1
|
Stoops M, Do B, Ramos S, Tan BX, Sheng Chua NY, Mazet R, Guiblin N, Michelet A, Flynn S, Abbou S, Goyanes A, Rieutord A, Legrand FX, Annereau M. Clinical implementation of a paediatric 3D-printed combination of Sulfamethoxazole and Trimethoprim. Int J Pharm 2025; 676:125581. [PMID: 40252867 DOI: 10.1016/j.ijpharm.2025.125581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Adherence to treatment is one of the major challenges in chronic diseases. Inappropriate dosage forms or bad taste are the main factor for non-adherence, especially in paediatric patients. 3D printed medicines could be tailored to specific patients to make medicines more acceptable, however the clinical implementation in hospitals is still limited. This study addresses the challenge of developing pharma-inks (mixtures of drugs and excipients) for semi-solid extrusion (SSE) to produce chewable tablets of Sulfamethoxazole (SMX) and Trimethoprim (TMP) for paediatric oncology patients in a hospital setting. SMX and TMP pharma-inks were stable and printable on demand for more than 3 months. The chewable tablets were also stable, and the drug dissolution profiles were comparable to those of the commercial formulations, indicating potential bioequivalence. Human sensory evaluations confirmed that the formulation improved palatability compared to traditional suspensions. 3D-printed SMX/TMP formulations are an alternative to traditional formulations for paediatric patients in hospital settings, enhancing acceptability and adherence while enabling personalized dosing.
Collapse
Affiliation(s)
- Maxime Stoops
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France.
| | - Bernard Do
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Stéphanie Ramos
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Bing Xun Tan
- Roquette Asia Pacific Pte. Ltd., 11 Biopolis Way, #05-06 Helios 138667, Singapore
| | | | - Roseline Mazet
- CHU Grenoble Alpes, Department of Pharmacy, University Grenoble Alpes, 38700 Grenoble, France
| | - Nicolas Guiblin
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Alexandre Michelet
- Applications Development Lab France, PerkinElmer, Les Algorithmes - Bâtiment Esope, route de l'Orme des Merisiers, 91190 Saint-Aubin, France
| | - Stephen Flynn
- Roquette Frères, 101 Av. de la République, 59110 La Madeleine, France
| | - Samuel Abbou
- Children and Adolescent Oncology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie anti-tumorale et immunothérapie des cancers, 94805 Villejuif, France
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - André Rieutord
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | | | - Maxime Annereau
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France.
| |
Collapse
|
2
|
Januskaite P, Goyanes A, Orlu M, Basit AW. Sex-specific formulations of doxazosin mesylate via direct powder extrusion 3D printing. Drug Deliv Transl Res 2025:10.1007/s13346-025-01862-4. [PMID: 40263229 DOI: 10.1007/s13346-025-01862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2025] [Indexed: 04/24/2025]
Abstract
Males and females are known to exhibit significant differences in drug pharmacokinetics and pharmacodynamics, which are still overlooked in pharmaceutical research and development. These disparities contribute to adverse effects and increased mortality in females, highlighting the critical need for sex-specific formulations. Extended-release formulations of doxazosin mesylate, an alpha blocker used to treat hypertension, have shown significant sex-based differences in pharmacokinetics, leading to heightened adverse effects in females and rendering current titration recommendations impractical. This study explored the potential of a 3D printing (3DP) technology, direct powder extrusion (DPE), for producing personalised, sex-specific doses of doxazosin mesylate. A simple three component formulation was made composed of hydroxypropyl cellulose (HPC) polymer Klucel JF, D-mannitol, and doxazosin mesylate. Extended-release printlets of varying doses (1, 2, and 3 mg) were manufactured from a single 1% w/w doxazosin pharma-ink batch, enabling easy dose personalisation by adjusting the printlet dimensions. The use of a single pharma-ink supports the technology's ease of use in a pharmacy setting, by eliminating frequent pharma-ink changes during the pharmaceutical compounding process. In vitro dissolution testing revealed an extended drug release profile, influenced by surface-area-to-volume (SA: V) ratios. Introducing channels in larger printlets standardized the SA: V ratios, enhancing release profile uniformity. Release kinetics followed the Hixson-Crowell and Korsmeyer-Peppas models, indicating diffusion and polymer swelling mechanisms. This work highlights the capability of DPE 3DP for creating personalized, extended-release oral dosage forms, supporting precise dose customization for patient-specific therapy. Graphical Abstract.
Collapse
Affiliation(s)
- Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK.
- FABRX Artificial Intelligence, Calle Enrique Vidal Abascal 7, Santiago de Compostela, 15702, Spain.
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK.
| |
Collapse
|
3
|
Dhar S, Ahmad F, Deshpande A, Rana SS, Ahmed A T, Priyadarsini S. 3-Dimensional printing and bioprinting in neurological sciences: applications in surgery, imaging, tissue engineering, and pharmacology and therapeutics. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:32. [PMID: 40205004 PMCID: PMC11982170 DOI: 10.1007/s10856-025-06877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
The rapid evolution of three-dimensional printing (3DP) has significantly impacted the medical field. In neurology for instance, 3DP has been pivotal in personalized surgical planning and education. Additionally, it has facilitated the creation of implants, microfluidic devices, and optogenetic probes, offering substantial implications for medical and research applications. Additionally, 3D printed nasal casts are showing great promise for targeted brain drug delivery. 3DP has also aided in creating 3D "phantoms" aligning with advancements in neuroimaging, and in the design of intricate objects for investigating the neurobiology of sensory perception. Furthermore, the emergence of 3D bioprinting (3DBP), a fusion of 3D printing and cell biology, has created new avenues in neural tissue engineering. Effective and ethical creation of tissue-like biomimetic constructs has enabled mechanistic, regenerative, and therapeutic evaluations. While individual reviews have explored the applications of 3DP or 3DBP, a comprehensive review encompassing the success stories across multiple facets of both technologies in neurosurgery, neuroimaging, and neuro-regeneration has been lacking. This review aims to consolidate recent achievements of both 3DP and 3DBP across various neurological science domains to encourage interdisciplinary research among neurologists, neurobiologists, and engineers, in order to promote further exploration of 3DP and 3DBP methodologies to novel areas of neurological science research and practice.
Collapse
Affiliation(s)
- Sreejita Dhar
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Aditi Deshpande
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Bio Sciences, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Toufeeq Ahmed A
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | | |
Collapse
|
4
|
Jannini EA, Vignesh SO, Hassan T. Next-generation pharmaceuticals: the rise of sildenafil citrate ODF for the treatment of men with erectile dysfunction. Ther Deliv 2025; 16:365-378. [PMID: 39801170 PMCID: PMC11970765 DOI: 10.1080/20415990.2024.2445501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/18/2024] [Indexed: 04/02/2025] Open
Abstract
Orodispersible film (ODF) is one of the novel formulations that disintegrate rapidly in the mouth without the requisite for water compared to other conventional oral solid dosage formulations. This delivery system serves as a convenient mode of administration, especially in patients who have dysphagia and fluid restriction, being beneficial to pediatric, geriatric, and bedridden patients. A novel sildenafil ODF containing sildenafil citrate is formulated to be used in patients with erectile dysfunction (ED). This review discusses the advantages of ODF in improving compliance and satisfaction in these patients and describes the manufacturing techniques, evaluation tests, bioequivalence, and stability studies of sildenafil ODF. This formulation offers unique benefit to patients with ED by improving their acceptance and compliance and respecting their privacy and the need for a discreet treatment. Moreover, the comparison of pharmacokinetic parameters between the sildenafil ODF administered with and without water and the conventional film-coated tablet were similar. It also demonstrated reliable performance that yielded a consistent product, meeting all specifications at release and after three weeks of storage under stressed conditions (60°C). Sildenafil ODF warrants improved ease of intake, taste, portability, storage, and compliance among ED patients, making it the potential most preferred formulation and drug of choice.
Collapse
Affiliation(s)
- Emmanuele A. Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Tarek Hassan
- Global Specialty Excellence, Viatris Inc, New York, USA
| |
Collapse
|
5
|
Sierra-Vega NO, Ashraf M, O'Connor T, Kopcha M, Prima MD, Coburn J, Zidan A. Emerging 3D printing technologies for solid oral dosage forms: Processes, materials and analytical tools for real-time assessment. Int J Pharm 2025; 673:125415. [PMID: 40023346 DOI: 10.1016/j.ijpharm.2025.125415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Three-dimensional (3D) printing is an emerging technology with the potential to increase manufacturing flexibility and enable personalized drug delivery. 3D printing may form tablets using digitally controlled layer-by-layer material deposition, permitting the tailoring of solid oral dosage geometry and facile modifications of drug release profiles without requiring extensive alterations to the pharmaceutical formulation and process. The challenge to assure the quality of drugs still lies in monitoring and controlling critical steps in the 3D printing process. Optimizing an 3D printing process requires a comprehensive understanding of the critical process parameters, material attributes and their impact on the performance of 3D-printed tablets. This review focuses on recent advances in 3D printing technologies for solid oral dosage forms, emphasizing critical process parameters and material attributes that may be considered for optimizing printing processes and enhancing the quality of printed tablets. Additionally, this review explores real-time analytical tools and the crucial considerations for ensuring the performance of building materials, printing processes, and manufactured solid drug products. This review contributes to the ongoing discourse on harnessing the potential of 3D printing in the pharmaceutical field while emphasizing the imperative need for quality assurance throughout additive manufacturing processes.
Collapse
Affiliation(s)
| | - Muhammad Ashraf
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, USA
| | - Thomas O'Connor
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, USA
| | | | - Mathew Di Prima
- Office of Science and Engineering Laboratories, CDRH, U.S., USA
| | - James Coburn
- FDA Office of Chief Scientists, OC, U.S. FDA, USA
| | - Ahmed Zidan
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, USA.
| |
Collapse
|
6
|
Koshovyi O, Hrytsyk Y, Perekhoda L, Suleiman M, Jakštas V, Žvikas V, Grytsyk L, Yurchyshyn O, Heinämäki J, Raal A. Solidago canadensis L. Herb Extract, Its Amino Acids Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological, Molecular Docking and Pharmacological Research. Pharmaceutics 2025; 17:407. [PMID: 40284403 PMCID: PMC12030483 DOI: 10.3390/pharmaceutics17040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The Canadian goldenrod (Solidago canadensis L.) is one of the most widespread species of the genus Solidago from the Asteraceae family. It has a rich composition of biologically active compounds and is traditionally used to address kidney, urinary tract, and liver diseases. Previously, it was proven that the S. canadensis extract obtained with a 40% ethanol solution had the most promising anti-inflammatory and hepatoprotective activity. Therefore, this extract was selected for the further formulation of amino acid preparations and 3D-printed dosage forms. The aims of the present study were to investigate the chemical composition, toxicity, and antimicrobial, anti-inflammatory, and hepatoprotective activity of S. canadensis dry extract, its amino acid preparations, and 3D-printed dosage forms. Results: A total of 18 phenolic compounds and 14 amino acids were determined in the extracts. The S. canadensis herb extracts were verified to be practically non-toxic preparations (toxicity class V, LD₅₀ > 5000 mg/kg). They also showed moderate antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, and β-hemolytic Streptococcus pyogenes. The most pronounced hepatoprotective activity was observed with S. canadensis herb extract and its amino acid preparations with phenylalanine, alanine, and lysine at a dose of 25 mg/kg body weight. The most pronounced anti-inflammatory activity was found with S. canadensis herb extract and its preparation with arginine. According to the calculated docking score array and the analysis of binding modes in the active sites of COX-1 and COX-2, the flavonoid fraction and caffeic acid in the S. canadensis extracts presented moderate inhibitory activity. Conclusions: The development of innovative 3D-printed oral dosage forms represents a promising strategy to formulate dietary supplements or pharmaceutical preparations for these herbal extracts.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (J.H.); (A.R.)
