1
|
Li S, Ma M, Hu L, Lao J, Luo X, Pan J, Lu D, Wang M, Lin W, Fan Y, Wang F, Chen YH, Wang P, Wu F, Wei X, Xu J, Liu Y, Zheng L. Association between fish consumption and sleep disorders among Chinese adults: a cross-sectional study. Ann Med 2025; 57:2491663. [PMID: 40254933 PMCID: PMC12013145 DOI: 10.1080/07853890.2025.2491663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/22/2025] Open
Abstract
PURPOSE This study aimed to investigate the potential influence of fish consumption on sleep disorders and their specific dimensions among adults in China. METHODS A cross-sectional study was conducted involving 904 participants aged 28-95 from Wenling, China. Fish intake was assessed using a Food Frequency Questionnaire containing 10 items. Sleep quality was evaluated using the Insomnia Severity Index (ISI) and Pittsburgh Sleep Quality Index (PSQI). Participants were categorized into three groups based on weekly fish intake. Logistic regression analyses were employed to determine the association between fish intake and the prevalence of sleep disorders and their specific dimensions. RESULTS Higher marine fish intake was negatively associated with PSQI subdimensions daytime dysfunction, sleep latency and sleep quality scores compared to lower fish intake (adjusted odds ratio (OR): 0.316, 95% confidence interval (CI): 0.205-0.486; adjusted OR: 0.462, 95% CI: 0.302-0.706; and adjusted OR: 0.568, 95% CI: 0.369-0.861, respectively). Marine fish consumption appears to have a positive association with sleep quality, as well as short sleep latency and daytime functioning, among adults in China. CONCLUSIONS This study provides novel insights into the association between fish intake and sleep disorders and their specific dimensions.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Clinical Pharmacy, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Mingwei Ma
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Liming Hu
- Department of Clinical Pharmacy, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Jiaying Lao
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jie Pan
- Quzhou Center for Disease Control and Prevention, Quzhou Center for Public Health Service, Quzhou, China
| | - Dafeng Lu
- Quzhou Center for Disease Control and Prevention, Quzhou Center for Public Health Service, Quzhou, China
| | - Min Wang
- Quzhou Center for Disease Control and Prevention, Quzhou Center for Public Health Service, Quzhou, China
| | - Wenhui Lin
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Yuncao Fan
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Yu-Hsin Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Penghui Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Fenzan Wu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Xiaojie Wei
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Jinzhong Xu
- Department of Clinical Pharmacy, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Lin Zheng
- Department of Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, China
| |
Collapse
|
2
|
Lai H, Zhuo J, Treisman G, Gerstenblith G, Celentano DD, Yang Y, Salmeron BJ, Gu H, Leucker TM, Liang X, Mandler RN, Khalsa J, Peña-Nogales Ó, Chen S, Lai S, Rosenthal E, Goodkin K, Magnotta VA. HIV and Low Omega-3 Levels May Heighten Hippocampal Volume Differences Between Men and Women With Substance Use. Brain Behav Immun Health 2025; 45:100988. [PMID: 40248088 PMCID: PMC12005316 DOI: 10.1016/j.bbih.2025.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
Background Sex differences in hippocampal volumes are well-documented, but their interaction with HIV status and omega-3 fatty acids-particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-remains unclear, especially in underserved populations. This study examines how HIV and omega-3 fatty acids influence sex differences in hippocampal volume and explores whether cognitive performance related to episodic memory modifies the association of omega-3 levels with hippocampal volume, considering both HIV status and sex. Methods We enrolled 166 participants aged over 45 years from a Baltimore, Maryland cohort. Brain MRIs were performed using a 3.0-T Siemens scanner, and volumetric segmentation was conducted with FreeSurfer (version 6.0), adjusting for intracranial volume (ICV). Results Our study found that: (1) Among HIV-negative participants, females had significantly lower hippocampal volumes than males in 1 of 26 regions, whereas HIV-positive females had lower volumes in 13 of 26 regions (p < 0.006 for HIV-negative vs. HIV-positive females), (2) In HIV-positive individuals with EPA levels ≤0.40 %, females exhibited lower volumes in 11 of 26 regions, compared to no differences in those with EPA levels >0.40 % (p = 0.0003 for ≤0.40 % vs. >0.40 %), (3) Across all participants, lower EPA and DHA levels were associated with greater sex differences in hippocampal volumes, which diminished or disappeared at higher EPA and DHA levels (p < 0.00001 for EPA ≤0.40 % vs. >0.40 %; p = 0.004 for DHA ≤2.0 % vs. >2.0 %), and (4) Among Adults with lower episodic memory, higher log-scaled EPA levels were independently associated with greater hippocampal volume. Conclusions HIV may amplify sex differences in hippocampal volumes, disproportionately affecting females. Higher EPA and DHA levels may mitigate these effects, suggesting a protective role against hippocampal atrophy. Further studies are warranted to confirm these findings and explore whether the benefits extend to males with HIV or individuals without HIV.
Collapse
Affiliation(s)
- Hong Lai
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Glenn Treisman
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gary Gerstenblith
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David D. Celentano
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yihong Yang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Betty Jo Salmeron
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Hong Gu
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Thorsten M. Leucker
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xiao Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raul N. Mandler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Jag Khalsa
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Shaoguang Chen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shenghan Lai
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elana Rosenthal
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karl Goodkin
- Department of Psychiatry, University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
3
|
Gewecke K, Grundler F, Ruscica M, von Schacky C, Mesnage R, Wilhelmi de Toledo F. Long-term fasting induces a remodelling of fatty acid composition in erythrocyte membranes. Eur J Clin Invest 2025; 55:e14382. [PMID: 39803905 PMCID: PMC12011679 DOI: 10.1111/eci.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/03/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans. We thus analysed the FA composition in erythrocyte membranes (EM) during 12.6 ± 3.5 days of LF and 1 month after food reintroduction. METHODS A total of 98 subjects out of three single-arm interventional studies underwent a medical supervised long-term fasting (12.6 ± 3.5 days) programme. The distribution pattern of 26 FA as well as the HS-Omega-3 Index were assessed in the EM using gas chromatography. RESULTS Eighteen of 26 FA showed significant changes. Within the group of saturated FA, myristic (14:0) and stearic acid (18:0) decreased while palmitic (16:0) and arachid acid (20:0) increased. While most monounsaturated FA increased, trans fatty acids decreased or remained unchanged. Within the polyunsaturated FA, arachidonic (20:4n6) and docosahexaenoic (22:6n3) acid increased, while linoleic (18:2n6), alpha-linolenic (18:3n3) and eicosapentaenoic acid (20:5n3) decreased. Consequently, the HS-Omega-3 Index increased. 11 out of the 18 FA with significant changes returned to baseline levels 1 month afterwards. Levels of linoleic and alpha-linolenic acid increased over baseline levels. CONCLUSIONS Long-term fasting triggers changes in the FA composition of EM.
Collapse
Affiliation(s)
| | | | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università Degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | | | - Robin Mesnage
- Buchinger Wilhelmi ClinicÜberlingenGermany
- Department of Nutritional Sciences, Faculty of Life Sciences and MedicineSchool of Life Course Sciences, King's College LondonLondonUK
| | | |
Collapse
|
4
|
Jiang Y, Chen H, Xu J, Le J, Rong W, Zhu Z, Chen Y, Hu C, Cai J, Hong Y, Huang S, Zheng M, Zhang X, Zhou C, Zhang J, He S, Yan X, Cui W. Long-term fucoxanthin treatment prevents cognitive impairments and neuroinflammation via the inhibition of Nogo-A in APP/PS1 transgenic mice. Food Funct 2025. [PMID: 40272460 DOI: 10.1039/d4fo05034g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by neuroinflammation and cognitive impairments. Although short-term treatment with fucoxanthin, a marine carotenoid with anti-neuroinflammatory activity, has been reported to prevent cognitive impairments in scopolamine- and β-amyloid (Aβ)-treated mice, it remains uncertain whether long-term fucoxanthin treatment could produce similar effects in transgenic AD models. Moreover, the anti-neuroinflammatory mechanism of fucoxanthin is still unclear. In this study, long-term treatment with fucoxanthin (15-150 mg kg-1, twice a week for 20 weeks) significantly prevented cognitive deficits and Aβ-related neuroinflammation in APP/PS1 transgenic mice. In addition, fucoxanthin largely prevented Aβ oligomer-induced secretion of pro-inflammatory cytokines and the activation of BV2 microglial cells. Furthermore, fucoxanthin reduced the increased expression of Nogo-A, a central player in AD pathophysiology, as well as the activation of downstream Rho-associated protein kinase 2 (ROCK2) and nuclear factor kappa-B (NF-κB) pathways in AD models. Most importantly, the inhibition of neuroinflammation by fucoxanthin was not reduced by shRNA-mediated knockdown of Nogo-A, suggesting that fucoxanthin significantly prevented cognitive impairments and neuroinflammation via the inhibition of Nogo-A. These results not only elucidate an anti-neuroinflammatory mechanism of fucoxanthin, but also provide strong support for the development of fucoxanthin as a novel food ingredient or drug for the treatment of AD.
Collapse
Affiliation(s)
- Yujie Jiang
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Huiyue Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Jiayi Xu
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Jingyang Le
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Wenni Rong
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Zengyu Zhu
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Yuan Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Chenwei Hu
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Jinhan Cai
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Yirui Hong
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Shangwei Huang
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Meilin Zheng
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xinyu Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Chenhui Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, 315211, China
| | - Jinrong Zhang
- School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Shan He
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaojun Yan
- Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The First Affiliated Hospital of Ningbo University, Ningbo, 315211, China
- Ningbo Kangning Hospital, Ningbo, 315211, China
| |
Collapse
|
5
|
Salomón Benitez MF, Lazcano Verduzco AK, Peña Medina P, Barrón Cabrera EM, Martínez-López E, Mendoza Medina GG, Ríos Leal E, Morgan Ortiz F, Osuna Espinoza KY, Osuna Ramírez I. [Erythrocyte and dietary omega-3 fatty acid profile in overweight and obese pregnant women]. NUTR HOSP 2025; 42:67-72. [PMID: 39512009 DOI: 10.20960/nh.05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Introduction Introduction: docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) play an important role in fetal growth and development. In Mexico, 76.8 % of women of reproductive age are overweight and obese, which is associated with the development of gestational complications. EPA and DHA fatty acids have an anti-inflammatory effect, reducing the risk of developing complications. Objective: to evaluate the erythrocyte and dietary profile of omega-3 fatty acids in overweight and obese pregnant women. Materials and methods: a prospective, cross-sectional, comparative and observational study in pregnant women with less than 14 weeks of gestation. Dietary intake of omega-3 fatty acids was evaluated by dietary diary; and levels of omega-3 fatty acids in erythrocyte membranes were evaluated by gas chromatography. Results: the mean dietary intake of EPA and DHA fatty acids was 0.027 g and 0.095 g, respectively. The erythrocyte profile was 2.90 for EPA and 1.50 DHA, no differences between normal and overweight women was found. Conclusion: the dietary intake and erythrocyte profile of omega-3 of pregnant women is lower than the reference parameters, with no significant differences between normal and overweight women.
Collapse
Affiliation(s)
| | | | - Paulina Peña Medina
- Facultad de Ciencias de la Nutrición y Gastronomía. Universidad Autónoma de Sinaloa
| | | | - Erika Martínez-López
- Instituto de Nutrigenómica y Nutrigenética Traslacional. Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara
| | - Gustavo Gerardo Mendoza Medina
- Departamento de Biotecnología y Bioingeniería. Centro de Investigaciones y Estudios Avanzados del Instituto Politécnico Nacional, Cinvestav
| | - Elvira Ríos Leal
- Departamento de Biotecnología y Bioingeniería. Centro de Investigaciones y Estudios Avanzados del Instituto Politécnico Nacional, Cinvestav
| | - Fred Morgan Ortiz
- Centro de Investigación y Docencia en Ciencias de la Salud. Hospital Civil de Culiacán
| | | | - Ignacio Osuna Ramírez
- Unidad de Investigaciones en Salud Pública. Facultad de Ciencias Químico-Biológicas. Universidad Autónoma de Sinaloa
| |
Collapse
|
6
|
Ren Z, Cai M, Liu X, Li X, Shi W, Lu H, Shen H, Miao G, Zhou Q, Li H. Omega-3 PUFAs improve cognitive function in heat-stressed mice by enhancing autophagy via inhibition of the phosphorylation of the PI3K-Akt-mTOR pathway. Food Funct 2025; 16:1931-1946. [PMID: 39950918 DOI: 10.1039/d4fo04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The adverse effects of elevated temperatures on human health are becoming progressively severe. This research established a mouse model of cognitive dysfunction induced by heat stress to examine the impact of omega-3 PUFAs on the cognitive capabilities of heat-stressed mice. The study also aimed to elucidate the role and potential mechanisms of autophagy regulation in cognitive enhancement through omega-3 PUFAs interventions. Administration of omega-3 PUFAs ameliorated cognitive deficits in heat-stressed mice and increased brain concentrations of these fatty acids. Notably, omega-3 PUFAs significantly protected hippocampal neurons' morphology, quantity, and synaptic architecture in heat-stressed mice. Additionally, omega-3 PUFAs intake reduced the prevalence of damaged mitochondria in the hippocampus and mitigated oxidative harm. Further investigation revealed that heat stress induces autophagy. However, the autophagic process becomes dysfunctional, leading to impaired autophagic activity. Omega-3 PUFAs supplementation markedly augmented hippocampal autophagy in the heat-stressed mice. Moreover, heat stress upregulated the phosphorylation of the PI3K-Akt-mTOR pathway in both the mouse hippocampus and HT22 cells. In contrast, omega-3 PUFAs intake significantly diminished the phosphorylation levels within this pathway, alleviating the autophagic fusion barrier imposed by heat stress and promoting autophagic flux. The findings suggest that omega-3 PUFAs supplementation during heat stress may bolster autophagic function by inhibiting the phosphorylation of the PI3K-Akt-mTOR pathway. This modulation reduces structural and oxidative stress damage, ultimately enhancing cognitive function in mice subjected to heat stress.
