1
|
Rish AJ, Kurt C, Assis JM, Rehrauer O, Rangel-Gil RS, Taylor E. Evaluation of Calibration Burden for Monitoring of a Pharmaceutical Continuous Manufacturing Line using Near-Infrared Spectroscopy. Int J Pharm 2025; 673:125419. [PMID: 40037487 DOI: 10.1016/j.ijpharm.2025.125419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Process analytical technology (PAT) tools are an important part of process monitoring and control in pharmaceutical continuous manufacturing (CM) that help ensure product quality. However, there is hesitancy to adopt PAT due, in part, to the high start-up costs. A portion of the cost is the calibration burden associated with developing an appropriate multivariate data analysis (MVDA) method to extract the desired information from the spectral outputs of spectroscopic PAT tools. This has generated research interest in reduced calibration burden MVDA methods, such as iterative optimization technology (IOT) algorithms, as alternatives to conventional modeling approaches like partial least squares (PLS) regression. The goal of the presented research is to compare the calibration burden of three different MVDA methods (direct IOT, indirect IOT, PLS regression) at two drug loading levels (low and high) of pharmaceutical powder blends in a CM line. The blends were binary mixtures consisting of an active pharmaceutical ingredient and a coprocessed excipient blend. The coprocessed excipient blend was leveraged to reduce formulation complexity and streamline process development, benefiting the application of IOT algorithm. Calibration burden was assessed in terms of time, material, and financial costs. Utilizing a near-infrared spectroscopic PAT tool, it was found that MVDA methods that utilized IOT algorithms demonstrated a notably reduced calibration burden compared to the PLS models, while predicting blend potency with similar accuracy.
Collapse
Affiliation(s)
- Adam J Rish
- Sentronic US Corp., 8 Saddle Road, Norwalk, CT 06851, USA.
| | - Cassidy Kurt
- GEA Pharmaceutical Technology Center, Columbia, MD 21045, USA
| | | | - Owen Rehrauer
- Sentronic US Corp., 8 Saddle Road, Norwalk, CT 06851, USA
| | - Raúl S Rangel-Gil
- BASF Corporation, Tarrytown, NY 10591, USA; Department of Chemical Engineering, University of Puerto Rico at Mayaguez, PR 00681, USA
| | - Edward Taylor
- Sentronic US Corp., 8 Saddle Road, Norwalk, CT 06851, USA
| |
Collapse
|
2
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Anuschek M, Nilsson T, Skelbæk-Lorenzen AL, Vilhelmsen TK, Zeitler JA, Rantanen J. Using density changes to monitor blending with magnesium stearate by terahertz time-domain spectroscopy. Int J Pharm 2025; 672:125303. [PMID: 39894088 DOI: 10.1016/j.ijpharm.2025.125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Magnesium stearate (MgSt) is among the most common excipients and the most common lubricant in solid oral products. It is primarily added to tablet formulations to ease ejection during tablet compression. While commonly present in low concentrations, the addition of MgSt substantially affects the final tablet properties. Its impact is further not only concentration dependent but also varies with exposure of the formulation to shear, which worst-case results in over-lubrication. The presented study investigated the applicability of terahertz time-domain spectroscopy (THz-TDS) to monitor the shear-induced blend densification of microcrystalline cellulose blended with MgSt over a range of concentrations (0.3, 0.7, and 1.0 %). The effect of shear was investigated by variation of blending times (5 - 20 min) in a diffusion blender. THz-TDS measurements of the powder blends were acquired in transmission by measuring directly through the mixing container. The refractive index at terahertz frequencies was found to be sufficiently sensitive to resolve the densification of the blend with increased blending times. Thus, THz-TDS blend density measurements can be used as a surrogate parameter to evaluate the total shear exposure of a blend. Considerations regarding implementation are discussed. In the context the approach was integrated with the well-described THz-TDS-based tablet porosity analysis into a unified model to monitor and predict the tensile strength. Including the THz-TDS measurement on the blend allowed for a more accurate description of the tensile strength, reducing the root mean squared error by over 40 % (0.33 MPa). The possibility of monitoring the density changes of a blend non-invasively makes THz-TDS a promising process analytical technology approach for controlling the total shear impact on lubricated blends and tablet quality.
Collapse
Affiliation(s)
- Moritz Anuschek
- Department of Pharmacy University of Copenhagen Copenhagen Denmark; Novo Nordisk A/S ET Oral Product Development Måløv Denmark.
| | - Thea Nilsson
- Novo Nordisk A/S ET Oral Product Development Måløv Denmark
| | | | | | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge UK
| | - Jukka Rantanen
- Department of Pharmacy University of Copenhagen Copenhagen Denmark
| |
Collapse
|
4
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Joshi S, Jindal P, Gautam S, Singh C, Patel P, Gupta GD, Kurmi BD. Mini Review on the Lyophilization: A Basic Requirement for Formulation Development and Stability Modifier. Assay Drug Dev Technol 2025. [PMID: 40008995 DOI: 10.1089/adt.2024.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Freeze-drying is popular for producing pharmaceutical formulations with structurally complicated active components and drug delivery system carriers. It is the process of eliminating water from ice crystals through the sublimation mechanism. Some formulations may require drug-specific excipients such as stabilizers, buffers, and bulking agents to maintain the appearance and assure the long-term stability of the drug product. This approach is utilized for therapeutic compounds that are moisture sensitive, thermolabile, and degrade in the atmosphere. Freezing and primary and secondary drying are critical processes in the lyophilization process because they directly impact the end result. This approach is effective for producing a variety of dosage forms, including oral, inhalation, and parenteral. As a result, lyophilization may be an important method for improving the therapeutic efficacy and delivery of various dosage forms delivered via different routes. Additionally, lyophilization is used in pharmacological research to preserve biological samples, stabilize reference/standards, and increase the solubility and bioavailability of poorly soluble drugs. Thus, lyophilization is critical for maintaining the stability, efficacy, and safety of pharmaceutical products throughout their development and lifecycles. This article includes a broad overview of the lyophilization process, principle, excipients for lyophilized medicine compositions, and new lyophilization technologies as well as their applications in a variety of fields.