- Department of Pharmacognosy and Nurtricioligy, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Yurii Hrytsyk
- Department of Pharmaceutical Management, Drug Technology and Pharmacognosy, Ivano-Frankivsk National Medical University, 76018 Ivano-Frankivsk, Ukraine;
| | - Lina Perekhoda
- Department of Medicinal Chemistry, National University of Pharmacy, 61002 Kharkiv, Ukraine; (L.P.); (M.S.)
| | - Marharyta Suleiman
- Department of Medicinal Chemistry, National University of Pharmacy, 61002 Kharkiv, Ukraine; (L.P.); (M.S.)
| | - Valdas Jakštas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.J.); (V.Ž.)
| | - Vaidotas Žvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (V.J.); (V.Ž.)
| | - Lyubov Grytsyk
- Department of Chemistry, Pharmaceutical Analysis and Postgraduate Education, Ivano-Frankivsk National Medical University, 76018 Ivano-Frankivsk, Ukraine;
| | - Oksana Yurchyshyn
- Department of Microbiology, Virology and Immunology, Ivano-Frankivsk National Medical University, 76018 Ivano-Frankivsk, Ukraine;
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (J.H.); (A.R.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (J.H.); (A.R.)
| |
Collapse
|
7
|
Bernatoniene J, Stabrauskiene J, Kazlauskaite JA, Bernatonyte U, Kopustinskiene DM. The Future of Medicine: How 3D Printing Is Transforming Pharmaceuticals. Pharmaceutics 2025; 17:390. [PMID: 40143052 PMCID: PMC11946218 DOI: 10.3390/pharmaceutics17030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Three-dimensional printing technology is transforming pharmaceutical manufacturing by shifting from conventional mass production to additive manufacturing, with a strong emphasis on personalized medicine. The integration of bioinks and AI-driven optimization is further enhancing this innovation, enabling drug production with precise dosages, tailored drug-release profiles, and unique multi-drug combinations that respond to individual patient needs. This advancement is significantly impacting healthcare by accelerating drug development, encouraging innovative pharmaceutical designs, and enhancing treatment efficacy. Traditional pharmaceutical manufacturing follows a one-size-fits-all approach, which often fails to meet the specific requirements of patients with unique medical conditions. In contrast, 3D printing, coupled with bioink formulations, allows for on-demand drug production, reducing dependency on large-scale manufacturing and storage. AI-powered design and process optimization further refine dosage forms, printability, and drug release mechanisms, ensuring precision and efficiency in drug manufacturing. These advancements have the potential to lower overall healthcare costs while improving patient adherence to medication regimens. This review explores the potential, challenges, and environmental benefits of 3D pharmaceutical printing, positioning it as a key driver of next-generation personalized medicine.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Jolita Stabrauskiene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
| | - Jurga Andreja Kazlauskaite
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Urte Bernatonyte
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.S.); (J.A.K.); (U.B.)
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
8
|
Aghajani M, Garshasbi HR, Naghib SM, Mozafari MR. 3D Printing of Hydrogel Polysaccharides for Biomedical Applications: A Review. Biomedicines 2025; 13:731. [PMID: 40149707 PMCID: PMC11940176 DOI: 10.3390/biomedicines13030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Additive manufacturing, also known as 3D printing, is becoming more and more popular because of its wide range of materials and flexibility in design. Layer by layer, 3D complex structures can be generated by the revolutionary computer-aided process known as 3D bioprinting. It is particularly crucial for youngsters and elderly patients and is a useful tool for tailored pharmaceutical therapy. A lot of research has been carried out recently on the use of polysaccharides as matrices for tissue engineering and medication delivery. Still, there is a great need to create affordable, sustainable bioink materials with high-quality mechanical, viscoelastic, and thermal properties as well as biocompatibility and biodegradability. The primary biological substances (biopolymers) chosen for the bioink formulation are proteins and polysaccharides, among the several resources utilized for the creation of such structures. These naturally occurring biomaterials give macromolecular structure and mechanical qualities (biomimicry), are generally compatible with tissues and cells (biocompatibility), and are harmonious with biological digesting processes (biodegradability). However, the primary difficulty with the cell-laden printing technique (bioprinting) is the rheological characteristics of these natural-based bioinks. Polysaccharides are widely used because they are abundant and reasonably priced natural polymers. Additionally, they serve as excipients in formulations for pharmaceuticals, nutraceuticals, and cosmetics. The remarkable benefits of biological polysaccharides-biocompatibility, biodegradability, safety, non-immunogenicity, and absence of secondary pollution-make them ideal 3D printing substrates. The purpose of this publication is to examine recent developments and challenges related to the 3D printing of stimuli-responsive polysaccharides for site-specific medication administration and tissue engineering.
Collapse
Affiliation(s)
- Mohammad Aghajani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; (M.A.)
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Melbourne, VIC 3168, Australia
| |
Collapse
|
9
|
Holland I. Extrusion bioprinting: meeting the promise of human tissue biofabrication? PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:023001. [PMID: 39904058 PMCID: PMC11894458 DOI: 10.1088/2516-1091/adb254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Extrusion is the most popular bioprinting platform. Predictions of human tissue and whole-organ printing have been made for the technology. However, after decades of development, extruded constructs lack the essential microscale resolution and heterogeneity observed in most human tissues. Extrusion bioprinting has had little clinical impact with the majority of research directed away from the tissues most needed by patients. The distance between promise and reality is a result of technology hype and inherent design flaws that limit the shape, scale and survival of extruded features. By more widely adopting resolution innovations and softening its ambitions the biofabrication field could define a future for extrusion bioprinting that more closely aligns with its capabilities.
Collapse
Affiliation(s)
- Ian Holland
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Deanery of Biomedical Science, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Rony FK, Appiah J, Alawbali A, Clay D, Ilias S, Azad MA. Evaluating Swellable Cross-Linked Biopolymer Impact on Ink Rheology and Mechanical Properties of Drug-Contained 3D-Printed Thin Film. Pharmaceutics 2025; 17:183. [PMID: 40006550 PMCID: PMC11858972 DOI: 10.3390/pharmaceutics17020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Interest in 3D printing oral thin films (OTFs) has increased substantially. The challenge of 3D printing is film printability, which is strongly affected by the rheological properties of the ink and having suitable mechanical properties. This research assesses the suitability of sodium starch glycolate (SSG), a swellable cross-linked biopolymer, on ink rheology and the film's mechanical properties. Methods: A water-based ink comprising sodium alginate (SA), the drug fenofibrate (FNB), SSG, glycerin, and polyvinylpyrrolidone (PVP) was formulated, and its rheology was assessed through flow, amplitude sweeps, and thixotropy tests. Films (10 mm × 15 mm × 0.35 mm) were 3D-printed using a 410 µm nozzle, 50% infill density, 60 kPa pressure, and 10 mm/s speed, with mechanical properties (Young's modulus, tensile strength, and elongation at break) analyzed using a TA-XT Plus C texture analyzer. Results: The rheology showed SSG-based ink has suitable properties (shear-thinning behavior, high viscosity, higher modulus, and quick recovery) for 3D printing. SSG enhanced the rheology (viscosity and modulus) of ink but not the mechanical properties of film. XRD and DSC confirmed preserved FNB crystallinity without polymorphic changes. SEM images showed surface morphology and particle distribution across the film. The film demonstrated a drug loading of 44.28% (RSD 5.62%) and a dissolution rate of ~77% within 30 min. Conclusions: SSG improves ink rheology, makes it compatible with 3D printing, and enhances drug dissolution (formulation F-5). Plasticizer glycerin is essential with SSG to achieve the film's required mechanical properties. The study confirms SSG's suitability for 3D printing of OTFs.
Collapse
Affiliation(s)
- Farzana Khan Rony
- Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC 27411, USA;
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| | - Jonathan Appiah
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| | - Asmaa Alawbali
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| | - Distinee Clay
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| | - Shamsuddin Ilias
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Mohammad A. Azad
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (J.A.); (D.C.)
| |
Collapse
|
11
|
Molimi MB, Egan P, Adebo OA. Progress in three-dimensional (3D) printed foods for dysphagia patients: Food sources, processing techniques, printability, nutrition, acceptability, and safety aspects. Food Res Int 2025; 202:115629. [PMID: 39967136 DOI: 10.1016/j.foodres.2024.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Dysphagia is a deglutition difficulty that is more prevalent among the elderly population. This review focused on progress in the development of 3D-printed foods (3DPFs) for dysphagia patients, specifically, on the type of food sources used, processing techniques involved, and the International Dysphagia Diet Standardisation Initiative (IDDSI) category, nutrition, acceptability, and safety aspects. Due to the unappetizing nature of typical dysphagia meals, 3D food printing (3DFP) is regarded as a promising technology for developing nutritious and appetizing meals for dysphagia patients. The addition of hydrocolloids such as gums, starches, gelatin, and others, during pre-processing, has enabled the use of non-printable food sources that are rich in nutrients and health benefits such as fruits, vegetables, legumes, cereals, and roots in the development of dysphagia-orientated 3DPFs, along with various processing methods such size reduction operations, mixing techniques, and thermal processes. Together, these processes can enhance printability, IDDSI compliance, and the structural stability of non-printable food materials in the development of 3D-printed dysphagia-orientated diets. However, the acceptability of these meals among dysphagia patients needs to be thoroughly investigated to validate the role of 3DFP for nutrition personalization, and improved acceptance. The food safety risks associated with this technology challenge its practicality as an effective dysphagia management strategy, but through the establishment of regulations, such risks can be mitigated. Collaboration among dysphagia professionals in hospitals and food scientists and technologists is necessary to foster the integration of different expertise for dysphagia management.