Collapse
Affiliation(s)
- Zifu Ren
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
- Medicine-Cardiovascular Dept, PLA No.92493 Hospital, Huludao, China
| | - Mengyu Cai
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Xinyao Liu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Xin Li
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Wenjing Shi
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Hongtao Lu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Gen Miao
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Qicheng Zhou
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Hongxia Li
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| |
Collapse
|
7
|
von Schacky C. Assessing omega-3 fatty acids-critically weighing options and relevance. J Clin Lipidol 2025; 19:208-214. [PMID: 40050195 DOI: 10.1016/j.jacl.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 04/20/2025]
|
8
|
Zhou L, Yuan M, Han Y, Yu Y, Liu Y, Wu D, Chen Y, Sheng B, Chen S, Wang J, Xue X. Micellar casein were constructed to improve the encapsulation efficiency of algae oil docosahexaenoic acid by transglutaminase-coupled phosphoserine peptide chelating with Ca 2. Int J Biol Macromol 2025; 297:139939. [PMID: 39824426 DOI: 10.1016/j.ijbiomac.2025.139939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Micelle systems using safe food-grade biopolymers are of particular interest for the encapsulation and delivery of nutrition components. Micellar casein (MC) was assembled using transglutaminase (TGase) to couple with phosphoserine peptide, which enhance the stability of docosahexaenoic acid (DHA) from algae oil. The mechanism behind the construction of MC-phosphoserine peptide and the encapsulation of DHA was explored. The results showed that the average particle size of the MC-phosphoserine peptide was 155.09 nm, when the mass ratio of polypeptide was 3 %, TGase activity was 4.5 U and pH 6.5. The recombinant MC-phosphoserine peptide system can improve the emulsification and digestive stability of DHA compared to the control MC. Chelation interaction between phosphoserine peptide and MC played an important role in increasing the stabilization reassembly MC. The phosphoserine peptide high calcium-binding capacity enhances encapsulation efficiency and digestion sustained-release in self-assembled micelles for fat-soluble substances.
Collapse
Affiliation(s)
- Ling Zhou
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Mengtin Yuan
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Yanping Han
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Ya Yu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Yanan Liu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Dongxu Wu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Ya Chen
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Bulei Sheng
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Sihan Chen
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Juhua Wang
- College of Veterinary Medicine, Anhui Agriculture University, Hefei, Anhui 230036, China.
| | - Xiuheng Xue
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China.
| |
Collapse
|
9
|
Otaegui L, Urgin T, Zaiter T, Zussy C, Vitalis M, Pellequer Y, Acar N, Vigor C, Galano JM, Durand T, Givalois L, Béduneau A, Desrumaux C. Nose-to-brain delivery of DHA-loaded nanoemulsions: A promising approach against Alzheimer's disease. Int J Pharm 2025; 670:125125. [PMID: 39788398 DOI: 10.1016/j.ijpharm.2024.125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Reduced docosahexaenoic acid (DHA) concentrations seem to be associated with an increased risk of Alzheimer's disease (AD), and DHA accretion to the brain across the blood-brain-barrier (BBB) can be modulated by various factors. Therefore, there is an urgent need to identify an efficient and non-invasive method to ensure brain DHA enrichment. In the present study, a safe and stable DHA-enriched nanoemulsion, designed to protect DHA against oxidation, was designed and administered intranasally in a transgenic mouse model of AD, the J20 mice. Intranasal treatment with nanoformulated DHA significantly improved well-being and working spatial memory in six-months-old J20 mice. These behavioral effects were associated with a reduction of amyloid deposition, oxidative stress, and neuroinflammation in brain tissues, which may be partially due to DHA-induced inactivation of the pleiotropic kinase GSK3β. In conclusion, intranasal DHA administration exhibited strong therapeutic effects and disease-modifying benefits in the J20 AD model. Given that DHA has already shown safety and tolerability in healthy human subjects, our results further support the need for clinical trials to assess the potential of this approach in Alzheimer's patients.
Collapse
Affiliation(s)
- Léa Otaegui
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Théo Urgin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Taghrid Zaiter
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Charleine Zussy
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France
| | - Yann Pellequer
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Claire Vigor
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Marie Galano
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thierry Durand
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Laurent Givalois
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; Laval University, Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Québec City (QC), Canada
| | - Arnaud Béduneau
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France
| | - Catherine Desrumaux
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; LipSTIC LabEx (ANR-11-LABX0021), Dijon, France.
| |
Collapse
|
10
|
Liu J, Yang Y, Shi H, Wong KK, Raine A. Persistent Aggressive Behaviour From Childhood to Adolescence: The Influence of Environmental Tobacco Exposure and the Protective Role of Fish Consumption. CRIMINAL BEHAVIOUR AND MENTAL HEALTH : CBMH 2025; 35:41-50. [PMID: 39780027 PMCID: PMC11786934 DOI: 10.1002/cbm.2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Understanding changes in aggressive behaviour throughout child development is crucial for identifying effective intervention strategies. This study investigates children's aggressive behaviour in a longitudinal cohort and explores the role of environmental tobacco exposure and fish consumption as potential risk and protective factors, respectively, for persistent aggression in children. METHODS This study involved 452 children from the Chinese Jintan Cohort. Aggressive behaviour was assessed at ages 6 and 12 years using the child behaviour checklist (CBCL) and the Reactive-Proactive Aggression Questionnaire (RPQ), respectively. Information on lifestyle habits and living environment, including parental smoking, was collected via questionnaires. Linear regression was employed to investigate the association between childhood and adolescence aggressive behaviour with relevant covariates adjusted. Subsequently, we conducted interaction analyses to explore the moderating effects of parent smoking and fish consumption on the association. RESULTS We identified no significant association between childhood and adolescent aggression in the entire sample. Interaction analysis revealed environmental tobacco exposure as a moderator for the association. Specifically, persistent reactive and total aggression across development was only observed among those with environmental tobacco exposure (reactive: β = 0.549, p = 0.020; total: β = 0.654, p = 0.035). Furthermore, within the parent smoking subgroup, freshwater fish consumption at the age of 12 showed a marginally significant interaction with childhood aggression (reactive: p = 0.061; total: p = 0.095). A significant longitudinal association for aggression was found only among those consuming fish less frequently at the age of 12 years (reactive: β = 0.927, p = 0.002; total: β = 1.082, p = 0.006). CONCLUSION Our findings suggest exposure to environmental tobacco as a contributing factor to the lasting presence of aggressive behaviour during children's development, whereas freshwater fish consumption shows potential protective effects.
Collapse
Affiliation(s)
- Jianghong Liu
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yi Yang
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Haoer Shi
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Adrian Raine
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
11
|
Villora J, Pérez JA, Acosta NG, Rodríguez-Barreto D, Alonso PJ, Betancor MB, Torres A, Álvarez S, Rodríguez C. Modulatory effect of Echium plantagineum oil on the n-3 LC-PUFA biosynthetic capacity of chicken (Gallus gallus). Poult Sci 2025; 104:104820. [PMID: 39827691 PMCID: PMC11787644 DOI: 10.1016/j.psj.2025.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Poultry can be a sustainable source of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) through the bioconversion of dietary alpha-linolenic acid (ALA, 18:3n-3). However, this process is currently limited by the high n-6/n-3 ratio in poultry diets affecting the competition between n-6 and n-3 fatty acids (FA) for the same biosynthetic enzymes, and the rate-limiting Δ6 desaturase which act at both, the first and final steps of DHA synthesis pathway. Echium plantagineum oil (EO) is an unusual source of stearidonic acid (SDA, 18:4n-3) which bypasses the first Δ6 desaturase step potentially increasing n-3 long-chain polyunsaturated fatty acids (LC-PUFA) synthesis. To explore this hypothesis, 60 Canarian male chickens at 18 weeks of age were divided into three groups and fed diets differing only in their FA formulation: soy oil (SO) rich in linoleic acid (LA, 18:2n-6); linseed oil (LO) rich in ALA; and EO, a balanced LA/ALA oil also rich in SDA and γ-linolenic acid (GLA, 18:3n-6). The dietary treatments did not affect the total lipid (TL) content (p>0.05) and did not substantially vary the lipid class (LC) profiles in the brain, liver, intestine, and muscle tissues. However, the inclusion of LO and EO equally increased n-3 polyunsaturated fatty acids (PUFA) levels in the brain, liver, and intestine compared to animals fed with SO (p<0.05). Moreover, EO increased hepatic relative expressions of the fatty acid elongases (elovl2 and elovl5). Consequently, and in alignment with our hypothesis, EO was more effective than LO in enriching chicken thigh meat with n-3 LC-PUFA (6.0 vs 4.2%; p<0.05). We concluded that lowering the dietary LA/ALA ratio and increasing the SDA content in poultry diets enhance the potential of chicken metabolism for enriching poultry products with n-3 LC-PUFA. Emerging evidence suggest that local plants like those including in Echium genus, rich in SDA and with a balanced LA/ALA ratio, could offer a more sustainable and efficient alternative to traditional ALA sources in poultry production.
Collapse
Affiliation(s)
- Jesús Villora
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain; Unidad de Producción Animal, Pastos y Forrajes en Zonas Áridas y Subtropicales, Instituto Canario de Investigaciones Agrarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain.
| | - José Antonio Pérez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Nieves Guadalupe Acosta
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Deiene Rodríguez-Barreto
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| | - Pedro Juan Alonso
- Graneros de Tenerife S.L., Departamento Técnico Grupo Capisa. Avda. República de Nicaragua, 11-13, 35010 Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling. Stirling FK9 4LA, UK
| | - Alexandr Torres
- Unidad de Producción Animal, Pastos y Forrajes en Zonas Áridas y Subtropicales, Instituto Canario de Investigaciones Agrarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - Sergio Álvarez
- Unidad de Producción Animal, Pastos y Forrajes en Zonas Áridas y Subtropicales, Instituto Canario de Investigaciones Agrarias, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - Covadonga Rodríguez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
12
|
Kurhaluk N. Palm oil as part of a high-fat diet: advances and challenges, or possible risks of pathology? Nutr Rev 2025; 83:e547-e573. [PMID: 38699959 DOI: 10.1093/nutrit/nuae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Nutritional status disorders have the most significant impact on the development of cardiovascular and oncologic diseases; therefore, the interest in the study of palm oil as among the leading components of nutrition has been increasing. The data examined in this review were sourced from the Scopus, SCIE (Web of Science), PubMed and PubMed Central, MEDLINE, CAPlus/SciFinder, and Embase databases; experts in the field; bibliographies; and abstracts from review analyses from the past 15 years. This review summarizes recent research data focusing on the quantitative and qualitative composition of nutrition of modern humans; concepts of the relationship between high-fat diets and disorders of insulin functioning and transport and metabolism of fatty acids; analyses of data regarding the palmitic acid (16:0) to oleic acid (18:1) ratio; and the effect of diet based on palm oil consumption on cardiovascular risk factors and lipid and lipoprotein levels. Several studies suggest a potential vector contributing to the transmission of maternal, high-fat-diet-induced, addictive-like behaviors and obesogenic phenotypes across generations. The relationship between cholesterol accumulation in lysosomes that may lead to lysosome dysfunction and inhibition of the autophagy process is analyzed, as is the progression of inflammatory diseases, atherosclerosis, nonalcoholic liver inflammation, and obesity with associated complications. Data are discussed from analyses of differences between rodent models and human population studies in the investigated different effects of palm oil consumption as a high-fat diet component. A conclusion is reached that the results cannot be generalized in human population studies because no similar effects were observed. Although there are numerous published reports, more studies are necessary to elucidate the complex regulatory mechanisms in digestive and nutrition processes, because there are great differences in lipoprotein profiles between rodents and humans, which makes it difficult to reproduce the pathology of many diseases caused by different types of the high-fat diet.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
13
|
Cordero-Clavijo LM, Mejía-Valdez D, Antunes-Ricardo M, Lazo-Vélez MA, Guajardo-Flores D. Evaluating sacha inchi (Plukenetia volubilis) oil stability and physicochemical properties: A comparison between conventional extraction and supercritical fluids. Food Chem 2025; 463:141132. [PMID: 39243616 DOI: 10.1016/j.foodchem.2024.141132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to compare the effects of two extraction techniques (conventional n-hexane and supercritical CO2) on the oil extraction yields, fatty acids profile, anti-hyaluronidase activity, oxidative stability, and in vitro bioactivities of oils from Sacha Inchi (Plukenetia volubilis). Higher oil extraction yield (99 %) was achieved using the SC-CO2, although similar fatty acids profiles were depicted between both treatments (p < 0.05). The SC-CO2 oil presented higher anti-hyaluronidase (31 %) activity, but lower oxidative stability (5.05 h) compared to the solvent extraction (10 %, and 5.3 h, respectively). In vitro assays further revealed that the best human normal colon cells (FHC) cell viability (100 %), anti-inflammatory (50 % lower NO production), and antioxidant (20 % ROS reduction) activities were consistently observed in both extraction treatments at concentrations of 50 μg/mL and higher. These findings highlight the potential of supercritical CO2 extraction in yielding Sacha Inchi oil with enhanced bioactive properties without the disadvantages of the use of organic solvents extraction.