Collapse
Affiliation(s)
- Sachin Joshi
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, Moga, India
| | - Priya Jindal
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, Moga, India
| | - Shreastha Gautam
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, Moga, India
| | - Charanjeet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
6
|
Li R, Fan H, Chen Y, Yin S, Liu GL, Li Y, Huang L. MXene-Graphene Oxide Heterostructured Films for Enhanced Metasurface Plasmonic Biosensing in Continuous Glucose Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410376. [PMID: 39569760 PMCID: PMC11775529 DOI: 10.1002/advs.202410376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Non-invasive biosensors have attracted attention for their potential to obtain continuous, real-time physiological information through measurements of biochemical markers, such as one of the most important-glucose, in biological fluids. Although some optical sensing materials are used in non-invasive devices for continuous glucose monitoring (CGM), surface or localized plasmon sensing material are seldom applied in CGM owing to modest sensitivity and bulk sensing apparatus. Herein, a metasurface (MGMSPR) biosensor based on the metasurface plasmon resonance chip modified with heterostructured Ti3C2 MXene-Graphene oxide (MG) is reported, which potentially enables ultra-sensitive glucose detection. The sensor consists of a dual-channel microfluidic device integrated with silver mirror enhanced MGMSPR chips. Not only does it promote the entry of glucose oxidase (GOD) into the internal pores and enhance the stable fixation of GOD in the membrane, but also the integration of MG material provides a high specific surface area and unique electronic properties, thereby significantly enhancing the sensitivity of the MGMSPR sensor. The detection limit of MGMSPR biosensor is 106.8 µM. This pioneering approach opens new avenues for monitoring physiological parameters and process analytical technology on an optical platform, providing continuous health monitoring and production process control through optical sensors.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and TechnologyState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and Technology1037 LuoYu RoadWuhan430070P. R. China
| | - Hongli Fan
- College of Life Science and TechnologyState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and Technology1037 LuoYu RoadWuhan430070P. R. China
| | - Youqian Chen
- College of Life Science and TechnologyState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and Technology1037 LuoYu RoadWuhan430070P. R. China
| | - Shaoping Yin
- School of PharmacyJiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and ApplicationNanjing University of Chinese MedicineNanjing210023P. R. China
| | - Gang L. Liu
- College of Life Science and TechnologyState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and Technology1037 LuoYu RoadWuhan430070P. R. China
| | - Yanan Li
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co., Ltd.Wuhan430070P. R. China
| | - Liping Huang
- College of Life Science and TechnologyState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and Technology1037 LuoYu RoadWuhan430070P. R. China
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjing210023P. R. China
- Biosensor R&D DepartmentLiangzhun (Wuhan) Life Technology Co., Ltd.Wuhan430070P. R. China
| |
Collapse
|
7
|
Beg S, Ahirwar K, Almalki WH, Almujri SS, Alhamyani A, Rahman M, Shukla R. Nondestructive techniques for pharmaceutical drug product characterization. Drug Discov Today 2025; 30:104249. [PMID: 39580022 DOI: 10.1016/j.drudis.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/22/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Pharmaceutical product development involves multiple steps; therefore product quality must be assessed to ensure robustness and acceptability. Raw components, production methods, and ambient conditions yield highly variable end products with low batch-to-batch consistency. Although end testing is performed to ensure product quality, intermediate quality checks are limited. Nondestructive techniques like terahertz, near-infrared, X-ray, and Raman spectroscopy are common tools for in-line quality checks and real-time data monitoring. Handheld devices based on these analytical techniques also help in identifying counterfeit drugs products. This review discusses modern regulatory perspectives on the use of nondestructive tools in pharmaceutical quality monitoring.
Collapse
Affiliation(s)
- Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem S Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, India.
| |
Collapse
|
8
|
Manzoor MF, Riaz S, Verma DK, Waseem M, Goksen G, Ali A, Zeng XA. Nutraceutical tablets: Manufacturing processes, quality assurance, and effects on human health. Food Res Int 2024; 197:115197. [PMID: 39593282 DOI: 10.1016/j.foodres.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Consumers are increasingly focused on food products' nutritional content and health aspects. Nutraceutical tablets containing nutritional supplements have seen remarkable progress and are well-known for their precise dosage, which can improve consumer health by increasing the intake of bioactive compounds and vital nutrients. Oral nutraceuticals are frequently used to enhance consumer well-being, with around 80% of products being in solid form. This manuscript aims to thoroughly analyze and summarize the gathered literature using various search engines to investigate key trends in the market, the components involved, and the functional impact of nutraceutical tablets. Furthermore, the manuscript explores various nutraceutical tablets such as chewable tablets, gelling capsules, vitamin tablets, spirulina tablets, and bran tablets. A perspective is provided on multiple production and manufacturing methods of nutraceutical tablets, along with comparing these processes. Following this, evaluating quality characteristics and enforcing quality assurance procedures have been emphasized. The manuscript discussed the physiological breakdown of ingestible nutraceutical tablets in the human body and the possible toxic effects of the components found in these tablets. Furthermore, the focus is on producing nutraceutical tablets in a more environmentally friendly manner, tackling sustainability issues, offering solutions, and delving into potential opportunities. This manuscript will create a significant platform for people from the research, scientific, and industrial fields seeking novel and inventive projects.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Sakhawat Riaz
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agriculture University, Hefei, China
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Muhammad Waseem
- Department of Food Science & Technology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | - Anwar Ali
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 St., 02-776 Warsaw, Poland
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
