1
|
Khan HR, Sultan R, Javeed M, Yasmeen H, Arooj I, Janiad S. Functional foods and immune system: A sustainable inhibitory approach against SARS-COV-2. Antivir Ther 2025; 30:13596535251322297. [PMID: 40138520 DOI: 10.1177/13596535251322297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Background: COVID-19 has become the center of attention since its outbreak in December 2019. Despite the discovery of its preventive vaccine, role of healthy immune system is undebatable. Functional foods are continuously hunted as a promising option for a safe natural therapeutic treatment.Purpose: This review demonstrates how functional foods can boost host immune system, promote antiviral operation, and synthesize biologically effective molecules against SARS-COV-2.Research Methodology: For current review, online search was conducted for nature-based functional immune boosters against SARS-COV-2.Conclusion: Functional foods, alongside a healthy lifestyle, fortifies the human immune system and could all help to dramatically lower the cost burden of COVID-19, the suffering of the patients, and the mortality rates worldwide.
Collapse
Affiliation(s)
- Hubza Ruatt Khan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Rabia Sultan
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Mehvish Javeed
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Humaira Yasmeen
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Iqra Arooj
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| | - Sara Janiad
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, Pakistan
| |
Collapse
|
2
|
Turan TL, Klein HJ, Rijntjes E, Graf TR, Demircan K, Plock JA, Schomburg L. Selenoprotein P as a prognostic biomarker of burn sepsis: A prospective cohort study. Burns 2025; 51:107314. [PMID: 39549423 DOI: 10.1016/j.burns.2024.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
INTRODUCTION Severely burned patients exhibit increased nutritional requirements and are at high risk of developing sepsis. Selenium is an essential trace element supporting antioxidant and anti-inflammatory pathways, mediated by incorporation into selenoproteins. The selenium status may affect sepsis risk in burn injury. METHODS This prospective cohort study included 90 adult patients admitted to Zurich Burn Center, Switzerland. All patients received a continuous intravenous infusion of 1000 μg sodium selenite per day during the first week as part of local standard of care. Three complementary biomarkers of serum selenium status were determined at nine time-points up to six months postburn, namely total selenium, selenoprotein P, and glutathione peroxidase 3. The resulting data were correlated to clinical parameters and outcomes, with sepsis as the primary end point. RESULTS A high fraction of the patients displayed selenium deficiency already at admission, and developed sepsis during hospitalization (n = 55; 61 %). Selenium status at admission was inversely related to burn severity. Low baseline selenoprotein P was associated with sepsis incidence, irrespective of trauma severity (adjusted HR, 1.94; 95 % CI, 1.05-3.63; p = 0.035). Burn severity and baseline concentrations of selenoprotein P and white blood cells together predicted sepsis with an area under the curve of 0.84 (95 % CI, 0.75-0.93; p < 0.0001). Supplemental selenium was associated with a transient normalization of selenium status. CONCLUSION Considering its rapid decline following severe burn injury, the assessment of serum selenoprotein P upon admission may contribute to an early prediction of sepsis risk.
Collapse
Affiliation(s)
- Tabael L Turan
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
| | - Holger J Klein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, 5001 Aarau, Switzerland.
| | - Eddy Rijntjes
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
| | - Theresia Reding Graf
- Pancreas Research Laboratory, Department of Visceral Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland.
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, 5001 Aarau, Switzerland.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany.
| |
Collapse
|
3
|
Calder PC. Nutrition and immunity: lessons from coronavirus disease-2019. Proc Nutr Soc 2025; 84:8-23. [PMID: 37886807 DOI: 10.1017/s0029665123004792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
This review will provide an overview of the immune system and then describe the effects of frailty, obesity, specific micronutrients and the gut microbiota on immunity and susceptibility to infection including data from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic where relevant. A key role for the immune system is providing host defence against pathogens. Impaired immunity predisposes to infections and to more severe infections and weakens the response to vaccination. A range of nutrients, including many micronutrients, play important roles in supporting the immune system to function. The immune system can decline in later life and this is exaggerated by frailty. The immune system is also weakened with obesity, generalised undernutrition and micronutrient deficiencies, which all result in increased susceptibility to infection. Findings obtained during the SARS-CoV-2 pandemic support what was already known about the effects of ageing, frailty and obesity on immunity and susceptibility to infection. Observational studies conducted during the pandemic also support previous findings that multiple micronutrients including vitamins C, D and E, zinc and selenium and long-chain n-3 fatty acids are important for immune health, but whether these nutrients can be used to treat those already with coronavirus disease discovered in 2019 (COVID-19), particularly if already hospitalised, is uncertain from current inconsistent or scant evidence. There is gut dysbiosis in patients with COVID-19 and studies with probiotics report clinical improvements in such patients. There is an inverse association between adherence to a healthy diet and risk of SARS-CoV-2 infection and hospitalisation with COVID-19 which is consistent with the effects of individual nutrients and other dietary components. Addressing frailty, obesity and micronutrient insufficiency will be important to reduce the burden of future pandemics and nutritional considerations need to be a central part of the approach to preventing infections, optimising vaccine responses and promoting recovery from infection.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Shahidin, Wang Y, Wu Y, Chen T, Wu X, Yuan W, Zhu Q, Wang X, Zi C. Selenium and Selenoproteins: Mechanisms, Health Functions, and Emerging Applications. Molecules 2025; 30:437. [PMID: 39942544 PMCID: PMC11820089 DOI: 10.3390/molecules30030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Selenium (Se) is an essential trace element crucial for human health that primarily functions as an immunonutrient. It is incorporated into polypeptides such as selenocysteine (SeC) and selenomethionine (SeMet), two key amino acids involved in various biochemical processes. All living organisms can convert inorganic Se into biologically active organic forms, with SeMet being the predominant form and a precursor for SeC production in humans and animals. The human genome encodes 25 selenoprotein genes, which incorporate low-molecular-weight Se compounds in the form of SeC. Organic Se, especially in the form of selenoproteins, is more efficiently absorbed than inorganic Se, driving the demand for selenoprotein-based health products, such as functional foods. Se-enriched functional foods offer a practical means of delivering bioavailable Se and are associated with enhanced antioxidant properties and various health benefits. Recent advancements in selenoprotein synthesis have improved our understanding of their roles in antioxidant defense, cancer prevention, immune regulation, anti-inflammation, hypoglycemia, cardiovascular health, Alzheimer's disease, fertility, and COVID-19. This review highlights key selenoproteins and their biological functions, biosynthetic pathways, and emerging applications while highlighting the need for further research.
Collapse
Affiliation(s)
- Shahidin
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yilong Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Taixia Chen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyun Wu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Wenjuan Yuan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Qiangqiang Zhu
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
| | - Xuanjun Wang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, No. 546 S Rd. Lucheng, Chuxiong 675099, China
| | - Chengting Zi
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (S.); (Y.W.); (Y.W.); (T.C.); (X.W.); (W.Y.); (Q.Z.)
- Research Center for Agricultural Chemistry, College of Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Xiao X, Huang G, Yu X, Tan Y. Advances in Selenium and Related Compounds Inhibiting Multi-Organ Fibrosis. Drug Des Devel Ther 2025; 19:251-265. [PMID: 39830783 PMCID: PMC11742456 DOI: 10.2147/dddt.s488226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Selenium (Se), a critically essential trace element, plays a crucial role in diverse physiological processes within the human body, such as oxidative stress response, inflammation regulation, apoptosis, and lipid metabolism. Organ fibrosis, a pathological condition caused by various factors, has become a significant global health issue. Numerous studies have demonstrated the substantial impact of Se on fibrotic diseases. This review delves into the latest research advancements in Se and Se-related biological agents for alleviating fibrosis in the heart, liver, lungs, and kidneys, detailing their mechanisms of action within fibrotic pathways. Additionally, the article summa-rizes some of the anti-fibrotic drugs currently in clinical trials for the aforementioned organ fibroses.
Collapse
Affiliation(s)
- Xixi Xiao
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Minzu University, Enshi, 445000, People’s Republic of China
| | - Guoquan Huang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| | - Xinqiao Yu
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| |
Collapse
|
6
|
de Man AM, Stoppe C, Koekkoek KW, Briassoulis G, Subasinghe LS, Cobilinschi C, Deane AM, Manzanares W, Grințescu I, Mirea L, Roshdy A, Cotoia A, Bear DE, Boraso S, Fraipont V, Christopher KB, Casaer MP, Gunst J, Pantet O, Elhadi M, Bolondi G, Forceville X, Angstwurm MW, Gurjar M, Biondi R, van Zanten AR, Berger MM. What do we know about micronutrients in critically ill patients? A narrative review. JPEN J Parenter Enteral Nutr 2025; 49:33-58. [PMID: 39555865 PMCID: PMC11717498 DOI: 10.1002/jpen.2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024]
Abstract
Micronutrient (MN) status alterations (both depletion and deficiency) are associated with several complications and worse outcomes in critically ill patients. On the other side of the spectrum, improving MN status has been shown to be a potential co-adjuvant therapy. This review aims to collect existing data to better guide research in the critical care setting. This narrative review was conducted by the European Society of Intensive Care Medicine Feeding, Rehabilitation, Endocrinology, and Metabolism MN group. The primary objective was to identify studies focusing on individual MNs in critically ill patients, selecting the MNs that appear to be most relevant and most frequently investigated in the last decade: A, B1, B2, B3, B6, folate, C, D, E, copper, iron, selenium, zinc, and carnitine. Given the limited number of interventional studies for most MNs, observational studies were included. For each selected MN, the review summarizes the main form and functions, special needs and risk factors, optimal treatment strategies, pharmacological dosing, and clinical implications all specific to critically ill patients. A rigorous rebalancing of research strategies and priorities is needed to improve clinical practice. An important finding is that high-dose monotherapy of MNs is not recommended. Basal daily needs must be provided, with higher doses in diseases with known higher needs, and identified deficiencies treated. Finally, the review provides a list of ongoing trials on MNs in critically ill patients and identifies a priority list of future research topics.