Collapse
Affiliation(s)
- L Mateo Cordero-Clavijo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico; Universidad del Azuay, NutriOmics Research Group: Av. 24 de mayo 7-77 y Hernán Malo, Apartado 01.01.981, Cuenca, Ecuador
| | - Daniel Mejía-Valdez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico
| | - Marco A Lazo-Vélez
- Universidad del Azuay, NutriOmics Research Group: Av. 24 de mayo 7-77 y Hernán Malo, Apartado 01.01.981, Cuenca, Ecuador.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
14
|
Morsy SA, Alkamal AS, Al-Nahdi MT, Abed AM, Alfarra A, Bantan M, Almotowa A. Association Between Dietary Supplement Use and Academic Achievement Among University Students in the Kingdom of Saudi Arabia: A Cross-Sectional Study. Cureus 2025; 17:e77378. [PMID: 39949430 PMCID: PMC11821367 DOI: 10.7759/cureus.77378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background Dietary supplements are commonly utilized worldwide, including in the Kingdom of Saudi Arabia (KSA), primarily to improve memory, focus, wakefulness, learning, and academic achievement. Nevertheless, there is still uncertainty regarding their efficacy and safety, particularly concerning academic performance. This study examines the prevalence of dietary supplement use among students in KSA and how this affects their academic performance. Methodology The current study was a cross-sectional study conducted in KSA between 2022 and 2024 on a sample size of 513 students aged ≥18 years, as calculated by Epi Info software (Centers for Disease Control and Prevention, Atlanta, United States). A self-administered online questionnaire was designed, tested for validity and reliability, and then propagated via social media. It included four parts assessing the socio-demographic, past medical and medication history, academic information, and dietary supplement use. Results The results showed that 360 (70.2%) participants used dietary supplements, while most of them, 141 (39.2%), used a combination of supplements. Users who reported taking supplements every day were 266 (73.9% of supplement users), and the supplement-related adverse effects occurred in about 147 (41% of supplement users). The most commonly reported side effects were headaches, sleeplessness, and irritability. No discernible influence of any of the reported dietary supplements on academic achievement was identified, despite the high prevalence of supplement usage and the related negative effects. A high percentage of the participants had incorrect knowledge about dietary supplements - 262 (51.1%) had a false belief that supplements can improve their achievement and 238 (46.4%) considered them completely safe with no risks of adverse effects. Conclusions Nutritional supplement intake was highly prevalent among KSA students; however, no positive association was identified between academic achievement and any of the used supplements (caffeine, creatine, curcumin, omega-3 fatty acids, Ginkgo biloba, or multivitamins). False knowledge was common among the studied group about the effects of supplements on academic achievement and their safety.
Collapse
Affiliation(s)
- Suzan A Morsy
- Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, EGY
- Clinical Pharmacology, Fakeeh College for Medical Sciences, Jeddah, SAU
| | | | | | | | - Anas Alfarra
- Medicine, Fakeeh College for Medical Sciences, Jeddah, SAU
| | | | | |
Collapse
|
15
|
Guo YS, Gong S, Xie SM, Chen AZ, Jin HY, Liu J, Wang Q, Kang S, Li P, Wei F, Zuo TT, Ma SC. Mass Spectrometry-Based Metabolomics Investigation on Two Different Seaweeds Under Arsenic Exposure. Foods 2024; 13:4055. [PMID: 39766997 PMCID: PMC11675553 DOI: 10.3390/foods13244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Arsenic is a common toxic heavy metal contaminant that is widely present in the ocean, and seaweeds have a strong ability to concentrate arsenic, posing a potential risk to human health. This study first analyzed the arsenic content in two different seaweeds and then used an innovative method to categorize the seaweeds into low-arsenic and high-arsenic groups based on their arsenic exposure levels. Finally, a non-targeted metabolomic analysis based on mass spectrometry was conducted on seaweed from different arsenic exposure groups. The results indicated that as the arsenic concentration increased in the seaweeds, linolenic acid, tyrosine, pheophorbide a, riboflavin, and phenylalanine were upregulated, while arachidonic acid, eicosapentaenoic acid (EPA), betaine, and oleamide were downregulated. The following four key metabolic pathways involving unsaturated fatty acids and amino acids were identified: isoquinoline alkaloid biosynthesis, tyrosine metabolism, phenylalanine metabolism, and riboflavin metabolism. The identification of biomarkers and the characterization of key metabolic pathways will aid in the selection and breeding of low-arsenic-accumulating seaweed varieties, providing insights into the metabolic and detoxification mechanisms of arsenic in seaweeds.
Collapse
Affiliation(s)
- Yuan-sheng Guo
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Shuo Gong
- School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Si-min Xie
- Guangzhou Institute for Drug Control, Key Laboratory for Quality Evaluation of Chinese Patent Medicine, National Medical Products Administration, Guangzhou 510160, China;
| | - An-zhen Chen
- Qingdao Institute for Food and Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao 266073, China;
| | - Hong-yu Jin
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Jing Liu
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Qi Wang
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Shuai Kang
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Ping Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Feng Wei
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Tian-tian Zuo
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
| | - Shuang-cheng Ma
- National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; (Y.-s.G.); (H.-y.J.); (J.L.); (Q.W.); (S.K.); (F.W.)
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| |
Collapse
|
16
|
Oye Mintsa Mi-Mba MF, Lebbadi M, Alata W, Julien C, Emond V, Tremblay C, Fortin S, Barrow CJ, Bilodeau JF, Calon F. Differential impact of eicosapentaenoic acid and docosahexaenoic acid in an animal model of Alzheimer's disease. J Lipid Res 2024; 65:100682. [PMID: 39490923 DOI: 10.1016/j.jlr.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids improves cognitive performance in several animal models of Alzheimer's disease (AD), an effect often associated with reduced amyloid-beta and/or tau pathologies. However, it remains unclear to what extent eicosapentaenoic (EPA) provides additional benefits compared to docosahexaenoic acid (DHA). Here, male and female 3xTg-AD mice were fed for 3 months (13-16 months of age) the following diets: (1) control (no DHA/EPA), (2) DHA (1.1g/kg) and low EPA (0.4g/kg), or (3) DHA (0.9g/kg) with high EPA (9.2g/kg). The DHA and DHA + EPA diets respectively increased DHA by 19% and 8% in the frontal cortex of 3xTg-AD mice, compared to controls. Levels of EPA, which were below the detection limit after the control diet, reached 0.14% and 0.29% of total brain fatty acids after the DHA and DHA + EPA diet, respectively. DHA and DHA + EPA diets lowered brain arachidonic acid levels and the n-6:n-3 docosapentaenoic acid ratio. Brain uptake of free 14C-DHA measured through intracarotid brain perfusion, but not of 14C-EPA, was lower in 3xTg-AD than in NonTg mice. DHA and DHA + EPA diets in 3xTg-AD mice reduced cortical soluble phosphorylated tau (pS202) (-34% high-DHA, -34% DHA + EPA, P < 0.05) while increasing p21-activated kinase (+58% and +83%, P < 0.001; respectively). High EPA intake lowered insoluble phosphorylated tau (-31% vs. DHA, P < 0.05). No diet effect on amyloid-beta levels was observed. In conclusion, dietary intake of DHA and EPA leads to differential changes in brain PUFA while altering cerebral biomarkers consistent with beneficial effects against AD-like neuropathology.
Collapse
Affiliation(s)
- Méryl-Farelle Oye Mintsa Mi-Mba
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Meryem Lebbadi
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Waël Alata
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Carl Julien
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Vincent Emond
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Cyntia Tremblay
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Samuel Fortin
- Centre de recherche sur les biotechnologies marines, Rimouski, QC, Canada
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University Geelong, Victoria, Australia
| | - Jean-François Bilodeau
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada; Department of medicine, Faculty of Medecine, Laval University, Quebec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada.
| |
Collapse
|
17
|
Moreno F, Méndez L, Fernández I, Miralles-Pérez B, Giralt M, Romeu M, Ramos-Romero S, Torres JL, Medina I. Influence of the Degree of Unsaturation in Fish Oil Supplements on Oxidative Stress and Protein Carbonylation in the Cerebral Cortex and Cerebellum of Healthy Rats. Antioxidants (Basel) 2024; 13:1408. [PMID: 39594550 PMCID: PMC11591239 DOI: 10.3390/antiox13111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
ω-3 polyunsaturated fatty acids (PUFAs) are crucial for brain structure and function, especially docosahexaenoic acid (DHA). However, an excess of DHA may increase lipid peroxidation due to its high degree of unsaturation, particularly in tissues highly susceptible to oxidative stress, such as the brain. Therefore, this study evaluated the effects of 10 weeks of dietary supplementation with fish oil containing 80% DHA on oxidative stress and the modulation of the carbonylated proteome in both the cerebral cortex and cerebellum of male Sprague Dawley rats. The results were compared with those induced by oils with a lower degree of fat unsaturation (fish oil containing 25% DHA and 25% eicosapentaenoic acid, soybean oil containing 50% linoleic acid and coconut oil containing 90% saturated fat). The results demonstrated that fish oil containing 80% DHA significantly increased the ω3/ω6 ratio in both the cortex and cerebellum while stimulating antioxidant defense by enhancing the reduced glutathione amount and decreasing the carbonylation of specific proteins, mainly those involved in glycolysis and neurotransmission. The majority of sensitive proteins in both brain regions followed this carbonylation trend (in decreasing order): soybean > EPA/DHA 1:1 > coconut > 80% DHA. The results also indicated that the cerebellum is more responsive than the cortex to changes in the cellular redox environment induced by varying degrees of fat unsaturation. In conclusion, under healthy conditions, dietary supplementation with fish oils containing high DHA levels makes the brain more resilient to potential oxidative insults compared to oils with lower DHA content and a lower degree of fatty acid unsaturation.
Collapse
Affiliation(s)
- Francisco Moreno
- Institute of Marine Research—Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (F.M.); (I.F.); (B.M.-P.); (I.M.)
- University of Vigo, Circunvalación ao Campus Universitario, 36310 Vigo, Spain
| | - Lucía Méndez
- Institute of Marine Research—Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (F.M.); (I.F.); (B.M.-P.); (I.M.)
| | - Ingrid Fernández
- Institute of Marine Research—Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (F.M.); (I.F.); (B.M.-P.); (I.M.)
| | - Bernat Miralles-Pérez
- Institute of Marine Research—Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (F.M.); (I.F.); (B.M.-P.); (I.M.)