9
|
Desai N, Pande S, Vora L, Kommineni N. Correction to "Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration". ACS APPLIED BIO MATERIALS 2024; 7:6325-6331. [PMID: 39162584 PMCID: PMC11409221 DOI: 10.1021/acsabm.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 08/21/2024]
|
10
|
Shuyu L, Hongxun H, Di W, Hui Y, Hongtu Z, Wenbo W, Xin H, Na W, Lina Z, Ting W. In-situ sequential crystallization of fenofibrate and tristearin - Understanding the distribution of API in particles and stability of solid lipid microparticles from the perspective of crystallization. Eur J Pharm Biopharm 2024; 202:114413. [PMID: 39029878 DOI: 10.1016/j.ejpb.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
In-situ API crystallization in carrier matrices has attracted extensive attention in recent years for its advantages over traditional preparation processes. However, due to the lack of systemic research on molecular self-assembly behaviors, the products obtained by in-situ crystallization suffer from the problems of polymorphic transformation and drug expulsion during storage, limiting its industrial application. This paper investigates the in-situ sequential crystallization behavior of tristearin (SSS) and fenofibrate (FEN), utilizing SSS as the carrier and FEN as the API. It was found that the behavior of mixed crystallization significantly differs from single-component crystallization, including direct formation of stable form of SSS and the rapid crystallization of FEN. During the crystallization process, the melting FEN promotes the movement of SSS molecules, while the sliding of SSS lamellae, in turn, provides a mechanical stimulus to enhance the nucleation of FEN. Based on the observed synergistic crystallization behavior, the distribution and stability of the API within FEN solid lipid microparticles (SLMs) during storage were evaluated, while also examining the stability variations in SLMs formulated at different cooling rates and drug loading concentrations. The findings indicate that the initial nucleated FEN results in a decrease in the surrounding molten FEN and the irregularity of the SSS lamellas, thereby preventing the remaining molten FEN from achieving complete crystallization within a brief period. Due to the compatibility between FEN and SSS, some SSS may blend with the molten FEN, potentially resulting in further crystallization during storage and consequently increasing the risk of drug expulsion.
Collapse
Affiliation(s)
- Li Shuyu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Hao Hongxun
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Wu Di
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Yu Hui
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Zhao Hongtu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Wu Wenbo
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Huang Xin
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Wang Na
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Zhou Lina
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| | - Wang Ting
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China
| |
Collapse
|
11
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
12
|
Desai N, Pande S, Vora LK, Kommineni N. Nanofibrous Microspheres: A Biomimetic Platform for Bone Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4270-4292. [PMID: 38950103 PMCID: PMC11253102 DOI: 10.1021/acsabm.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bone, a fundamental constituent of the human body, is a vital scaffold for support, protection, and locomotion, underscoring its pivotal role in maintaining skeletal integrity and overall functionality. However, factors such as trauma, disease, or aging can compromise bone structure, necessitating effective strategies for regeneration. Traditional approaches often lack biomimetic environments conducive to efficient tissue repair. Nanofibrous microspheres (NFMS) present a promising biomimetic platform for bone regeneration by mimicking the native extracellular matrix architecture. Through optimized fabrication techniques and the incorporation of active biomolecular components, NFMS can precisely replicate the nanostructure and biochemical cues essential for osteogenesis promotion. Furthermore, NFMS exhibit versatile properties, including tunable morphology, mechanical strength, and controlled release kinetics, augmenting their suitability for tailored bone tissue engineering applications. NFMS enhance cell recruitment, attachment, and proliferation, while promoting osteogenic differentiation and mineralization, thereby accelerating bone healing. This review highlights the pivotal role of NFMS in bone tissue engineering, elucidating their design principles and key attributes. By examining recent preclinical applications, we assess their current clinical status and discuss critical considerations for potential clinical translation. This review offers crucial insights for researchers at the intersection of biomaterials and tissue engineering, highlighting developments in this expanding field.
Collapse
Affiliation(s)
- Nimeet Desai
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Shreya Pande
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Kandi 502285, India
| | - Lalitkumar K. Vora
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| |
Collapse
|
13
|
Glace M, Moazeni-Pourasil RS, Cook DW, Roper TD. Iterative Regression of Corrective Baselines (IRCB): A New Model for Quantitative Spectroscopy. J Chem Inf Model 2024; 64:5006-5015. [PMID: 38897609 PMCID: PMC11234360 DOI: 10.1021/acs.jcim.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
In this work, a new model with broad utility for quantitative spectroscopy development is reported. A primary objective of this work is to create a novel modeling procedure that may allow for higher automation of the model development process. The fundamental concept is simple yet powerful even for complex spectra and is employed with no additional preprocessing. This approach is applicable for several types of spectroscopic data to develop regression models that have similar or greater quality than the current methods. The key modeling steps are a matrix transformation and subsequent feature selection process that are collectively referred to as iterative regression of corrective baselines (IRCB). The transformed matrix (Xtransform) is a linearized form of the original X data set. Features from Xtransform that are predictive of Y can be ranked and selected by ordinary least-squares regression. The best features (rows of Xtransform) are linear depictions of Y that can be utilized to develop regression models with several machine learning models. The IRCB workflow is first detailed by using a case study of Fourier transform infrared (FTIR) spectroscopy for prepared solutions of a three-component mixture. Next, IRCB is applied and compared to benchmark results for the 2006 "Chimiométrie" near-infrared spectroscopy (NIR) soil composition challenge and Raman measurements of a simulated nuclear waste slurry.
