriotic lesions in mice in vivo confirmed the molecular interaction of the selected targets after treatment. Our study identified enzymes nicotinamide nucleotide adenylyltransferase (NMNAT)1 and NMNAT3 as protein targets of ProEGCG in silico and in vitro and were overexpressed after ProEGCG treatment in vivo. These findings suggested that participation in nicotinate and nicotinamide metabolism potentially regulated the redox status of endometriosis via its antioxidative capacities through binding to the potential therapeutic targets of ProEGCG.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Liang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yating Gao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruizhe Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhouyurong Tan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Samynathan R, Thiruvengadam M, Nile SH, Shariati MA, Rebezov M, Mishra RK, Venkidasamy B, Periyasamy S, Chung IM, Pateiro M, Lorenzo JM. Recent insights on tea metabolites, their biosynthesis and chemo-preventing effects: A review. Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34606382 DOI: 10.1080/10408398.2021.1984871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tea manufactured from the cultivated shoots of Camellia sinensis (L.) O. Kuntze is the most commonly consumed nonalcoholic drink around the world. Tea is an agro-based, environmentally sustainable, labor-intensive, job-generating, and export-oriented industry in many countries. Tea includes phenolic compounds, flavonoids, alkaloids, vitamins, enzymes, crude fibers, protein, lipids, and carbohydrates, among other biochemical constituents. This review described the nature of tea metabolites, their biosynthesis and accumulation with response to various factors. The therapeutic application of various metabolites of tea against microbial diseases, cancer, neurological, and other metabolic disorders was also discussed in detail. The seasonal variation, cultivation practices and genetic variability influence tea metabolite synthesis. Tea biochemical constituents, especially polyphenols and its integral part catechin metabolites, are broadly focused on potential applicability for their action against various diseases. In addition to this, tea also contains bioactive flavonoids that possess health-beneficial effects. The catechin fractions, epigallocatechin 3-gallate and epicatechin 3-gallate, are the main components of tea that has strong antioxidant and medicinal properties. The synergistic function of natural tea metabolites with synthetic drugs provides effective protection against various diseases. Furthermore, the application of nanotechnologies enhanced bioavailability, enhancing the therapeutic potential of natural metabolites against numerous diseases and pathogens.
Collapse
Affiliation(s)
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation.,Liaocheng University, Liaocheng, Shandong, China
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China.,V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Raghvendra Kumar Mishra
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sureshkumar Periyasamy
- Department of Biotechnology, Bharathidasan University Campus (BIT Campus), Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
29
|
Esmaeelpanah E, Razavi BM, Hosseinzadeh H. Green tea and metabolic syndrome: A 10-year research update review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1159-1172. [PMID: 35083002 PMCID: PMC8751745 DOI: 10.22038/ijbms.2021.52980.11943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/22/2021] [Indexed: 11/22/2022]
Abstract
Metabolic syndrome (MetS) has turned into a prevalent condition that has imposed a tremendous financial strain on public health care systems. It is believed that the MetS consists of four main factors (hypertension, dyslipidemia, hyperglycemia, and obesity) and may lead to cardiovascular events. Camellia sinesis, in the form of green tea (GT), is one of the most consuming beverages worldwide. Catechins are the dominant component of green tea leaves. Epigallocatechin gallate has the maximum potency. GT has been widely used as a supplement in various health conditions. As the oxidative stress pathway is one of the probable mechanisms of MetS etiologies and GT beneficial effects, GT may be a novel strategy to overcome the MetS. This review aims to reveal the probable pharmacological effects of GT on MetS. The last 10-year original articles on MetS parameters and GT have been gathered in this review. This manuscript has summarized the probable effects of green tea and its catechins on MetS and focused on each different aspect of MetS separately, which can be used as a basis for further investigations for introducing effective compounds as a way to interfere with MetS. It seems that GT can reduce MetS parameters commonly via anti-inflammatory and anti-oxidative mechanisms. Further clinical trials are needed to confirm the use of GT and its constituents for the treatment of MetS.
Collapse
Affiliation(s)
- Elahe Esmaeelpanah
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Epigallocatechin Gallate Alleviates Down-Regulation of Thioredoxin in Ischemic Brain Damage and Glutamate-Exposed Neuron. Neurochem Res 2021; 46:3035-3049. [PMID: 34327632 DOI: 10.1007/s11064-021-03403-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Epigallocatechin gallate (EGCG) is one of polyphenol that is abundant in green tea. It has anti-oxidative activity and exerts neuroprotective effects in ischemic brain damage. Ischemic conditions induce oxidative stress and result in cell death. Thioredoxin is a small redox protein that plays an important role in the regulation of oxidation and reduction. This study was designed to investigate the regulation of thioredoxin by EGCG in ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia in male Sprague-Dawley rats. The EGCG (50 mg/kg) or was administered before MCAO surgical operation. Neurological behavior test, reactive oxygen species (ROS), and lipid peroxidation (LPO) measurement were performed 24 h after MCAO. The cerebral cortex was isolated for further experiments. EGCG alleviated MCAO-induced neurological deficits and increases in ROS and LPO levels. EGCG also ameliorated the decrease in thioredoxin expression by MCAO. This finding was confirmed using various techniques such as Western blot analysis, reverse transcription PCR, and immunofluorescence staining. Results of immunoprecipitation showed that MCAO decreases the interaction between apoptosis signal-regulating kinase 1 (ASK1) and thioredoxin, while EGCG treatment attenuates this decrease. EGCG also attenuated decrease of cell viability and thioredoxin expression in glutamate-exposed neuron in a dose-dependent manner. It alleviated the increase of caspase-3 by glutamate exposure. However, this effect of EGCG on caspase-3 change was weakened in thioredoxin siRNA-transfected neurons. These findings suggest that EGCG exerts a neuroprotective effect by regulating thioredoxin expression and modulating ASK1 and thioredoxin binding in ischemic brain damage.