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.G.); (M.R.)
| | - Montserrat Giralt
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.G.); (M.R.)
| | - Marta Romeu
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.G.); (M.R.)
| | - Sara Ramos-Romero
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain;
- Institute of Advanced Chemistry of Catalonia—Spanish National Research Council (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Josep Lluís Torres
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain;
- Institute of Advanced Chemistry of Catalonia—Spanish National Research Council (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Isabel Medina
- Institute of Marine Research—Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (F.M.); (I.F.); (B.M.-P.); (I.M.)
| |
Collapse
|
18
|
Mang Q, Gao J, Li Q, Sun Y, Xu G, Xu P. Probiotics Enhance Coilia nasus Growth Performance and Nutritional Value by Regulating Glucolipid Metabolism via the Gut-Liver Axis. Int J Mol Sci 2024; 25:12196. [PMID: 39596262 PMCID: PMC11594500 DOI: 10.3390/ijms252212196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Large-scale intensive feeding triggered reduced growth performance and nutritional value. Exogenous probiotics can promote the growth performance and nutritional value of fish through improving the intestinal microbiota. However, detailed research on the correlation between the intestinal microbiota, growth performance, and nutritional value remains to be elucidated. Therefore, we performed metagenomic and metabolomic analysis to investigate the effects of probiotic addition to basal diet (1.0 × 108 CFU/g) (PF) and water (1.0 × 108 CFU/g) (PW) on the growth performance, muscle nutritional value, intestinal microbiota and their metabolites, and glucolipid metabolism in Coilia nasus. The results showed that FBW, BL, and SGR were enhanced in PF and PW groups. The concentrations of EAAs, TAAs, SFAs, MUFAs, and PUFAs were increased in PF and PW groups. Metagenomic and metabolic analyses revealed that bacterial community structure and metabolism were changed in the PF and PW groups. Moreover, adding probiotics to diet and water increased SCFAs and bile acids in the intestine. The gene expression associated with lipolysis and oxidation (hsl, pparα, cpt1, and acadm) and glycolysis (gck and pfk) was upregulated, while the gene expression associated with lipid synthesis (srebp1, acc, dgat, and elovl6) and gluconeogenesis (g6pca1, g6pca2, and pck) was downregulated in the liver. Correlation analysis displayed that hepatic glucolipid metabolism was regulated through the microbiota-gut-liver axis. Mantel test analysis showed that growth performance and muscle nutritional value were improved by the gut-liver axis. Our findings offered novel insights into the mechanisms that underlie the enhancement of growth performance and nutritional value in C. nasus and other fish by adding probiotics.
Collapse
Affiliation(s)
- Qi Mang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (J.G.); (Q.L.); (Y.S.)
| |
Collapse
|
19
|
Cannataro R, Abrego-Guandique DM, Straface N, Cione E. Omega-3 and Sports: Focus on Inflammation. Life (Basel) 2024; 14:1315. [PMID: 39459615 PMCID: PMC11509128 DOI: 10.3390/life14101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation is expected in sports, especially when practiced at a high level. The human body is pushed toward its limit, and this is perceived as a "stressogenic agent". Athletes, especially elite ones, desire it because their bodies can react with super-compensation, i.e., improve muscle mass, strength, speed, resistance, and, therefore, athletic performance. Thus, the inflammatory stimuli should be there during training but also counteracted to have the body placed in the optimal conditions for reacting with super-compensation. In this sense, omega-3 fatty acids have been shown to have anti-inflammatory biochemical activity. In this review, we will present the biochemical mechanisms of action of omega-3 fatty acids through their mediators, specialized pro-resolving mediators, which have anti-inflammatory activity. A focus will be on studies on omega-3 fatty acid supplementation in sports, and we will provide indications for possible practical applications and future studies, which are undoubtedly necessary to clarify the omega-3 fatty acids used in sports practice.
Collapse
Affiliation(s)
- Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | | | - Natascia Straface
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
20
|
Li M, Zhang L, Huang B, Liu Y, Chen Y, Lip GYH. Free fatty acids and mortality among adults in the United States: a report from US National Health and Nutrition Examination Survey (NHANES). Nutr Metab (Lond) 2024; 21:72. [PMID: 39256788 PMCID: PMC11389384 DOI: 10.1186/s12986-024-00844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The relationship between free fatty acids (FFAs) and the risk of mortality remains unclear. There is a scarcity of prospective studies examining the associations between specific FFAs, rather than total concentrations, of their effect on long-term health outcomes. OBJECTIVE To evaluate the correlation between different FFAs and all-cause and cardiovascular mortality in a large, diverse, nationally representative sample of adults in the US, and examine how different FFAs may mediate this association. METHODS This cohort study included unsaturated fatty acids (USFA) and saturated fatty acids (SFA) groups in the US National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014 and provided blood samples for FFAs levels. Multiple model calibration was performed using Cox regression analysis for known risk factors to explore the associations between FFAs and all-cause and cardiovascular mortality. RESULTS In the group of USFA, 3719 people were included, median follow-up, 6.7 years (5.8-7.8 years). In the SFA group, we included 3900 people with a median follow-up, 6.9 years (5.9-8 years). In the USFA group, myristoleic acid (14:1 n-5) (hazard ratio (HR) 1.02 [1.006-1.034]; P = 0.004), palmitoleic acid (16:1 n-7) (HR 1.001 [1.001-1.002]; P < 0.001), cis-vaccenic acid (18:1 n-7) (HR 1.006 [1.003-1.009]; P < 0.001), nervonic acid (24:1 n-9) (HR 1.007 [1.002-1.012]; P = 0.003), eicosatrienoic acid (20:3 n-9) (HR 1.027 [1.009-1.046]; P = 0.003), docosatetraenoic acid (22:4 n-6) (HR 1.024 [1.012-1.036]; P < 0.001), and docosapentaenoic acid (22:5 n-6) (HR 1.019 [1.006-1.032]; P = 0.005) were positively associated with the all-cause mortality, while docosahexaenoic acid (22:6 n-3) had a statistically lower risk of all-cause mortality (HR 0.998 [0.996-0.999]; P = 0.007). Among the SFA group, palmitic acid (16:0) demonstrated a higher risk of all-cause mortality (HR 1.00 [1.00-1.00]; P = 0.022), while tricosanoic acid (23:0) (HR 0.975 [0.959-0.991]; P = 0.002) and lignoceric acid (24:0) (HR 0.992 [0.984-0.999]; P = 0.036) were linked to a lower risk of all-cause mortality. Besides 23:0 and 24:0, the other FFAs mentioned above were linearly associated with the risks of all-cause mortality. CONCLUSIONS In this nationally representative cohort of US adults, some different FFAs exhibited significant associations with risk of all-cause mortality. Achieving optimal concentrations of specific FFAs may lower this risk of all-cause mortality, but this benefit was not observed in regards to cardiovascular mortality.
Collapse
Affiliation(s)
- Meng Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bi Huang
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Liu
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Chen
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Jiang M, Hu Z, Huang Y, Chen XD, Wu P. Impact of wall materials and DHA sources on the release, digestion and absorption of DHA microcapsules: Advancements, challenges and future directions. Food Res Int 2024; 191:114646. [PMID: 39059932 DOI: 10.1016/j.foodres.2024.114646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, offers significant health benefits but faces challenges such as distinct odor, oxidation susceptibility, and limited intestinal permeability, hindering its broad application. Microencapsulation, widely employed, enhances DHA performance by facilitating controlled release, digestion, and absorption in the gastrointestinal tract. Despite extensive studies on DHA microcapsules and related delivery systems, understanding the mechanisms governing encapsulated DHA release, digestion, and absorption, particularly regarding the influence of wall materials and DHA sources, remains limited. This review starts with an overview of current techniques commonly applied for DHA microencapsulation. It then proceeds to outline up-to-date advances in the release, digestion and absorption of DHA microcapsules, highlighting the roles of wall materials and DHA sources. Importantly, it proposes strategies for overcoming challenges and exploiting opportunities to enhance the bioavailability of DHA microcapsules. Notably, spray drying dominates DHA microencapsulation (over 90 % usage), while complex coacervation shows promise for future applications. The combination of proteins and carbohydrates or phospholipids as wall material exhibits potential in controlling release and digestion of DHA microcapsules. The source of DHA, particularly algal oil, demonstrates higher lipid digestibility and absorptivity of free fatty acids (FFAs) than fish oil. Future advancements in DHA microcapsule development include formulation redesign (e.g., using plant proteins as wall material and algal oil as DHA source), technique optimization (such as co-microencapsulation and pre-digestion), and creation of advanced in vitro systems for assessing DHA digestion and absorption kinetics.
Collapse
Affiliation(s)
- Maoshuai Jiang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zejun Hu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou, Suzhou, Jiangsu 215152, China.
| | - Yixiao Huang
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Wu
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
22
|
Raine A, Brodrick L. Omega-3 supplementation reduces aggressive behavior: A meta-analytic review of randomized controlled trials. AGGRESSION AND VIOLENT BEHAVIOR 2024; 78:101956. [PMID: 38911617 PMCID: PMC11192490 DOI: 10.1016/j.avb.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
There is increasing interest in the use of omega-3 supplements to reduce aggressive behavior. This meta-analysis summarizes findings from 28 RCTs (randomized controlled trials) on omega-3 supplementation to reduce aggression, yielding 35 independent samples with a total of 3,918 participants. Three analyses were conducted where the unit of analysis was independent samples, independent studies, and independent laboratories. Significant effect sizes were observed for all three analyses (g = .16, .20, .28 respectively), averaging .22, in the direction of omega-3 supplementation reducing aggression. There was no evidence of publication bias, and sensitivity analyses confirmed findings. Moderator analyses were largely non-significant, indicating that beneficial effects are obtained across age, gender, recruitment sample, diagnoses, treatment duration, and dosage. Omega-3 also reduced both reactive and proactive forms of aggression, particularly with respect to self-reports (g = .27 and .20 respectively). It is concluded that there is now sufficient evidence to begin to implement omega-3 supplementation to reduce aggression in children and adults - irrespective of whether the setting is the community, the clinic, or the criminal justice system.
Collapse
Affiliation(s)
- Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania
| | - Lia Brodrick
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
23
|
Gura KM, Chan A, Zong W, Pai N, Duro D. From the kitchen to the medicine cabinet: Examples of food products and supplements used for therapeutic intent. J Pediatr Gastroenterol Nutr 2024; 79:460-472. [PMID: 39034627 DOI: 10.1002/jpn3.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024]
Abstract
"Food as medicine" has existed for centuries as the foundation of health for many cultures around the globe. It is a practice built on the knowledge that food and diet play important roles in disease prevention and management. Foods that claim to have therapeutic properties are often referred to as functional foods. These foods contain a number of nutritional and nonnutritional compounds that can interact with pharmacologically relevant receptors, either directly or indirectly via their metabolites, to regulate cellular biochemical processes. Although opinions are changing, the concept of food as a therapeutic intervention goes against conventional Western medicine. To provide guidance to clinicians interested in using these products, members of the Food as Medicine working group of the Nutrition Committee NASPGHAN, as part of a two-part review series, have created summaries of several frequently used nutritional products for therapeutic intent (i.e., fermented foods, fiber, and long-chain omega-3 fatty acids) that includes indications, doses, and caveats. Gaps in their use in pediatric patients are discussed. Evidence supporting their use for management of gastrointestinal conditions, especially in the pediatric population, is provided when available.
Collapse
Affiliation(s)
- Kathleen M Gura
- Department of Pharmacy/Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvin Chan
- UCLA Mattel Children's Hospital, Los Angeles, California, USA
- David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Nikhil Pai
- Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Gastroenterology & Nutrition, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Debora Duro
- Pediatric Gastroenterology, Hepatology and Nutrition, Salah Foundation Children Hospital at Broward Health, Fort Lauderdale, Florida, USA
- NOVA Southeastern University, Fort Lauderdale, Florida, USA
- Florida International University (FIU), Miami, Florida, USA
| |
Collapse
|
24
|
Zhang M, Liu C, Zhang X, Zhao L, Li Y, Su M. The Impact of a Diet Rich in Omega-3 Fatty Acids on the Quality of Life of Patients with Squamous Cell Lung Cancer and Comorbid Depression: A Retrospective Study. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:445-452. [PMID: 39129691 PMCID: PMC11319752 DOI: 10.62641/aep.v52i4.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
BACKGROUND Lung cancer is a significant health concern, and is often accompanied by comorbid depression, leading to worsened prognosis and decreased quality of life for patients. This study aimed to investigate the potential influence of a diet rich in Omega-3 fatty acids on the quality of life of patients with squamous cell lung cancer and comorbid depression. METHODS A retroactive analysis of clinical information from patients with squamous cell lung cancer and comorbid depression admitted to Hongqi Hospital Affiliated to Mudanjiang Medical University from June 2022 to June 2023 was conducted. The patients were classified into two groups on the basis of different dietary care approaches: the Routine Dietary Group and the Omega-3 Fatty Acids Group. Baseline characteristics, pulmonary function tests, dietary intake, depression scoring, and quality of life scores were compared between the two groups. RESULTS 103 patients in total were included, with 51 in the Routine Dietary Group and 52 in the Omega-3 Fatty Acids Group. The Omega-3 Fatty Acids Group exhibited significantly higher ingestion of Omega-3 fatty acids in comparison with the Routine Dietary Group (3.15 ± 0.64 g/day vs. 2.93 ± 0.28 g/day, p = 0.022). Despite similar baseline pulmonary function tests, patients in the Omega-3 Fatty Acids Group showed significantly higher scores in physical (70.17 ± 4.81 vs. 68.18 ± 5.03, p = 0.043) and emotional (71.29 ± 4.58 vs. 69.38 ± 4.25, p = 0.030) functioning, as well as lower scores in insomnia (27.41 ± 4.51 vs. 29.34 ± 4.21, p = 0.027) and constipation (7.34 ± 1.66 vs. 8.43 ± 3.36, p = 0.040). CONCLUSION The study provided insights into the potential impact of a diet rich in Omega-3 fatty acids on the quality of life of patients with squamous cell lung cancer and complicating depression, suggesting that dietary interventions emphasizing Omega-3 fatty acids may be conducive to improving physical and emotional functioning, as well as symptom management, in this patient population.