Collapse
Affiliation(s)
- Matthew Glace
- Department
of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | | | - Daniel W. Cook
- Medicines
for All Institute, Virginia Commonwealth
University, Richmond, Virginia 23284, United States
| | - Thomas D. Roper
- Department
of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
14
|
Aitipamula S, Bolla G. Optimizing Drug Development: Harnessing the Sustainability of Pharmaceutical Cocrystals. Mol Pharm 2024; 21:3121-3143. [PMID: 38814314 DOI: 10.1021/acs.molpharmaceut.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Environmental impacts of the industrial revolution necessitate adoption of sustainable practices in all areas of development. The pharmaceutical industry faces increasing pressure to minimize its ecological footprint due to its significant contribution to environmental pollution. Over the past two decades, pharmaceutical cocrystals have received immense popularity due to their ability to optimize the critical attributes of active pharmaceutical ingredients and presented an avenue to bring improved drug products to the market. This review explores the potential of pharmaceutical cocrystals as an ecofriendly alternative to traditional solid forms, offering a sustainable approach to drug development. From reducing the number of required doses to improving the stability of actives, from eliminating synthetic operations to using pharmaceutically approved chemicals, from the use of continuous and solvent-free manufacturing methods to leveraging published data on the safety and toxicology, the cocrystallization approach contributes to sustainability of drug development. The latest trends suggest a promising role of pharmaceutical cocrystals in bringing novel and improved medicines to the market, which has been further fuelled by the recent guidance from the major regulatory agencies.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Geetha Bolla
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
15
|
Rusch G, Wang J, Breau K, Kilgour K, Gilleskie G, Keele J, Selle K, Magness ST, Menegatti S, Daniele M. Comparative Approaches for Quantification of Product Yield in a Model Recombinant Green Fluorescent Protein Expressed in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600411. [PMID: 38979374 PMCID: PMC11230288 DOI: 10.1101/2024.06.24.600411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Process Analytical Technologies (PAT) used to monitor and control manufacturing processes are crucial for efficient and automated bioprocessing, which is in congruence with lights-off-manufacturing and Industry 4.0 initiatives. As biomanufacturing seeks to realize more high-throughput and automated operation, an increasing need for multimodal analysis of process metrics becomes essential. Herein, we detail a series of methods for analyzing product yield from a bioreactor and how to conduct cross-method comparisons. We employ a model system of Escherichia coli (E. coli) expression of green fluorescent protein (GFP), which is a simple, cost effective model for students and educators to replicate at different scales. GFP is an ideal analytical marker as it is easy to visualize due to its fluorescence which indicates cellular protein expression, cell localization and physiological changes of the cell population. In this study, samples from a 300 L bioreactor with GFP-expressing E. coli are analyzed to improve product yield and bioprocessing efficiency. Utilizing a fed-batch process for enhanced cell density and product titer, this bioreactor runs on a 24-hour schedule from inoculation to GFP induction and final harvest. To reliably quantify relative GFP expression and E. coli proliferation, we provide simple protocols and example results for comparing three different analytical methods: (1) in-line bioreactor measurements, (2) plate reader assays, and (3) microscopy. The GFP and cell density results follow similar trends based on the various inline and offline analytical methods and show a peak of GFP expression and cell density between 12.5 and 18 hours post inoculation.
Collapse
Affiliation(s)
- Gabrielle Rusch
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695 (USA)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606 (USA)
| | - Junhyeong Wang
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh NC, 27695 (USA)
| | - Keith Breau
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC 27599 (USA)
| | - Katie Kilgour
- Department of Chemical Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695 (USA)
| | - Gary Gilleskie
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), NC State University, Raleigh, NC 27695 (USA)
| | - Jeff Keele
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), NC State University, Raleigh, NC 27695 (USA)
| | - Kurt Selle
- Golden LEAF Biomanufacturing Training and Education Center (BTEC), NC State University, Raleigh, NC 27695 (USA)
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695 (USA)
| | - Stefano Menegatti
- Department of Chemical Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695 (USA)
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695 (USA)
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606 (USA)
| |
Collapse
|
16
|
Bonku EM, Qin H, Odilov A, Abduahadi S, Desta Guma S, Yang F, Xing X, Wang X, Shen J. Impurity study of tecovirimat. Heliyon 2024; 10:e29559. [PMID: 38742068 PMCID: PMC11089324 DOI: 10.1016/j.heliyon.2024.e29559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
This article delineates the systematic identification, synthesis, and impurity control methods used during the manufacturing process development of tecovirimat, an antiviral drug that treats monkeypox. Critical impurities were synthesized, and their chemical structure was confirmed through NMR analysis, GC, and HPLC mass spectrometry. The results established a thorough approach to identify, address, and control impurities to produce high-quality tecovirimat drug substance in accordance with International Conference on Harmonization (ICH)-compliant standards. This study is the first of its kind to evaluate both process and genotoxic impurities in tecovirimat, demonstrating effective control measures during commercial sample investigations and scaling up to a 60-kg batch size. The findings highlight the importance of critical impurity characterization and control in pharmaceutical development and production to ensure the safety and efficacy of the final product.
Collapse
Affiliation(s)
- Emmanuel Mintah Bonku
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Hongjian Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, PR China
| | - Abdullajon Odilov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Safomuddin Abduahadi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Samuel Desta Guma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| | - Feipu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
| | - Xinglong Xing
- Vigonvita Life Science Co., Ltd., 108 Yuxin Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, PR China
| | - Xukun Wang
- Vigonvita Life Science Co., Ltd., 108 Yuxin Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, PR China
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, PR China
| |
Collapse
|
17
|
Wan B, Patel M, Zhou G, Olma M, Bieri M, Mueller M, Appiah-Amponsah E, Patel B, Jayapal K. Robust platform for inline Raman monitoring and control of perfusion cell culture. Biotechnol Bioeng 2024; 121:1688-1701. [PMID: 38393313 DOI: 10.1002/bit.28680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Perfusion cell culture has been gaining increasing popularity for biologics manufacturing due to benefits such as smaller footprint, increased productivity, consistent product quality and manufacturing flexibility, cost savings, and so forth. Process Analytics Technologies tools are highly desirable for effective monitoring and control of long-running perfusion processes. Raman has been widely investigated for monitoring and control of traditional fed batch cell culture process. However, implementation of Raman for perfusion cell culture has been very limited mainly due to challenges with high-cell density and long running times during perfusion which cause extremely high fluorescence interference to Raman spectra and consequently it is exceedingly difficult to develop robust chemometrics models. In this work, a platform based on Raman measurement of permeate has been proposed for effective analysis of perfusion process. It has been demonstrated that this platform can effectively circumvent the fluorescence interference issue while providing rich and timely information about perfusion dynamics to enable efficient process monitoring and robust bioreactor feed control. With the highly consistent spectral data from cell-free sample matrix, development of chemometrics models can be greatly facilitated. Based on this platform, Raman models have been developed for good measurement of several analytes including glucose, lactate, glutamine, glutamate, and permeate titer. Performance of Raman models developed this way has been systematically evaluated and the models have shown good robustness against changes in perfusion scale and variations in permeate flowrate; thus models developed from small lab scale can be directly transferred for implementation in much larger scale of perfusion. With demonstrated robustness, this platform provides a reliable approach for automated glucose feed control in perfusion bioreactors. Glucose model developed from small lab scale has been successfully implemented for automated continuous glucose feed control of perfusion cell culture at much larger scale.