Collapse
Affiliation(s)
- Mpho Brian Molimi
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Paul Egan
- Department of Mechanical Engineering, Texas Tech University, USA
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa.
| |
Collapse
|
12
|
Rony FK, Kimbell G, Serrano TR, Clay D, Ilias S, Azad MA. Extrusion-Based 3D Printing of Pharmaceuticals-Evaluating Polymer (Sodium Alginate, HPC, HPMC)-Based Ink's Suitability by Investigating Rheology. MICROMACHINES 2025; 16:163. [PMID: 40047629 PMCID: PMC11857113 DOI: 10.3390/mi16020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the essential characteristics, impacting their performance. This study evaluates inks based on sodium alginate (SA), hydroxypropyl cellulose (HPC H), and hydroxypropyl methylcellulose (HPMC K100 and K4) for PAM 3D printing by analyzing their rheology. The formulations included the model drug Fenofibrate, functional excipients (e.g., mannitol, polyethylene glycol, etc.), and water or water-ethanol mixtures. Pills and thin films as an oral dosage were printed using a 410 μm nozzle, a 10 mm/s speed, a 50% infill density, and a 60 kPa pressure. Among the various formulated inks, only the ink containing 0.8% SA achieved successful prints with the desired shape fidelity, linked to its rheological properties, which were assessed using flow, amplitude sweep, and thixotropy tests. This study concludes that (i) an ink's rheological properties-viscosity, shear thinning, viscoelasticity, modulus, flow point, recovery, etc.-have to be considered to determine whether it will print well; (ii) printability is independent of the dosage form; and (iii) the optimal inks are viscoelastic solids with specific rheological traits. This research provides insights for developing polymer-based inks for effective PAM 3D printing in pharmaceuticals.
Collapse
Affiliation(s)
- Farzana Khan Rony
- Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC 27411, USA;
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| | - Georgia Kimbell
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| | - Toby R. Serrano
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| | - Destinee Clay
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| | - Shamsuddin Ilias
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Mohammad A. Azad
- Materials Science and Process Engineering (MSPE) Lab, Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; (G.K.); (T.R.S.); (D.C.)
| |
Collapse
|
13
|
Deng M, Wu S, Ning M. 3D printing for controlled release Pharmaceuticals: Current trends and future directions. Int J Pharm 2025; 669:125089. [PMID: 39694160 DOI: 10.1016/j.ijpharm.2024.125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
In recent years, 3D printers have grown strongly in drug delivery and personalised medicine, being used more and more widely. In medicine, 3DP technology can advance personalised medicine and design dosage forms to regulate the drug release rate. This review gives an overview of the 3D printing for controlled-release pharmaceuticals, detailing the technical principles, common types (including extrusion, powder, liquid, and sheet lamination-based systems), drug release control mechanisms (e.g., dissolution and diffusion, osmosis, and swelling, partitioning and erosion, and targeting), and the advantages, status, and challenges. It discusses the future direction of the technology, including multidisciplinary cross-fertilisation and the advancement of personalised medicine. The technology has potential but faces many challenges such as cost, production capacity, materials, regulations, and quality control.
Collapse
Affiliation(s)
- Mingyue Deng
- Department of Pharmacology, University College London, London, United Kingdom
| | - Siyi Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (CN), Beijing, China
| | - Meiying Ning
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (CN), Beijing, China.
| |
Collapse
|
14
|
Holkunde A, Karnik I, Uttreja P, Narala N, Wang H, Elkanayati RM, Vemula SK, Repka MA. Personalized Medicine Through Semisolid-Extrusion Based 3D Printing: Dual-Drug Loaded Gummies for Enhanced Patient Compliance. Pharm Res 2025; 42:185-201. [PMID: 39824983 PMCID: PMC11785612 DOI: 10.1007/s11095-024-03813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE The purpose of this research was to develop and characterize dual-drug Isoniazid-Pyridoxine gummies using Semisolid Extrusion (SSE) 3D printing technology, aimed at personalized dosing for a broad patient demographic, from pediatric to geriatric. This study leverages SSE 3D printing, an innovative approach in personalized medicine, to enable precise dose customization and improve patient adherence. By formulating dual drug-loaded gummies, the research addresses the challenges of pill burden and poor palatability associated with traditional tuberculosis regimens, ultimately enhancing the therapeutic experience and effectiveness for patients across various age groups. METHODS Gummies were formulated using varying ratios of gelatin, carrageenan, and xylitol, and printed using the BIO X 3D printer. Rheological properties were evaluated to confirm printability, shear-thinning behavior, and viscosity recovery. In vitro drug release and stability were assessed under refrigerated (5 ± 3°C) and ambient (25 ± 2°C) storage conditions. FT-IR spectroscopy was used to examine drug-excipient interactions. RESULTS The optimized F3 formulation, containing 900 mg Isoniazid and 30 mg Pyridoxine, demonstrated successful printability and structural integrity. Over 80% of both drugs were released within 30 min. Rheological testing confirmed ideal shear-thinning and viscoelastic properties for extrusion-based printing. Suitable textural properties for pediatric patient compliance were observed. Stability studies showed that both drug content and release profiles remained consistent for 30 days under refrigerated storage. CONCLUSIONS This study determines the potential of SSE 3D printing in fabricating personalized Isoniazid-Pyridoxine-loaded gummies, offering a novel, patient-friendly dosage form for tuberculosis treatment. The optimized formulation exhibited excellent printability, stability, and rapid drug release, positioning 3D-printed gummies as a promising alternative to conventional oral dosage forms in enhancing patient adherence.
Collapse
Affiliation(s)
- Aditi Holkunde
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Indrajeet Karnik
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Honghe Wang
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Rasha M Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
15
|
Erni M, Hart AJ, Trumper D, Owens CE. A low-cost, open-source cylindrical Couette rheometer. Sci Rep 2024; 14:30187. [PMID: 39632889 PMCID: PMC11618454 DOI: 10.1038/s41598-024-76494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/09/2024] [Indexed: 12/07/2024] Open
Abstract
Rheology describes the flow of fluids from food and plastics, to coatings, adhesives, and 3D printing inks, and is commonly denoted by viscosity alone as a simplification. While viscometers adequately probe Newtonian (constant) viscosity, most fluids have complex viscosity, requiring tests over multiple shear rates, and transient measurements. As a result, rheometers are typically large, expensive, and require additional infrastructure (e.g., gas lines), rendering them inaccessible for regular use by many individuals, small organizations, and educators. Here, we introduce a low-cost (under USD$200 bill of materials) Open Source Rheometer (OSR), constructed entirely from thermoplastic 3D printed components and off-the-shelf electromechanical components. A sample fluid rests in a cup while a micro stepping motor rotates a tool inside the cup, applying strain-controlled shear flow. A loadcell measures reaction torque exerted on the cup, and viscosity is calculated. To establish the measurement range, the viscosity of four Newtonian samples of 0.1-10 Pa.s were measured with the OSR and compared to benchmark values from a laboratory rheometer, showing under 23% error. Building on this, flow curves of three complex fluids - a microgel (hand sanitizer), foam (Gillette), and biopolymer solution (1% Xanthan Gum) - were measured with a similar error range. Stress relaxation, a transient test, was demonstrated on the biopolymer solution to extract the nonlinear damping function. We finally include detailed exposition of measurement windows, sources of error, and future design suggestions. The OSR cost is ∼1/25th that of commercially available devices with comparable minimum torque (200 µN.m), and provides a fully open-source platform for further innovation in customized rheometry.
Collapse
Affiliation(s)
- Makita Erni
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Trumper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Crystal E Owens
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
| |
Collapse
|
16
|
Pohjola J, Jokinen M, Soukka T, Stolt M. Polymer microsphere inks for semi-solid extrusion 3D printing at ambient conditions. J Mech Behav Biomed Mater 2024; 160:106783. [PMID: 39486301 DOI: 10.1016/j.jmbbm.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Extrusion-based 3D printing methods have great potential for manufacturing of personalized polymer-based drug-releasing systems. However, traditional melt-based extrusion techniques are often unsuitable for processing thermally labile molecules. Consequently, methods that utilize the extrusion of semi-solid inks under mild conditions are frequently employed. The rheological properties of the semi-solid inks have a substantial impact on the 3D printability, making it necessary to evaluate and tailor these properties. Here, we report a novel semi-solid extrusion 3D printing method based on utilization of a Carbopol gel matrix containing various concentrations of polymeric microspheres. We also demonstrate the use of a solvent vapor-based post-processing method for enhancing the mechanical strength of the printed objects. As our approach enables room-temperature processing of polymers typically used in the pharmaceutical industry, it may also facilitate the broader application of 3D printing and microsphere technologies in preparation of personalized medicine.
Collapse
Affiliation(s)
- Juuso Pohjola
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland; Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland.
| | | | - Tero Soukka
- Biotechnology, Department of Life Technologies, Faculty of Technology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Stolt
- Pharmaceutical Sciences, Bayer Oy, FI-20210 Turku, Finland
| |
Collapse
|
17
|
Badruddoza AZM, Moseson DE, Lee HG, Esteghamatian A, Thipsay P. Role of rheology in formulation and process design of hot melt extruded amorphous solid dispersions. Int J Pharm 2024; 664:124651. [PMID: 39218326 DOI: 10.1016/j.ijpharm.2024.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Dana E Moseson
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Hong-Guann Lee
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Amir Esteghamatian
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Priyanka Thipsay
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| |
Collapse
|
18
|
Yasin H, Al-Tabakha MMA, Chan SY. Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics 2024; 16:1285. [PMID: 39458614 PMCID: PMC11510916 DOI: 10.3390/pharmaceutics16101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The pharmacy profession has undergone significant changes driven by advancements in patient care and healthcare systems. The FDA approval of Spritam® (levetiracetam), the first 3D-printed drug, has sparked increased interest in the use of Fused Deposition Modeling (FDM) 3D printing for pharmaceutical applications, particularly in the production of polypills. METHODS This review provides an overview of FDM 3D printing in the development of pharmaceutical dosage forms, focusing on its operation, printing parameters, materials, additives, advantages, and limitations. Key aspects, such as the ability to personalize medication and the challenges associated with the technique, including drug stability at high temperatures, are discussed. RESULTS Fourteen studies relevant to FDM 3D-printed polypills were analyzed from an initial pool of 60. The increasing number of publications highlights the growing global interest in this technology, with the UK contributing the highest number of studies. CONCLUSIONS FDM 3D printing offers significant potential for personalized medicine by enabling precise control over dosage forms and tailoring treatments to individual patient needs. However, limitations such as high printing temperatures and the lack of standardized GMP guidelines for large-scale production must be addressed to fully realize its potential in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Haya Yasin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moawia M. A. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| |
Collapse
|
19
|
Prasad E, Robertson J, Halbert GW. An Additive Manufacturing MicroFactory: Overcoming Brittle Material Failure and Improving Product Performance through Tablet Micro-Structure Control for an Immediate Release Dose Form. Polymers (Basel) 2024; 16:2566. [PMID: 39339030 PMCID: PMC11435212 DOI: 10.3390/polym16182566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Additive manufacturing of pharmaceutical formulations offers advanced micro-structure control of oral solid dose (OSD) forms targeting not only customised dosing of an active pharmaceutical ingredient (API) but also custom-made drug release profiles. Traditionally, material extrusion 3D printing manufacturing was performed in a two-step manufacturing process via an intermediate feedstock filament. This process was often limited in the material space due to unsuitable (brittle) material properties, which required additional time to develop complex formulations to overcome. The objective of this study was to develop an additive manufacturing MicroFactory process to produce an immediate release (IR) OSD form containing 250 mg of mefenamic acid (MFA) with consistent drug release. In this study, we present a single-step additive manufacturing process employing a novel, filament-free melt extrusion 3D printer, the MicroFactory, to successfully print a previously 'non-printable' brittle Soluplus®-based formulation of MFA, resulting in targeted IR dissolution profiles. The physico-chemical properties of 3D printed MFA-Soluplus®-D-sorbitol formulation was characterised by thermal analysis, Fourier Transform Infrared spectroscopy (FTIR), and X-ray Diffraction Powder (XRPD) analysis, confirming the crystalline state of mefenamic acid as polymorphic form I. Oscillatory temperature and frequency rheology sweeps were related to the processability of the formulation in the MicroFactory. 3D printed, micro-structure controlled, OSDs showed good uniformity of mass and content and exhibited an IR profile with good consistency. Fitting a mathematical model to the dissolution data correlated rate parameters and release exponents with tablet porosity. This study illustrates how additive manufacturing via melt extrusion using this MicroFactory not only streamlines the manufacturing process (one-step vs. two-step) but also enables the processing of (brittle) pharmaceutical immediate-release polymers/polymer formulations, improving and facilitating targeted in vitro drug dissolution profiles.