Collapse
Affiliation(s)
- Angelique M.E. de Man
- Department of Intensive Care; Amsterdam Cardiovascular Sciences, Amsterdam UMClocation Vrije UniversiteitAmsterdamthe Netherlands
| | - Christian Stoppe
- University Hospital Wuerzburg, Department of Anaesthesiology, Intensive Care, Emergency, and Pain MedicineWuerzburgGermany
| | | | - George Briassoulis
- Postgraduate Program, Emergency and Intensive Care in Children Adolescents and Young Adults, School of MedicineUniversity of CreteHeraklionGreece
| | - Lilanthi S.D.P. Subasinghe
- Head of the Department ‐ Division of Intensive Care, University HospitalGeneral Sir John Kotelawala Defence UniversityColomboSri Lanka
| | - Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care II“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Anesthesiology and Intensive Care I, Clinical Emergency Hospital of BucharestBucharestRomania
| | - Adam M. Deane
- Department of Critical Care, Melbourne Medical SchoolUniversity of MelbourneParkvilleVicAustralia
| | - William Manzanares
- Department of Critical Care, Hospital de Clínicas (University Hospital)Faculty of MedicineUdelaRMontevideoUruguay
| | - Ioana Grințescu
- Department of Anesthesiology and Intensive Care II“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Anesthesiology and Intensive Care I, Clinical Emergency Hospital of BucharestBucharestRomania
| | - Liliana Mirea
- Department of Anesthesiology and Intensive Care II“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Department of Anesthesiology and Intensive Care I, Clinical Emergency Hospital of BucharestBucharestRomania
| | - Ashraf Roshdy
- Critical Care Medicine Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Antonella Cotoia
- Department of Critical CareUniversity Hospital of FoggiaFoggiaItaly
| | - Danielle E. Bear
- Department of Nutritional Sciences, School of Life Course and Population SciencesKing's College LondonLondonUK
- Department of Nutrition and Dietetics and Department of Critical CareGuy's and St Thomas’ NHS Foundation TrustLondonUK
| | - Sabrina Boraso
- General and Neurosurgical Intensive Care Unit, Ospedale dell'AngeloMestre‐VeneziaItaly
| | | | - Kenneth B. Christopher
- Channing Division of Network Medicine, Brigham and Women's HospitalBostonUSA
- Division of Renal Medicine, Brigham and Women's HospitalBostonUSA
| | - Michael P. Casaer
- Department of Cellular and Molecular Medicine, Laboratory of Intensive Care MedicineKU LeuvenLeuvenBelgium
- Intensive Care MedicineUZ LeuvenBelgium
| | - Jan Gunst
- Department of Cellular and Molecular Medicine, Laboratory of Intensive Care MedicineKU LeuvenLeuvenBelgium
- Intensive Care MedicineUZ LeuvenBelgium
| | - Olivier Pantet
- Department of Intensive Care MedicineUniversity Hospital of LausanneLausanneSwitzerland
| | | | - Giuliano Bolondi
- Anesthesia and Intensive Care Unit, Ospedale BufaliniCesena (FC)Italy
| | - Xavier Forceville
- Inserm, CIC 1414 (Centre d′ Investigation Clinique de Rennes)Univ Rennes, CHU RennesRennesF‐35000France
| | | | - Mohan Gurjar
- Department of Critical Care MedicineSanjay Gandhi Post Graduate Institute of Medical SciencesIndia
| | | | - Arthur R.H. van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, the Netherlands; Wageningen University & Research, Division of Human Nutrition and HealthWageningenthe Netherlands
| | - Mette M. Berger
- Faculty of Biology and MedicineLausanne UniversityLausanneSwitzerland
| | | |
Collapse
|
7
|
Phun GS, Slocumb HS, Ruud KJ, Nie S, Antonio C, Furche F, Dong VM, Yang XH. Hydroselenation of olefins: elucidating the β-selenium effect. Chem Sci 2024; 15:20523-20533. [PMID: 39600504 PMCID: PMC11586760 DOI: 10.1039/d4sc05766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
We report a light-promoted hydroselenation of alkenes with high anti-Markovnikov selectivity. Blue light activates an aryl diselenide to generate a seleno radical with subsequent addition into an alkene to form a β-seleno carbon radical. Hydrogen atom transfer (HAT) from the selenol to the carbon radical generates the linear selenide with high selectivity in preference to the branched isomer. These studies reveal a unique β-selenium effect, where a selenide β to a carbon radical imparts high anti-selectivity for radical addition through delocalization of the HAT transition state.
Collapse
Affiliation(s)
- Gabriel S Phun
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Hannah S Slocumb
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Kirsten J Ruud
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Shaozhen Nie
- Department of Medicinal Chemistry Glaxo-Smith-Kline, Collegeville Pennsylvania 19426 USA
| | - Cheyenne Antonio
- Department of Chemistry, University of California San Francisco California 94143 USA
| | - Filipp Furche
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Vy M Dong
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Xiao-Hui Yang
- Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology Beijing 100081 P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
8
|
Sohrab S, Mishra P, Dwivedi V, Veis P, Pathak AK, Mishra SK. Elemental analysis and metabolic profiling of medicinally potent members of Zingiberaceae family using FT-IR and LIBS coupled with PLS-DA. Heliyon 2024; 10:e33395. [PMID: 39027566 PMCID: PMC11255671 DOI: 10.1016/j.heliyon.2024.e33395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The role of organic and inorganic elemental profiles in the growth, development, and secondary metabolite synthesis of plants is crucial, particularly concerning their medicinal value. However, comprehensive studies addressing both aspects are scarce. Hence, the present manuscript aims to investigate the potential use of Fourier transform infrared spectroscopy (FT-IR) and laser-induced breakdown spectroscopy (LIBS) techniques to obtain the functional groups and organic and inorganic elemental profiles of significant medicinal plants belonging to the Zingiberaceae family collected from two different geographic regions in India. The FT-IR analysis of the methanolic extracts shows the presence of aliphatic and aromatic alcohols, esters, ethers, carboxyl compounds, and their derivatives. In LIBS analysis, the spectral characteristics of atomic and molecular species present in the samples were observed, encompassing both organic and inorganic elements. The presence of heavy metals and trace elements have also been observed in the LIBS spectra of the samples. Furthermore, partial least squares discriminant analysis (PLS-DA) has been used to obtain classification pattern of the samples based on their spectral fingerprints. This study not only helps in reflecting the significance of micronutrients in aiding secondary metabolism thus enhancing the medicinal properties of plants, but also enables the identification of trace elements within plants. This facilitates the determination of the suitable usage and dosage of particular plant components, contributing to the research goal of establishing pharmacological and nutraceutical significance. This study is imperative as it fills a critical gap in research, although further work in this direction is warranted.
Collapse
Affiliation(s)
- Saima Sohrab
- Department of Botany, Ewing Christian College, University of Allahabad, Prayagraj, Uttar Pradesh, 211003, India
| | - Pratibha Mishra
- Department of Botany, Ewing Christian College, University of Allahabad, Prayagraj, Uttar Pradesh, 211003, India
| | - Vishal Dwivedi
- Photonics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland
- Department of Experimental Physics, Comenius University, FMPI, Mlynská dol. F2, 842 48, Bratislava, Slovakia
| | - Pavel Veis
- Department of Experimental Physics, Comenius University, FMPI, Mlynská dol. F2, 842 48, Bratislava, Slovakia
| | - Ashok Kumar Pathak
- Department of Physics, Ewing Christian College, Prayagraj, 211003, Uttar Pradesh, India
| | - Sanjay Kumar Mishra
- Department of Botany, Ewing Christian College, University of Allahabad, Prayagraj, Uttar Pradesh, 211003, India
| |
Collapse
|
9
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
10
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
11
|
Perri G, Mathers JC, Martin-Ruiz C, Parker C, Walsh JS, Eastell R, Demircan K, Chillon TS, Schomburg L, Robinson L, Hill TR. Selenium status and its determinants in very old adults: insights from the Newcastle 85+ Study. Br J Nutr 2024; 131:901-910. [PMID: 37877251 PMCID: PMC10864996 DOI: 10.1017/s0007114523002398] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
There is a dearth of data on Se status in very old adults. The aims of this study were to assess Se status and its determinants in 85-year-olds living in the Northeast of England by measuring serum Se and selenoprotein P (SELENOP) concentrations and glutathione peroxidase 3 (GPx3) activity. A secondary aim was to examine the interrelationships between each of the biomarkers. In total, 757 participants (463 women, 293 men) from the Newcastle 85+ Study were included. Biomarker concentrations were compared with selected cut-offs (serum Se: suboptimal 70 µg/l and deficient 45 µg/l; SELENOP: suboptimal 4·5 mg/l and deficient 2·6 mg/l). Determinants were assessed using linear regressions, and interrelationships were assessed using restricted cubic splines. Median (inter-quartile range) concentrations of serum Se, SELENOP and of GPx3 activity were 53·6 (23·6) µg/l, 2·9 (1·9) mg/l and 142·1 (50·7) U/l, respectively. Eighty-two percentage and 83 % of participants had suboptimal serum Se (< 70 µg/l) and SELENOP (< 4·5 mg/l), and 31 % and 40 % of participants had deficient serum Se (< 45 µg/l) and SELENOP (< 2·6 mg/l), respectively. Protein intake was a significant determinant of Se status. Additional determinants of serum Se were sex, waist:hip ratio, self-rated health and disease, while sex, BMI and physical activity were determinants of GPx3 activity. There was a linear association between serum Se and SELENOP, and nonlinear associations between serum Se and GPx3 activity and between SELENOP and GPx3 activity. These findings indicate that most participants had suboptimal Se status to saturate circulating SELENOP.
Collapse
Affiliation(s)
- Giorgia Perri
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - John C. Mathers
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Carmen Martin-Ruiz
- BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon TyneNE4 5PL, UK
| | - Craig Parker
- BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon TyneNE4 5PL, UK
| | - Jennifer S. Walsh
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- Department of Oncology and Metabolism, University of Sheffield, SheffieldS5 7AU, UK
| | - Richard Eastell
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- Department of Oncology and Metabolism, University of Sheffield, SheffieldS5 7AU, UK
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin10115, Germany
| | - Thilo S. Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin10115, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin10115, Germany
| | - Louise Robinson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Tom R. Hill
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
12
|
Sotnikova-Meleshkina ZV, Yatsyk YO, Bobrova OV, Kryvonos KA. The influence of vitamin and mineral consumption on the course of coronavirus disease (COVID-19). WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:1086-1092. [PMID: 39008602 DOI: 10.36740/wlek202405132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
OBJECTIVE Aim: The study of the role of micronutrients in the prevention of the severe course of the coronavirus disease. PATIENTS AND METHODS Materials and Methods: In order to fulfill the task, there was conducted an analytical review of medical and biological publications in English in the electronic databases PubMed Medline of the US National Library of Medicine (NLM), Embase, Cochrane Database of Systematic Reviews for the period from 2015 to November 2023, where included 50 published articles, 28 preprints and 109 trials. In the course of the study, the bibliographic-semantic research method was used according to the "Preferred Reporting Elements for Systematic Reviews and Meta-Analyses" (PRISMA) protocol. According to this protocol, identified literary sources were sequentially analyzed by title, keywords, abstract and full text of articles. Based on the results of 16 searches, 2650 articles from PubMed, Cochrane Database of Systematic Reviews and Embase, 3162 articles from preprint servers and 237 trials were rejected. In the final article synthesis, we included 50 published articles, 28 preprints, and 109 trials. CONCLUSION Conclusions: The most effective in preventing complications of the coronavirus disease are vitamins A, D, E, K, C, B3, B6, B9, B12 and such mineral substances as Mg, Se and Zn. The consumption of appropriate bioactive complexes and source products can be considered a clinically and economically effective strategy for the prevention of a severe course of the coronavirus disease.