Collapse
Affiliation(s)
- Boyong Wan
- Analytical Research & Development, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Misaal Patel
- Bioprocess Research & Development, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - George Zhou
- Global Vaccine and Biologics Commercialization, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Michael Olma
- Analytical Research & Development, Werthenstein Biopharma GmbH, MSD, Werthenstein, Switzerland
| | - Marco Bieri
- Analytical Research & Development, Werthenstein Biopharma GmbH, MSD, Werthenstein, Switzerland
| | - Marvin Mueller
- Analytical Research & Development, Werthenstein Biopharma GmbH, MSD, Werthenstein, Switzerland
| | | | - Bhumit Patel
- Analytical Research & Development, Merck & Co. Inc., Kenilworth, New Jersey, USA
| | - Karthik Jayapal
- Bioprocess Research & Development, Merck & Co. Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
18
|
M. Abdelhaleem Ali A, M. Alrobaian M. Strengths and weaknesses of current and future prospects of artificial intelligence-mounted technologies applied in the development of pharmaceutical products and services. Saudi Pharm J 2024; 32:102043. [PMID: 38585196 PMCID: PMC10997913 DOI: 10.1016/j.jsps.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Starting from drug discovery, through research and development, to clinical trials and FDA approval, artificial intelligence (AI) plays a vital role in planning, developing, assessing modelling, and optimization of product attributes. In recent decades, machine-learning algorithms integrated into artificial neural networks, neuro-fuzzy logic and decision trees have been applied to tremendous domains related to drug formulation development. Optimized formulations were transformed from lab to market based on optimized properties derived from AI Technologies. Research and development in pharmaceutical industry rely upon computer-driven equipment and machine learning technology to extract data, perform simulations, modelling, and optimization to get optimum solutions. Merging AI technologies in various steps of pharmaceutical manufacture is a major challenge due to lack of in-house technologies. In silico studies based on artificial intelligence are widely applied as effective tools to screen the market needs of medications and pharmaceutical services through inspecting scientific literature and prioritizing medicines for specific illnesses or a particular patient. Specialized personnel who excel in scientific and data science with analytical knowledge are essential for transformation to smart manufacturing and offering services. However, privacy, cybersecurity, AI-dependent unemployment, and ownership rights of AI technologies require proper regulations to gain the benefits and minimize the drawbacks.
Collapse
Affiliation(s)
- Ahmed M. Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P. O. Box 11099, P. Code 21944, Taif, Saudi Arabia
| | - Majed M. Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P. O. Box 11099, P. Code 21944, Taif, Saudi Arabia
| |
Collapse
|
19
|
Bacher J, Lali N, Steiner F, Jungbauer A. Cytokines as fast indicator of infectious virus titer during process development. J Biotechnol 2024; 383:55-63. [PMID: 38325657 DOI: 10.1016/j.jbiotec.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Measuring infectious titer is the most time-consuming method during the production and process development of live viruses. Conventionally, it is done by measuring the tissue culture infectious dose (TCID50) or plaque forming units (pfu) in cell-based assays. Such assays require a time span of more than a week to the readout and significantly slow down process development. In this study, we utilized the pro-inflammatory cytokine response of a Vero production cell line to a recombinant measles vaccine virus (MVV) as model system for rapidly determining infectious virus titer within several hours after infection instead of one week. Cytokines are immunostimulatory proteins contributing to the first line of defence against virus infection. The probed cytokines in this study were MCP-1 and RANTES, which are secreted in a virus dose as well as time dependent manner and correlate to TCID50 over a concentration range of several logarithmic levels with R2 = 0.86 and R2 = 0.83, respectively. Furthermore, the pro-inflammatory cytokine response of the cells was specific for infectious virus particles and not evoked with filtered virus seed. We also discovered that individual cytokine candidates may be more suitable for off- or at-line analysis, depending on the secretion profile as well as their sensitivity towards changing process conditions. Furthermore, the method can be applied to follow a purification procedure and is therefore suited for process development and control.
Collapse
Affiliation(s)
- Johanna Bacher
- acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Narges Lali
- acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Florian Steiner
- acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria
| | - Alois Jungbauer
- acib - Austrian Centre of Industrial Biotechnology, Krenngasse 37, Graz A-8010, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Bouvarel T, Camperi J, Guillarme D. Multi-dimensional technology - Recent advances and applications for biotherapeutic characterization. J Sep Sci 2024; 47:e2300928. [PMID: 38471977 DOI: 10.1002/jssc.202300928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/14/2024]
Abstract
This review provides an overview of the latest advancements and applications in multi-dimensional liquid chromatography coupled with mass spectrometry (mD-LC-MS), covering aspects such as inter-laboratory studies, digestion strategy, trapping column, and multi-level analysis. The shift from an offline to an online workflow reduces sample processing artifacts, analytical variability, analysis time, and the labor required for data acquisition. Over the past few years, this technique has demonstrated sufficient maturity for application across a diverse range of complex products. Moreover, there is potential for this strategy to evolve into an integrated process analytical technology tool for the real-time monitoring of monoclonal antibody quality. This review also identifies emerging trends, including its application to new modalities, the possibility of evaluating biological activity within the mD-LC set-up, and the consideration of multi-dimensional capillary electrophoresis as an alternative to mD-LC. As mD-LC-MS continues to evolve and integrate emerging trends, it holds the potential to shape the next generation of analytical tools, offering exciting possibilities for enhanced characterization and monitoring of complex biopharmaceutical products.