Collapse
Affiliation(s)
- Elke Prasad
- EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John Robertson
- EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Gavin W Halbert
- EPSRC Future Manufacturing Research Hub in Continuous Manufacturing and Advanced Crystallisation, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
20
|
Leverant A, Oprysk L, Dabrowski A, Kyker-Snowman K, Vazquez M. Three-Dimensionally Printed Microsystems to Facilitate Flow-Based Study of Cells from Neurovascular Barriers of the Retina. MICROMACHINES 2024; 15:1103. [PMID: 39337763 PMCID: PMC11434203 DOI: 10.3390/mi15091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rapid prototyping has produced accessible manufacturing methods that offer faster and more cost-effective ways to develop microscale systems for cellular testing. Commercial 3D printers are now increasingly adapted for soft lithography, where elastomers are used in tandem with 3D-printed substrates to produce in vitro cell assays. Newfound abilities to prototype cellular systems have begun to expand fundamental bioengineering research in the visual system to complement tissue engineering studies reliant upon complex microtechnology. This project used 3D printing to develop elastomeric devices that examined the responses of retinal cells to flow. Our experiments fabricated molds for elastomers using metal milling, resin stereolithography, and fused deposition modeling via plastic 3D printing. The systems were connected to flow pumps to simulate different flow conditions and examined phenotypic responses of endothelial and neural cells significant to neurovascular barriers of the retina. The results indicated that microdevices produced using 3D-printed methods demonstrated differences in cell survival and morphology in response to external flow that are significant to barrier tissue function. Modern 3D printing technology shows great potential for the rapid production and testing of retinal cell responses that will contribute to both our understanding of fundamental cell response and the development of new therapies. Future studies will incorporate varied flow stimuli as well as different extracellular matrices and expanded subsets of retinal cells.
Collapse
Affiliation(s)
| | | | | | | | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (L.O.)
| |
Collapse
|
21
|
de Carvalho Rodrigues V, Guterres IZ, Pereira Savi B, Fongaro G, Silva IT, Vitor Salmoria G. Additive manufacturing of TPU devices for genital herpes treatment with sustained acyclovir release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-16. [PMID: 39190633 DOI: 10.1080/09205063.2024.2396221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The treatment of recurrent genital herpes typically involves daily doses of acyclovir for extended periods. Additive manufacturing is an intriguing technique for creating personalised drug delivery systems, which can enhance the effectiveness of treatments for various diseases. The vaginal route offers a viable alternative for the systemic administration of drugs with low oral bioavailability. In this study, we produced different grades of thermoplastic polyurethane (TPU) filaments through hot-melt extrusion, with acyclovir concentrations of 0%, 10%, and 20% by weight. We used fused filament fabrication to manufacture matrix-based devices, including intrauterine devices and intravaginal rings. Our results, obtained through SEM, FTIR, and DSC analyses, confirm the successful incorporation of acyclovir into the matrix. Thermal analysis reveals that the manufacturing process alters the organization of the TPU chains, resulting in a slight reduction in crystallinity. In our in-vitro tests, we observed an initial burst release on the first day, followed by sustained release at reduced rates for up to 145 days, demonstrating their potential for long-term applications. Additionally, cytotoxicity analysis suggests the excellent biocompatibility of the printed devices, and biological assays show a remarkable 99% reduction in HSV-1 replication. In summary, TPU printed devices offer a promising alternative for long-term genital herpes treatment, with the results obtained potentially contributing to the advancement of pharmaceutical manufacturing.
Collapse
Affiliation(s)
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Beatriz Pereira Savi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Izabella Thaís Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gean Vitor Salmoria
- Nimma, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Biomechanics Engineering Laboratory, University Hospital (HU), Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
22
|
Wattanawiggan R, Chansakaow S, Jantrawut P, Panraksa P, Jiaranaikulwanitch J, Udomsom S, Worajittiphon P, Tipduangta P. Design and Optimization of 3D-Printed Tablets Containing Mucuna Extracts for Erectile Dysfunction Management: A DoE-Guided Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:2294. [PMID: 39204730 PMCID: PMC11360075 DOI: 10.3390/plants13162294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Erectile dysfunction (ED) refers to the inability of the penis to maintain a firm erection during sexual activity. Mucuna, or M. pruriens, contains levodopa, a compound showing promise in ED treatment. However, formulating Mucuna extract into tablet dosage forms is challenging due to its semisolid nature. This study aimed to develop sustained-release tablets containing Mucuna extract via semisolid extrusion 3D printing. Eudragit RS PO (Eudragit) served as a sustained-release polymer, with poly (vinyl alcohol) (PVA) as a co-polymer for forming the tablet matrices. This study had the following two main phases: screening, which identified the factors affecting the printability, and optimization, which focused on the factors influencing the levodopa release and its consistency. The results showed that both the polymeric solid percentage content (PSPC) in the semisolid slurry and the Eudragit-PVA ratio significantly affected the printability. All of the formulations were printable, and the PSPC and Eudragit-PVA ratios were incorporated into the optimized model. The desired formulation, achieving targeted levodopa release and consistency, had a PSPC of 58.8% and a Eudragit-PVA ratio of 2.87:1. In conclusion, semisolid extrusion 3D printing guided by the design of experiments (DoE) proved feasible for producing reliable 3D-printed tablets with consistent active ingredients and desired release rates.
Collapse
Affiliation(s)
- Ratchapoom Wattanawiggan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.W.); (S.C.); (P.J.); (P.P.); (J.J.)
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.W.); (S.C.); (P.J.); (P.P.); (J.J.)
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.W.); (S.C.); (P.J.); (P.P.); (J.J.)
| | - Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.W.); (S.C.); (P.J.); (P.P.); (J.J.)
| | - Jutamas Jiaranaikulwanitch
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.W.); (S.C.); (P.J.); (P.P.); (J.J.)
| | - Suruk Udomsom
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.W.); (S.C.); (P.J.); (P.P.); (J.J.)
| |
Collapse
|
23
|
Peña JF, Cotabarren I, Gallo L. Three-Dimensional Printing of PVA Capsular Devices for Applications in Compounding Pharmacy: Effect of Design Parameters on Pharmaceutical Performance. Pharmaceutics 2024; 16:1069. [PMID: 39204414 PMCID: PMC11359400 DOI: 10.3390/pharmaceutics16081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The creation of products with personalized or innovative features in the pharmaceutical sector by using innovative technologies such as three-dimensional (3D) printing is particularly noteworthy, especially in the realm of compounding pharmacies. In this work, 3D printed capsule devices (CDs) with different wall thicknesses (0.2, 0.3, 0.4, 0.6, and 0.9 mm) and sizes were designed and successfully fabricated varying printing parameters such as extrusion temperature, printing speed, material flow percent, and nozzle diameter. The physicochemical, pharmaceutical, and biopharmaceutical performance of these CDs was evaluated with the aim of achieving an immediate drug release profile comparable to hard gelatin capsules (HGC) for use in magistral compounding. It was observed that the disintegration time of the CDs increased with wall thickness, which correlated with a slower drug release rate. CDs with configurations presenting 0.4 mm wall thickness and sizes comparable to HGC n° 0, 1, and 2 demonstrated satisfactory weight uniformity, short disintegration times, and immediate drug release, indicating their potential as effective devices in future compounding pharmacy applications. In addition, a modified Weibull-type model was proposed that incorporates wall thickness as a new variable in predicting dissolution profiles. This model improves the process of selecting a specific wall thickness to achieve the desired dissolution rate within a specified time frame.
Collapse
Affiliation(s)
- Juan Francisco Peña
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Ivana Cotabarren
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Loreana Gallo
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca 8000, Argentina
| |
Collapse
|
24
|
Koshovyi O, Sepp J, Jakštas V, Žvikas V, Kireyev I, Karpun Y, Odyntsova V, Heinämäki J, Raal A. German Chamomile ( Matricaria chamomilla L.) Flower Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Pharmacological, Technological, and Molecular Docking Study. Int J Mol Sci 2024; 25:8292. [PMID: 39125862 PMCID: PMC11311743 DOI: 10.3390/ijms25158292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
German chamomile (Matricaria chamomilla L.) is an essential oil- containing medicinal plant used worldwide. The aim of this study was to gain knowledge of the phytochemical composition and the analgesic and soporific activity of Matricaria chamomilla L. (German chamomile) flower extract and its amino acid preparations, to predict the mechanisms of their effects by molecular docking and to develop aqueous printing gels and novel 3D-printed oral dosage forms for the flower extracts. In total, 22 polyphenolic compounds and 14 amino acids were identified and quantified in the M. chamomilla extracts. In vivo animal studies with rodents showed that the oral administration of such extracts revealed the potential for treating of sleep disorders and diseases accompanied by pain. Amino acids were found to potentiate these effects. Glycine enhanced the analgesic activity the most, while lysine and β-alanine improved the soporific activity. The molecular docking analysis revealed a high probability of γ-aminobutyric acid type A (GABAA) and N-methyl-D-aspartate (NMDA) receptor antagonism and 5-lipoxygenase (LOX-5) inhibition by the extracts. A polyethylene oxide (PEO)-based gel composition with the M. chamomilla extracts was proposed for preparing a novel 3D-printed dosage form for oral administration. These 3D-printed extract preparations can be used, for example, in dietary supplement applications.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia; (J.S.); (J.H.); (A.R.)