Collapse
|
13
|
Majeed M, Nagabhushanam K, Lawrence L, Prakasan P, Mundkur L. The Mechanism of Anti-Viral Activity of a Novel, Hydroponically Selenium-Enriched Garlic Powder (SelenoForce ®) Against SARS-CoV-2 Virus. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241268100. [PMID: 39130207 PMCID: PMC11311149 DOI: 10.1177/27536130241268100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024]
Abstract
Abstract The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is far from over as new strains are emerging all over the world. Selenium as a micronutrient is important for immunity and also has anti-viral activity. Objective The study evaluated the activity of a Selenium enriched garlic powder (SeGP or SelenoForce®) against SARS-CoV-2 viral replication in vitro and explored its possible mechanism of action. Methods The anti-SARS-CoV-2 activity assay was carried out in Vero E6 cells in vitro. Human lung carcinoma A549 cells were used to study the antioxidant activity, expression of angiotensin converting enzyme (ACE), transmembrane protease, serine 2 (TMPRSS2) and the activity of proprotein convertase, and furin. Anti-inflammatory activity was evaluated in lipopolysaccharide-activated RAW 264.7 cells. Results SeGP inhibited the replication of SARS-CoV-2 in Vero E6 cells with an IC50 of 19.59 μg/ml. It exhibited significant antioxidant activity in vitro with IC50 value determined as 43.45 μg/ml. The Selenium enriched product inhibited the expression of ACE and TMPRSS2 and also showed inhibition of furin protease activity. In the presence of SeGP, the secretion of nitric oxide, interleukin -6 and TNF-α were reduced in activated RAW 264.7 macrophages. Conclusion The results of the study suggest that Selenium enriched garlic powder could inhibit SARS-CoV-2 multiplication in vitro, reduce oxidative stress and inflammatory mediators suggesting that it could be developed as an effective supplement or adjunct therapy to combat viral infections.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, Bangalore, India
- Sabinsa Corporation, East Windsor, NJ, USA
| | | | | | | | | |
Collapse
|
14
|
Viçozzi GP, de Oliveira Pereira FS, da Silva RS, Leal JG, Sarturi JM, Nogara PA, Rodrigues OED, Teixeira da Rocha JB, Ávila DS. In silico evidences of Mpro inhibition by a series of organochalcogen-AZT derivatives and their safety in Caenorhabditis elegans. J Trace Elem Med Biol 2023; 80:127297. [PMID: 37716209 DOI: 10.1016/j.jtemb.2023.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The new coronavirus (SARS-CoV-2) pandemic emerged in 2019 causing millions of deaths. Vaccines were quickly developed and made available in 2021. Despite the availability of vaccines, some subjects refuse to take the immunizing or present comorbities, therefore developing serious cases of COVID-19, which makes necessary the development of antiviral drugs. Previous studies have demonstrated that ebselen, a selenium-containing molecule, can inhibit SARS-CoV-2 Mpro. In addition, selenium is a trace element that has antiviral and anti-inflammatory properties. Zidovudine (AZT) has been widely used against HIV infections and its action against SARS-CoV-2 may be altered by the structural modification with organochalcogen moieties, but this hypothesis still needs to be tested. METHODS In the present work we evaluated the Mpro inhibition capacity (in silico), the safety and antioxidant effect of six organochalcogen AZT-derivatives using the free-living nematode Caenorhabditis elegans, through acute (30 min) and chronic (48) exposure protocols. RESULTS We observed that the molecules were safe at a concentration range of 1-500 µM and did not alter any toxicological endpoint evaluated. Furthermore, the molecules are capable to decrease the ROS formation stimulated by hydrogen peroxide, to modulate the expression of important antioxidant enzymes such superoxide-dismutase-3 and glutathione S-transferese-4 and to stimulate the translocation of the DAF-16 to the cell nucleus. In addition, the molecules did not deplete thiol groups, which reinforces their safety and contribution to oxidative stress resistance. CONCLUSIONS We have found that compounds S116l (a Tellurium AZT-derivative) and S116h (a Selenium-AZT derivative) presented more promising effects both in silico and in vivo, being strong candidates for further in vivo studies.
Collapse
Affiliation(s)
- Gabriel Pedroso Viçozzi
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil
| | - Flávia Suelen de Oliveira Pereira
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil
| | - Rafael Santos da Silva
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Julliano Guerin Leal
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Joelma Menegazzi Sarturi
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil; Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul), Av. Leonel de Moura Brizola, 2501, 96418-400 Bagé, RS, Brazil
| | | | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil
| | - Daiana Silva Ávila
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE), Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Khan KM, Zimpfer MJ, Sultana R, Parvez TM, Navas-Acien A, Parvez F. Role of Metals on SARS-CoV-2 Infection: a Review of Recent Epidemiological Studies. Curr Environ Health Rep 2023; 10:353-368. [PMID: 37665544 PMCID: PMC11149155 DOI: 10.1007/s40572-023-00409-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW Metals and metalloids are known for their nutritional as well as toxic effects in humans. In the context of the SARS-CoV-2 pandemic, understanding the role of metals on COVID-19 infection is becoming important due to their role in infectious diseases. During the past 2 years, a significant number of studies have examined the impact of metals and metalloids on COVID-19 morbidity and mortality. We conducted a systematic review of peer-reviewed manuscripts on the association of metals and metalloids with SARS-CoV-2 infection and COVID-19 severity published since the onset of the pandemic. RECENT FINDINGS We searched for epidemiological studies available through the PubMed database published from January 2020 to December 2022. Of 92 studies identified, 20 met our inclusion criteria. These articles investigated the association of zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), cadmium (Cd), arsenic (As), copper (Cu), magnesium (Mg), chromium (Cr), and/or lead (Pb) levels on SARS-CoV-2 infection and/or COVID-19 severity. Of the ten metals and metalloids of interest that reported either positive, negative, or no associations, Zn yielded the highest number of articles (n = 13), followed by epidemiological studies on Se (n = 7) and Fe (n = 5). Elevated serum Zn and Se were associated with reduced COVID-19 severity and mortality. Similarly, higher levels of serum Fe were associated with lower levels of cellular damage and symptoms of SARS-CoV-2 infection and with faster recovery from COVID-19. On the other hand, higher serum and urinary Cu and serum Mg levels were associated with higher COVID-19 severity and mortality. Along with the positive or negative effects, some studies reported no impact of metals on SARS-CoV-2 infection. This systematic review suggests that metals, particularly Zn, Fe, and Se, may help reduce the severity of COVID-19, while Cu and Mg may aggravate it. Our review suggests that future pandemic mitigation strategies may evaluate the role of Zn, Se, and Fe as potential therapeutic interventions.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Mariah J Zimpfer
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Rasheda Sultana
- Department of Public Health, College of Health Sciences, Sam Houston State University, Huntsville, USA
| | - Tahmid M Parvez
- Department of Biology, Hofstra University, Hempstead, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168Th St., New York, NY, 10032, USA
| | - Faruque Parvez
- Department of Environmental Health, Mailman School of Public Health, Columbia University, 722W, 168Th St., New York, NY, 10032, USA.
| |
Collapse
|
16
|
Hosseinpour A, Daneshzad E, Dezfouli RA, Zamani S, Qorbani M. The Association Between Antioxidants and COVID-19 Outcomes: a Systematic Review on Observational Studies. Biol Trace Elem Res 2023; 201:5098-5114. [PMID: 36840911 PMCID: PMC9959932 DOI: 10.1007/s12011-023-03588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
It is proven that the blood concentration of antioxidants can impress the severity of viral infections, including COVID-19. However, the lack of a comprehensive study accumulating existing data regarding COVID-19 can be perceived. Therefore, this systematic review is aimed to report the association between the blood concentration of several antioxidants and the overall health condition of COVID-19 patients. We summarized the available data surrounding the serum antioxidant level in COVID-19 patients and COVID-19 outcomes. A systematic search was performed in PubMed, Scopus, Web of Science, and Cochrane, and studies that evaluated the association between antioxidants and COVID-19 outcomes were included. Of 4101 articles that were viewed in the database search, 38 articles were included after the title, abstract, and full-text review. Twenty-nine studies indicated that lower serum antioxidants are associated with worse outcomes, and one study reported no association between serum zinc (Zn) level and COVID-19 outcomes. In most cases, antioxidant deficiency was associated with high inflammatory factors, high mortality, acute kidney injury, thrombosis, intensive care unit (ICU) admission, acute respiratory distress syndrome, cardiac injury, and the need for mechanical ventilation (MV), and there was no significant association between serum antioxidants level and ICU or hospital length of stay (LOS). It seems that higher levels of antioxidants in COVID-19 patients may be beneficial to prevent disease progression. However, clinical trials are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Ali Hosseinpour
- Research Students Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Ramin Abdi Dezfouli
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoofeh Zamani
- Department of Internal Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
18
|
Hailu K, Joy EJM, Ferguson EL, Bailey EH, Wilson L, Davis K, Broadley MR, Gashu D. Dietary selenium intake among Ethiopian children in areas known for selenium spatial variability. Front Nutr 2023; 10:1250002. [PMID: 37908299 PMCID: PMC10613729 DOI: 10.3389/fnut.2023.1250002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction There is spatial variability of selenium (Se) in soil and crops in Ethiopia. We assessed the Se content of food items, breast milk, and urine among infants in Ethiopia from two areas with contrasting Se concentrations in soils. Methods Dietary Se intakes among children (6-23 months) were evaluated using a weighed food record on two non-consecutive days. Also, spot urine samples from children and breast milk samples from their mothers were collected to determine Se concentration. Selenium concentrations in the samples were analyzed using an inductively coupled plasma mass spectrometer (ICP-MS). Results Injera (prepared from teff and mixtures of other cereals) with a legume-based stew were the most frequently consumed foods by the children in both areas, followed by pasta. Overall, the Se concentration (mean ± SD) of food items, breast milk (12.2 ± 3.9 μg/L vs. 3.39 ± 1.5 μg/L), and urine samples (22.5 ± 11.5 μg/L vs. 3.0 ± 1.9 μg/L) from East Amhara were significantly higher than the corresponding samples from West Amhara (p < 0.001). The total Se intakes by the study children from East Amhara and West Amhara were 30.2 [IQ 25%, 14.2; IQ 75%, 54.1] and 7.4 [IQR 25%, 4.2; IQ 75%, 10.6] μg day-1, respectively; 31.5% of children from East Amhara and 92% of children from West Amhara were at risk of inadequate Se intakes. Urinary Se excretion accounted for 53 and 39% of daily dietary Se intake in East Amhara and West Amhara, respectively. Dietary Se intake was positively correlated with urinary Se excretion in East Amhara (r = 0.56; p < 0.001) but not among samples from West Amhara (r = 0.16; p ≥ 0.05), suggesting greater physiological Se conservation in a state of deficiency. Conclusion There is spatial variability of Se in foods, breast milk, and urine in Ethiopia, suggesting the need for implementation of targeted agronomic interventions that enhance Se concentrations in the edible portion of plant foods.