Collapse
Affiliation(s)
- Thomas Bouvarel
- Protein Analytical Chemistry, Genentech, South San Francisco, California, USA
| | - Julien Camperi
- Cell Therapy Engineering and Development, Genentech, South San Francisco, California, USA
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Sampathkumar K, Kerwin BA. Roadmap for Drug Product Development and Manufacturing of Biologics. J Pharm Sci 2024; 113:314-331. [PMID: 37944666 DOI: 10.1016/j.xphs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Therapeutic biology encompasses different modalities, and their manufacturing processes may be vastly different. However, there are many similarities that run across the different modalities during the drug product (DP) development process and manufacturing. Similarities include the need for Quality Target Product Profile (QTTP), analytical development, formulation development, container/closure studies, drug product process development, manufacturing and technical requirements set out by numerous regulatory documents such as the FDA, EMA, and ICH for pharmaceuticals for human use and other country specific requirements. While there is a plethora of knowledge on studies needed for development of a drug product, there is no specific guidance set out in a phase dependent manner delineating what studies should be completed in alignment with the different phases of clinical development from pre-clinical through commercialization. Because of this reason, we assembled a high-level drug product development and manufacturing roadmap. The roadmap is applicable across the different modalities with the intention of providing a unified framework from early phase development to commercialization of biologic drug products.
Collapse
Affiliation(s)
- Krishnan Sampathkumar
- SSK Biosolutions LLC, 14022 Welland Terrace, North Potomac, MD 20878, USA; Currently at Invetx, Inc., One Boston Place, Suite 3930, 201 Washington Street, Boston, MA 02108, USA
| | - Bruce A Kerwin
- Kerwin BioPharma Consulting LLC, 14138 Farmview Ln NE, Bainbridge Island, WA 98110, USA; Coriolis Scientific Advisory Board, Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
22
|
Bawuah P, Evans M, Lura A, Farrell DJ, Barrie PJ, Kleinebudde P, Markl D, Zeitler JA. At-line porosity sensing for non-destructive disintegration testing in immediate release tablets. Int J Pharm X 2023; 5:100186. [PMID: 37396627 PMCID: PMC10314216 DOI: 10.1016/j.ijpx.2023.100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Fully automated at-line terahertz time-domain spectroscopy in transmission mode is used to measure tablet porosity for thousands of immediate release tablets. The measurements are rapid and non-destructive. Both laboratory prepared tablets and commercial samples are studied. Multiple measurements on individual tablets quantify the random errors in the terahertz results. These show that the measurements of refractive index are precise, with the standard deviation on a single tablet being about 0.002, with variation between measurements being due to small errors in thickness measurement and from the resolution of the instrument. Six batches of 1000 tablets each were directly compressed using a rotary press. The tabletting turret speed (10 and 30 rpm) and compaction pressure (50, 100 and 200 MPa) were varied between the batches. As expected, the tablets compacted at the highest pressure have far lower porosity than those compacted at the lowest pressure. The turret rotation speed also has a significant effect on porosity. This variation in process parameters resulted in batches of tablets with an average porosity between 5.5 and 26.5%. Within each batch, there is a distribution of porosity values, the standard deviation of which is in the range 1.1 to 1.9%. Destructive measurements of disintegration time were performed in order to develop a predictive model correlating disintegration time and tablet porosity. Testing of the model suggested it was reasonable though there may be some small systematic errors in disintegration time measurement. The terahertz measurements further showed that there are changes in tablet properties after storage for nine months in ambient conditions.
Collapse
Affiliation(s)
- Prince Bawuah
- University of Cambridge, Department of Chemical Engineering and Biotechnology, UK
| | - Mike Evans
- TeraView Limited, 1, Enterprise, Cambridge Research Park, CB25 9PD Cambridge, UK
| | - Ard Lura
- Heinrich-Heine-University, Institute of Pharmaceutics and Biopharmaceutics, Dusseldorf, Germany
| | - Daniel J. Farrell
- TeraView Limited, 1, Enterprise, Cambridge Research Park, CB25 9PD Cambridge, UK
| | - Patrick J. Barrie
- University of Cambridge, Department of Chemical Engineering and Biotechnology, UK
| | - Peter Kleinebudde
- Heinrich-Heine-University, Institute of Pharmaceutics and Biopharmaceutics, Dusseldorf, Germany
| | - Daniel Markl
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow, UK
| | - J. Axel Zeitler
- University of Cambridge, Department of Chemical Engineering and Biotechnology, UK
| |
Collapse
|
23
|
Narsimhan M, Kim J, Morris NA, Bower MA, Gunawardena HP, Bowen E, Regnier FE. Mobile Affinity Selection Chromatography Analysis of Therapeutic Monoclonal Antibodies. Anal Chem 2023; 95:16115-16122. [PMID: 37883730 PMCID: PMC10633814 DOI: 10.1021/acs.analchem.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Federal regulatory agencies require continuous verification of recombinant therapeutic monoclonal antibody (mAb) quality that is commonly achieved in a two-step process. First, the host-cell proteome and metabolome are removed from the production medium by protein A affinity chromatography. Second, following recovery from the affinity column with an acidic wash, mAb quality is assessed in multiple ways by liquid chromatography-mass spectrometry (LC-MS). However, lengthy sample preparation and the lack of higher-order structure analyses are limitations of this approach. To address these issues, this report presents an integrated approach for the analysis of two critical quality attributes of mAbs, namely titer and relative aggregate content. Integration of sample preparation and molecular-recognition-based analyses were achieved in a single step utilizing an isocratically eluted mobile affinity selection chromatography (MASC) column. MASC circumvents the protein A step, simplifying sample preparation. Within 10 min, (i) mAbs are fluorescently coded for specific detection, (ii) monomers and aggregates are resolved, (iii) the mAb titer is quantified, (iv) relative aggregate content is determined, (v) analytes are detected, and (vi) the column is ready for the next sample. It is suggested herein that this mode of rapid quality assessment will be of value at all stages of discovery (screening, clone selection, characterization), process R&D, and manufacturing. Rapid monitoring of variant formation is a critical element of quality evaluation.