- The Department of Clinical Pharmacology and Clinical Pharmacy, National University of Pharmacy, 61002 Kharkiv, Ukraine;
| | - Janne Sepp
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia; (J.S.); (J.H.); (A.R.)
| | - Valdas Jakštas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (V.J.); (V.Ž.)
| | - Vaidotas Žvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (V.J.); (V.Ž.)
| | - Igor Kireyev
- The Department of Clinical Pharmacology and Clinical Pharmacy, National University of Pharmacy, 61002 Kharkiv, Ukraine;
| | | | - Vira Odyntsova
- The Department of Pharmacognosy, Pharmacology, and Botany, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine;
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia; (J.S.); (J.H.); (A.R.)
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia; (J.S.); (J.H.); (A.R.)
| |
Collapse
|
25
|
Turac IR, Porfire A, Iurian S, Crișan AG, Casian T, Iovanov R, Tomuță I. Expanding the Manufacturing Approaches for Gastroretentive Drug Delivery Systems with 3D Printing Technology. Pharmaceutics 2024; 16:790. [PMID: 38931911 PMCID: PMC11207633 DOI: 10.3390/pharmaceutics16060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (I.-R.T.); (S.I.); (A.G.C.); (T.C.); (R.I.); (I.T.)
| | | | | | | | | | | |
Collapse
|
26
|
Pflieger T, Venkatesh R, Dachtler M, Cooke K, Laufer S, Lunter D. Influence of design parameters on sustained drug release properties of 3D-printed theophylline tablets. Int J Pharm 2024; 658:124207. [PMID: 38718971 DOI: 10.1016/j.ijpharm.2024.124207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
The application of three-dimensional printing (3DP) in the pharmaceutical industry brings a broad spectrum of benefits to patients by addressing individual needs and improve treatment success. This study investigates the sustained release properties of 3DP tablets containing Theophylline (TPH), which is commonly used to treat respiratory diseases and recently having a comeback due to its potential in the treatment of conditions like Covid-19. Since TPH is a narrow therapeutic window (NTW) drug with serious side effects in the event of overdose, the release properties must be observed particularly closely. We employed a state-of-the-art single screw extrusion 3D printer, which is fed with granules containing the drug. By employing a Taguchi orthogonal array design of experiments (DOE), tablet design parameters and factor related process stability were sought to be evaluated fundamentally. Following this, examinations regarding tailored TPH dosages were undertaken and a relationship between the real printed dose of selected tablet designs and their sustained drug release was established. The release profiles were analyzed using different mathematical model fits and compared in terms of mean dissolution times (MDT). Finally, in-vivo/in-vitro correlation (IVIVC) and physiologically based pharmacokinetic (PBPK) modeling showed that a paradigm patient group could be covered with the dosage forms produced.
Collapse
Affiliation(s)
- Thomas Pflieger
- DiHeSys Digital Health Systems GmbH, Marie-Curie-Strasse 19, 73529 Schwaebisch Gmuend, Germany; Chair of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72074 Tuebingen, Germany
| | - Rakesh Venkatesh
- DiHeSys Digital Health Systems GmbH, Marie-Curie-Strasse 19, 73529 Schwaebisch Gmuend, Germany
| | - Markus Dachtler
- DiHeSys Digital Health Systems GmbH, Marie-Curie-Strasse 19, 73529 Schwaebisch Gmuend, Germany
| | - Karin Cooke
- Gen-Plus GmbH & Co. KG, Staffelseestrasse 6, 81477 Munich, Germany
| | - Stefan Laufer
- Chair of Pharmaceutical Chemistry, Eberhard Karls University, Auf der Morgenstelle 8, 72074 Tuebingen, Germany
| | - Dominique Lunter
- Chair of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72074 Tuebingen, Germany.
| |
Collapse
|
27
|
Basak T, Shamshina JL. Design of Chitin Cell Culture Matrices for 3D Tissue Engineering: The Importance of Chitin Types, Solvents, Cross-Linkers, and Fabrication Techniques. Pharmaceutics 2024; 16:777. [PMID: 38931897 PMCID: PMC11206837 DOI: 10.3390/pharmaceutics16060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
This review focuses on factors and the fabrication techniques affecting the microarchitecture of tissue engineering scaffolds from the second most abundant biopolymer, chitin. It emphasizes the unique potentiality of this polymer in tissue engineering (TE) applications and highlights the variables important to achieve tailored scaffold properties. First, we describe aspects of scaffolds' design, and the complex interplay between chitin types, solvent systems, additives, and fabrication techniques to incorporate porosity, with regard to best practices. In the following section, we provide examples of scaffolds' use, with a focus on in vitro cell studies. Finally, an analysis of their biodegradability is presented. Our review emphasizes the potentiality of chitin and the pressing need for further research to overcome existing challenges and fully harness its capabilities in tissue engineering.
Collapse
Affiliation(s)
| | - Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79403, USA;
| |
Collapse
|
28
|
Abdella S, Kim S, Afinjuomo F, Song Y, Upton R, Garg S. Combining the potential of 3D printed buccal films and nanostructured lipid carriers for personalised cannabidiol delivery. Drug Deliv Transl Res 2024; 14:984-1004. [PMID: 37903964 DOI: 10.1007/s13346-023-01446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Cannabidiol (CBD) has been recognized for its numerous therapeutic benefits, such as neuroprotection, anti-inflammatory effects, and cardioprotection. However, CBD has some limitations, including unpredictable pharmacokinetics and low oral bioavailability. To overcome the challenges associated with CBD delivery, we employed Design of Experiments (DoE), lipid carriers, and 3D printing techniques to optimize and develop buccal film loaded with CBD-NLCs. Three-factor Box-Behnken Design was carried out to optimise the NLCs and analyse the effect of independent factors on dependent factors. The emulsification-ultrasonication technique was used to prepare the NLCs. A pressure-assisted micro-syringe printing technique was used to produce the films. The produced films were studied for physicochemical, and mechanical properties, release profiles, and predicted in vivo performance. The observed particle size of the NLCs ranged from 12.17 to 84.91 nm whereas the PDI varied from 0.099 to 0.298. Lipid and sonication time positively affected the particle size whereas the surfactant concentration was inversely related. CBD was incorporated into the optimal formulation and the observed particle size, PDI, and zeta potential for the CBD-NLCs were 94.2 ± 0.47 nm, 0.11 ± 0.01 and - 11.8 ± 0.52 mV. Hydroxyethyl cellulose (HEC)-based gel containing the CBD-NLCs was prepared and used as a feed for 3D printing. The CBD-NLCs film demonstrated a slow and sustained in vitro release profile (84. 11 ± 7.02% in 6 h). The predicted AUC0-10 h, Cmax, and Tmax were 201.5 µg·h/L, 0.74 µg/L, and 1.28 h for a film with 0.4 mg of CBD, respectively. The finding demonstrates that a buccal film of CBD-NLCs can be fabricated using 3D printing.
Collapse
Affiliation(s)
- Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Richard Upton
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
29
|
Khiari Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar Drugs 2024; 22:134. [PMID: 38535475 PMCID: PMC10971850 DOI: 10.3390/md22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
30
|
Kreft K, Lavrič Z, Gradišar Centa U, Mihelčič M, Slemenik Perše L, Dreu R. Correlating mechanical and rheological filament properties to processability and quality of 3D printed tablets using multiple linear regression. Int J Pharm 2024; 651:123719. [PMID: 38110015 DOI: 10.1016/j.ijpharm.2023.123719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Filament formulation for FDM is a challenging and time-consuming process. Several pharmaceutical polymers are not feedable on their own. Due to inadequate filament formulation, 3D printed tablets can also exhibit poor uniformity of tablet attributes. To better understand filament formulation process, 23 filaments were prepared with the polymer mixing approach. To yield processable filaments, brittle and pliable polymers were combined. A 20 % addition of a pliable polymer to a brittle one resulted in filament processability and vice versa. Predictive statistical models for filament processability and uniformity of tablet attributes were established based on the mechanical and rheological properties of filaments. 15 input variables were correlated to 9 responses, which represent filament processability and tablet properties, by using multiple linear regression approach. Filament stiffness, assessed by indentation, and its square term were the only variables that determined the filament's feedability. However, the resulting model is equipment-specific since different feeding mechanism exert different forces on the filaments. Additional models with good predictive power (R2pred > 0.50) were established for tablet width uniformity, drug release uniformity, tablet disintegration time uniformity and occurrence of disintegration, which are equipment-independent outputs. Therefore, the obtained model outcomes could be used in other research endeavours.
Collapse
Affiliation(s)
- Klemen Kreft
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Lek d.d., Verovškova 57, 1526 Ljubljana, Slovenia
| | - Zoran Lavrič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Urška Gradišar Centa
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
| | - Mohor Mihelčič
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
| | - Lidija Slemenik Perše
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
| | - Rok Dreu
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
31
|
Kyser AJ, Fotouh B, Mahmoud MY, Frieboes HB. Rising role of 3D-printing in delivery of therapeutics for infectious disease. J Control Release 2024; 366:349-365. [PMID: 38182058 PMCID: PMC10923108 DOI: 10.1016/j.jconrel.2023.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Modern drug delivery to tackle infectious disease has drawn close to personalizing medicine for specific patient populations. Challenges include antibiotic-resistant infections, healthcare associated infections, and customizing treatments for local patient populations. Recently, 3D-printing has become a facilitator for the development of personalized pharmaceutic drug delivery systems. With a variety of manufacturing techniques, 3D-printing offers advantages in drug delivery development for controlled, fine-tuned release and platforms for different routes of administration. This review summarizes 3D-printing techniques in pharmaceutics and drug delivery focusing on treating infectious diseases, and discusses the influence of 3D-printing design considerations on drug delivery platforms targeting these diseases. Additionally, applications of 3D-printing in infectious diseases are summarized, with the goal to provide insight into how future delivery innovations may benefit from 3D-printing to address the global challenges in infectious disease.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Bassam Fotouh
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
32
|
Vyas J, Singh S, Shah I, Prajapati BG. Potential Applications and Additive Manufacturing Technology-Based Considerations of Mesoporous Silica: A Review. AAPS PharmSciTech 2023; 25:6. [PMID: 38129697 DOI: 10.1208/s12249-023-02720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Nanoporous materials are categorized as microporous (pore sizes 0.2-2 nm), mesoporous (pore sizes 2-50 nm), and macroporous (pore sizes 50-1000 nm). Mesoporous silica (MS) has gained a significant interest due to its notable characteristics, including organized pore networks, specific surface areas, and the ability to be integrated in a variety of morphologies. Recently, MS has been widely accepted by range of manufacturer and as drug carrier. Moreover, silica nanoparticles containing mesopores, also known as mesoporous silica nanoparticles (MSNs), have attracted widespread attention in additive manufacturing (AM). AM commonly known as three-dimensional printing is the formalized rapid prototyping (RP) technology. AM techniques, in comparison to conventional methods, aid in reducing the necessity for tooling and allow versatility in product and design customization. There are generally several types of AM processes reported including VAT polymerization (VP), powder bed fusion (PBF), sheet lamination (SL), material extrusion (ME), binder jetting (BJ), direct energy deposition (DED), and material jetting (MJ). Furthermore, AM techniques are utilized in fabrication of various classified fields such as architectural modeling, fuel cell manufacturing, lightweight machines, medical, and fabrication of drug delivery systems. The review concisely elaborates on applications of mesoporous silica as versatile material in fabrication of various AM-based pharmaceutical products with an elaboration on various AM techniques to reduce the knowledge gap.