Collapse
Affiliation(s)
- Kaleab Hailu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Edward J. M. Joy
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Elaine L. Ferguson
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elizabeth H. Bailey
- Sustainable Soils and Crops Department, Rothamsted Research, Harpenden, United Kingdom
| | - Lolita Wilson
- Sustainable Soils and Crops Department, Rothamsted Research, Harpenden, United Kingdom
| | - Kenneth Davis
- Sustainable Soils and Crops Department, Rothamsted Research, Harpenden, United Kingdom
| | - Martin R. Broadley
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Sustainable Soils and Crops Department, Rothamsted Research, Harpenden, United Kingdom
| | - Dawd Gashu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
Zhou Y, Yuan S, Xiao F, Li H, Ye Z, Cheng T, Luo C, Tang K, Cai J, Situ J, Sridhar S, Chu WM, Tam AR, Chu H, Che CM, Jin L, Hung IFN, Lu L, Chan JFW, Sun H. Metal-coding assisted serological multi-omics profiling deciphers the role of selenium in COVID-19 immunity. Chem Sci 2023; 14:10570-10579. [PMID: 37799995 PMCID: PMC10548515 DOI: 10.1039/d3sc03345g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
| | - Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong Hong Kong SAR China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Ziwei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong Pokfulam Hong Kong SAR Hong Kong China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianpiao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianwen Situ
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
- Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong SAR China
| | - Wing-Ming Chu
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Anthony Raymond Tam
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong Pokfulam Hong Kong SAR Hong Kong China
| | - Ivan Fan-Ngai Hung
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong Hong Kong SAR China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital Shenzhen Guangdong China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park Hong Kong SAR China
- Department of Microbiology, Queen Mary Hospital Pokfulam Hong Kong SAR China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong SAR China
- Guangzhou Laboratory Guangdong Province China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Hong Kong SAR China
| |
Collapse
|
20
|
Awasthi S, Kumar D, Dixit S, Mahdi AA, Gupta B, Agarwal GG, Pandey AK, Awasthi A, A. R. S, Bhat MA, Kar S, Mahanta BN, Mathew JL, Nair S, Singh CM, Singh K, Thekkumkara Surendran A. Association of dietary intake with micronutrient deficiency in Indian school children: a cross-sectional study. J Nutr Sci 2023; 12:e104. [PMID: 37829085 PMCID: PMC10565204 DOI: 10.1017/jns.2023.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
Adequate nutrition is necessary during childhood and early adolescence for adequate growth and development. Hence, the objective of the study was to assess the association between dietary intake and blood levels of minerals (calcium, iron, zinc, and selenium) and vitamins (folate, vitamin B12, vitamin A, and vitamin D) in urban school going children aged 6-16 years in India, in a multicentric cross-sectional study. Participants were enrolled from randomly selected schools in ten cities. Three-day food intake data was collected using a 24-h dietary recall method. The intake was dichotomised into adequate and inadequate. Blood samples were collected to assess levels of micronutrients. From April 2019 to February 2020, 2428 participants (50⋅2 % females) were recruited from 60 schools. Inadequate intake for calcium was in 93⋅4 % (246⋅5 ± 149⋅4 mg), iron 86⋅5 % (7⋅6 ± 3⋅0 mg), zinc 84⋅0 % (3⋅9 ± 2⋅4 mg), selenium 30⋅2 % (11⋅3 ± 9⋅7 mcg), folate 73⋅8 % (93⋅6 ± 55⋅4 mcg), vitamin B12 94⋅4 % (0⋅2 ± 0⋅4 mcg), vitamin A 96⋅0 % (101⋅7 ± 94⋅1 mcg), and vitamin D 100⋅0 % (0⋅4 ± 0⋅6 mcg). Controlling for sex and socioeconomic status, the odds of biochemical deficiency with inadequate intake for iron [AOR = 1⋅37 (95 % CI 1⋅07-1⋅76)], zinc [AOR = 5⋅14 (95 % CI 2⋅24-11⋅78)], selenium [AOR = 3⋅63 (95 % CI 2⋅70-4⋅89)], folate [AOR = 1⋅59 (95 % CI 1⋅25-2⋅03)], and vitamin B12 [AOR = 1⋅62 (95 %CI 1⋅07-2⋅45)]. Since there is a significant association between the inadequate intake and biochemical deficiencies of iron, zinc, selenium, folate, and vitamin B12, regular surveillance for adequacy of micronutrient intake must be undertaken to identify children at risk of deficiency, for timely intervention.
Collapse
Affiliation(s)
- Shally Awasthi
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divas Kumar
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Swati Dixit
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Barkha Gupta
- Lead-Nutritional Claims & Medical Affairs (Global HFD), HUL R&D Centre, Gurgaon, India
| | - Girdhar G. Agarwal
- Department of Statistics, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Anuj Kumar Pandey
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Avivar Awasthi
- Department of Endocrinology, Kasturba Medical College, Manipal, Karnataka, India
| | - Somashekar A. R.
- Department of Pediatrics, M. S. Ramaiah Institute of Medical Sciences, Bangalore, Karnataka, India
| | - Mushtaq A. Bhat
- Department of Pediatrics, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Sonali Kar
- Department of Community Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - B. N. Mahanta
- Department of Medicine, Assam Medical College, Dibrugarh, Assam, India
| | - Joseph L. Mathew
- Department of Pediatric Medicine, Post Graduate Institute of Medical Sciences, Chandigarh, India
| | - Suma Nair
- Department of Community Medicine, Kasturba Medical College, Manipal, Karnataka, India
| | - C. M. Singh
- Department of Community & Family Medicine, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Kuldeep Singh
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | |
Collapse
|
21
|
Fan L, Cui Y, Liu Z, Guo J, Gong X, Zhang Y, Tang W, Zhao J, Xue Q. Zinc and selenium status in coronavirus disease 2019. Biometals 2023; 36:929-941. [PMID: 37079168 PMCID: PMC10116102 DOI: 10.1007/s10534-023-00501-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
We systematically analyzed and attempted to discuss the possibility that deficiencies of zinc or selenium were associated with the incidence and severity of COVID-19. We searched for published and unpublished articles in PubMed, Embase, Web of Science and Cochrane up to 9 February 2023. And we selected healthy individuals, mild/severe, and even deceased COVID-19 patients to analyze their serum data. Data related to 2319 patients from 20 studies were analyzed. In the mild/severe group, zinc deficiency was associated with the degree of severe disease (SMD = 0.50, 95% CI 0.32-0.68, I2 = 50.5%) and we got an Egger's test of p = 0.784; but selenium deficiency was not associated with the degree of severe disease (SMD = - 0.03, 95% CI - 0.98-0.93, I2 = 96.7%). In the surviving/death group, zinc deficiency was not associated with mortality of COVID-19 (SMD = 1.66, 95%CI - 1.42-4.47), nor was selenium (SMD = - 0.16, 95%CI - 1.33-1.01). In the risk group, zinc deficiency was positively associated with the prevalence of COVID-19 (SMD = 1.21, 95% CI 0.96-1.46, I2 = 54.3%) and selenium deficiency was also positively associated with the prevalence of it (SMD = 1.16, 95% CI 0.71-1.61, I2 = 58.3%). Currently, serum zinc and selenium deficiencies increase the incidence of COVID-19 and zinc deficiency exacerbates the disease; however, neither zinc nor selenium was associated with mortality in patients with COVID-19. Nevertheless, our conclusions may change when new clinical studies are published.
Collapse
Affiliation(s)
- Liding Fan
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Yanshuo Cui
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Zonghao Liu
- Shandong University, No.27, Shanda Nanshan Road, Jinan, 250100, Shandong, China
| | - Jiayue Guo
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Xiaohui Gong
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Yunfei Zhang
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Weihao Tang
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China
| | - Jiahe Zhao
- Binzhou Medical University, No.346 Guanhai Road, Binzhou, 256699, Shandong, China
| | - Qingjie Xue
- Jining Medical University, No.16, Hehua Road, Jining, 272067, Shandong, China.
- Department of Pathogenic Biology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
22
|
El-Derany MO, Hanna DMF, Youshia J, Elmowafy E, Farag MA, Azab SS. Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study. Pharmacol Rep 2023; 75:1045-1065. [PMID: 37587394 PMCID: PMC10539420 DOI: 10.1007/s43440-023-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Diana M F Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
23
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
24
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
25
|
Roldán-Bretón NR, Capuchino-Suárez AG, Mejía-León ME, Olvera-Sandoval C, Lima-Sánchez DN. Selenium serum levels in patients with SARS-CoV-2 infection: a systematic review and meta-analysis. J Nutr Sci 2023; 12:e86. [PMID: 37528833 PMCID: PMC10388439 DOI: 10.1017/jns.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 08/03/2023] Open
Abstract
The nutritional status is a determinant of the immune response that promotes a cellular homeostasis. In particular, adequate selenium levels lead to a better antioxidant and immune response. The aim of this work is to assess whether blood selenium levels, at time of SARS-CoV-2 infection, have an impact on the development and severity of COVID-19. A systematic review and meta-analysis of comparative and descriptive studies using MeSH terms, selenium and COVID-19 was performed. We searched bibliographic databases up to 17 July 2022 in PubMed and ScienceDirect. Studies that reported data on blood selenium levels were considered. A total of 629 articles were examined by abstract and title, of which 595 abstracts were read, of which 38 were included in the systematic review and 11 in the meta-analysis. Meta-analysis was conducted to mean difference (MD) with a 95 % confidence interval (CI), and heterogeneity was tested by I2 with random factors with a MD between selenium levels, mortality, morbidity and healthy subjects with a P-value of 0⋅05. Selenium levels were higher in healthy people compared to those in patients with COVID-19 disease (six studies, random effects MD: test for overall effect Z = 3⋅28 (P = 0⋅001), 97 % CI 28⋅36 (11⋅41-45⋅31), P < 0⋅00001), but without difference when compared with the degree of severity in mild, moderate or severe cases. In conclusion, the patients with active SARS-CoV-2 infection had lower selenium levels than the healthy population. More studies are needed to evaluate its impact on clinical severity through randomised clinical trials.