Collapse
Affiliation(s)
- Meena
L. Narsimhan
- Novilytic,
LLC, 1281 Win Hentschel
Boulevard, West Lafayette, Indiana 47906, United States
| | - Jinhee Kim
- Novilytic,
LLC, 1281 Win Hentschel
Boulevard, West Lafayette, Indiana 47906, United States
| | - Nathan A. Morris
- Novilytic,
LLC, 1281 Win Hentschel
Boulevard, West Lafayette, Indiana 47906, United States
| | - Mary A. Bower
- Novilytic,
LLC, 1281 Win Hentschel
Boulevard, West Lafayette, Indiana 47906, United States
| | - Harsha P. Gunawardena
- Janssen
Research & Development, The Janssen
Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Eric Bowen
- Novilytic,
LLC, 1281 Win Hentschel
Boulevard, West Lafayette, Indiana 47906, United States
| | - Fred E. Regnier
- Novilytic,
LLC, 1281 Win Hentschel
Boulevard, West Lafayette, Indiana 47906, United States
| |
Collapse
|
24
|
Zhao J, Tian G, Qu H. Pharmaceutical Application of Process Understanding and Optimization Techniques: A Review on the Continuous Twin-Screw Wet Granulation. Biomedicines 2023; 11:1923. [PMID: 37509561 PMCID: PMC10377609 DOI: 10.3390/biomedicines11071923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Twin-screw wet granulation (TSWG) is a method of continuous pharmaceutical manufacturing and a potential alternative method to batch granulation processes. It has attracted more and more interest nowadays due to its high efficiency, robustness, and applications. To improve both the product quality and process efficiency, the process understanding is critical. This article reviews the recent work in process understanding and optimization for TSWG. Various aspects of the progress in TSWG like process model construction, process monitoring method development, and the strategy of process control for TSWG have been thoroughly analyzed and discussed. The process modeling technique including the empirical model, the mechanistic model, and the hybrid model in the TSWG process are presented to increase the knowledge of the granulation process, and the influence of process parameters involved in granulation process on granule properties by experimental study are highlighted. The study analyzed several process monitoring tools and the associated technologies used to monitor granule attributes. In addition, control strategies based on process analytical technology (PAT) are presented as a reference to enhance product quality and ensure the applicability and capability of continuous manufacturing (CM) processes. Furthermore, this article aims to review the current research progress in an effort to make recommendations for further research in process understanding and development of TSWG.
Collapse
Affiliation(s)
- Jie Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Geng Tian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Eady M, Caison J, Jinnah M, Jenkins D. A Rapid Qualitative Screening Method for Isoniazid Tablets Using Handheld NIR Spectrometers in Two Countries. Molecules 2023; 28:4758. [PMID: 37375311 DOI: 10.3390/molecules28124758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Isoniazid is a leading tuberculosis treating medication. Global supply chains provide essential medicines such as isoniazid to resource-limited areas. Ensuring the safety and efficaciousness of these medicines is essential to public health programs. Handheld spectrometers are becoming increasingly approachable in cost and usability. As supply chains expand, quality compliance screening of essential medications is necessary in site-specific locations. Here, a brand-specific qualitative discrimination analysis of isoniazid is approached by collecting data from two handheld spectrometers in two countries with the intent to build a multi-location quality compliance screening method for a brand of isoniazid. METHODS Two handheld spectrometers (900-1700 nm) were used to collect spectra from five manufacturing sources (N = 482) in Durham, North Carolina, USA, and Centurion, South Africa. A qualitative brand differentiation method was established from both locations by applying a Mahalanobis distance thresholding method as a measure of assessing similarity. RESULTS Combining data from both locations resulted in a 100% classification accuracy, at both locations, for brand 'A' and resulted in the four other brands classifying as dissimilar. Bias was found between sensors in terms of resulting Mahalanobis distances, but the classification method proved to be robust enough to accommodate. Several spectral peaks found in isoniazid references appear within the 900-1700 nm range, as well as variation in the excipients per manufacturer. CONCLUSIONS Results show promise for compliance screening isoniazid as well as other tablets in multiple geographic locations using handheld spectrometers.