Collapse
Affiliation(s)
- Jigar Vyas
- Sigma Institute of Pharmacy, Vadodara, Gujarat, 390019, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang mai University, Chiang Mai, 50200, Thailand.
| | - Isha Shah
- Sigma Institute of Pharmacy, Vadodara, Gujarat, 390019, India
| | - Bhupendra G Prajapati
- Office of Research Administration, Chiang mai University, Chiang Mai, 50200, Thailand.
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
| |
Collapse
|
33
|
Elumalai A, Nayak Y, Ganapathy AK, Chen D, Tappa K, Jammalamadaka U, Bishop G, Ballard DH. Reverse Engineering and 3D Printing of Medical Devices for Drug Delivery and Drug-Embedded Anatomic Implants. Polymers (Basel) 2023; 15:4306. [PMID: 37959986 PMCID: PMC10647997 DOI: 10.3390/polym15214306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, 3D printing (3DP) has advanced traditional medical treatments. This review explores the fusion of reverse engineering and 3D printing of medical implants, with a specific focus on drug delivery applications. The potential for 3D printing technology to create patient-specific implants and intricate anatomical models is discussed, along with its ability to address challenges in medical treatment. The article summarizes the current landscape, challenges, benefits, and emerging trends of using 3D-printed formulations for medical implantation and drug delivery purposes.
Collapse
Affiliation(s)
- Anusha Elumalai
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Yash Nayak
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Aravinda K. Ganapathy
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - David Chen
- 3D Printing Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (A.E.); (Y.N.); (A.K.G.); (D.C.)
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas, 7000 Fannin Street, Houston, TX 77030, USA;
| | | | - Grace Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - David H. Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
34
|
Milián-Guimerá C, McCabe R, Thamdrup LHE, Ghavami M, Boisen A. Smart pills and drug delivery devices enabling next generation oral dosage forms. J Control Release 2023; 364:S0168-3659(23)00702-2. [PMID: 39491170 DOI: 10.1016/j.jconrel.2023.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Oral dosage forms are the preferred solution for systemic treatment and prevention of disease conditions. However, traditional dosage forms face challenges regarding treatment adherence and delivery of biologics. Oral therapies that require frequent administrations face difficulties with patient compliance. In addition, only a few peptide- and protein-based drugs have been commercialized for oral administration so far, presenting a bioavailability that is generally low. Therefore, research and development on novel formulation strategies for oral drug delivery has bloomed massively in the last decade to overcome these challenges. On the one hand, approaches based on lumen-release of drugs such as 3D-printed capsules and prolonged gastric residence dosage forms have been explored to offer personalized medicine to the patient and reduce frequent dosing of small drug compounds that are currently in the market as powdered tablet or capsules. On the other hand, strategies based on mucus interfacing such as gastrointestinal patches, or even epithelium injections have been investigated in order to enhance the permeability of biologic macromolecules, which are mostly commercialized in the form of subcutaneous injections. Despite the fact that these methods are at an early development stage, promising results have been revealed in terms of personalized medicine and improved bioavailability. In this review, we offer a critical overview of novel ingestible millimeter-sized devices and technologies for oral drug delivery that are currently used in the clinic as well as those that could emerge on the market in a not too distant future.
Collapse
Affiliation(s)
- Carmen Milián-Guimerá
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Reece McCabe
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
35
|
Xue A, Li W, Tian W, Zheng M, Shen L, Hong Y. A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022. Pharmaceuticals (Basel) 2023; 16:1521. [PMID: 38004387 PMCID: PMC10675621 DOI: 10.3390/ph16111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are "drug release" and "drug dosage forms". In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation.
Collapse
Affiliation(s)
- Aile Xue
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenjie Li
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Wenxiu Tian
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Minyue Zheng
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China
| | - Yanlong Hong
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, China; (A.X.); (W.L.); (W.T.); (M.Z.)
| |
Collapse
|
36
|
Alogla A. Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies. Front Bioeng Biotechnol 2023; 11:1256361. [PMID: 37860625 PMCID: PMC10583562 DOI: 10.3389/fbioe.2023.1256361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid advancement of 3D printing has transformed industries, including medicine and pharmaceuticals. Integrating antioxidants into 3D-printed structures offers promising therapeutic strategies for enhanced antioxidant delivery. This review explores the synergistic relationship between 3D printing and antioxidants, focusing on the design and fabrication of antioxidant-loaded constructs. Incorporating antioxidants into 3D-printed matrices enables controlled release and localized delivery, improving efficacy while minimizing side effects. Customization of physical and chemical properties allows tailoring of antioxidant release kinetics, distribution, and degradation profiles. Encapsulation techniques such as direct mixing, coating, and encapsulation are discussed. Material selection, printing parameters, and post-processing methods significantly influence antioxidant release kinetics and stability. Applications include wound healing, tissue regeneration, drug delivery, and personalized medicine. This comprehensive review aims to provide insights into 3D printing-assisted antioxidant delivery systems, facilitating advancements in medicine and improved patient outcomes for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ageel Alogla
- Industrial Engineering Department, College of Engineering (AlQunfudhah), Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
37
|
Archana M, Rubini D, Dharshini KP, Hari BNV, Jayasankari S, Ramyadevi D, Gonciarz W, Domańska A, Brzeziński M, Nithyanand P. Development of an anti-infective urinary catheter composed of polyvinyl alcohol/sodium alginate/methylcellulose/polyethylene glycol by using a pressure-assisted 3D-printing technique. Int J Biol Macromol 2023; 249:126029. [PMID: 37524285 DOI: 10.1016/j.ijbiomac.2023.126029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/10/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Catheter-associated urinary tract infections (CAUTI) are a common complication associated with catheterization, leading to urosepsis, bacteriuria, and septicaemia. The present work focuses on 3D printing a urinary catheter with anti-infective properties using various concentrations of polyvinyl alcohol (PVA, e.g., 6-8 %), sodium alginate (NaAlg, e.g. 1-4 %), methylcellulose (MC, 5 %), polyethylene glycol (PEG, 5 %) impregnated with secnidazole, an antibiotic acting against Gram-negative bacteria. To produce suitable polymer ink for Pressure Assisted Microsyringe (PAM) 3D printing, the cross-linked between NaAlg and calcium chloride is necessary to prepare the catheter. The optimised catheter was found to have an outer diameter of 5 mm, an inner diameter of 3.5 mm, and a length of the catheter of 50 mm. The analysis by various methods confirms the successful incorporation of secnidazole in the 3D-printed catheter. A drug-loaded/coated catheter showed an initial drug release of 79 % following a sustained release to reach 100 % within 5 h. Weibull model fits well with the drug release data. The release models suggest the Quasi-Fickian diffusion mechanism from the system. Moreover, the secnidazole 3D printed catheter disrupted biofilms and suppressed all the Quorum sensing mediated virulence factors of two important keystone pathogens causing urinary tract infections.
Collapse
Affiliation(s)
- Menon Archana
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Krishnan Priya Dharshini
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Bodethala Narayanan Vedha Hari
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; Centre of Molecular and Macromolecular Studies in Łódź, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Senthilganesh Jayasankari
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Durai Ramyadevi
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Domańska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies in Łódź, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
38
|
Zhao Q, Liu C, Chang Y, Wu H, Hou Y, Wu S, Guo M. Low-Temperature 3D Printing Technology of Poly (Vinyl Alcohol) Matrix Conductive Hydrogel Sensors with Diversified Path Structures and Good Electric Sensing Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:8063. [PMID: 37836893 PMCID: PMC10575391 DOI: 10.3390/s23198063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Novel and practical low-temperature 3D printing technology composed of a low-temperature 3D printing machine and optimized low-temperature 3D printing parameters was successfully developed. Under a low-temperature environment of 0--20 °C, poly (vinyl alcohol) (PVA) matrix hydrogels including PVA-sodium lignosulphonate (PVA-LS) hydrogel and PVA-sodium carboxymethylcellulose (PVA-CMC) hydrogel exhibited specific low-temperature rheology properties, building theoretical low-temperature 3D printable bases. The self-made low-temperature 3D printing machine realized a machinery foundation for low-temperature 3D printing technology. Combined with ancillary path and strut members, simple and complicated structures were constructed with high precision. Based on self-compiling G-codes of path structures, layered variable-angle structures with high structure strength were also realized. After low-temperature 3D printing of path structures, excellent electrical sensing functions can be constructed on PVA matrix hydrogel surfaces via monoplasmatic silver particles which can be obtained from reduced reactions. Under the premise of maintaining original material function attributes, low-temperature 3D printing technology realized functionalization of path structures. Based on "3D printing first and then functionalization" logic, low-temperature 3D printing technology innovatively combined structure-strength design, 3D printable ability and electrical sensing functions of PVA matrix hydrogels.
Collapse
Affiliation(s)
- Qian Zhao
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Chang Liu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Yanjiao Chang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Han Wu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Yihao Hou
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Siyang Wu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Mingzhuo Guo
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| |
Collapse
|
39
|
Pérez Gutiérrez CL, Cottone F, Pagano C, Di Michele A, Puglia D, Luzi F, Dominici F, Sinisi R, Ricci M, Viseras Iborra CA, Perioli L. The Optimization of Pressure-Assisted Microsyringe (PAM) 3D Printing Parameters for the Development of Sustainable Starch-Based Patches. Polymers (Basel) 2023; 15:3792. [PMID: 37765648 PMCID: PMC10537393 DOI: 10.3390/polym15183792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of this work was to develop sustainable patches for wound application, using the biopolymer starch, created using a low-cost 3D printing PAM device. The composition of a starch gel was optimized for PAM extrusion: corn starch 10% w/w, β-glucan water suspension (filler, 1% w/w), glycerol (plasticizer, 29% w/w), and water 60% w/w. The most suitable 3D printing parameters were optimized as well (nozzle size 0.8 mm, layer height 0.2 mm, infill 100%, volumetric flow rate 3.02 mm3/s, and print speed 15 mm/s). The suitable conditions for post-printing drying were set at 37 °C for 24 h. The obtained patch was homogenous but with low mechanical resistance. To solve this problem, the starch gel was extruded over an alginate support, which, after drying, becomes an integral part of the product, constituting the backing layer of the final formulation. This approach significantly improved the physicochemical and post-printing properties of the final bilayer patch, showing suitable mechanical properties such as elastic modulus (3.80 ± 0.82 MPa), strength (0.92 ± 0.08 MPa), and deformation at break (50 ± 1%). The obtained results suggest the possibility of low-cost production of patches for wound treatment by additive manufacturing technology.