Collapse
Affiliation(s)
| | | | - María Esther Mejía-León
- Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | - Carlos Olvera-Sandoval
- Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | - Dania Nimbe Lima-Sánchez
- Department of Biomedical Informatics, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
26
|
Singh G, Fauzi N. The Effects of Anti-platelets and Micronutrients in the Recovery of COVID-19 Patients: A Review. Cureus 2023; 15:e42164. [PMID: 37601995 PMCID: PMC10439304 DOI: 10.7759/cureus.42164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
COVID-19 or coronavirus disease is a pneumonia-like condition caused by the SARS-CoV2 virus. Many mutations of this virus have emerged throughout the two-year period of this pandemic. However, clinical presentations, diagnostic methods, and treatment of COVID-19 remain relatively unchanged. Various substances have been assessed for their functions as COVID-19 immunomodulators. Said substances in this article include aspirin, vitamin C, vitamin D3, zinc, and selenium. Aspirin was found to reduce mortality risk and embolism events. Vitamin C did not seem to improve mechanical ventilation-free days but did improve oxygenation (PaO2/FiO2), peripheral capillary oxygen saturation (SpO2), and body temperature in severe COVID-19 patients. Vitamin D3 was not significantly different compared to placebo in improving mortality in hospitalized patients. However, respiratory tract infection (COVID-19 included) events were lower in individuals given vitamin D3 compared to those who were not. Zinc combined with ascorbic acid caused a quick reduction in symptoms but was not significant compared to zinc alone, ascorbic acid alone, or standard care. Individuals with lower levels of selenium were found to have worse outcomes of COVID-19 compared to those with high levels of selenium. However, further studies, especially clinical trials, are needed. Asprinol is a drug that contains vitamins and minerals plus aspirin which are suggested to help alleviate symptoms and improve outcomes of COVID-19. This review aims to assess the efficacy of asprinol contents in COVID-19 patients.
Collapse
Affiliation(s)
- Gurmeet Singh
- Internal Medicine, Respirology, and Critical Illness, Universitas Indonesia, Jakarta, IDN
| | - Nova Fauzi
- Internal Medicine, Respirology, and Critical Illness, Universitas Indonesia, Jakarta, IDN
| |
Collapse
|
27
|
Bowen DR, Pathak S, Nadar RM, Parise RD, Ramesh S, Govindarajulu M, Moore A, Ren J, Moore T, Dhanasekaran M. Oxidative stress and COVID-19-associated neuronal dysfunction: mechanisms and therapeutic implications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1153-1167. [PMID: 37357527 PMCID: PMC10465323 DOI: 10.3724/abbs.2023085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/27/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19), and there is a possible role for oxidative stress in the pathophysiology of neurological diseases associated with COVID-19. Excessive oxidative stress could be responsible for the thrombosis and other neuronal dysfunctions observed in COVID-19. This review discusses the role of oxidative stress associated with SARS-CoV-2 and the mechanisms involved. Furthermore, the various therapeutics implicated in treating COVID-19 and the oxidative stress that contributes to the etiology and pathogenesis of COVID-19-induced neuronal dysfunction are discussed. Further mechanistic and clinical research to combat COVID-19 is warranted to understand the exact mechanisms, and its true clinical effects need to be investigated to minimize neurological complications from COVID-19.
Collapse
Affiliation(s)
- Dylan R. Bowen
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rishi M. Nadar
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rachel D. Parise
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Sindhu Ramesh
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Austin Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai200032China
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA
| | - Timothy Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | | |
Collapse
|
28
|
Singh P, Hernandez‐Rauda R, Peña‐Rodas O. Preventative and therapeutic potential of animal milk components against COVID-19: A comprehensive review. Food Sci Nutr 2023; 11:2547-2579. [PMID: 37324885 PMCID: PMC10261805 DOI: 10.1002/fsn3.3314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The global pandemic of COVID-19 is considered one of the most catastrophic events on earth. During the pandemic, food ingredients may play crucial roles in preventing infectious diseases and sustaining people's general health and well-being. Animal milk acts as a super food since it has the capacity to minimize the occurrence of viral infections due to inherent antiviral properties of its ingredients. SARS-CoV-2 virus infection can be prevented by immune-enhancing and antiviral properties of caseins, α-lactalbumin, β-lactoglobulin, mucin, lactoferrin, lysozyme, lactoperoxidase, oligosaccharides, glycosaminoglycans, and glycerol monolaurate. Some of the milk proteins (i.e., lactoferrin) may work synergistically with antiviral medications (e.g., remdesivir), and enhance the effectiveness of treatment in this disease. Cytokine storm during COVID-19 can be managed by casein hydrolyzates, lactoferrin, lysozyme, and lactoperoxidase. Thrombus formation can be prevented by casoplatelins as these can inhibit human platelet aggregation. Milk vitamins (i.e., A, D, E, and B complexes) and minerals (i.e., Ca, P, Mg, Zn, and Se) can have significantly positive effects on boosting the immunity and health status of individuals. In addition, certain vitamins and minerals can also act as antioxidants, anti-inflammatory, and antivirals. Thus, the overall effect of milk might be a result of synergistic antiviral effects and host immunomodulator activities from multiple components. Due to multiple overlapping functions of milk ingredients, they can play vital and synergistic roles in prevention as well as supportive agents during principle therapy of COVID-19.
Collapse
Affiliation(s)
- Parminder Singh
- Department of Animal Husbandry AmritsarGovernment of PunjabAmritsarIndia
| | - Roberto Hernandez‐Rauda
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| | - Oscar Peña‐Rodas
- Laboratorio de Inocuidad de AlimentosUniversidad Doctor Andres BelloSan SalvadorEl Salvador, América Central
| |
Collapse
|
29
|
Cundra LB, Vallabhaneni M, Saadeh M, Houston KV, Yoo BS, D’Souza S, Johnsonv DA. Immunomodulation strategies against COVID-19 evidence: key nutrients and dietary approaches. EXPLORATION OF MEDICINE 2023:189-206. [DOI: 10.37349/emed.2023.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2025] Open
Abstract
The novel coronavirus disease-2019 (COVID-19) has created a major public health crisis. Various dietary factors may enhance immunological activity against COVID-19 and serve as a method to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The dietary factors that are responsible for boosting immunity may provide a therapeutic advantage in patients with COVID-19. Investigators have demonstrated that vitamins B6, B12, C, D, E, and K, and trace elements like zinc, copper, selenium, and iron may serve as important tools for immunomodulation. Herein this is a review the peer-reviewed literature pertaining to dietary immunomodulation strategies against COVID-19. This review is intended to better define the evidence that dietary modifications and supplementation could positively influence the proinflammatory state in patients with COVID-19 and improve clinical outcomes. With appropriate insight, therapeutic interventions are discussed and directed to potentially modulate host immunity to mitigate the disease mechanisms of COVID-19.
Collapse
Affiliation(s)
- Lindsey B. Cundra
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Manasa Vallabhaneni
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Saadeh
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Kevin V. Houston
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Byung Soo Yoo
- Department of Gastroenterology, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Steve D’Souza
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - David A. Johnsonv
- Division of Gastroenterology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
30
|
Equey A, Berger MM, Gonseth-Nusslé S, Augsburger M, Rezzi S, Hodgson ACC, Estoppey S, Pantaleo G, Pellaton C, Perrais M, Lenglet S, Rousson V, D'Acremont V, Bochud M. Association of plasma zinc levels with anti-SARS-CoV-2 IgG and IgA seropositivity in the general population: A case-control study. Clin Nutr 2023; 42:972-986. [PMID: 37130500 PMCID: PMC10110932 DOI: 10.1016/j.clnu.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Some micronutrients have key roles in immune defence, including mucosal defence mechanisms and immunoglobulin production. Altered micronutrient status has been linked with COVID-19 infection and disease severity. We assessed the associations of selected circulating micronutrients with anti-SARS-CoV-2 IgG and IgA seropositivity in the Swiss community using early pandemic data. METHODS Case-control study comparing the first PCR-confirmed COVID-19 symptomatic cases in the Vaud Canton (May to June 2020, n = 199) and controls (random population sample, n = 447), seronegative for IgG and IgA. The replication analysis included seropositive (n = 134) and seronegative (n = 152) close contacts from confirmed COVID-19 cases. Anti-SARS-CoV-2 IgG and IgA levels against the native trimeric spike protein were measured using the Luminex immunoassay. We measured plasma Zn, Se and Cu concentrations by ICP-MS, and 25-hydroxy-vitamin D3 (25(OH)D3) with LC-MS/MS and explored associations using multiple logistic regression. RESULTS The 932 participants (54.1% women) were aged 48.6 ± 20.2 years (±SD), BMI 25.0 ± 4.7 kg/m2 with median C-Reactive Protein 1 mg/l. In logistic regressions, log2(Zn) plasma levels were negatively associated with IgG seropositivity (OR [95% CI]: 0.196 [0.0831; 0.465], P < 0.001; replication analyses: 0.294 [0.0893; 0.968], P < 0.05). Results were similar for IgA. We found no association of Cu, Se, and 25(OH)D3 with anti-SARS-CoV-2 IgG or IgA seropositivity. CONCLUSION Low plasma Zn levels were associated with higher anti-SARS-CoV-2 IgG and IgA seropositivity in a Swiss population when the initial viral variant was circulating, and no vaccination available. These results suggest that adequate Zn status may play an important role in protecting the general population against SARS-CoV-2 infection. REGISTRY CORONA IMMUNITAS:: ISRCTN18181860.
Collapse
Affiliation(s)
- Antoine Equey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Mette M Berger
- Service of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Semira Gonseth-Nusslé
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Marc Augsburger
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Épalinges, Switzerland
| | | | - Sandrine Estoppey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maïwenn Perrais
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Valentin Rousson
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Valérie D'Acremont
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| |
Collapse
|
31
|
Rust P, Ekmekcioglu C. The Role of Diet and Specific Nutrients during the COVID-19 Pandemic: What Have We Learned over the Last Three Years? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5400. [PMID: 37048015 PMCID: PMC10093865 DOI: 10.3390/ijerph20075400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nutrients and diets have an important impact on our immune system and infection risk and a huge number of papers have been published dealing with various aspects of nutrition in relation to SARS-CoV-2 infection risk or COVID-19 severity. This narrative review aims to give an update on this association and tries to summarize some of the most important findings after three years of pandemic. The analysis of major studies and systematic reviews leads to the conclusion that a healthy plant-based diet reduces the risks for SARS-CoV-2 infection and especially COVID-19 severity. Regarding micronutrients, vitamin D is to the fore, but also zinc, vitamin C and, to some extent, selenium may play a role in COVID-19. Furthermore, omega-3-fatty acids with their anti-inflammatory effects also deserve attention. Therefore, a major aim of societal nutritional efforts in future should be to foster a high quality plant-based diet, which not only exerts beneficial effects on the immune system but also reduces the risk for non-communicable diseases such as type 2 diabetes or obesity which are also primary risk factors for worse COVID-19 outcomes. Another aim should be to focus on a good supply of critical immune-effective nutrients, such as vitamin D and zinc.