Collapse
Affiliation(s)
- Meihui Zhang
- Outpatient Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical University, 157011 Mudanjiang, Heilongjiang, China
| | - Chunyan Liu
- Department of Pediatrics, Hongqi Hospital Affiliated to Mudanjiang Medical University, 157011 Mudanjiang, Heilongjiang, China
| | - Xiaoli Zhang
- Neurosurgery Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, 157011 Mudanjiang, Heilongjiang, China
| | - Lili Zhao
- General Medicine Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, 157011 Mudanjiang, Heilongjiang, China
| | - Yong Li
- Department of Oncology, Hongqi Hospital Affiliated to Mudanjiang Medical University, 157011 Mudanjiang, Heilongjiang, China
| | - Meiling Su
- Department of Oncology, Hongqi Hospital Affiliated to Mudanjiang Medical University, 157011 Mudanjiang, Heilongjiang, China
| |
Collapse
|
25
|
Bafkar N, Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. Efficacy and safety of omega-3 fatty acids supplementation for anxiety symptoms: a systematic review and dose-response meta-analysis of randomized controlled trials. BMC Psychiatry 2024; 24:455. [PMID: 38890670 PMCID: PMC11186166 DOI: 10.1186/s12888-024-05881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is uncertainty about the optimum dose of omega-3 fatty acids for anxiety symptoms. We aimed to find the dose-dependent effect of omega-3 supplementation on anxiety symptoms. METHODS We systematically reviewed PubMed, Scopus, and Web of Science until December 2022 to find randomized trials that assessed the effects of omega-3 fatty acids supplementation on anxiety symptoms in adults. Investigators performed the literature search and screened the titles/abstracts and full-texts and between-reviewer agreement was assessed as Cohen's kappa coefficient. We conducted a random-effects dose-response meta-analysis to estimate standardized mean differences (SMD) and 95% confidence intervals (CIs) and assessed the certainty of evidence using the GRADE framework. RESULTS A total of 23 trials with 2189 participants were included. Each 1 gram per day supplementation with omega-3 fatty acids resulted in a moderate decrease in anxiety symptoms (SMD: -0.70, 95%CI: -1.17, -0.22; GRADE = low). The non-linear dose-response analysis indicated the greatest improvement at 2 g/d (SMD: -0.93, 95%CI: -1.85, -0.01), and that supplementation in a dose lower than 2 g/d did not affect anxiety symptoms. Omega-3 fatty acids did not increase adverse events (odds ratio: 1.20, 95%CI: 0.89, 1.61; GRADE = moderate). CONCLUSIONS The present dose-response meta-analysis suggested evidence of very low certainty that supplementation with omega-3 fatty acids may significantly improve anxiety symptoms, with the greatest improvements at 2 g/d. More trials with better methodological quality are needed to reach more robust evidence. PROTOCOL REGISTRATION PROSPERO (CRD42022309636).
Collapse
Affiliation(s)
- Negar Bafkar
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
26
|
Cui G, Yu X, He M, Huang S, Liu K, Li Y, Li J, Shao X, Lv Q, Li X, Tan M. Biological activity, limitations and steady-state delivery of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:1-50. [PMID: 39218500 DOI: 10.1016/bs.afnr.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Food-related functional substances with biological activity serve as a crucial material foundation for achieving precision nutrition, which has gained increasing attraction in regulating physiological functions, preventing chronic diseases, and maintaining human health. Nutritional substances typically include bioactive proteins, peptides, polysaccharides, polyphenols, functional lipids, carotenoids, probiotics, vitamins, saponins, and terpenes. These functional substances play an essential role in precise nutrition. This chapter introduces and summarizes typical functional substances to demonstrate the challenges in precision nutrition for their stability, solubility, and bioavailability. The current status of delivery systems of functional substances is described to give an insight into the development of desirable characteristics, such as food grade status, high loading capacity, site targeting, and controlled release capacity. Finally, the applications of food-borne delivery systems of functional substances for precision nutrition are emphasized to meet the requirement for precision nutrition during nutritional intervention for chronic diseases.
Collapse
Affiliation(s)
- Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoting Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Ming He
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Shasha Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Kangjing Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xiaoyang Shao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Qiyan Lv
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Xueqian Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P.R. China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, P.R. China.
| |
Collapse
|
27
|
Arsecularatne A, Kapini R, Liu Y, Chang D, Münch G, Zhou X. Combination Therapy for Sustainable Fish Oil Products: Improving Cognitive Function with n-3 PUFA and Natural Ingredients. Biomedicines 2024; 12:1237. [PMID: 38927446 PMCID: PMC11201817 DOI: 10.3390/biomedicines12061237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long-chain polyunsaturated omega-3 fatty acids (n-3 PUFAs), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are recommended as beneficial dietary supplements for enhancing cognitive function. Although fish oil (FO) is renowned for its abundant n-3 PUFA content, combining FO with other natural products is considered as a viable option to support the sustainable development of FO products. This review aims to provide comprehensive insights into the advanced effects of combining FO or its components of DHA and EPA with natural products on protecting cognitive function. In two double-blind random control trials, no advanced effects were observed for adding curcumin to FO on cerebral function protection. However, 16 week's treatment of FO combined with vitamin E did not yield any advanced effects in cognitive factor scores. Several preclinical studies have demonstrated that combinations of FO with natural products can exhibit advanced effects in addressing pathological components in cognitive impairment, including neuroinflammation, oxidative stress, and neuronal survival. In conclusion, evidence from clinical trials for beneficial use of FO and natural ingredients combination is lacking. Greater cohesion is needed between preclinical and clinical data to substantiate the efficacy of FO and natural product combinations in preventing or slowing the progression of cognitive decline.
Collapse
Affiliation(s)
- Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Science, Western Sydney University, Paramatta, NSW 2150, Australia
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (A.A.); (R.K.); (D.C.); (G.M.)
| |
Collapse
|
28
|
Wang Y, Zhang H, Ding F, Li J, Li L, Xu Z, Zhao Y. N-3 polyunsaturated fatty acids attenuate amyloid-beta-induced toxicity in AD transgenic Caenorhabditis elegans via promotion of proteasomal activity and activation of PPAR-gamma. J Nutr Biochem 2024; 127:109603. [PMID: 38373507 DOI: 10.1016/j.jnutbio.2024.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that causes progressive cognitive decline. A major pathological characteristic of AD brain is the presence of senile plaques composed of β-amyloid (Aβ), the accumulation of which induces toxic cascades leading to synaptic dysfunction, neuronal apoptosis, and eventually cognitive decline. Dietary n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for patients with early-stage AD; however, the mechanisms are not completely understood. In this study, we investigated the effects of n-3 PUFAs on Aβ-induced toxicity in a transgenic AD Caenorhabditis elegans (C. elegans) model. The results showed that EPA and DHA significantly inhibited Aβ-induced paralytic phenotype and decreased the production of reactive oxygen species while reducing the levels of Aβ in the AD worms. Further studies revealed that EPA and DHA might reduce the accumulation of Aβ by restoring the activity of proteasome. Moreover, treating worms with peroxisome proliferator-activated receptor (PPAR)-γ inhibitor GW9662 prevented the inhibitory effects of n-3 PUFAs on Aβ-induced paralytic phenotype and diminished the elevation of proteasomal activity by n-3 PUFAs, suggesting that PPARγ-mediated signals play important role in the protective effects of n-3 PUFAs against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Huanying Zhang
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Feng Ding
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Jianhua Li
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Lianyu Li
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Zhong Xu
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China.
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China.
| |
Collapse
|
29
|
Dicklin MR, Anthony JC, Winters BL, Maki KC. ω-3 Polyunsaturated Fatty Acid Status Testing in Humans: A Narrative Review of Commercially Available Options. J Nutr 2024; 154:1487-1504. [PMID: 38522783 DOI: 10.1016/j.tjnut.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
There is an increasing body of evidence supporting a link between low intakes of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) and numerous diseases and health conditions. However, few people are achieving the levels of fish/seafood or eicosapentaenoic acid and docosahexaenoic acid intake recommended in national and international guidelines. Knowledge of a person's ω-3 LCPUFA status will benefit the interpretation of research results and could be expected to lead to an increased effort to increase intake. Dietary intake survey methods are often used as a surrogate for measuring ω-3 PUFA tissue status and its impact on health and functional outcomes. However, because individuals vary widely in their ability to digest and absorb ω-3 PUFA, analytical testing of biological samples is desirable to accurately evaluate ω-3 PUFA status. Adipose tissue is the reference biospecimen for measuring tissue fatty acids, but less-invasive methods, such as measurements in whole blood or its components (e.g., plasma, serum, red blood cell membranes) or breast milk are often used. Numerous commercial laboratories provide fatty acid testing of blood and breast milk samples by different methods and present their results in a variety of reports such as a full fatty acid profile, ω-3 and ω-6 fatty acid profiles, fatty acid ratios, as well as the Omega-3 Index, the Holman Omega-3 Test, OmegaScore, and OmegaCheck, among others. This narrative review provides information about the different ways to measure ω-3 LCPUFA status (including both dietary assessments and selected commercially available analytical tests of blood and breast milk samples) and discusses evidence linking increased ω-3 LCPUFA intake or status to improved health, focusing on cardiovascular, neurological, pregnancy, and eye health, in support of recommendations to increase ω-3 LCPUFA intake and testing.
Collapse
Affiliation(s)
| | | | | | - Kevin C Maki
- Midwest Biomedical Research, Addison, IL, United States; Indiana University School of Public Health, Bloomington, IN, United States.
| |
Collapse
|
30
|
Wang L, Xian X, Zhou M, Xu K, Cao S, Cheng J, Dai W, Zhang W, Ye M. Anti-Inflammatory Diet and Protein-Enriched Diet Can Reduce the Risk of Cognitive Impairment among Older Adults: A Nationwide Cross-Sectional Research. Nutrients 2024; 16:1333. [PMID: 38732579 PMCID: PMC11085298 DOI: 10.3390/nu16091333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cognitive impairment (CI) is a common mental health disorder among older adults, and dietary patterns have an impact on cognitive function. However, no systematic researches have constructed anti-inflammatory diet (AID) and protein-enriched diet (PED) to explore their association with CI among older adults in China. METHODS The data used in this study were obtained from the 2018 waves of the China Longitudinal Health and Longevity Survey (CLHLS). We construct AID, PED, and calculate scores for CI. We use binary logistic regression to explore the relationship between them, and use restrictive cubic splines to determine whether the relationships are non-linear. Subgroup analysis and sensitivity analysis were used to demonstrate the robustness of the results. RESULTS A total of 8692 participants (mean age is 83.53 years) were included in the analysis. We found that participants with a higher AID (OR = 0.789, 95% confidence interval: 0.740-0.842, p < 0.001) and PED (OR = 0.910, 95% confidence interval: 0.866-0.956, p < 0.001) score showed lower odds of suffering from CI. Besides, the relationship between the two dietary patterns and CI is linear, and the results of subgroup analysis and sensitivity analysis are also significant. CONCLUSION Higher intakes of AID and PED are associated with a lower risk of CI among older adults, which has important implications for future prevention and control of CI from a dietary and nutritional perspective.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (L.W.); (X.X.); (M.Z.); (K.X.); (J.C.); (W.Z.)
| | - Xiaobing Xian
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (L.W.); (X.X.); (M.Z.); (K.X.); (J.C.); (W.Z.)
| | - Mengting Zhou
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (L.W.); (X.X.); (M.Z.); (K.X.); (J.C.); (W.Z.)
| | - Ke Xu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (L.W.); (X.X.); (M.Z.); (K.X.); (J.C.); (W.Z.)
| | - Shiwei Cao
- School of the Second Clinical, Chongqing Medical University, Chongqing 400016, China;
| | - Jingyu Cheng
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (L.W.); (X.X.); (M.Z.); (K.X.); (J.C.); (W.Z.)