Collapse
|
31
|
Renzetti A, Betts JW, Fukumoto K, Rutherford RN. Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct 2021; 11:9370-9396. [PMID: 33094767 DOI: 10.1039/d0fo02054k] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the mechanisms of antibacterial action of green tea catechins, discussing the structure-activity relationship (SAR) studies for each mechanism. The antibacterial activity of green tea catechins results from a variety of mechanisms that can be broadly classified into the following groups: (1) inhibition of virulence factors (toxins and extracellular matrix); (2) cell wall and cell membrane disruption; (3) inhibition of intracellular enzymes; (4) oxidative stress; (5) DNA damage; and (6) iron chelation. These mechanisms operate simultaneously with relative importance differing among bacterial strains. In all SAR studies, the highest antibacterial activity is observed for galloylated compounds (EGCG, ECG, and theaflavin digallate). This observation, combined with numerous experimental and theoretical evidence, suggests that catechins share a common binding mode, characterized by the formation of hydrogen bonds and hydrophobic interactions with their target.
Collapse
Affiliation(s)
- Andrea Renzetti
- Global Education Institute, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | |
Collapse
|
32
|
Tóth E, Erdődi F, Kiss A. Activation of Myosin Phosphatase by Epigallocatechin-Gallate Sensitizes THP-1 Leukemic Cells to Daunorubicin. Anticancer Agents Med Chem 2021; 21:1092-1098. [PMID: 32679023 DOI: 10.2174/1871520620666200717142315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Myosin Phosphatase (MP) holoenzyme is composed of a Protein Phosphatase type 1 (PP1) catalytic subunit and a regulatory subunit termed Myosin Phosphatase Target subunit 1 (MYPT1). Besides dephosphorylation of myosin, MP has been implicated in the control of cell proliferation via dephosphorylation and activation of the tumor suppressor gene products, retinoblastoma protein (pRb) and merlin. Inhibition of MP was shown to attenuate the drug-induced cell death of leukemic cells by chemotherapeutic agents, while activation of MP might have a sensitizing effect. OBJECTIVE Recently, Epigallocatechin-Gallate (EGCG), a major component of green tea, was shown to activate MP by inducing the dephosphorylation of MYPT1 at phospho-Thr696 (MYPT1pT696), which might confer enhanced chemosensitivity to cancer cells. METHODS THP-1 leukemic cells were treated with EGCG and Daunorubicin (DNR) and cell viability was analyzed. Phosphorylation of tumor suppressor proteins was detected by Western blotting. RESULTS EGCG or DNR (at sub-lethal doses) alone had moderate effects on cell viability, while the combined treatment caused a significant decrease in the number of viable cells by enhancing apoptosis and decreasing proliferation. EGCG plus DNR decreased the phosphorylation level of MYPT1pT696, which was accompanied by prominent dephosphorylation of pRb. In addition, significant dephosphorylation of merlin was observed when EGCG and DNR were applied together. CONCLUSION Our results suggest that EGCG-induced activation of MP might have a regulatory function in mediating the chemosensitivity of leukemic cells via dephosphorylation of tumor suppressor proteins.
Collapse
Affiliation(s)
- Emese Tóth
- Department of Medical Chemistry and MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry and MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kiss
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Biro R, Richter R, Ortiz M, Sehouli J, David M. Effects of epigallocatechin gallate-enriched green tea extract capsules in uterine myomas: results of an observational study. Arch Gynecol Obstet 2021; 303:1235-1243. [PMID: 33386959 DOI: 10.1007/s00404-020-05907-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The daily ingestion of green tea extract (GTE) capsules in women with oligo- or asymptomatic uterine myomas was monitored over 6 months with regard to their quality of life, myoma-associated complaints and side effects. METHODS The participants were interviewed and examined at the beginning of the study (T1) and then again after 6 months (T3). Quality of life was assessed using a SF-12 questionnaire while their myoma-associated complaints were ascertained by using a self-developed myoma symptom questionnaire. Changes in the size of the myomas were evaluated by vaginal sonography. Side effects after 3 months (T2) and 6 months were documented by systematic interviews. RESULTS Overall; 25 participants (median 45 years) have been enrolled. The analysis of the SF-12 questionnaire showed a significant improvement of the physical cumulative score of the SF-12 during the 6 month GTE capsule ingestion (T1: mean value (M) = 52.731; 95% confidence interval (KI95%): 49.791-55.671; T3: M = 55.862; KI95%%: 55.038-56.685; p = 0.019). However, the mental cumulative score of the SF-12 did not change significantly (p = 0.674). No significant correlation could be established between the capsule ingestion and changes in the symptom questionnaire, the laboratory parameters nor the myoma size. No relevant adverse side effects were reported. CONCLUSION Women who took GTE capsules showed a significant improvement in their physical cumulative score on the SF-12, but not in the global QoL score. Myoma size or other objective parameters did not change.