Collapse
Affiliation(s)
- Petra Rust
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
32
|
Zhang YY, Ren KD, Luo XJ, Peng J. COVID-19-induced neurological symptoms: focus on the role of metal ions. Inflammopharmacology 2023; 31:611-631. [PMID: 36892679 PMCID: PMC9996599 DOI: 10.1007/s10787-023-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels. COVID-19 infection causes neurological metal disorders and metal ion channels abnormal switching, subsequently resulting in neuroinflammation, oxidative stress, excitotoxicity, neuronal cell death, and eventually eliciting a series of COVID-19-induced neurological symptoms. Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for mitigating COVID-19-induced neurological symptoms. This review provides a summary for the latest advances in research related to the physiological and pathophysiological functions of metal ions and metal ion channels, as well as their role in COVID-19-induced neurological symptoms. In addition, currently available modulators of metal ions and their channels are also discussed. Collectively, the current work offers a few recommendations according to published reports and in-depth reflections to ameliorate COVID-19-induced neurological symptoms. Further studies need to focus on the crosstalk and interactions between different metal ions and their channels. Simultaneous pharmacological intervention of two or more metal signaling pathway disorders may provide clinical advantages in treating COVID-19-induced neurological symptoms.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
33
|
Renata RBN, Arely GRA, Gabriela LMA, Esther MLM. Immunomodulatory Role of Microelements in COVID-19 Outcome: a Relationship with Nutritional Status. Biol Trace Elem Res 2023; 201:1596-1614. [PMID: 35668151 PMCID: PMC9170122 DOI: 10.1007/s12011-022-03290-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection can activate innate and adaptive immune responses and result in massive inflammatory responses in the disease. A comprehensive understanding of the participation of micronutrients in the immune response to COVID-19 will allow the creation of prevention and supplementation scenarios in malnutrition states. Microelement deficiency can be decisive in the progression of diseases and their optimal levels can act as protective factors, helping to maintain homeostasis. Vitamin A, B, D, selenium, zinc, and copper, through their complementary and synergistic effects, allow the components of innate and adaptive immunity to counteract infections like those occurring in the respiratory tract.Thus, alterations in nutritional status are related to metabolic diseases, systemic inflammation, and deterioration of the immune system that alter the response against viral infections, such as COVID-19. The aim of this review is to describe the micronutrients that play an important role as immunomodulators and its relationship between malnutrition and the development of respiratory infections with an emphasis on severe and critical COVID-19. We conclude that although an unbalanced diet is not the only risk factor that predisposes to COVID-19, a correct and balanced diet, which provides the optimal amount of micronutrients and favors an adequate nutritional status, could confer beneficial effects for prevention and improvement of clinical results. The potential usefulness of micronutrient supplementation in special cases is highlighted.
Collapse
Affiliation(s)
- Roldán-Bretón Nuria Renata
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México
| | - González-Rascón Anna Arely
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Leija-Montoya Ana Gabriela
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México
| | - Mejía-León María Esther
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N, Centro Cívico, 21000, Mexicali, Baja California, México.
| |
Collapse
|
34
|
Khan Z, Thounaojam TC, Chowdhury D, Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. PLANT GROWTH REGULATION 2023; 100:409-433. [PMID: 37197287 PMCID: PMC10036987 DOI: 10.1007/s10725-023-00988-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/24/2023] [Indexed: 05/15/2023]
Abstract
Selenium (Se), being an essential micronutrient, enhances plant growth and development in trace amounts. It also protects plants against different abiotic stresses by acting as an antioxidant or stimulator in a dose-dependent manner. Knowledge of Se uptake, translocation, and accumulation is crucial to achieving the inclusive benefits of Se in plants. Therefore, this review discusses the absorption, translocation, and signaling of Se in plants as well as proteomic and genomic investigations of Se shortage and toxicity. Furthermore, the physiological responses to Se in plants and its ability to mitigate abiotic stress have been included. In this golden age of nanotechnology, scientists are interested in nanostructured materials due to their advantages over bulk ones. Thus, the synthesis of nano-Se or Se nanoparticles (SeNP) and its impact on plants have been studied, highlighting the essential functions of Se NP in plant physiology. In this review, we survey the research literature from the perspective of the role of Se in plant metabolism. We also highlight the outstanding aspects of Se NP that enlighten the knowledge and importance of Se in the plant system. Graphical abstract
Collapse
Affiliation(s)
- Zesmin Khan
- Department of Botany, Cotton University, Guwahati, 781001 Assam India
| | | | - Devasish Chowdhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035 India
| | | |
Collapse
|
35
|
Schloss JV. Nutritional deficiencies that may predispose to long COVID. Inflammopharmacology 2023; 31:573-583. [PMID: 36920723 PMCID: PMC10015545 DOI: 10.1007/s10787-023-01183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Multiple nutritional deficiencies (MND) confound studies designed to assess the role of a single nutrient in contributing to the initiation and progression of disease states. Despite the perception of many healthcare practitioners, up to 25% of Americans are deficient in five-or-more essential nutrients. Stress associated with the COVID-19 pandemic further increases the prevalence of deficiency states. Viral infections compete for crucial nutrients with immune cells. Viral replication and proliferation of immunocompetent cells critical to the host response require these essential nutrients, including zinc. Clinical studies have linked levels of more than 22 different dietary components to the likelihood of COVID-19 infection and the severity of the disease. People at higher risk of infection due to MND are also more likely to have long-term sequelae, known as Long COVID.
Collapse
Affiliation(s)
- John V Schloss
- Departments of Pharmaceutical Science and Biochemistry & Molecular Biology, Schools of Pharmacy and Medicine, American University of Health Sciences, 1600 East Hill St., Signal Hill, CA, 90755, USA.
| |
Collapse
|
36
|
Larvie DY, Perrin MT, Donati GL, Armah SM. COVID-19 Severity Is Associated with Selenium Intake among Young Adults with Low Selenium and Zinc Intake in North Carolina. Curr Dev Nutr 2023; 7:100044. [PMID: 36785737 PMCID: PMC9907795 DOI: 10.1016/j.cdnut.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Background The effects of coronavirus disease 2019 (COVID-19) remain a global public health emergency because of the ensuing economic burden and death. With robust research into vaccines, antibody treatments, and antiviral drugs for COVID-19, there is still a dearth of evidence on the role of an individual's nutritional status on the severity of COVID-19. Objective This study aimed to investigate the association between selenium (Se) and zinc (Zn) status and COVID-19 severity among individuals diagnosed with COVID-19 in North Carolina. Methods Subjects (n = 106) were recruited remotely as part of the Nutrition and COVID-19 in North Carolina (NC-NC) study and filled out online screening questionnaires and dietary surveys. Toenail samples from 97 participants were analyzed to determine Se and Zn concentrations. To assess the severity of severe acute respiratory coronavirus (SARS-CoV)-2 infection, subjects were asked about the presence and duration of 10 commonly reported symptoms. These responses were used to calculate a COVID-19 severity index (CSI). The relationship between Se and Zn status (intake and toenail concentrations) and CSI was explored using a regression analysis. Results Our results showed that the median (25th, 75th percentiles) dietary Se and Zn intake from selected food sources were 65.2 μg (43.2, 112.9) and 4.3 mg (1.8, 8), respectively. Headache, cough, loss of smell or taste, and fever were reported by at least half of the participants. In stepwise regression analysis, among individuals with low Se and Zn intake (below the median), Se intake was inversely associated with increasing CSI (β = -0.66; 95% CI: -1.21, -0.11; P = 0.02). Conclusions Findings from this study support a potential benefit of increasing the intake of dietary Se to mitigate the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Doreen Y Larvie
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Maryanne T Perrin
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | - Seth M Armah
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
37
|
Abstract
In this review, the relevance of selenium (Se) to viral disease will be discussed paying particular attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). Se, the active centre in selenoproteins has an ongoing history of reducing the incidence and severity of viral infections. Host Se deficiency increased the virulence of RNA viruses such as influenza A and coxsackievirus B3, the latter of which is implicated in the development of Keshan disease in north-east China. Significant clinical benefits of Se supplementation have been demonstrated in HIV-1, in liver cancer linked to hepatitis B, and in Chinese patients with hantavirus that was successfully treated with oral sodium selenite. China is of particular interest because it has populations that have both the lowest and the highest Se status in the world. We found a significant association between COVID-19 cure rate and background Se status in Chinese cities; the cure rate continued to rise beyond the Se intake required to optimise selenoproteins, suggesting an additional mechanism. Se status was significantly higher in serum samples from surviving than non-surviving COVID-19 patients. As regards mechanism, SARS-CoV-2 may interfere with the human selenoprotein system; selenoproteins are important in scavenging reactive oxygen species, controlling immunity, reducing inflammation, ferroptosis and endoplasmic reticulum (ER) stress. We found that SARS-CoV-2 significantly suppressed mRNA expression of GPX4, of the ER selenoproteins, SELENOF, SELENOM, SELENOK and SELENOS and down-regulated TXNRD3. Based on the available data, both selenoproteins and redox-active Se species (mimicking ebselen, an inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host) could employ their separate mechanisms to attenuate virus-triggered oxidative stress, excessive inflammatory responses and immune-system dysfunction, thus improving the outcome of SARS-CoV-2 infection.