Collapse
Affiliation(s)
- Carmen Laura Pérez Gutiérrez
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Francesco Cottone
- Department of Physics and Geology, University of Perugia, 06123 Perugia, Italy;
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | | | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy; (D.P.); (F.D.)
| | - Francesca Luzi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), 60131 Ancona, Italy;
| | - Franco Dominici
- Civil and Environmental Engineering Department, University of Perugia, UdR INSTM, 05100 Terni, Italy; (D.P.); (F.D.)
| | - Rossella Sinisi
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| | - César Antonio Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (C.L.P.G.); (R.S.); (M.R.); (L.P.)
| |
Collapse
|
40
|
Ghodrati M, Rafiaei SM, Tayebi L. Fabrication and evaluation of PLA/MgAl 2O 4 scaffolds manufactured through 3D printing method. J Mech Behav Biomed Mater 2023; 145:106001. [PMID: 37451049 DOI: 10.1016/j.jmbbm.2023.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
In this study, we synthesized magnesium aluminate spinel (MgAl2O4) with a particle size ranging from 35 to 70 nm using a facile combustion approach. Then, we used a 3D printing (FDM) machine to produce PLA/x wt% MgAl2O4 (x = 0, 2, 4, 6, and 8) scaffolds. To investigate the crystal structure, microstructure, biodegradability, and thermal characteristics of the produced materials, we employed X-ray diffraction analysis (XRD), field emission scanning electron microscope (FESEM), Inductively Coupled Plasma (ICP), Simultaneous Thermal Analysis (STA), and compressive strength analyses. The results showed that PLA/6 wt% MgAl2O4 scaffolds possess the highest amounts of compressive strength. We evaluated the bio-activation and biodegradability of scaffolds by immersing them in simulated body fluid (SBF) for four weeks. Interestingly, the highest strength was achieved in PLA/6 wt% MgAl2O4 scaffolds, while the improper dispersion of ceramic particles happened on the polymer substrate in cases where x>6. ICP analysis showed that the addition of spinel nanoparticles to PLA increased the biodegradability of the scaffolds. Our FESEM results supported this finding and also revealed that the dispersion of ceramic particles on the polymer substrate was not uniform in cases where x>6. Also, according to the results of STA, the presence of MgAl2O4 nanoparticles effectively reduces the rate of thermal decomposition from 95 to 85 percent.
Collapse
Affiliation(s)
- Mehran Ghodrati
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, 87717-67498, Iran
| | - Seyed Mahdi Rafiaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, 87717-67498, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| |
Collapse
|
41
|
Racaniello GF, Pistone M, Meazzini C, Lopedota A, Arduino I, Rizzi R, Lopalco A, Musazzi UM, Cilurzo F, Denora N. 3D printed mucoadhesive orodispersible films manufactured by direct powder extrusion for personalized clobetasol propionate based paediatric therapies. Int J Pharm 2023; 643:123214. [PMID: 37423374 DOI: 10.1016/j.ijpharm.2023.123214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The aim of this work is the development and production by Direct Powder Extrusion (DPE) 3D printing technique of novel oral mucoadhesive films delivering Clobetasol propionate (CBS), useful in paediatric treatment of Oral Lichen Planus (OLP), a rare chronic disease. The DPE 3D printing of these dosage forms can allow the reduction of frequency regimen, the therapy personalization, and reduction of oral cavity administration discomfort. To obtain suitable mucoadhesive films, different polymeric materials, namely hydroxypropylmethylcellulose or polyethylene oxide blended with chitosan (CS), were tested and hydroxypropyl-β-cyclodextrin was added to increase the CBS solubility. The formulations were tested in terms of mechanical, physico-chemical, and in vitro biopharmaceutical properties. The film showed a tenacious structure, with drug chemical-physical characteristics enhancement due to its partial amorphization during the printing stage and owing to cyclodextrins multicomponent complex formation. The presence of CS enhanced the mucoadhesive properties leading to a significant increase of drug exposure time on the mucosa. Finally, the printed films permeation and retention studies through porcine mucosae showed a marked retention of the drug inside the epithelium, avoiding drug systemic absorption. Therefore, DPE-printed films could represent a suitable technique for the preparation of mucoadhesive film potentially usable for paediatric therapy including OLP.
Collapse
Affiliation(s)
| | - Monica Pistone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Chiara Meazzini
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Angela Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Rosanna Rizzi
- Institute of Crystallography-CNR, Amendola St. 122/o, Bari 70126, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy
| | - Umberto M Musazzi
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Science, University of Milan, Via G. Colombo, 71, Milan 20133, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, Bari 70125, Italy.
| |
Collapse
|
42
|
Banerjee R, Ray SS. Role of Rheology in Morphology Development and Advanced Processing of Thermoplastic Polymer Materials: A Review. ACS OMEGA 2023; 8:27969-28001. [PMID: 37576638 PMCID: PMC10413379 DOI: 10.1021/acsomega.3c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
This review presents fundamental knowledge and recent advances pertaining to research on the role of rheology in polymer processing, highlights the knowledge gap between the function of rheology in various processing operations and the importance of rheology in the development, characterization, and assessment of the morphologies of polymeric materials, and offers ideas for enhancing the processabilities of polymeric materials in advanced processing operations. Rheology plays a crucial role in the morphological evolution of polymer blends and composites, influencing the type of morphology in the case of blends and the quality of dispersion in the cases of both blends and composites. The rheological characteristics of multiphase polymeric materials provide valuable information on the morphologies of these materials, thereby rendering rheology an important tool for morphological assessment. Although rheology extensively affects the processabilities of polymeric materials in all processing operations, this review focuses on the roles of rheology in film blowing, electrospinning, centrifugal jet spinning, and the three-dimensional printing of polymeric materials, which are advanced processing operations that have gained significant research interest. This review offers a comprehensive overview of the fundamentals of morphology development and the aforementioned processing techniques; moreover, it covers all vital aspects related to the tailoring of the rheological characteristics of polymeric materials for achieving superior morphologies and high processabilities of these materials in advanced processing operations. Thus, this article provides a direction for future advancements in polymer processing. Furthermore, the superiority of elongational flow over shear flow in enhancing the quality of dispersion in multiphase polymeric materials and the role of extensional rheology in the advanced processing operations of these materials, which have rarely been discussed in previous reviews, have been critically analyzed in this review. In summary, this article offers new insights into the use of rheology in material and product development during advanced polymer-processing operations.
Collapse
Affiliation(s)
- Ritima Banerjee
- Department
of Chemical Engineering, Calcutta Institute
of Technology, Banitabla, Uluberia, Howrah, 711316 West Bengal, India
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
43
|
Vasile C, Baican M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers (Basel) 2023; 15:3177. [PMID: 37571069 PMCID: PMC10420922 DOI: 10.3390/polym15153177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
The recycling of biomass into high-value-added materials requires important developments in research and technology to create a sustainable circular economy. Lignin, as a component of biomass, is a multipurpose aromatic polymer with a significant potential to be used as a renewable bioresource in many fields in which it acts both as promising biopolymer and bioactive compound. This comprehensive review gives brief insights into the recent research and technological trends on the potential of lignin development and utilization. It is divided into ten main sections, starting with an outlook on its diversity; main properties and possibilities to be used as a raw material for fuels, aromatic chemicals, plastics, or thermoset substitutes; and new developments in the use of lignin as a bioactive compound and in nanoparticles, hydrogels, 3D-printing-based lignin biomaterials, new sustainable biomaterials, and energy production and storage. In each section are presented recent developments in the preparation of lignin-based biomaterials, especially the green approaches to obtaining nanoparticles, hydrogels, and multifunctional materials as blends and bio(nano)composites; most suitable lignin type for each category of the envisaged products; main properties of the obtained lignin-based materials, etc. Different application categories of lignin within various sectors, which could provide completely sustainable energy conversion, such as in agriculture and environment protection, food packaging, biomedicine, and cosmetics, are also described. The medical and therapeutic potential of lignin-derived materials is evidenced in applications such as antimicrobial, antiviral, and antitumor agents; carriers for drug delivery systems with controlled/targeting drug release; tissue engineering and wound healing; and coatings, natural sunscreen, and surfactants. Lignin is mainly used for fuel, and, recently, studies highlighted more sustainable bioenergy production technologies, such as the supercapacitor electrode, photocatalysts, and photovoltaics.
Collapse
Affiliation(s)
- Cornelia Vasile
- Romanian Academy, “P. Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department 41A Grigore Ghica Voda Alley, RO700487 Iaşi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, Faculty of Pharmacy, Pharmaceutical Sciences I Department, Laboratory of Pharmaceutical Physics, 16 University Street, RO700115 Iaşi, Romania;
| |
Collapse
|
44
|
Yuste I, Luciano FC, Anaya BJ, Sanz-Ruiz P, Ribed-Sánchez A, González-Burgos E, Serrano DR. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics (Basel) 2023; 12:1229. [PMID: 37627649 PMCID: PMC10451995 DOI: 10.3390/antibiotics12081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The use of additive manufacturing or 3D printing in biomedicine has experienced fast growth in the last few years, becoming a promising tool in pharmaceutical development and manufacturing, especially in parenteral formulations and implantable drug delivery systems (IDDSs). Periprosthetic joint infections (PJIs) are a common complication in arthroplasties, with a prevalence of over 4%. There is still no treatment that fully covers the need for preventing and treating biofilm formation. However, 3D printing plays a major role in the development of novel therapies for PJIs. This review will provide a deep understanding of the different approaches based on 3D-printing techniques for the current management and prophylaxis of PJIs. The two main strategies are focused on IDDSs that are loaded or coated with antimicrobials, commonly in combination with bone regeneration agents and 3D-printed orthopedic implants with modified surfaces and antimicrobial properties. The wide variety of printing methods and materials have allowed for the manufacture of IDDSs that are perfectly adjusted to patients' physiognomy, with different drug release profiles, geometries, and inner and outer architectures, and are fully individualized, targeting specific pathogens. Although these novel treatments are demonstrating promising results, in vivo studies and clinical trials are required for their translation from the bench to the market.