| | - Weizhi Dai
- School of the First Clinical, Chongqing Medical University, Chongqing 400016, China;
| | - Wenjia Zhang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (L.W.); (X.X.); (M.Z.); (K.X.); (J.C.); (W.Z.)
| | - Mengliang Ye
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; (L.W.); (X.X.); (M.Z.); (K.X.); (J.C.); (W.Z.)
| |
Collapse
|
31
|
Guertler A, Fiedler T, Lill D, Kuna AC, Volsky A, Wallmichrath J, Kämmerer T, French LE, Reinholz M. Deficit of Omega-3 Fatty Acids in Acne Patients-A Cross-Sectional Pilot Study in a German Cohort. Life (Basel) 2024; 14:519. [PMID: 38672789 PMCID: PMC11050840 DOI: 10.3390/life14040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) exert anti-inflammatory effects, including the downregulation of pro-inflammatory cytokines, eicosanoids, and insulin-like growth factor-1. Therefore, they may improve acne severity as an adjunct treatment. However, there is a paucity of data regarding patients' existing deficits. The aim of this study was to determine ω-3 FA levels in acne patients in correlation with self-reported dietary preferences and clinical severity. A single-center, cross-sectional study of 100 acne patients was conducted. Patients' blood parameters, including ω-3 FAs levels, were assessed using the HS-omega-3 Index® in erythrocytes (Omegametrix® GmbH, Martinsried, Germany). Dietary preferences were assessed using a standardized food frequency questionnaire. Clinical dermatologic evaluation was performed using the Investigator Global Assessment (IGA) of acne. The values of the HS-omega-3 Index® were outside the recommended range of 8-11% in 96 patients (mean 5.15%), independent of the clinical severity or affected anatomic sites. A severe deficit (HS-omega-3 Index® < 4%) was seen more commonly in men than in women (p = 0.021). The regular consumption of legumes was significantly associated with higher ω-3 FA levels (p = 0.003), as was oral ω-3 FA supplementation (p = 0.006) and the lack of sunflower oil intake (p = 0.008). This pilot study demonstrated a deficit of ω-3 FAs in a German acne cohort. Higher ω-3 FAs levels were observed in patients with regular legume intake and oral ω-3 FAs supplementation. Further prospective studies are needed to investigate whether the clinical severity of acne improves in patients with normal HS-omega-3 Index®.
Collapse
Affiliation(s)
- Anne Guertler
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Tobias Fiedler
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Diana Lill
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Anne-Charlotte Kuna
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Arina Volsky
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Jens Wallmichrath
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Till Kämmerer
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| | - Lars E. French
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Markus Reinholz
- Department of Dermatology and Allergy, LMU University Hospital, 80539 Munich, Germany (M.R.)
| |
Collapse
|
32
|
Janssens L, Asselman J, De Troch M. Effects of ocean warming on the fatty acid and epigenetic profile of Acartia tonsa: A multigenerational approach. MARINE POLLUTION BULLETIN 2024; 201:116265. [PMID: 38493676 DOI: 10.1016/j.marpolbul.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The effects of climate change are becoming more prevalent, and it is important to know how copepods, the most abundant class in zooplankton, will react to changing temperatures as they are the main food source for secondary consumers. They act as key transferers of nutrients from primary producers to organisms higher up the food chain. Little is known about the effects of temperature changes on copepods on the long term, i.e., over several generations. Especially the epigenetic domain seems to be understudied and the question remains whether the nutritional value of copepods will permanently change with rising water temperatures. In this research, the effects of temperature on the fatty acid and epigenetic profiles of the abundant planktonic copepod Acartia tonsa were investigated, since we expect to see a link between these two. Indeed, changing methylation patterns helped copepods to deal with higher temperatures, which is in line with the relative abundance of the most important fatty acids, e.g., DHA. However, this pattern was only observed when temperature increased slowly. A sudden increase in temperature showed the opposite effect; Acartia tonsa did not show deviant methylation patterns and the relative abundance of DHA and other important fatty acids dropped significantly after several generations. These results suggest that local fluctuations in temperature have a greater effect on Acartia tonsa than an elevation of the global mean.
Collapse
Affiliation(s)
- Lotte Janssens
- Marine Biology Research Group, Ghent University, Campus Sterre S8, Krijgslaan 281, B-9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Marleen De Troch
- Marine Biology Research Group, Ghent University, Campus Sterre S8, Krijgslaan 281, B-9000 Ghent, Belgium
| |
Collapse
|
33
|
Santa K, Kumazawa Y, Watanabe K, Nagaoka I. The Potential Use of Vitamin D3 and Phytochemicals for Their Anti-Ageing Effects. Int J Mol Sci 2024; 25:2125. [PMID: 38396804 PMCID: PMC10889119 DOI: 10.3390/ijms25042125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Unlike other vitamins, vitamin D3 is synthesised in skin cells in the body. Vitamin D3 has been known as a bone-related hormone. Recently, however, it has been considered as an immune vitamin. Vitamin D3 deficiency influences the onset of a variety of diseases. Vitamin D3 regulates the production of proinflammatory cytokines such as tumour necrosis factor-α (TNF-α) through binding to vitamin D receptors (VDRs) in immune cells. Since blood levels of vitamin D3 (25-OH-D3) were low in coronavirus disease 2019 (COVID-19) patients, there has been growing interest in the importance of vitamin D3 to maintaining a healthy condition. On the other hand, phytochemicals are compounds derived from plants with over 7000 varieties and have various biological activities. They mainly have health-promoting effects and are classified as terpenoids, carotenoids, flavonoids, etc. Flavonoids are known as the anti-inflammatory compounds that control TNF-α production. Chronic inflammation is induced by the continuous production of TNF-α and is the fundamental cause of diseases like obesity, dyslipidaemia, diabetes, heart and brain diseases, autoimmune diseases, Alzheimer's disease, and cancer. In addition, the ageing process is induced by chronic inflammation. This review explains the cooperative effects of vitamin D3 and phytochemicals in the suppression of inflammatory responses, how it balances the natural immune response, and its link to anti-ageing effects. In addition, vitamin D3 and phytochemicals synergistically contribute to anti-ageing by working with ageing-related genes. Furthermore, prevention of ageing processes induced by the chronic inflammation requires the maintenance of healthy gut microbiota, which is related to daily dietary habits. In this regard, supplementation of vitamin D3 and phytochemicals plays an important role. Recently, the association of the prevention of the non-disease condition called "ME-BYO" with the maintenance of a healthy condition has been an attractive regimen, and the anti-ageing effect discussed here is important for a healthy and long life.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo 114-0032, Japan;
| | - Yoshio Kumazawa
- Vino Science Japan Inc., Kawasaki 210-0855, Kanagawa, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
- Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, Urayasu 279-0013, Chiba, Japan
| |
Collapse
|
34
|
Mariotto S, Moriely Ramos Prado R, Nascimento E, Rodrigues de Souza X, de Abreu Sousa D. Proximate and fatty acid compositions oft en wild-caught and farmed fish species in mato grosso state, brazil. Chem Biodivers 2024; 21:e202301568. [PMID: 38252918 DOI: 10.1002/cbdv.202301568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
This study analyzed ten fish species (three farmed and seven wild-caught) to determine their centesimal composition (assessed by AOAC methods) and lipid profile (analyzed by GC-MS). Notably, "tambatinga" (farmed) and "piraputanga" (wild-caught) stood out with 28.66 % and 26.44 % protein content and 2.32 % and 3.71 % lipid content, respectively. Across all species, oleic acid was the predominant fatty acid, followed by linoleic acid. The sum of PUFAs ranged from 17.84 % in "matrinchã" to 7.85 % in "piraputanga". SFA varied from 49.93 % in "tambacu" to 39.90 % in "matrinchã", while MUFAs ranged from 44.34 % in "palmito" to 38.39 % in "tambaqui". "Matrinchã" had the highest average ω6 acid content (16.83 %), while "cachara" had the highest average for ω3 acids (5.73 %). "Piraputanga". "cachara", and "pincachara" exhibited the lowest ω6 levels. The analysis shows that fish have excellent nutritional values (proximate compositions) with few differences between species. "Pacu", "matrinchã", and "cachara" (wild-caught) demonstrated positive attributes, while "pincachara" (farmed) exhibited the highest nutritional quality in terms of fatty acid fraction. Based on quality indices (H/H), "pacu", "matrinchã" and "pincachara" are recommended choices for a healthy diet. This study adds valuable insights into the nutritional composition of fish species, which is essential for promoting regional development and local aquaculture.
Collapse
Affiliation(s)
- Sandra Mariotto
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - Campus Cuiabá - Bela Vista., Av. Juliano Costa Marques, s/n, CEP 78050-560, Cuiabá, MT, Brasil
| | - Railine Moriely Ramos Prado
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - Campus Cuiabá - Bela Vista., Av. Juliano Costa Marques, s/n, CEP 78050-560, Cuiabá, MT, Brasil
| | - Edgar Nascimento
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - Campus Cuiabá - Bela Vista., Av. Juliano Costa Marques, s/n, CEP 78050-560, Cuiabá, MT, Brasil
| | - Xisto Rodrigues de Souza
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - Campus Cuiabá - Bela Vista., Av. Juliano Costa Marques, s/n, CEP 78050-560, Cuiabá, MT, Brasil
| | - Demétrio de Abreu Sousa
- Perícia Oficial e Identificação Técnica de Mato Grosso, Regional de Confresa., Av. Santo Afonso, 110, CEP 78652-000, Confresa, MT, Brasil
| |
Collapse
|
35
|
Chen H, Yang Q, Yu F, Shen Y, Xia H, Yang M, Yin R, Shen Y, Fan J, Fan Z. Protective effect of unsaturated fatty acids on cognitive impairment in CKD patients: Results from the National Health and Nutrition Examination Survey (2011-2014). Technol Health Care 2024; 32:3579-3593. [PMID: 38875064 DOI: 10.3233/thc-240671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
BACKGROUND It is still unknown whether unsaturated fatty acids (UFA) have the same effect on preventing cognitive impairment in chronic kidney disease (CKD) patients as in healthy people. OBJECTIVE To investigate the protective effect of dietary UFA intake and proportion on cognitive impairment in patients with CKD. METHODS We extracted data from the National Health and Nutrition Examination Survey (NHANES, 2011-2014) on participants with a previous diagnosis of CKD and at least one complete cognitive assessment (Consortium to Establish a Registry for Alzheimer's Disease test, Animal Fluency Test and Digit Symbol Substitution Test). We used the lower quartile of the total scores of these three tests as the cut-off point, and divided the participants into two groups of normal cognitive performance and low cognitive performance to extract participants' intake of various UFA from the NHANES dietary module. The data were weighted using weighting parameters included in NHANES, and logistics regression and restricted cubic spline were used to analyze the protective effect of UFA intake on cognitive impairment in CKD participants. RESULTS We found that participants with low cognitive performance all had significantly lower intakes of total monounsaturated fatty acids, total polyunsaturated fatty acids, ω-3 UFA, ω-6 UFA and ω-9 UFA than participants with normal cognitive performance (p< 0.05), and the ω-6 UFA and ω-9 UFA had the most significant protective effects on cognitive impairment of participants. We also discovered that oleic and linoleic acids play important roles in protecting against cognitive impairment in CKD participants. The protective effect of oleic acid, but not linoleic acid, on cognitive impairment showed a nonlinear relationship. The changes in the proportion of monounsaturated fatty acids to polyunsaturated fatty acids, ω-6 UFA to ω-3 UFA, and oleic acid to linoleic acid did not affect the risk of cognitive impairment in CKD participants. CONCLUSIONS UFA can reduce the risk of cognitive impairment in CKD patients, especially oleic acid and linoleic acid have a more obvious protective effect on cognitive impairment in patients with CKD. Among them, the protective effect of linoleic acid on cognitive impairment was continuously enhanced with the increase of intake, indicating that linoleic acid may be the most important UFA to reduce cognitive impairment in CKD patients.