Collapse
|
38
|
Dinda B, Dinda S, Dinda M. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3- O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100402. [PMID: 36597465 PMCID: PMC9800022 DOI: 10.1016/j.phyplu.2022.100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The current COVID-19 pandemic from the human pathogenic virus SARS-CoV-2 has resulted in a major health hazard globally. The morbidity and transmission modality of this disease are severe and uncontrollable. As no effective clinical drugs are available for treatment of COVID-19 infection till to date and only vaccination is used as prophylaxis and its efficacy is restricted due to emergent of new variants of SARS-CoV-2, there is an urgent need for effective drugs for its treatment. PURPOSE The aim of this review was to provide a detailed analysis of anti-SARS-CoV-2 efficacy of (-)-epigallocatechin-3-O-gallate (EGCG), a major catechin constituent of green tea (Camellia sinensis (L.) Kuntze) beverage to highlight the scope of EGCG in clinical medicine as both prophylaxis and treatment of present COVID-19 infection. In addition, the factors related to poor oral bioavailabilty of EGCG was also analysed for a suggestion for future research in this direction. STUDY DESIGN We collected the published articles related to anti-SARS-CoV-2 activity of EGCG against the original strain (Wuhan type) and its newly emerged variants of SARS-CoV-2 virus. METHODS A systematic search on the published literature was conducted in various databases including Google Scholar, PubMed, Science Direct and Scopus to collect the relevant literature. RESULTS The findings of this search demonstrate that EGCG shows potent antiviral activity against SARS-CoV-2 virus by preventing viral entry and replication in host cells in vitro models. The studies on the molecular mechanisms of EGCG in inhibition of SARS-CoV-2 infection in host cells reveal that EGCG blocks the entry of the virus particles by interaction with the receptor binding domain (RBD) of viral spike (S) protein to host cell surface receptor protease angiotensin-converting enzyme 2 (ACE2) as well as suppression of the expressions of host proteases, ACE2, TMPRSS2 and GRP78, required for viral entry, by Nrf2 activation in host cells. Moreover, EGCG inhibits the activities of SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), endoribonuclease Nsp15 in vitro models and of RNA-dependent RNA polymerase (RdRp) in molecular docking model for suppression of viral replication. In addition, EGCG significantly inhibits viral inflammatory cytokine production by stimulating Nrf2- dependent host immune response in virus-infected cells. EGCG significantly reduces the elevated levels of HMGB1, a biomarker of sepsis, lung fibrosis and thrombotic complications in viral infections. EGCG potentially inhibits the infection of original (Wuhan type) strain of SARS-CoV-2 and other newly emerged variants as well as the infections of SARS-CoV-2 virus spike-protein of WT and its mutants-mediated pseudotyped viruses . EGCG shows maximum inhibitory effect against SARS-CoV-2 infection when the host cells are pre-incubated with the drug prior to viral infection. A sorbitol/lecithin-based throat spray containing concentrated green tea extract rich in EGCG content significantly reduces SARS-CoV-2 infectivity in oral mucosa. Several factors including degradation in gastrointestinal environment, low absorption in small intestine and extensive metabolism of EGCG are responsible for its poor bioavailability in humans. Pharmacokinetic and metabolism studies of EGCG in humans reveal poor bioavailability of EGCG in human plasma and EGCG-4"-sulfate is its major metabolite. The concentration of EGCG-4"-sulfate in human plasma is almost equivalent to that of free EGCG (Cmax 177.9 vs 233.5 nmol/L). These findings suggest that inhibition of sulfation of EGCG is a crucial factor for improvement of its bioavailability. In vitro study on the mechanism of EGCG sulfonation indicates that sulfotransferases, SULT1A1 and SULT1A3 are responsible for sulfonation in human liver and small intestine, respectively. Some attempts including structural modifications, and nanoformulations of EGCG and addition of nutrients with EGCG have been made to improve the bioavailability of EGCG. CONCLUSIONS The findings of this study suggest that EGCG has strong antiviral activity against SARS-CoV-2 infection independent of viral strains (Wuhan type (WT), other variants) by inhibition of viral entry and replication in host cells in vitro models. EGCG may be useful in reduction of this viral load in salivary glands of COVID-19 patients, if it is applied in mouth and throat wash formulations in optimal concentrations. EGCG could be a promising candidate in the development of effective vaccine for prevention of the infections of newly emergent strains of SARS-CoV-2 virus. EGCG might be useful also as a clinical medicine for treatment of COVID-19 patients if its bioavailability in human plasma is enhanced.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, 799 022, India
| | - Subhajit Dinda
- Department of Chemistry, Kamalpur Govt Degree College, Dhalai,Tripura, 799 285, India
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, 1300 Jefferson Park Ave, VA, 22908, United States of America
| |
Collapse
|
39
|
Zhang J, Will Taylor E, Bennett K, Rayman MP. Does atmospheric dimethyldiselenide play a role in reducing COVID-19 mortality? GONDWANA RESEARCH : INTERNATIONAL GEOSCIENCE JOURNAL 2023; 114:87-92. [PMID: 35692874 PMCID: PMC9170275 DOI: 10.1016/j.gr.2022.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 05/11/2023]
Abstract
Environmental selenium (Se) distribution in the US is uneven, yet US residents appear to have a relatively narrow range of serum Se concentrations, according to the NHANES III survey data; this is probably due to the modern food-distribution system. In the US, Se concentration in alfalfa leaves has been used as a proxy for regional Se exposure (low, medium or high, corresponding to ≤ 0.05, 0.06-0.10 and ≥ 0.11 ppm respectively). Se in plants, soil, water, and bacteria can be transformed into volatile dimethyldiselenide, which can be inhaled and excreted via the lung. Hence, pulmonary Se exposure may be different in states with different atmospheric Se levels. We found a significantly higher death rate from COVID-19 in low-Se states than in medium-Se or high-Se states, though the case densities of these states were not significantly different. Because inhaled dimethyldiselenide is a potent inducer of nuclear-factor erythroid 2 p45-related factor 2 (Nrf2), exposure to higher atmospheric dimethyldiselenide may increase Nrf2-dependent antioxidant defences, reducing the activation of NFκB by SARS-CoV-2 in the lung, thereby decreasing cytokine activation and COVID-19 severity. Atmospheric dimethyldiselenide may thereby play a role in COVID-19 mortality, although the extent of its involvement is unclear.
Collapse
Affiliation(s)
- Jinsong Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kate Bennett
- Surrey Clinical Trials Unit and Clinical Research Facility, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, United Kingdom
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
40
|
Abstract
The rapid spread of new pathogens (SARS-CoV-2 virus) that negatively affect the human body has huge consequences for the global public health system and the development of the global economy. Appropriate implementation of new safety regulations will improve the functioning of the current model supervising the inhibition of the spread of COVID-19 disease. Compliance with all these standards will have a key impact on the health behavior of individual social groups. There have been demonstrably effective treatments that proved to be effective but were rapidly dismissed for unknown reasons, such as ivermectin and hydroxychloroquine. Various measures are used in the world to help inhibit its development. The properties of this element provide hope in preventing the development of the SARS-CoV-2 virus. The aim of this review is to synthesize the latest literature data and to present the effect of sodium selenite in reducing the incidence of COVID-19 disease.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| |
Collapse
|
41
|
Abstract
Acute rhinopharyngitis, usually called common cold, is a widespread disease, mainly in childhood and adolescence. The use of common cold relievers is, therefore, prevalent as documented by the market data. A well-established tradition considers natural remedies an effective and safe way to relieve the common cold. Hundreds of products for treating the common cold contain non-pharmacological components. Nevertheless, a few studies investigated the role of non-pharmacologic remedies for the common cold. The current study reported the most common non-pharmacological remedies for the common cold, including herbal medicines and other substances. As ancient people used traditional herbs to treat and prevent the common cold, various herbs are widely used to clear viral infections. The herbal agents include polyphenols, flavonoids, saponins, glucosides, and alkaloids. Moreover, other non-pharmacological agents are widely used in real-life. Many multi- or monocomponent dietary supplements or medical devices contain these substances and are available in the market as tablets, syrups, drops, nasal or oral sprays, and nebulization solutions. Many products are available in the market. However, there is some evidence only for some substances. Consequently, further rigorous studies should confirm natural products' efficacy and safety to relieve the common cold.
Collapse
Affiliation(s)
- Giorgio Ciprandi
- Outpatients Department, Allergy Clinic, Casa di Cura Villa Montallegro, Genoa, Italy -
| | - Maria A Tosca
- Department of Pediatrics, Allergy Center, Istituto G. Gaslini, Genoa, Italy
| |
Collapse
|
42
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
43
|
Luís Oliveira Cunha M, de Mello Prado R. Synergy of Selenium and Silicon to Mitigate Abiotic Stresses: a Review. GESUNDE PFLANZEN 2023; 75:1-14. [PMID: 38625279 PMCID: PMC9838374 DOI: 10.1007/s10343-022-00826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 04/17/2024]
Abstract
It is evident the increase in the occurrence of different stresses that impact agriculture and so there has been an increase in research to study stress mitigators including silicon (Si) and selenium (Se). However, the great challenge to be answered would be to assess whether it is possible to maximize these benefits by combining these two elements. Therefore, this review focused on discussing the feasibility of combining Se and Si in mitigating abiotic stresses and also measuring gains in yield and quality of agricultural products. These are the main challenges of plant mineral nutrition with these two elements for sustainable cultivation, ensuring food security with the possibility of improving human health. As the mode of application of an element can change absorption and assimilation processes and consequently the plant's response, it is important to consider research with supply of these elements via the foliar and root route. Thus, we highlighted the potential of the combined application of Se and Si and whether or not they are relevant to overcome the individual application in stress mitigation or even in plants without stress. In addition, we pointed out new directions for research on this topic in order to reinforce the combined use of stress relievers and their potential benefit to crop plants.
Collapse
Affiliation(s)
- Matheus Luís Oliveira Cunha
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, 14884-900 Jaboticabal-SP, Brazil
| | - Renato de Mello Prado
- São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, 14884-900 Jaboticabal-SP, Brazil
| |
Collapse
|
44
|
Golin A, Tinkov AA, Aschner M, Farina M, da Rocha JBT. Relationship between selenium status, selenoproteins and COVID-19 and other inflammatory diseases: A critical review. J Trace Elem Med Biol 2023; 75:127099. [PMID: 36372013 PMCID: PMC9630303 DOI: 10.1016/j.jtemb.2022.127099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The antioxidant effects of selenium as a component of selenoproteins has been thought to modulate host immunity and viral pathogenesis. Accordingly, the association of low dietary selenium status with inflammatory and immunodeficiency has been reported in the literature; however, the causal role of selenium deficiency in chronic inflammatory diseases and viral infection is still undefined. The COVID-19, characterized by acute respiratory syndrome and caused by the novel coronavirus 2, SARS-CoV-2, has infected millions of individuals worldwide since late 2019. The severity and mortality from COVID-19 have been associated with several factor, including age, sex and selenium deficiency. However, available data on selenium status and COVID-19 are limited, and a possible causative role for selenium deficiency in COVID-19 severity has yet to be fully addressed. In this context, we review the relationship between selenium, selenoproteins, COVID-19, immune and inflammatory responses, viral infection, and aging. Regardless of the role of selenium in immune and inflammatory responses, we emphasize that selenium supplementation should be indicated after a selenium deficiency be detected, particularly, in view of the critical role played by selenoproteins in human health. In addition, the levels of selenium should be monitored after the start of supplementation and discontinued as soon as normal levels are reached. Periodic assessment of selenium levels after supplementation is a critical issue to avoid over production of toxic metabolites of selenide because under normal conditions, selenoproteins attain saturated expression levels that limits their potential deleterious metabolic effects.