Collapse
Affiliation(s)
- Rebekka Biro
- Klinik für Gynäkologie mit Zentrum für onkologische Chirurgie, Campus Virchow-Klinikum (Clinic for Gynecology with Centre for Oncological Surgery, Campus Virchow Klinikum), Charité-Universitätsmedizin Berlin (University Medicine Berlin), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Rolf Richter
- Klinik für Gynäkologie mit Zentrum für onkologische Chirurgie, Campus Virchow-Klinikum (Clinic for Gynecology with Centre for Oncological Surgery, Campus Virchow Klinikum), Charité-Universitätsmedizin Berlin (University Medicine Berlin), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Miriam Ortiz
- Institut für Sozialmedizin, Epidemiologie und Gesundheitsökonomie (Institute for Social Medicine, Epidemiology and Health Economics), Charité-Universitätsmedizin Berlin (University Medicine Berlin), Berlin, Germany
| | - Jalid Sehouli
- Klinik für Gynäkologie mit Zentrum für onkologische Chirurgie, Campus Virchow-Klinikum (Clinic for Gynecology with Centre for Oncological Surgery, Campus Virchow Klinikum), Charité-Universitätsmedizin Berlin (University Medicine Berlin), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Matthias David
- Klinik für Gynäkologie mit Zentrum für onkologische Chirurgie, Campus Virchow-Klinikum (Clinic for Gynecology with Centre for Oncological Surgery, Campus Virchow Klinikum), Charité-Universitätsmedizin Berlin (University Medicine Berlin), Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
34
|
Preventive Effects of Green Tea Extract against Obesity Development in Zebrafish. Molecules 2021; 26:molecules26092627. [PMID: 33946279 PMCID: PMC8124760 DOI: 10.3390/molecules26092627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Various natural products (NPs) have been used to treat obesity and related diseases. However, the best way to fight obesity is preventive, with accurate body weight management through exercise, diet, or bioactive NPs to avoid obesity development. We demonstrated that green tea extract (GTE) is an anti-obesity NP using a zebrafish obesity model. Based on a hypothesis that GTE can prevent obesity, the objective of this study was to assess GTE's ability to attenuate obesity development. Juvenile zebrafish were pretreated with GTE for seven days before obesity induction via a high-fat diet; adult zebrafish were pretreated with GTE for two weeks before obesity induction by overfeeding. As a preventive intervention, GTE significantly decreased visceral adipose tissue accumulation in juveniles and ameliorated visceral adiposity and plasma triglyceride levels in adult zebrafish obesity models. RNA sequencing analysis was performed using liver tissues from adult obese zebrafish, with or without GTE administration, to investigate the underlying molecular mechanism. Transcriptome analysis revealed that preventive GTE treatment affects several pathways associated with anti-obesity regulation, including activation of STAT and downregulation of CEBP signaling pathways. In conclusion, GTE could be used as a preventive agent against obesity.
Collapse
|
35
|
Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res Int 2021; 142:110186. [PMID: 33773663 DOI: 10.1016/j.foodres.2021.110186] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Green tea, the least processed tea product, is scientifically known for its rich antioxidant content originating from polyphenols, especially catechins. The most potent green tea catechin is epigallocatechin-3-gallate (EGCG), which is responsible for a wide range of health benefits including anticancer, antidiabetics, and anti-inflammatory properties. However, green tea catechins (GTCs) are very labile under both environmental and gastrointestinal conditions; their chemical stability and bioavailability primarily depend on the processing and formulation conditions. Nanocarriers can protect GTCs against such conditions, and consequently, can be applicable for designing nanodelivery systems suitable for GTCs. In this review, the latest findings about both opportunities and limitations for the nanodelivery of GTCs and their incorporation into various functional food products are discussed. The scientific findings so far confirm that nanodelivery of GTCs can be an efficient approach towards the enhancement of their health-promoting effects with a minimal dose, controlled and targeted release, lessening the dose-related toxicity, and the efficient incorporation into functional foods. However, further investigation is yet needed to fully explain the cellular mechanisms of action of GTCs on human health and to elucidate the effect of encapsulation on their bioefficacy using well-designed, systematic, long-term, and large-scale clinical interventions. There also exists a substantial concern regarding the safety of the manufactured nanoparticles, their absorption, and the associated release mechanisms.
Collapse
|
36
|
Oxidation of Hydrogen Sulfide by Quinones: How Polyphenols Initiate Their Cytoprotective Effects. Int J Mol Sci 2021; 22:ijms22020961. [PMID: 33478045 PMCID: PMC7835830 DOI: 10.3390/ijms22020961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
We have shown that autoxidized polyphenolic nutraceuticals oxidize H2S to polysulfides and thiosulfate and this may convey their cytoprotective effects. Polyphenol reactivity is largely attributed to the B ring, which is usually a form of hydroxyquinone (HQ). Here, we examine the effects of HQs on sulfur metabolism using H2S- and polysulfide-specific fluorophores (AzMC and SSP4, respectively) and thiosulfate sensitive silver nanoparticles (AgNP). In buffer, 1,4-dihydroxybenzene (1,4-DB), 1,4-benzoquinone (1,4-BQ), pyrogallol (PG) and gallic acid (GA) oxidized H2S to polysulfides and thiosulfate, whereas 1,2-DB, 1,3-DB, 1,2-dihydroxy,3,4-benzoquinone and shikimic acid did not. In addition, 1,4-DB, 1,4-BQ, PG and GA also increased polysulfide production in HEK293 cells. In buffer, H2S oxidation by 1,4-DB was oxygen-dependent, partially inhibited by tempol and trolox, and absorbance spectra were consistent with redox cycling between HQ autoxidation and H2S-mediated reduction. Neither 1,2-DB, 1,3-DB, 1,4-DB nor 1,4-BQ reduced polysulfides to H2S in either 21% or 0% oxygen. Epinephrine and norepinephrine also oxidized H2S to polysulfides and thiosulfate; dopamine and tyrosine were ineffective. Polyphenones were also examined, but only 2,5-dihydroxy- and 2,3,4-trihydroxybenzophenones oxidized H2S. These results show that H2S is readily oxidized by specific hydroxyquinones and quinones, most likely through the formation of a semiquinone radical intermediate derived from either reaction of oxygen with the reduced quinones, or from direct reaction between H2S and quinones. We propose that polysulfide production by these reactions contributes to the health-promoting benefits of polyphenolic nutraceuticals.