Collapse
Affiliation(s)
- Han Chen
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qiaorui Yang
- Department of Gynecology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangjie Yu
- The First Unit of Internal Medicine, Jiangshan Hospital of Traditional Chinese Medicine, Jiangshan, Zhejiang, China
| | - Yunxiang Shen
- The Second Unit of Internal Medicine, Longyou Hospital of Chinese Medicine, Longyou, Zhejiang, China
| | - Hong Xia
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Mengfan Yang
- Graduate School, Chengdu Chinese Medical University, Chengdu, Sichuan, China
| | - Riping Yin
- Nephrology and Endocrinology Department, Pinghu Hospital of Traditional Chinese Medicine, Pinghu, Zhejiang, China
| | - Yiwei Shen
- Orthopedics Department, Ningbo Hospital of Traditional Chinese Medicine (Ningbo Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Chinese Medicine), Ningbo, Zhejiang, China
| | - Junfen Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhenliang Fan
- Nephrology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Chen E, Zhou D, Deng R. Serum resolvin D1 potentially predicts neurofunctional recovery, the risk of recurrence and death in patients with acute ischemic stroke. Biomed Rep 2024; 20:10. [PMID: 38124765 PMCID: PMC10731167 DOI: 10.3892/br.2023.1698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023] Open
Abstract
Resolvin D1 (RvD1) represses inflammation, oxidative damage and neural injury related to acute ischemic stroke (AIS) progression. The present study aimed to explore the association of serum RvD1 with disease features, neurological recovery and prognosis in patients with AIS. A total of 212 patients with newly diagnosed AIS, whose serum RvD1 was quantified at admission and at discharge using an ELISA were enrolled in the current study. The modified Rankin scale (mRS) score was noted at 3 months after patient enrolment (M3), and patients were followed up for a median duration of 11.4 (range, 1.1-21.0) months. The median RvD1 in patients with AIS at admission was 1.07 (range, 0.11-9.29) ng/ml and it was negatively correlated with the neutrophil/lymphocyte ratio (r=-0.160; P=0.009) and C-reactive protein level (r=-0.272; P<0.001), but it was not correlated with comorbidities or other biochemical indexes. RvD1 at admission was lower in patients with mRS >2 at M3 (P=0.001), recurrence (P=0.001) or death (P=0.032) compared with that in patients without the aforementioned characteristics, which had a general ability to estimate mRS >2 at M3 [area under curve (AUC), 0.633], as well as lower risk of recurrence (AUC, 0.745) and death (AUC, 0.757) according to receiver operator characteristic (ROC) curve analyses. The median RvD1 was raised to 1.70 (range, 0.30-16.62) ng/ml at discharge. RvD1 at discharge was able to forecast mRS >2 at M3 (AUC, 0.678) and was able to predict the risk of recurrence (AUC, 0.796) and death (AUC, 0.826) in the ROC curve analyses. Increased serum RvD1 was associated with an attenuated inflammation status, and predicted improved neurological recovery, and lower risk of recurrence and death in patients with AIS. More specifically, its level at discharge exhibits a better prognostic utility than that at admission.
Collapse
Affiliation(s)
- Enzhuo Chen
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Dong Zhou
- Department of Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Ruoyu Deng
- Health Management, University of Montpellier, Montpellier 34090, France
| |
Collapse
|
37
|
Moltu SJ, Nordvik T, Rossholt ME, Wendel K, Chawla M, Server A, Gunnarsdottir G, Pripp AH, Domellöf M, Bratlie M, Aas M, Hüppi PS, Lapillonne A, Beyer MK, Stiris T, Maximov II, Geier O, Pfeiffer H. Arachidonic and docosahexaenoic acid supplementation and brain maturation in preterm infants; a double blind RCT. Clin Nutr 2024; 43:176-186. [PMID: 38061271 DOI: 10.1016/j.clnu.2023.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are important structural components of neural cellular membranes and possess anti-inflammatory properties. Very preterm infants are deprived of the enhanced placental supply of these fatty acids, but the benefit of postnatal supplementation on brain development is uncertain. The aim of this study was to test the hypothesis that early enteral supplementation with ARA and DHA in preterm infants improves white matter (WM) microstructure assessed by diffusion-weighted MRI at term equivalent age. METHODS In this double-blind, randomized controlled trial, infants born before 29 weeks gestational age were allocated to either 100 mg/kg ARA and 50 mg/kg DHA (ARA:DHA group) or medium chain triglycerides (control). Supplements were started on the second day of life and provided until 36 weeks postmenstrual age. The primary outcome was brain maturation assessed by diffusion tensor imaging (DTI) using Tract-Based Spatial Statistics (TBSS) analysis. RESULTS We included 120 infants (60 per group) in the trial; mean (range) gestational age was 26+3 (22+6 - 28+6) weeks and postmenstrual age at scan was 41+3 (39+1 - 47+0) weeks. Ninety-two infants underwent MRI imaging, and of these, 90 had successful T1/T2 weighted MR images and 74 had DTI data of acceptable quality. TBSS did not show significant differences in mean or axial diffusivity between the groups, but demonstrated significantly higher fractional anisotropy in several large WM tracts in the ARA:DHA group, including corpus callosum, the anterior and posterior limb of the internal capsula, inferior occipitofrontal fasciculus, uncinate fasciculus, and the inferior longitudinal fasciculus. Radial diffusivity was also significantly lower in several of the same WM tracts in the ARA:DHA group. CONCLUSION This study suggests that supplementation with ARA and DHA at doses matching estimated fetal accretion rates improves WM maturation compared to control treatment, but further studies are needed to ascertain any functional benefit. CLINICAL TRIAL REGISTRATION www. CLINICALTRIALS gov; ID:NCT03555019.
Collapse
Affiliation(s)
- Sissel J Moltu
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway.
| | - Tone Nordvik
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Madelaine E Rossholt
- Department of Pediatrics and Adolescence Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristina Wendel
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Maninder Chawla
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Andres Server
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, 90185 Umeå, Sweden
| | - Marianne Bratlie
- Department of Pediatrics and Adolescence Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Marlen Aas
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway
| | - Petra S Hüppi
- Department of Woman, Child and Adolescent Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Lapillonne
- Department of Neonatal Intensive Care, APHP Necker-Enfants Malades Hospital, Paris University, 75015 Paris, France
| | - Mona K Beyer
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tom Stiris
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivan I Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norwary
| | - Helle Pfeiffer
- Department of Neonatal Intensive Care, Oslo University Hospital, 0424 Oslo, Norway; Department of Pediatric Neurology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
38
|
Lyu CC, Meng Y, Che HY, Suo JL, He YT, Zheng Y, Jiang H, Zhang JB, Yuan B. MSI2 Modulates Unsaturated Fatty Acid Metabolism by Binding FASN in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20359-20371. [PMID: 38059915 DOI: 10.1021/acs.jafc.3c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The regulation of fatty acid metabolism is crucial for milk flavor and quality. Therefore, it is important to explore the genes that play a role in fatty acid metabolism and their mechanisms of action. The RNA-binding protein Musashi2 (MSI2) is involved in the regulation of numerous biological processes and plays a regulatory role in post-transcriptional translation. However, its role in the mammary glands of dairy cows has not been reported. The present study examined MSI2 expression in mammary glands from lactating and dry milk cows. Experimental results in bovine mammary epithelial cells (BMECs) showed that MSI2 was negatively correlated with the ability to synthesize milk fat and that MSI2 decreased the content of unsaturated fatty acids (UFAs) in BMECs. Silencing of Msi2 increased triglyceride accumulation in BMECs and increased the proportion of UFAs. MSI2 affects TAG synthesis and milk fat synthesis by regulating fatty acid synthase (FASN). In addition, RNA immunoprecipitation experiments in BMECs demonstrated for the first time that MSI2 can bind to the 3'-UTR of FASN mRNA to exert a regulatory effect. In conclusion, MSI2 affects milk fat synthesis and fatty acid metabolism by regulating the triglyceride synthesis and UFA content through binding FASN.
Collapse
Affiliation(s)
- Chen-Chen Lyu
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Yu Meng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Hao-Yu Che
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Jin-Long Suo
- Institute of Microsurgery on Extremities, and Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yun-Tong He
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
39
|
Chen C, Shi Z, Fan X, Du L, Zhou C, Pan D. Combined application of high-throughput sequencing and LC-MS-based lipidomics in the evaluation of microorganisms and lipidomics of restructured ham of different salted substitution. Food Res Int 2023; 174:113596. [PMID: 37986459 DOI: 10.1016/j.foodres.2023.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
The optimization of processed meats through salt replacement using KCl and k-lactate may reduce the risk of chronic diseases through reduction in dietary sodium. The objective of this study was to investigate the changes and relationships between microbial and lipid metabolism during the fermentation of restructured duck ham with different salt substitutions. Lactobacillus and Staphylococcus were found to be the dominant bacterial species in the 30 % KCl + 70 % NaCl (w/w) and 25 % k-lactate + 75 % NaCl (w/w). The LefSe analysis showed that different biomarkers were present in different ham groups, and the PLS-DA showed that triglycerides (GL) and glycerophospholipids (GP) were the two classes with the highest abundance. Besides, the KEGG pathway analysis revealed that glycerophospholipid metabolism and triglyceride metabolism were also the main metabolic pathways. According to the correlation study, Staphylococcus, Halomonas, and Lactobacillus were mostly linked to the important metabolic pathways in restructured ham. Our findings serve as a foundation for quality assurance and product enhancement for low-salt restructured ham.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zihang Shi
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xiankang Fan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Lihui Du
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo 315832, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
40
|
Rosell-Díaz M, Santos-González E, Motger-Albertí A, Ramió-Torrentà L, Garre-Olmo J, Pérez-Brocal V, Moya A, Jové M, Pamplona R, Puig J, Ramos R, Fernández-Real JM, Mayneris-Perxachs J. Gut microbiota links to serum ferritin and cognition. Gut Microbes 2023; 15:2290318. [PMID: 38059755 PMCID: PMC10730210 DOI: 10.1080/19490976.2023.2290318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Iron is required for the replication and growth of almost all bacterial species and in the production of myelin and neurotransmitters. Increasing clinical studies evidence that the gut microbiota plays a critical role in iron metabolism and cognition. However, the understanding of the complex iron-microbiome-cognition crosstalk remains elusive. In a recent study in the Aging Imageomics cohort (n = 1,030), we identified a positive association of serum ferritin (SF) with executive function (EF) as inferred from the semantic verbal fluency (SVF,) the total digit span (TDS) and the phonemic verbal fluency tests (PVF). Here, we explored the potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. Different bacterial species belonging to the Proteobacteria phylum (Klebsiella pneumoniae, Klebsiella michiganensis, Unclassified Escherichia) were negatively associated both with SF and executive function. At the functional level, an enrichment of microbial pathways involved in phenylalanine, arginine, and proline metabolism was identified. Consistently, phenylacetylglutamine, a metabolite derived from microbial catabolism of phenylalanine, was negatively associated with SF, EF, and semantic memory. Other metabolites such as ureidobutyric acid and 19,20-DiHDPA, a DHA-derived oxylipin, were also consistently and negatively associated with SF, EF, and semantic memory, while plasma eicosapentaenoic acid was positively associated. The associations of SF with cognition could be mediated by the gut microbiome through microbial-derived metabolites.
Collapse
Affiliation(s)
- Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Anna Motger-Albertí
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Neurodegeneration and Neuroinflammation research group, IDIBGI. Department of Medical Sciences, Dr. Josep Trueta University Hospital, University of Girona, Girona-Salt, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Health, Gender, and Aging, Girona Biomedical Research Institute (IDIBGI) and University of Girona, Girona, Spain
- Department of Nursing, University of Girona, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), Lleida, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud -RICAPPS- ISCIII, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
41
|
von Schacky C, Kuipers RS, Pijl H, Muskiet FAJ, Grobbee DE. Omega-3 fatty acids in heart disease-why accurately measured levels matter. Neth Heart J 2023; 31:415-423. [PMID: 36795219 PMCID: PMC10602979 DOI: 10.1007/s12471-023-01759-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/17/2023] Open
Abstract
Current guidelines barely support marine omega‑3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in cardiology, mainly because results of large trials were equivocal. Most large trials have tested EPA alone or EPA + DHA combined as a drug, thereby disregarding the relevance of their blood levels. These levels are frequently assessed with the Omega‑3 Index (percentage of EPA + DHA in erythrocytes), which is determined using a specific standardised analytical procedure. EPA and DHA are present in every human being at unpredictable levels (even in the absence of intake), and their bioavailability is complex. Both facts need to be incorporated into trial design and should direct clinical use of EPA and DHA. An Omega‑3 Index in the target range of 8-11% is associated with lower total mortality, fewer major adverse cardiac and other cardiovascular events. Moreover, functions of organs such as the brain benefit from an Omega‑3 Index in the target range, while untoward effects, such as bleeding or atrial fibrillation, are minimised. In pertinent intervention trials, several organ functions were improved, with improvements correlating with the Omega‑3 Index. Thus, the Omega‑3 Index is relevant in trial design and clinical medicine, which calls for a widely available standardised analytical procedure and a discussion on possible reimbursement of this test.