Collapse
Affiliation(s)
- Anieli Golin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia; Institute of Bioelementology, Orenburg, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, Brazil; Departamento de Bioquímica, Instituto Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
45
|
Selenium intakes in the Irish adult population. J Nutr Sci 2023; 12:e35. [PMID: 37008414 PMCID: PMC10052560 DOI: 10.1017/jns.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Abstract
Selenium (Se) is an essential trace element which has an important role as a constituent of seleno-proteins involved in various physiological processes. Previous research in Irish adults suggests that intakes of this important nutrient are suboptimal. The aim of the present study was to estimate the current intakes and major food sources of Se by Irish adults. Mean daily intakes (MDIs) of Se were calculated using data from the National Adult Nutrition Survey which involved 1500 Irish adults aged 18–90 years. The Se content of foods and drinks consumed over a 4-d period was determined using data from the Irish Total Diet Study (TDS). Adequacy of Se intakes was assessed by calculating the proportion of the population with intakes below the adequate intake (AI) of 70 μg/d and lower reference nutrient intake of 40 μg/d (LRNI). The MDI of Se in the total population was 71⋅7 μg/d, with significantly higher intakes reported in men (80⋅2 μg/d) compared with women (63⋅4 μg/d, P < 0⋅01). Meat and meat products were the major contributing food group to Se intakes for both men (37 %) and women (31 %). Overall, 47 % of the population were not meeting the recommended AI, while 4 % of the total population were not meeting the LRNI. Although the average intake of Se is above the AI, a significant proportion of the population is not meeting this recommendation and continued monitoring of Se intakes is necessary, particularly by at-risk groups and also in the context of sustainability.
Collapse
|
46
|
汪 晓, 张 伶, 成 果. [Nutrition Plays a Vital Role in the Prevention and Treatment of COVID-19]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:108-113. [PMID: 36647652 PMCID: PMC10409020 DOI: 10.12182/20230160303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic of coronavirus disease 2019 (COVID-19). Proper nutritional support helps boost the immunity of the human body, strengthen the high-risk populations' defense against SARS-CoV-2, reduce the prevalence of COVID-19, prevent mild cases from developing into severe cases, and reduce the occurrence of adverse symptoms during recovery. Nutritional support is an important guarantee to provide protection against virus infection, promote patient recovery, and improve patient prognosis. Whole nutritional food formulas designed according to the characteristic clinical symptoms of COVID-19 provide patients with comprehensive nutritional support of appropriate nutritional content, which effectively improves the nutritional status of patients and provides strong technical support to improve their quality of survival. During the critical period of COVID-19 prevention and control, more emphasis should be placed on the essential role of nutritional support and the clinical efficacy of nutritional support should be given full play.
Collapse
Affiliation(s)
- 晓语 汪
- 四川大学华西第二医院 营养中心 (成都 610041)Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - 伶俐 张
- 四川大学华西第二医院 营养中心 (成都 610041)Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - 果 成
- 四川大学华西第二医院 营养中心 (成都 610041)Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Huseynov TM, Guliyeva RT, Jafarova SH, Jafar NH. Sodium Selenite As Potential Adjuvant Therapy for COVID-19. Biophysics (Nagoya-shi) 2022; 67:775-778. [PMID: 36567968 PMCID: PMC9762656 DOI: 10.1134/s0006350922050074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
The review considers the role that selenium plays in RNA virus infections and, in particular, COVID-19. Many RNA viruses are selenium dependent because antisense interactions arise between viral RNAs and host mRNA regions containing the selencysteine insertion sequence to cause selenium deficiency, oxidative stress, immune response impairment, etc. Sodium selenite is a licensed selenium-containing product and is widely used in medicine, veterinary, and agriculture. Its advantages include the following. Sodium selenite rapidly penetrates through cell membranes in all tissues of the body; is intensely involved in metabolic processes accompanied by oxidation of sulfur-containing cell proteins; exerts an antiaggregation effect by reducing thromboxane activity; interrupts the contact of a virion (SARS-CoV-1 and SARS-CoV-2) with the membrane of a healthy cell; and suppresses NF-κB activity, which significantly increases in coronavirus infections. Arguments supporting the use of sodium selenite as adjuvant therapy in COVID-19 are discussed.
Collapse
Affiliation(s)
- T. M. Huseynov
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | - R. T. Guliyeva
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | - S. H. Jafarova
- Institute of Biophysics, National Academy of Sciences of Azerbaijan, AZ1143 Baku, Azerbaijan
| | | |
Collapse
|
48
|
Vitamins, microelements and the immune system: current standpoint in the fight against coronavirus disease 2019. Br J Nutr 2022; 128:2131-2146. [PMID: 35057876 DOI: 10.1017/s0007114522000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory disease associated with severe systemic inflammation. The optimal status of vitamins and microelements is considered crucial for the proper functioning of the immune system and necessary for successful recovery. Most patients with respiratory distress in COVID-19 are vitamin and microelement deficient, with vitamin D and Se deficiency being the most common. Anyway, various micronutrient supplements are widely and arbitrarily used for prevention or in the treatment of COVID-19. We aimed to summarise current knowledge about molecular and physiological mechanisms of vitamins (D, A, C, B6, B9 and B12) and microelements (Se, Zn, Cu and Fe) involved in the immune system regulation in consideration with COVID-19 pathogenesis, as well as recent findings related to their usage and effects in the prevention and treatment of COVID-19. In the early course of the pandemic, several, mainly observational, studies reported an association of some micronutrients, such as vitamin C, D and Zn, with severity reduction and survival improvement. Still, emerging randomised controlled trials showed no effect of vitamin D on hospitalisation length and no effect of vitamin C and Zn on symptom reduction. Up to date, there is evidence neither for nor against the use of micronutrients in the treatment of COVID-19. The doses that exceed the recommended for the general population and age group should not be used, except in clinical trials. Benefits of supplementation are primarily expected in populations prone to micronutrient deficiencies, who are, as well, at a higher risk of worse outcomes in COVID-19.
Collapse
|
49
|
Chen Y, Ma ZF, Yu D, Jiang Z, Wang B, Yuan L. Geographical distribution of trace elements (selenium, zinc, iron, copper) and case fatality rate of COVID-19: a national analysis across conterminous USA. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4423-4436. [PMID: 35098416 PMCID: PMC8801196 DOI: 10.1007/s10653-022-01204-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/09/2022] [Indexed: 06/01/2023]
Abstract
Severe outcome particularly death is the largest burden of COVID-19. Clinical observations showed preliminary data that deficiency in certain trace elements, essential for the normal activity of immune system, may be associated with worse COVID-19 outcome. Relevant study of environmental epidemiology has yet to be explored. We investigated the geographical association between concentrations of Se, Zn, Fe and Cu in surface soils and case fatality rate of COVID-19 in USA. Two sets of database, including epidemiological data of COVID-19 (including case fatality rate, from the University of John Hopkinson) and geochemical concentration data of Se, Zn, Fe and Cu in surface soils (from the National Geochemical Survey), were mapped according to geographical location at the county level across conterminous USA. Characteristics of population, socio-demographics and residential environment by county were also collected. Seven cross-sectional sampling dates, with a 4-week interval between adjacent dates, constructed an observational investigation over 24 weeks from October 8, 2020, to March 25, 2021. Multivariable fractional (logit) outcome regression analyses were used to assess the association with adjustment for potential confounding factors. In USA counties with the lowest concentration of Zn, the case fatality rate of COVID-19 was the highest, after adjustment for other influencing factors. Associations of Se, Fe and Cu with case fatality rate of COVID-19 were either inconsistent over time or disappeared after adjustment for Zn. Our large study provides epidemiological evidence suggesting an association of Zn with COVID-19 severity, suggesting Zn deficiency should be avoided.
Collapse
Affiliation(s)
- Ying Chen
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Zheng Feei Ma
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Dahai Yu
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, ST5 5BG, UK
| | - Zifei Jiang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Bo Wang
- Suzhou Centre for Disease Control and Prevention, Suzhou, 215004, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
50
|
Demircan K, Chillon TS, Bracken T, Bulgarelli I, Campi I, Du Laing G, Fafi-Kremer S, Fugazzola L, Garcia A, Heller R, Hughes DJ, Ide L, Klingenberg GJ, Komarnicki P, Krasinski Z, Lescure A, Mallon P, Moghaddam A, Persani L, Petrovic M, Ruchala M, Solis M, Vandekerckhove L, Schomburg L. Association of COVID-19 mortality with serum selenium, zinc and copper: Six observational studies across Europe. Front Immunol 2022; 13:1022673. [PMID: 36518764 PMCID: PMC9742896 DOI: 10.3389/fimmu.2022.1022673] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Certain trace elements are essential for life and affect immune system function, and their intake varies by region and population. Alterations in serum Se, Zn and Cu have been associated with COVID-19 mortality risk. We tested the hypothesis that a disease-specific decline occurs and correlates with mortality risk in different countries in Europe. Methods Serum samples from 551 COVID-19 patients (including 87 non-survivors) who had participated in observational studies in Europe (Belgium, France, Germany, Ireland, Italy, and Poland) were analyzed for trace elements by total reflection X-ray fluorescence. A subset (n=2069) of the European EPIC study served as reference. Analyses were performed blinded to clinical data in one analytical laboratory. Results Median levels of Se and Zn were lower than in EPIC, except for Zn in Italy. Non-survivors consistently had lower Se and Zn concentrations than survivors and displayed an elevated Cu/Zn ratio. Restricted cubic spline regression models revealed an inverse nonlinear association between Se or Zn and death, and a positive association between Cu/Zn ratio and death. With respect to patient age and sex, Se showed the highest predictive value for death (AUC=0.816), compared with Zn (0.782) or Cu (0.769). Discussion The data support the potential relevance of a decrease in serum Se and Zn for survival in COVID-19 across Europe. The observational study design cannot account for residual confounding and reverse causation, but supports the need for intervention trials in COVID-19 patients with severe Se and Zn deficiency to test the potential benefit of correcting their deficits for survival and convalescence.
Collapse
Affiliation(s)
- Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tommy Bracken
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ilaria Bulgarelli
- Laboratorio Analisi Cliniche, Centro di Ricerche e Tecnologie Biomediche, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Irene Campi
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Samira Fafi-Kremer
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alejandro Abner Garcia
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Raban Heller
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany,Clinic of Traumatology and Orthopaedics, Bundeswehr Hospital Berlin, Berlin, Germany,Department of General Practice and Health Services Research, Heidelberg University Hospital, Heidelberg, Germany
| | - David J. Hughes
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Louis Ide
- Laboratory Medicine, AZ Jan Palfijn AV, Gent, Belgium
| | - Georg Jochen Klingenberg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pawel Komarnicki
- Department of Endocrinology, Metabolism, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Zbigniew Krasinski
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Poznan, Poland
| | - Alain Lescure
- Architecture et Réactivité de l’ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Luca Persani
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Mirko Petrovic
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Marek Ruchala
- Department of Endocrinology, Metabolism, and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Morgane Solis
- CHU de Strasbourg, Laboratoire de Virologie, Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Linos Vandekerckhove
- Department of Internal Medicine and Paediatrics, Ghent University, Gent, Belgium
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany,*Correspondence: Lutz Schomburg,
| |
Collapse
|