Collapse
|
37
|
Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M. The Beneficial Effects of Principal Polyphenols from Green Tea, Coffee, Wine, and Curry on Obesity. Molecules 2021; 26:molecules26020453. [PMID: 33467101 PMCID: PMC7830344 DOI: 10.3390/molecules26020453] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Several epidemiological studies and clinical trials have reported the beneficial effects of green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic, and neuroprotective properties. These effects, which have been supported using cell-based and animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via various mechanisms, the most important of which is related to reactive oxygen species (ROS). These polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation of 5′-AMP-activated protein kinase, which modulates different enzymes and factors with health beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension polyphenols, on obesity. These inconsistencies may be attributed to different confounding study factors. Thus, this review provides a state-of-the-art update on these foods and their principal polyphenol components, with an assumption that it prevents obesity.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Correspondence: ; Tel.: +81-55-924-0601
| | - Ryuuta Fukutomi
- Quality Management Div. Higuchi Inc., Minato-ku, Tokyo 108-0075, Japan;
| | - Yutaka Shoji
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| | - Shingo Goto
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimizu, Shizuoka 424-0292, Japan;
| | - Mamoru Isemura
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| |
Collapse
|
38
|
Ito K, Koike M, Kuroda Y, Yamazaki-Ito T, Terada Y, Ishii T, Nakamura Y, Watanabe T, Kawarasaki Y. Bitterness-masking peptides for epigallocatechin gallate identified through peptide array analysis. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Keisuke Ito
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Mayu Koike
- School of Food and Nutritional Sciences, University of Shizuoka
| | - Yuki Kuroda
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Toyomi Yamazaki-Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | - Yuko Terada
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| | | | | | - Tatsuo Watanabe
- School of Food and Nutritional Sciences, University of Shizuoka
| | - Yasuaki Kawarasaki
- School of Food and Nutritional Sciences, University of Shizuoka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
39
|
Sicard AA, Suarez NG, Cappadocia L, Annabi B. Functional targeting of the TGF-βR1 kinase domain and downstream signaling: A role for the galloyl moiety of green tea-derived catechins in ES-2 ovarian clear cell carcinoma. J Nutr Biochem 2021; 87:108518. [PMID: 33017609 DOI: 10.1016/j.jnutbio.2020.108518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/03/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022]
Abstract
The galloyl moiety is a specific structural feature which dictates, in part, the chemopreventive properties of diet-derived catechins. In ovarian cancer cells, galloylated catechins were recently demonstrated to target the transforming growth factor (TGF)-β-mediated control of the epithelial-mesenchymal transition process. The specific impact of the galloyl moiety on such signaling, however, remains poorly understood. Here, we questioned whether the sole galloyl moiety interacted with TGF-β-receptors to alter signal transduction and chemotactic migratory response in an ES-2 serous carcinoma-derived ovarian cancer cell model. In line with the LogP and LogS values of the tested molecules, we found that TGF-β-induced Smad-3 phosphorylation and cell migration were optimally inhibited, provided that the lateral aliphatic chain of the galloyl moiety reached 8-10 carbons. Functional inhibition of the TGF-β receptor (TGF-βR1) kinase activity was supported by surface plasmon resonance assays showing direct physical interaction between TGF-βR1 and the galloyl moiety. In silico molecular docking analysis predicted a model where galloylated catechins may bind TGF-βR1 within its adenosine triphosphate binding cleft in a site analogous to that of Galunisertib, a selective adenosine triphosphate-mimetic competitive inhibitor of TGF-βR1. In conclusion, our data suggest that the galloyl moiety of the diet-derived catechins provides specificity of action to galloylated catechins by positioning them within the kinase domain of the TGF-βR1 in order to antagonize TGF-β-mediated signaling that is required for ovarian cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Audrey-Ann Sicard
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Narjara Gonzalez Suarez
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Laurent Cappadocia
- Laboratoire de Biochimie Analytique et Structurale, Centre de recherche CERMO-FC, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Li M, Xu J, Zhang Y, Chu S, Sun S, Huo Y, Zhao J, Hu X, Wan C, Li L. Comparative analysis of fecal metabolite profiles in HFD-induced obese mice after oral administration of huangjinya green tea extract. Food Chem Toxicol 2020; 145:111744. [PMID: 32918987 DOI: 10.1016/j.fct.2020.111744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
To explore the impact of Huangjinya on metabolic disorders and host endogenous metabolite profiles, high-fat diet (HFD)-fed mice were administrated with Huangjinya green tea extract (HGT) at the dose of 150 or 300 mg/kg for 9 weeks. Epigallocatechin gallate was the main catechin derivative, followed by epigallocatechin and catechin presented in HGT, which contained high levels of free amino acids (50.30 ± 0.60 mg/g). HGT significantly alleviated glucose and insulin intolerance, reduced hepatic lipid accumulation and liver steatosis, and prevented white adipose tissue expansion in HFD-fed mice. Untargeted mass spectrometry-based metabolomics analysis revealed that HGT reduced the abundance of fecal branched-chain amino acids, aromatic amino acids, sphingolipids, and most acyl cholines, modulated bile acid metabolism by increasing chenodeoxycholate and reducing cholic acid content, and increased unsaturated fatty acids content. Fatherly, HGT activated insulin/PI3K/Akt and AMPK signaling pathways in the liver, reduced adipogenic and lipogenic genes expression, and promoted the genes expression related to lipolysis and adipocyte browning in white adipose tissue, contributed to improving metabolic syndrome in HFD-fed mice. The current study reported the impact of HGT supplementation on endogenous metabolite profiles, and highlights the positive roles of HGT in preventing diet-induced obesity and the related metabolic disorders.