Collapse
Affiliation(s)
| | - R S Kuipers
- Heart Centre, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
- Department of Cardiology, Dijklander Hospital, Purmerend/Hoorn, The Netherlands
| | - H Pijl
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - F A J Muskiet
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - D E Grobbee
- Julius Global Health, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Dhillon VS, Thomas P, Lee SL, Deo P, Fenech M. Red Blood Cell Fatty Acid Profiles Are Significantly Altered in South Australian Mild Cognitive Impairment and Alzheimer's Disease Cases Compared to Matched Controls. Int J Mol Sci 2023; 24:14164. [PMID: 37762467 PMCID: PMC10531649 DOI: 10.3390/ijms241814164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Nutritional imbalances have been associated with a higher risk for cognitive impairment. This study determined the red blood cell (RBC) fatty acid profile of newly diagnosed mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients compared to age and gender-matched controls. There was a significant increase in palmitic acid (p < 0.00001) for both MCI and AD groups. Saturated fatty acids were significantly elevated in the MCI group, including stearic acid (p = 0.0001), arachidic acid (p = 0.003), behenic acid (p = 0.0002), tricosanoic acid (p = 0.007) and lignoceric acid (p = 0.001). n-6 polyunsaturated fatty acids (PUFAs) were significantly reduced in MCI, including linoleic acid (p = 0.001), γ-linolenic acid (p = 0.03), eicosatrienoic acid (p = 0.009) and arachidonic acid (p < 0.00004). The n-3 PUFAs, α-linolenic acid and docosahexaenoic acid, were both significantly reduced in MCI and AD (p = 0.0005 and p = 0.00003). A positive correlation was evident between the Mini-Mental State Examination score and nervonic acid in MCI (r = 0.54, p = 0.01) and a negative correlation with γ-linolenic acid in AD (r = -0.43, p = 0.05). Differences in fatty acid profiles may prove useful as potential biomarkers reflecting increased risk for dementia.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia;
| | - Sau L. Lee
- College of Medical and Public Health, Flinders University, Bedford Park 5042, Australia;
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
- Genome Health Foundation, Adelaide 5048, Australia
| |
Collapse
|
43
|
Dyall SC, Nessel I, Sharpe JA, Yip PK, Michael-Titus AT, Shah DK. Long-chain omega-3 polyunsaturated fatty acids are reduced in neonates with substantial brain injury undergoing therapeutic hypothermia after hypoxic-ischemic encephalopathy. Front Neurol 2023; 14:1231743. [PMID: 37712085 PMCID: PMC10498768 DOI: 10.3389/fneur.2023.1231743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal morbidity and mortality. Although therapeutic hypothermia is an effective treatment, substantial chronic neurological impairment often persists. The long-chain omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, offer therapeutic potential in the post-acute phase. To understand how PUFAs are affected by HIE and therapeutic hypothermia we quantified for the first time the effects of HIE and therapeutic hypothermia on blood PUFA levels and lipid peroxidation. In a cross-sectional approach, blood samples from newborns with moderate to severe HIE, who underwent therapeutic hypothermia (sHIE group) were compared to samples from newborns with mild HIE, who did not receive therapeutic hypothermia, and controls. The sHIE group was stratified into cerebral MRI predictive of good (n = 10), or poor outcomes (n = 10; nine developed cerebral palsy). Cell pellets were analyzed for fatty acid content, and plasma for lipid peroxidation products, thiobarbituric acid reactive substances and 4-hydroxy-2-nonenal. Omega-3 Index (% DHA + EPA) was similar between control and HIE groups; however, with therapeutic hypothermia there were significantly lower levels in poor vs. good prognosis sHIE groups. Estimated Δ-6 desaturase activity was significantly lower in sHIE compared to mild HIE and control groups, and linoleic acid significantly increased in the sHIE group with good prognosis. Reduced long-chain omega-3 PUFAs was associated with poor outcome after HIE and therapeutic hypothermia, potentially due to decreased biosynthesis and tissue incorporation. We speculate a potential role for long-chain omega-3 PUFA interventions in addition to existing treatments to improve neurologic outcomes in sHIE.
Collapse
Affiliation(s)
- Simon C. Dyall
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jennine A. Sharpe
- School of Life and Health Sciences, University of Roehampton, London, United Kingdom
| | - Ping K. Yip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Divyen K. Shah
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
44
|
Li G, Yu T, Du H, Zhang L, Liu X, Hou S. Effect of Clostridium butyricum on the formation of primary choledocholithiasis based on intestinal microbiome and metabolome analysis. J Appl Microbiol 2023; 134:lxad170. [PMID: 37533214 DOI: 10.1093/jambio/lxad170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
AIMS To investigate the function and probable mechanism of Clostridium butyricum in the development of choledocholithiasis. METHODS AND RESULTS The lithogenic diet group and the lithogenic diet + C. butyricum group were used to develop the choledocholithiasis model. During the experiment, C. butyricum suspension was administered to the rats in the lithogenic diet + C. butyricum group. The findings demonstrated that the C. butyricum intervention decreased the Firmicutes/Bacteroidetes ratio in the colon of experimental animals given a lithogenic diet. The relative levels of Desulfovibrio (0.93%) and Streptococcus (0.38%) fell, whereas Lactobacillus (22.36%), Prevotella (14.09%), and bacteria that produce short-chain fatty acids increased. Finally, 68 distinct metabolic products were found based on nontargeted metabonomics, and 42 metabolic pathways associated to the various metabolites were enriched. CONCLUSIONS We found that C. butyricum decreased the development of choledocholithiasis. It keeps the equilibrium of the rat's gut microbiome intact and lowers the danger of bacterial infections of the gastrointestinal and biliary systems. It is hypothesized that by controlling lipid metabolism, it may also have an impact on the development of cholelithiasis.
Collapse
Affiliation(s)
- Guofu Li
- Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, 050000 Shijiazhuang, P. R. China
| | - Tingting Yu
- Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, 050000 Shijiazhuang, P. R. China
| | - Haiming Du
- Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, 050000 Shijiazhuang, P. R. China
| | - Lichao Zhang
- Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, 050000 Shijiazhuang, P. R. China
| | - Xiaoxuan Liu
- Hebei Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, 050000 Shijiazhuang, P. R. China
| | - Senlin Hou
- Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, 050000 Shijiazhuang, P. R. China
| |
Collapse
|
45
|
Choy O. Nutritional factors associated with aggression. Front Psychiatry 2023; 14:1176061. [PMID: 37415691 PMCID: PMC10320003 DOI: 10.3389/fpsyt.2023.1176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
Although the vast majority of patients in forensic psychiatry are treated using pharmacological agents, clinical and ethical concerns about their use have led to the consideration of alternative strategies to reduce aggression that is common in forensic psychiatric settings. One non-invasive and benign biologically-based treatment approach involves nutrition. This article provides a mini-review of the recent evidence on four salient nutritional factors associated with aggressive behavior, namely omega-3 fatty acids, vitamin D, magnesium, and zinc. The current evidence base indicates that lower omega-3 levels are associated with increased aggression. Although research on vitamin D and zinc in relation to aggressive behavior is more limited, there is initial evidence that they are negatively associated with aggression in healthy participants and in psychiatric samples. The relationship between magnesium and aggression varies depending on how magnesium is assessed. Findings from experimental trials reveal that nutritional intervention in the form of omega-3 supplementation has the potential to serve as an effective mode of treatment, with effects that can last beyond the intervention period. There is also support for the utility of nutrition to improve our understanding of how social processes are linked to aggression. In light of the nascent, but promising findings on the role of nutritional factors on aggressive behavior, directions for future research are discussed.
Collapse
|
46
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
47
|
Bhatara VS, Bernstein B, Fazili S. Complementary and Integrative Treatments of Aggressiveness/Emotion Dysregulation: Associated with Disruptive Disorders and Disruptive Mood Dysregulation Disorder. Child Adolesc Psychiatr Clin N Am 2023; 32:297-315. [PMID: 37147041 DOI: 10.1016/j.chc.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Youth with emotional dysregulation (ED) and irritability/aggression, common in disruptive disorders (frequently comorbid with attention-deficit/hyperactivity disorder), are underserved by conventional treatments. Anger dysregulation is usually the core feature of ED. Complementary and integrative Medicine (CIM) treatments for youth with disruptive disorders and ED are reviewed. Broad-spectrum micronutrient supplementation has a medium effect and is supported by two double-blind randomized controlled trials using similar formulations. Other CIM treatments supported by controlled data but needing further research, include omega-3 fatty acid supplementation, music therapy, martial arts, restricting exposure to media violence, decreasing sleep deprivation, and increased exposure to green-blue spaces.
Collapse
Affiliation(s)
- Vinod S Bhatara
- Department of Psychiatry, University of South Dakota, Sanford School of Medicine, Sioux Falls, SD, USA; Department of Pediatrics, University of South Dakota, Sanford School of Medicine, Sioux Falls, SD, USA.
| | - Bettina Bernstein
- Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA 19131, USA; Department of Child and Adolescent Psychiatry, The Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Sheeba Fazili
- University of South Dakota Sanford School of Medicine, 4400 West 69th street, suite 1500, Sioux Falls, SD 57104, USA
| |
Collapse
|
48
|
Andriambelo B, Stiffel M, Roke K, Plourde M. New perspectives on randomized controlled trials with omega-3 fatty acid supplements and cognition: A scoping review. Ageing Res Rev 2023; 85:101835. [PMID: 36603691 DOI: 10.1016/j.arr.2022.101835] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Long chain polyunsaturated omega-3 fatty acids (n-3 FA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to be important components in a healthy diet and contribute to healthy functioning of the heart and the brain, among other organs. Although there are epidemiological studies on the strong relationship between fish or n-3 FA consumption and lower risk of cognitive decline, results from randomized controlled trials (RCTs) are less consistent. Here, we performed a scoping review on RCTs with n-3 FA supplementation where cognition was evaluated. Seventy-eight RCTs published before April 2022 were included in this review. Among these RCTs, 43.6% reported a positive cognitive outcome after the consumption of n-3 FA compared to the placebo. However, there was a large diversity of populations studied (age ranges and health status), wide range of doses of EPA + DHA supplemented (79 mg/day - 5200 mg/day) and a multitude of tests evaluating cognition, mainly diagnostic tests, that were used to assess cognitive scores and overall cognitive status. RCTs were thereafter categorized into non-cognitively impaired middle-aged adults (n = 24), non-cognitively impaired older adults (n = 24), adults with subjective memory complaints (n = 14), adults with mild cognitive impairments (MCI, n = 9) and people with diagnosed dementia or other cognitive changes (n = 7). Among these categories, 66.7% of RCTs conducted with MCI adults reported a positive cognitive outcome when supplemented with n-3 FA vs. the placebo. Therefore, this scoping review provides rationale and questions to a) strengthen the design of future RCTs with n-3 FA for cognitive outcomes, and b) generate more informative data to support clinicians in their practice in assessing cognition before and after a nutritional intervention.
Collapse
Affiliation(s)
- B Andriambelo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - M Stiffel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - K Roke
- GOED- Global Organization for EPA and DHA Omega-3, Salt Lake City, UT, United States
| | - M Plourde
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada.
| |
Collapse
|
49
|
Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular "Eat-Me" Signal in Microglial Phagocytosis. Mol Neurobiol 2023; 60:1050-1066. [PMID: 36401705 DOI: 10.1007/s12035-022-03133-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
Phosphatidylserine (PtdSer) is an important anionic phospholipid found in eukaryotic cells and has been proven to serve as a beneficial factor in the treatment of neurodegenerative diseases. PtdSer resides in the inner leaflet of the plasma membrane, where it is involved in regulating the AKT and PKC signaling pathways; however, it becomes exposed to the extracellular leaflet during neurodevelopmental processes and neurodegenerative diseases, participating in microglia-mediated synaptic and neuronal phagocytosis. In this paper, we review several characteristics of PtdSer, including the synthesis and translocation of PtdSer, the functions of cytoplasmic and exposed PtdSer, and different PtdSer-detection materials used to further understand the role of PtdSer in the nervous system.
Collapse
|
50
|
Iodide intake during pregnancy and lactation stimulates KLF9, BDNF expression in offspring brain with elevated DHA, EPA metabolites. Heliyon 2023; 9:e13161. [PMID: 36816261 PMCID: PMC9932675 DOI: 10.1016/j.heliyon.2023.e13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
To investigate the effect of different iodide intake during pregnancy and lactation on thyroid function, docosahexaenoic acid (DHA), Eicosapentaenoic acid (EPA) metabolites, the expression of Krüppel-like factor KLF9 (KLF9), brain-derived neurotrophic factor (BDNF) in brain in offspring rats. In both male and female offspring rats, serum FT3, FT4 levels and the expression of KLF9, thyroid hormone receptors (TR)α, TRβ and BDNF in the hippocampal region and cerebellum were significantly increased in 5 times higher-than-normal pregnant iodide intake (5 HI) and 10 times higher-than-normal pregnant iodide intake (10 HI) group. The median levels of DHA metabolite (17-HDoHE) and EPA metabolites (15-HEPE, 17,18-EEQ, 9-HEPE and 14,15-DiHETE) were significantly increased in 5 HI and 10 HI group of offspring rats. Serum DHA, EPA metabolites and KLF9 as well as BDNF expression in brain might be potential iodine status biomarkers to reflect brain development in offspring.
Collapse
|