Collapse
Affiliation(s)
- Iván Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Pablo Sanz-Ruiz
- Orthopaedic and Trauma Department, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Almudena Ribed-Sánchez
- Hospital Pharmacy Unit, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
45
|
Krueger L, Cao Y, Zheng Z, Ward J, Miles JA, Popat A. 3D printing tablets for high-precision dose titration of caffeine. Int J Pharm 2023; 642:123132. [PMID: 37315638 DOI: 10.1016/j.ijpharm.2023.123132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Through 3D printing (3DP), many parameters of solid oral dosage forms can be customised, allowing for truly personalised medicine in a way that traditional pharmaceutical manufacturing would struggle to achieve. One of the many options for customisation involves dose titration, allowing for gradual weaning of a medication at dose intervals smaller than what is available commercially. In this study we demonstrate the high accuracy and precision of 3DP dose titration of caffeine, selected due to its global prevalence as a behavioural drug and well-known titration-dependent adverse reactions in humans. This was achieved using a simple filament base of polyvinyl alcohol, glycerol, and starch, utilising hot melt extrusion coupled with fused deposition modelling 3DP. Tablets containing 25 mg, 50 mg, and 100 mg doses of caffeine were successfully printed with drug content in the accepted range prescribed for conventional tablets (90 - 110%), and excellent precision whereby the weights of all doses showed a relative standard deviation of no more than 3%. Importantly, these results proved 3D printed tablets to be far superior to splitting a commercially available caffeine tablet. Additional assessment of filament and tablet samples were reviewed by differential scanning calorimetry, thermogravimetric analysis, HPLC, and scanning electron microscopy, showing no evidence of degradation of caffeine or the raw materials, with smooth and consistent filament extrusion. Upon dissolution, all tablets achieved greater than 70% release between 50 and 60 min, showing a predictable rapid release profile regardless of dose. The outcomes of this study highlight the benefits that dose titration with 3DP can offer, especially to more commonly prescribed medications that can have even more harmful withdrawal-induced adverse reactions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zheng Zheng
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jason Ward
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
46
|
Li Y, Ren X, Zhu L, Li C. Biomass 3D Printing: Principles, Materials, Post-Processing and Applications. Polymers (Basel) 2023; 15:2692. [PMID: 37376338 DOI: 10.3390/polym15122692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Under the background of green and low-carbon era, efficiently utilization of renewable biomass materials is one of the important choices to promote ecologically sustainable development. Accordingly, 3D printing is an advanced manufacturing technology with low energy consumption, high efficiency, and easy customization. Biomass 3D printing technology has attracted more and more attentions recently in materials area. This paper mainly reviewed six common 3D printing technologies for biomass additive manufacturing, including Fused Filament Fabrication (FFF), Direct Ink Writing (DIW), Stereo Lithography Appearance (SLA), Selective Laser Sintering (SLS), Laminated Object Manufacturing (LOM) and Liquid Deposition Molding (LDM). A systematic summary and detailed discussion were conducted on the printing principles, common materials, technical progress, post-processing and related applications of typical biomass 3D printing technologies. Expanding the availability of biomass resources, enriching the printing technology and promoting its application was proposed to be the main developing directions of biomass 3D printing in the future. It is believed that the combination of abundant biomass feedstocks and advanced 3D printing technology will provide a green, low-carbon and efficient way for the sustainable development of materials manufacturing industry.
Collapse
Affiliation(s)
- Yongxia Li
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueyong Ren
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lin Zhu
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunmiao Li
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
47
|
Koshovyi O, Heinämäki J, Raal A, Laidmäe I, Topelius NS, Komisarenko M, Komissarenko A. PHARMACEUTICAL 3D-PRINTING OF NANOEMULSIFIED EUCALYPT EXTRACTS AND THEIR ANTIMICROBIAL ACTIVITY. Eur J Pharm Sci 2023:106487. [PMID: 37277046 DOI: 10.1016/j.ejps.2023.106487] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Overcoming the health threatening consequences of staphylococcal infections and their negative socio-economic effects have become a priority in the medical, pharmaceutical, food and many other sectors globally. Staphylococcal infections are a big challenge for a global health care, since they are difficult to be diagnosed and treated. Therefore, the development of new medicinal products of plant-origin is timely and important, because bacteria have a limited ability to develop resistance to such products. In the present study, a modified eucalypt (Eucalyptus viminalis L.) extract was prepared and further enhanced by using different excipients (surface active agents) to obtain a water-miscible 3D-printable extract (nanoemulsified aqueous eucalypt extract). Phytochemical and antibacterial studies of the eucalypt leaves extracts were conducted as a preliminary investigation for 3D-printing experiments of the extracts. The nanoemulsified aqueous eucalypt extract was mixed with polyethylene oxide (PEO) to form a gel applicable for semi-solid extrusion (SSE) 3D printing. The key process parameters in a 3D-printing process were identified and verified. The printing quality of the 3D-lattice type eucalypt extract preparations was very good, demonstrating the feasibility of using an aqueous gel in SSE 3D printing also exhibiting compatibility of the carrier polymer (PEO) with the plant extract. The SSE 3D-printed eucalypt extract preparations presented a rapid dissolution in water within 10-15 minutes, suggesting the applicability of these preparations e.g., in oral immediate-release applications.
Collapse
Affiliation(s)
- Oleh Koshovyi
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; The National University of Pharmacy, 53 Pushkinska st, 61002 Kharkiv, Ukraine.
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Ivo Laidmäe
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | | | - Mykola Komisarenko
- The National University of Pharmacy, 53 Pushkinska st, 61002 Kharkiv, Ukraine.
| | - Andrey Komissarenko
- The National University of Pharmacy, 53 Pushkinska st, 61002 Kharkiv, Ukraine.
| |
Collapse
|
48
|
Amin OM, El Qady HN, Abd El-Fattah MA. An Intragastric Delivery Device Employing FDM Technology: 3D-Printed Tablet Containing Green Developed Mosapride-Saccharin Co-crystals. AAPS PharmSciTech 2023; 24:127. [PMID: 37264247 DOI: 10.1208/s12249-023-02578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
Mosapride citrate (MC) is a poorly soluble short half-life drug with more pronounced absorption in the stomach. The present study aimed to incorporate MC co-crystals with enhanced solubility into 3D-printed floating tablets. MC co-crystals were prepared via the green method using Saccharin sod. as a co-former at a (1:1) molar ratio. The prepared co-crystals were assessed for solubility, FTIR, thermal behavior, and SEM. Then, it was incorporated into zero % infill 3D-printed tablets of different configurations at two thickness levels by the FDM printing technique. Printed tablets were evaluated for dimensions, weight deviation, friability, and in vitro floating behavior. Drug release and kinetic of the MC release were also assessed. Solubility study of the co-crystals showed a significant (p value < 0.05) increased solubility over pure MC. FTIR and thermal behavior confirmed hydrogen bonding formation during co-crystallization. The obstructed particles had an erratic protrusion form, similar to a nodule, as illustrated by SEM. The printed tablets showed acceptable physicochemical properties. Tablets floated for about ≥ 12 h without floating lag time. In vitro drug release exhibited variable extended release profiles with different lag times depending on the configuration indicating that the tablet's wall thickness and surface area were the factors manipulated to control drug release. Kinetic analysis of the release data displayed intermediate kinetics between zero-order and diffusional kinetics. The intragastric extended release profile for MC co-crystals of improved solubility could be successfully, economically, and quickly developed utilizing the 3D printing technique.
Collapse
Affiliation(s)
- Omnya Mahmoud Amin
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
| | - Hesham Nassereldin El Qady
- Design Workshops Department, Faculty of Applied Sciences and Arts, The German University in Cairo, Cairo, Egypt
| | - Marwa Adel Abd El-Fattah
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
49
|
Roche A, Sanchez-Ballester NM, Aubert A, Rossi JC, Begu S, Soulairol I. Preliminary Study on the Development of Caffeine Oral Solid Form 3D Printed by Semi-Solid Extrusion for Application in Neonates. AAPS PharmSciTech 2023; 24:122. [PMID: 37225888 DOI: 10.1208/s12249-023-02582-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Apnea of prematurity can be treated with a body-weight-adjusted dosage of caffeine. Semi-solid extrusion (SSE) 3D printing represents an interesting approach to finely tailor personalized doses of active ingredients. To improve compliance and ensure the right dose in infants, drug delivery systems such as oral solid forms (orodispersible film, dispersive form, and mucoadhesive form) can be considered. The aim of this work was to obtain a flexible-dose system of caffeine by SSE 3D printing by testing different excipients and printing parameters. Gelling agents (sodium alginate (SA) and hydroxypropylmethyl cellulose (HPMC)) were used to obtain a drug-loaded hydrogel matrix. Disintegrants (sodium croscarmellose (SC) and crospovidone (CP)) were tested for get rapid release of caffeine. The 3D models were patterned by computer-aided design with variable thickness, diameter, infill densities, and infill patterns. The oral forms produced from the formulation containing 35% caffeine, 8.2% SA, 4.8% HPMC, and 52% SC (w/w) were found to have good printability, achieving doses approaching to those used in neonatology (between 3 and 10 mg of caffeine for infants weighing approximately between 1 and 4 kg). However, disintegrants, especially SC, acted more as binder/filler, showing interesting properties to maintain the shape after extrusion and enhance printability without a significant effect on caffeine release.
Collapse
Affiliation(s)
- Agnès Roche
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Noelia M Sanchez-Ballester
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| | - Adrien Aubert
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Sylvie Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
50
|
Doolaanea A, Latif N, Singh S, Kumar M, Safa'at MF, Alfatama M, Edros R, Bhatia A. A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets. AAPS PharmSciTech 2023; 24:116. [PMID: 37160772 DOI: 10.1208/s12249-023-02570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Three-dimensional (3D) printing technology has presently been explored widely in the field of pharmaceutical research to produce various conventional as well as novel dosage forms such as tablets, capsules, oral films, pellets, subcutaneous implants, scaffolds, and vaginal rings. The use of this innovative method is a good choice for its advanced technologies and the ability to make tailored medicine specifically for individual patient. There are many 3D printing systems that are used to print tablets, implants, and vaginal rings. Among the available systems, the fused deposition modeling (FDM) is widely utilized. The FDM has been regarded as the best choice of printer as it shows high potential in the production of tablets as a unit dose in 3D printing medicine manufacturing. In order to design a 3D-printed tablet or other dosage forms, the physicochemical properties of polymers play a vital role. One should have proper knowledge about the polymer's properties so that one can select appropriate polymers in order to design 3D-printed dosage form. This review highlighted the various physicochemical properties of polymers that are currently used as filaments in 3D printing. In this manuscript, the authors also discussed various systems that are currently adopted in the 3D printing.
Collapse
Affiliation(s)
- AbdAlmonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
- IKOP SdnBhd, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
| | - NurFaezah Latif
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia
| | - Shubham Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | | | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
| | - Raihana Edros
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|