Collapse
Affiliation(s)
- Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yi Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Suo Chu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Shizhuo Sun
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yan Huo
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jie Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xiaodi Hu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
41
|
Lee J, Seok JM, Huh SJ, Byun HY, Lee SM, Park SA, Shin H. 3D printed micro-chambers carrying stem cell spheroids and pro-proliferative growth factors for bone tissue regeneration. Biofabrication 2020; 13. [PMID: 33086206 DOI: 10.1088/1758-5090/abc39c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D)-printed scaffolds have proved to be effective tools for delivering growth factors and cells in bone-tissue engineering. However, delivering spheroids that enhance cellular function remains challenging because the spheroids tend to suffer from low viability, which limits bone regenerationin vivo. Here, we describe a 3D-printed polycaprolactone micro-chamber that can deliver human adipose-derived stem cell spheroids. Anin vitroculture of cells from spheroids in the micro-chamber exhibited greater viability and proliferation compared with cells cultured without the chamber. We coated the surface of the chamber with 500 ng of platelet-derived growth factors (PDGF), and immobilized 50 ng of bone morphogenetic protein 2 (BMP-2) on fragmented fibers, which were incorporated within the spheroids as a new platform for a dual-growth-factor delivery system. The PDGF detached from the chamber within 8 h and the remains were retained on the surface of chamber while the BMP-2 was entrapped by the spheroid. In vitro osteogenic differentiation of the cells from the spheroids in the micro-chamber with dual growth factors enhanced alkaline phosphatase and collagen type 1A expression by factors of 126.7 ± 19.6 and 89.7 ± 0.3, respectively, compared with expression in a micro-chamber with no growth factors. In vivo transplantation of the chambers with dual growth factors into mouse calvarial defects resulted in a 77.0 ± 15.9% of regenerated bone area, while the chamber without growth factors and a defect-only group achieved 7.6 ± 3.9% and 5.0 ± 1.9% of regenerated bone areas, respectively. These findings indicate that a spheroid-loaded micro-chamber supplied with dual growth factors can serve as an effective protein-delivery platform that increases stem-cell functioning and bone regeneration.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, Korea (the Republic of)
| | - Ji Min Seok
- Korea Institute of Machinery and Materials, Daejeon, Korea (the Republic of)
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul, Korea (the Republic of)
| | - Ha Yeon Byun
- Hanyang University, Seoul, Korea (the Republic of)
| | - Sang Min Lee
- Department of Bioengineering, Hanyang University, Seoul, Korea (the Republic of)
| | - Su A Park
- Korea Institute of Machinery and Materials, Daejeon, 34103, Korea (the Republic of)
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea (the Republic of)
| |
Collapse
|
42
|
Hayakawa S, Ohishi T, Miyoshi N, Oishi Y, Nakamura Y, Isemura M. Anti-Cancer Effects of Green Tea Epigallocatchin-3-Gallate and Coffee Chlorogenic Acid. Molecules 2020; 25:molecules25194553. [PMID: 33027981 PMCID: PMC7582793 DOI: 10.3390/molecules25194553] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Tea and coffee are consumed worldwide and epidemiological and clinical studies have shown their health beneficial effects, including anti-cancer effects. Epigallocatechin gallate (EGCG) and chlorogenic acid (CGA) are the major components of green tea polyphenols and coffee polyphenols, respectively, and believed to be responsible for most of these effects. Although a large number of cell-based and animal experiments have provided convincing evidence to support the anti-cancer effects of green tea, coffee, EGCG, and CGA, human studies are still controversial and some studies have suggested even an increased risk for certain types of cancers such as esophageal and gynecological cancers with green tea consumption and bladder and lung cancers with coffee consumption. The reason for these inconsistent results may have been arisen from various confounding factors. Cell-based and animal studies have proposed several mechanisms whereby EGCG and CGA exert their anti-cancer effects. These components appear to share the common mechanisms, among which one related to reactive oxygen species is perhaps the most attractive. Meanwhile, EGCG and CGA have also different target molecules which might explain the site-specific differences of anti-cancer effects found in human studies. Further studies will be necessary to clarify what is the mechanism to cause such differences between green tea and coffee.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan;
- Correspondence: (S.H.); (M.I.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5920 (M.I.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan;
| | - Noriyuki Miyoshi
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan;
| | - Yoriyuki Nakamura
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
| | - Mamoru Isemura
- School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (N.M.); (Y.N.)
- Correspondence: (S.H.); (M.I.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5920 (M.I.)
| |
Collapse
|
43
|
Wang W, Zhang Q, Xiong X, Zheng Y, Yang W, Du L. Investigation on the influence of galloyl moiety to the peptidyl prolyl cis/trans isomerase Pin1: A spectral and computational analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Kato MT, Hannas AR, Cardoso CDAB, Cassiano LDPS, Naves PA, Magalhães AC, Tjäderhane L, Buzalaf MAR. Dentifrices or gels containing MMP inhibitors prevent dentine loss: in situ studies. Clin Oral Investig 2020; 25:2183-2190. [PMID: 32975705 DOI: 10.1007/s00784-020-03530-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Evaluate the effect of dentifrices or gels containing MMP inhibitors on dentine loss in situ. MATERIALS AND METHODS Acrylic palatal appliances containing bovine dentine blocks were divided into two rows, corresponding to the groups erosion (ERO) and erosion associated with abrasion (ERO+ABR). For ERO, the appliances were immersed in a cola drink for 5 min, 4 times/day, while for ERO+ABR, the blocks were brushed for 15 sec with a dentifrice slurry after the second and third erosive challenges. Ten volunteers took part in study 1 (S1), where the dentifrices evaluated contained 1100 ppm fluoride as NaF, 0.61% green tea extract, or 0.012% chlorhexidine digluconate. Thirteen volunteers participated in study 2 (S2), in which the treatment was performed only once (1 min) with gels containing 400 μM EGCG (EGCG400), 0.012% chlorhexidine, 1 mM FeSO4, 1.23% F (NaF), placebo, or received no treatment. Dentine loss was analyzed by profilometry (μm). RESULTS Regarding S1, ERO+ABR induced significantly higher dentine loss compared with ERO and all dentifrices tested led to significantly lower dentine loss when compared with placebo. For S2, regardless of the conditions or times of evaluation, gels containing EGCG, CHX, or FeSO4 led to significantly less wear compared with the other groups. CONCLUSION Both dentifrices and gels containing MMP inhibitors significantly reduced dentine loss. CLINICAL RELEVANCE Dentifrices and gels containing MMP inhibitors are able to increase the protection against dentine wear, although gels have a better effect when compared with fluoride gel, lasting up to 10 days after a single application.
Collapse
Affiliation(s)
- Melissa Thiemi Kato
- Department of Dentistry, University of Centro Oeste Paulista - FACOPH, 72 Luiz Gimenez Mocegose, Piratininga, SP, Brazil
| | - Angelica Reis Hannas
- Department of Oral Biology, Bauru School of Dentistry, University of São Paulo, 9-75 Al. Octávio Pinheiro Brisolla, Bauru, SP, Brazil
| | | | | | - Paula Andery Naves
- Department of Dentistry, Cruzeiro do Sul University, 868 Galvão Bueno, São Paulo, SP, Brazil
| | - Ana Carolina Magalhães
- Department of Oral Biology, Bauru School of Dentistry, University of São Paulo, 9-75 Al. Octávio Pinheiro Brisolla, Bauru, SP, Brazil
| | - Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 5281, FI - 90014, Oulu, Finland
| | - Marília Afonso Rabelo Buzalaf
- Department of Oral Biology, Bauru School of Dentistry, University of São Paulo, 9-75 Al. Octávio Pinheiro Brisolla, Bauru, SP, Brazil.
| |
Collapse
|
45
|
Olson KR, Briggs A, Devireddy M, Iovino NA, Skora NC, Whelan J, Villa BP, Yuan X, Mannam V, Howard S, Gao Y, Minnion M, Feelisch M. Green tea polyphenolic antioxidants oxidize hydrogen sulfide to thiosulfate and polysulfides: A possible new mechanism underpinning their biological action. Redox Biol 2020; 37:101731. [PMID: 33002760 PMCID: PMC7527747 DOI: 10.1016/j.redox.2020.101731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
Matcha and green tea catechins such as (−)-epicatechin (EC), (−)-epigallocatechin (EGC) and (−)-epigallocatechin gallate (EGCG) have long been studied for their antioxidant and health-promoting effects. Using specific fluorophores for H2S (AzMC) and polysulfides (SSP4) as well as IC-MS and UPLC-MS/MS-based techniques we here show that popular Japanese and Chinese green teas and select catechins all catalytically oxidize hydrogen sulfide (H2S) to polysulfides with the potency of EGC > EGCG >> EG. This reaction is accompanied by the formation of sulfite, thiosulfate and sulfate, consumes oxygen and is partially inhibited by the superoxide scavenger, tempol, and superoxide dismutase but not mannitol, trolox, DMPO, or the iron chelator, desferrioxamine. We propose that the reaction proceeds via a one-electron autoxidation process during which one of the OH-groups of the catechin B-ring is autooxidized to a semiquinone radical and oxygen is reduced to superoxide, either of which can then oxidize HS− to thiyl radicals (HS•) which react to form hydrogen persulfide (H2S2). H2S oxidation reduces the B-ring back to the hydroquinone for recycling while the superoxide is reduced to hydrogen peroxide (H2O2). Matcha and catechins also concentration-dependently and rapidly produce polysulfides in HEK293 cells with the potency order EGCG > EGC > EG, an EGCG threshold of ~300 nM, and an EC50 of ~3 μM, suggesting green tea also acts as powerful pro-oxidant in vivo. The resultant polysulfides formed are not only potent antioxidants, but elicit a cascade of secondary cytoprotective effects, and we propose that many of the health benefits of green tea are mediated through these reactions. Remarkably, all green tea leaves constitutively contain small amounts of H2S2.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Austin Briggs
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Monesh Devireddy
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| | - Nicholas A Iovino
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Nicole C Skora
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jenna Whelan
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brian P Villa
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiaotong Yuan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Varun Mannam
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Scott Howard
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| | - Magdalena Minnion
- NIHR Southampton Biomedical Research Center, University of Southampton, Southampton, General Hospital, Southampton, SO16 6YD, UK; Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Martin Feelisch
- NIHR Southampton Biomedical Research Center, University of Southampton, Southampton, General Hospital, Southampton, SO16 6YD, UK; Clinical & Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
46
|
Farooqi AA, Pinheiro M, Granja A, Farabegoli F, Reis S, Attar R, Sabitaliyevich UY, Xu B, Ahmad A. EGCG Mediated Targeting of Deregulated Signaling Pathways and Non-Coding RNAs in Different Cancers: Focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL Mediated Signaling Pathways. Cancers (Basel) 2020; 12:951. [PMID: 32290543 PMCID: PMC7226503 DOI: 10.3390/cancers12040951] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Decades of research have enabled us to develop a better and sharper understanding of multifaceted nature of cancer. Next-generation sequencing technologies have leveraged our existing knowledge related to intra- and inter-tumor heterogeneity to the next level. Functional genomics have opened new horizons to explore deregulated signaling pathways in different cancers. Therapeutic targeting of deregulated oncogenic signaling cascades by products obtained from natural sources has shown promising results. Epigallocatechin-3-gallate (EGCG) has emerged as a distinguished chemopreventive product because of its ability to regulate a myriad of oncogenic signaling pathways. Based on its scientifically approved anticancer activity and encouraging results obtained from preclinical trials, it is also being tested in various phases of clinical trials. A series of clinical trials associated with green tea extracts and EGCG are providing clues about significant potential of EGCG to mechanistically modulate wide ranging signal transduction cascades. In this review, we comprehensively analyzed regulation of JAK/STAT, Wnt/β-catenin, TGF/SMAD, SHH/GLI, NOTCH pathways by EGCG. We also discussed most recent evidence related to the ability of EGCG to modulate non-coding RNAs in different cancers. Methylation of the genome is also a widely studied mechanism and EGCG has been shown to modulate DNA methyltransferases (DNMTs) and protein enhancer of zeste-2 (EZH2) in multiple cancers. Moreover, the use of nanoformulations to increase the bioavailability and thus efficacy of EGCG will be also addressed. Better understanding of the pleiotropic abilities of EGCG to modulate intracellular pathways along with the development of effective EGCG delivery vehicles will be helpful in getting a step closer to individualized medicines.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan;
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (A.G.); (S.R.)
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Ataşehir/İstanbul 34755, Turkey;
| | - Uteuliyev Yerzhan Sabitaliyevich
- Department of Health Policy and Health Care Development, Kazakh Medical University of Continuing Education, Almaty 050004, Kazakhstan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| |
Collapse
|
47
|
Marcinko TM, Drews T, Liu T, Vachet RW. Epigallocatechin-3-gallate Inhibits Cu(II)-Induced β-2-Microglobulin Amyloid Formation by Binding to the Edge of Its β-Sheets. Biochemistry 2020; 59:1093-1103. [PMID: 32100530 DOI: 10.1021/acs.biochem.0c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is a catechin found in green tea that can inhibit the amyloid formation of a wide variety of proteins. EGCG's ability to prevent or redirect the amyloid formation of so many proteins may reflect a common mechanism of action, and thus, greater molecular-level insight into how it exerts its effect could have broad implications. Here, we investigate the molecular details of EGCG's inhibition of the protein β-2-microglobulin (β2m), which forms amyloids in patients undergoing long-term dialysis treatment. Using size-exclusion chromatography and a collection of mass spectrometry-based techniques, we find that EGCG prevents Cu(II)-induced β2m amyloid formation by diverting the normal progression of preamyloid oligomers toward the formation of spherical, redissolvable aggregates. EGCG exerts its effect by binding with a micromolar affinity (Kd ≈ 5 μM) to the β2m monomer on the edge of two β-sheets near the N-terminus. This interaction destabilizes the preamyloid dimer and prevents the formation of a tetramer species previously shown to be essential for Cu(II)-induced β2m amyloid formation. EGCG's binding at the edge of the β-sheets in β2m is consistent with a previous hypothesis that EGCG generally prevents amyloid formation by binding cross-β-sheet aggregation intermediates.
Collapse
Affiliation(s)
- Tyler M Marcinko
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Thomas Drews
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Wang N, Wang J, Meng X, Li T, Wang S, Bao Y. The Pharmacological Effects of Spatholobi Caulis Tannin in Cervical Cancer and Its Precise Therapeutic Effect on Related circRNA. Mol Ther Oncolytics 2019; 14:121-129. [PMID: 31194163 PMCID: PMC6551555 DOI: 10.1016/j.omto.2019.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
The chemical components of Spatholobi Caulis tannin (SCT) have a modest therapeutic effect in patients with cervical cancer. However, the active components and the mechanism of action of SCT in HeLa cervical cancer cells need to be further studied. In this paper, 3D microfluidic chip technology was applied to simulate the effects of tannins in the human body, and the appropriate dose and time of administration were calculated. The cell cycle and apoptosis experiments demonstrated that SCT inhibits proliferation and stimulated apoptosis in HeLa cells. The differentially expressed genes were screened using The Cancer Genome Atlas (TCGA) and the GEO databases to identify common differentially expressed genes. A bioinformatic analysis of relevant genes, analysis using the molecular docking technique, and survival analysis were used to predict the target genes of SCT. Circular RNAs (circRNAs) associated with the SCT target genes and the regulatory effects of SCT on these circRNAs were determined. These studies showed that SCT mediates related circRNAs in HeLa cells to inhibit proliferation and promote apoptosis in HeLa cells. Thus, SCT may be an effective strategy for treating cervical cancer.
Collapse
Affiliation(s)
- Nijia Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
| | - Jiayi Wang
- Liaoning Institute for Drug Control, Shenyang 110036, P.R. China
| | - Xiansheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, P.R. China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, P.R. China
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Dalian 116600, P.R. China
| | - Tianjiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, P.R. China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, P.R. China
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Dalian 116600, P.R. China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, P.R. China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, P.R. China
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Dalian 116600, P.R. China
| | - Yongrui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, P.R. China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, P.R. China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, P.R. China
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Dalian 116600, P.R. China
| |
Collapse
|
49
|
Kanlaya R, Thongboonkerd V. Molecular Mechanisms of Epigallocatechin-3-Gallate for Prevention of Chronic Kidney Disease and Renal Fibrosis: Preclinical Evidence. Curr Dev Nutr 2019; 3:nzz101. [PMID: 31555758 PMCID: PMC6752729 DOI: 10.1093/cdn/nzz101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common public health problem worldwide characterized by gradual decline of renal function over months/years accompanied by renal fibrosis and failure in tissue wound healing after sustained injury. Patients with CKD frequently present with profound signs/symptoms that require medical treatment, mostly culminating in hemodialysis and renal transplantation. To prevent CKD more efficiently, there is an urgent need for better understanding of the pathogenic mechanisms and molecular pathways of the disease pathogenesis and progression, and for developing novel therapeutic targets. Recently, several lines of evidence have shown that epigallocatechin-3-gallate (EGCG), an abundant phytochemical polyphenol derived from Camellia sinensis, might be a promising bioactive compound for prevention of CKD development/progression. This review summarizes current knowledge of molecular mechanisms underlying renoprotective roles of EGCG in CKD based on available preclinical evidence (from both in vitro and in vivo animal studies), particularly its antioxidant property through preservation of mitochondrial function and activation of Nrf2 (nuclear factor erythroid 2-related factor 2)/HO-1 (heme oxygenase-1) signaling, anti-inflammatory activity, and protective effect against epithelial mesenchymal transition. Finally, future perspectives, challenges, and concerns regarding its clinical use in CKD and renal fibrosis are discussed.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
50
|
Pelá VT, Prakki A, Wang L, Ventura TMS, de Souza E Silva CM, Cassiano LPS, Brianezzi LFF, Leite AL, Buzalaf MAR. The influence of fillers and protease inhibitors in experimental resins in the protein profile of the acquired pellicle formed in situ on enamel-resin specimens. Arch Oral Biol 2019; 108:104527. [PMID: 31472277 DOI: 10.1016/j.archoralbio.2019.104527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study evaluated the influence of the addition of fillers and/or protease inhibitors [(epigallocatechin gallate - EGCG) or (chlorhexidine - CHX)] in experimental resins in the protein profile of the acquired pellicle (AP) formed in situ on enamel-resin specimens. DESIGN 324 samples of bovine enamel were prepared (6 × 6 × 2 mm). The center of each sample was added with one of the following experimental resins (Bis-GMA+TEGDMA): no filler, no inhibitor (NF-NI); filler no inhibitor (F-NI); no filler plus CHX (NF-CHX); filler plus CHX (F-CHX); no filler plus EGCG (NF-EGCG); filler plus EGCG (F-EGCG). Nine subjects used a removable jaw appliance (BISPM - Bauru in situ pellicle model) with 2 slabs from each group. The AP was formed for 120 min, in 9 days and collected with electrode filter paper soaked in 3% citric acid. The pellicles collected were processed for analysis by LC-ESI-MS/MS. RESULTS A total of 140 proteins were found in the AP collected from all the substrates. Among them, 16 proteins were found in common in all the groups: 2 isoforms of Basic salivary proline-rich protein, Cystatin-S, Cystatin-AS, Cystatin-SN, Histatin-1, Ig alpha-1 chain C region, Lysozyme C, Mucin-7, Proline-rich protein 4, Protein S100-A9, Salivary acidic proline-rich phosphoprotein ½ and Statherin. Proteins with other functions, such as metabolism and transport, were also identified. CONCLUSION The composition of the experimental resins influenced the protein profile of the AP. This opens a new avenue for the development of new materials able to guide for AP engineering, thus conferring protection to the adjacent teeth.
Collapse
Affiliation(s)
- Vinícius Taioqui Pelá
- Department of Genetics and Evolution Federal University of Sao Carlos, São Carlos, SP, Brazil.
| | - Anuradha Prakki
- Department of Clinical Sciences, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| | - Linda Wang
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | | | - Luiza Paula Silva Cassiano
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | - Aline Lima Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | |
Collapse
|