Collapse
Affiliation(s)
- Matthew Eady
- FHI 360-Product Quality Compliance Department, Durham, NC 27713, USA
| | - Jonelle Caison
- FHI 360-Product Quality Compliance Department, Durham, NC 27713, USA
- Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Mohammed Jinnah
- FHI 360-Product Quality Compliance Department, Centurion 0157, South Africa
| | - David Jenkins
- FHI 360-Product Quality Compliance Department, Durham, NC 27713, USA
| |
Collapse
|
26
|
Kumar R, Sarin D, Rathore AS. High-throughput capillary electrophoresis analysis of biopharmaceuticals utilizing sequential injections. Electrophoresis 2023; 44:767-774. [PMID: 36719057 DOI: 10.1002/elps.202200208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
The complexity of biotherapeutic products implies an ever-increasing list of product quality attributes that need to be monitored and characterized. In addition, the growing interest in implementing process analytical technology in biopharmaceutical production has further increased the testing burden, together with the need for rapid testing that can facilitate real-time or near-real-time decision-making. Capillary electrophoresis (CE) has made a place in biopharmaceutical analysis but is regarded as a low-throughput method, with the instrument dead time constituting more than 80% of the total time of analysis. In this study, the dead time of CE was utilized to analyse 3 mAb samples in a single-CE run. This approach resulted in an up to 77% reduction in the total analysis time and increased the productivity by up to 300%, compared to traditional single CE-ultraviolet runs, without compromising resolution or relative peak areas. Additionally, good method reproducibility was observed. The compatibility of the method has been demonstrated with protein A eluate and cation exchange chromatography fractions. We, thus, propose that sequential injections can be applied for fast and robust CE analysis of biopharmaceuticals.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Deepika Sarin
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
27
|
Yoshikawa I, Hosoe S, Hikima Y, Watari M, Ohshima M. In-Line Monitoring of the Physical Blowing Agent Concentration by Transmission Near-Infrared Spectroscopy with High-Pressure Resistance Fiber Optic Probes for Foam Injection Molding Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Itsuki Yoshikawa
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shunsuke Hosoe
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuta Hikima
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | | | - Masahiro Ohshima
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
28
|
Khanolkar A, Thorat V, Patil B, Samanta G. Towards a real-time release of blends and tablets using NIR and Raman spectroscopy at commercial scales. Pharm Dev Technol 2023; 28:265-276. [PMID: 36847606 DOI: 10.1080/10837450.2023.2185256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
Near Infrared and Raman spectroscopy-based Process Analytical Technology tools were used for monitoring blend uniformity (BU) and content uniformity (CU) for solid oral formulations. A quantitative Partial Least Square model was developed to monitor BU as real-time release testing at a commercial scale. The model having the R2, and root mean square error of 0.9724 and 2.2047, respectively can predict the target concentration of 100% with a 95% confidence interval of 101.85-102.68% even after one year. The tablets from the same blends were investigated for CU using NIR and Raman techniques both in reflection and transmission mode. Raman reflection technique was found to be the best and the PLS model was developed using tablets compressed at different concentrations, hardness, and speed. The model with R2 and RMSE of 0.9766 and 1.9259, respectively was used for the quantification of CU. Both the BU and CU models were validated for accuracy, precision, specificity, linearity, and robustness. The accuracy was proved against the HPLC method with a relative standard deviation of less than 3%. The equivalency for BU by NIR and CU by Raman was evaluated using Schuirmann's Two One-sided tests and found equivalent to HPLC within a 2% acceptable limit.
Collapse
Affiliation(s)
- Aruna Khanolkar
- QbD Department, Integrated Product Development, Cipla Ltd, Mumbai, Maharashtra, India
| | - Viraj Thorat
- QbD Department, Integrated Product Development, Cipla Ltd, Mumbai, Maharashtra, India
| | - Bhaskar Patil
- QbD Department, Integrated Product Development, Cipla Ltd, Mumbai, Maharashtra, India
| | - Gautam Samanta
- QbD Department, Integrated Product Development, Cipla Ltd, Mumbai, Maharashtra, India
| |
Collapse
|
29
|
In-Line Vis-NIR Spectral Analysis for the Column Chromatographic Processes of the Ginkgo biloba L. Leaves. Part II: Batch-to-Batch Consistency Evaluation of the Elution Process. SEPARATIONS 2022. [DOI: 10.3390/separations9110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An in-line monitoring method for the elution process of Ginkgo biloba L. leaves using visible and near-infrared spectroscopy in conjunction with multivariate statistical process control (MSPC) was established. Experiments, including normal operating batches and abnormal ones, were designed and carried out. The MSPC model for the elution process was developed and validated. The abnormalities were detected successfully by the control charts of principal component scores, Hotelling T2, or DModX (distance to the model). The results suggested that the established method can be used for the in-line monitoring and batch-to-batch consistency evaluation of the elution process.
Collapse
|
30
|
Review on Starter Pellets: Inert and Functional Cores. Pharmaceutics 2022; 14:pharmaceutics14061299. [PMID: 35745872 PMCID: PMC9227027 DOI: 10.3390/pharmaceutics14061299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
A significant proportion of pharmaceuticals are now considered multiparticulate systems. Modified-release drug delivery formulations can be designed with engineering precision, and patient-centric dosing can be accomplished relatively easily using multi-unit systems. In many cases, Multiple-Unit Pellet Systems (MUPS) are formulated on the basis of a neutral excipient core which may carry the layered drug surrounded also by functional coating. In the present summary, commonly used starter pellets are presented. The manuscript describes the main properties of the various nuclei related to their micro- and macrostructure. In the case of layered pellets formed based on different inert pellet cores, the drug release mechanism can be expected in detail. Finally, the authors would like to prove the industrial significance of inert cores by presenting some of the commercially available formulations.
Collapse
|
31
|
Martynek D, Němeček J, Ridvan L, Němeček J, Šoóš M. Impact of crystallization conditions and filtration cake washing on the clustering of metformin hydrochloride crystals. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Real-Time Monitoring of Antibody Quality Attributes for Cell Culture Production Processes in Bioreactors via Integration of an Automated Sampling Technology with Multi-Dimensional Liquid Chromatography Mass Spectrometry. J Chromatogr A 2022; 1672:463067. [DOI: 10.1016/j.chroma.2022.463067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
|
33
|
Camperi J. Online HPLC–HRMS Platform: The Next-Generation Process Analytical Technology Tool for Real-Time Monitoring of Antibody Quality Attributes in Biopharmaceutical Processes. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.op5766f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Online monitoring of critical quality attributes (CQAs) directly within the bioreactor can provide the basis for advanced processing of therapeutics production, including automated real-time monitoring, feedback control process intensification, smart manufacturing, and real-time release testing. This paper presents recent developments in online high performance liquid chromatography–high-resolution mass spectrometry (HPLC–HRMS) platforms as a promising process analytical technology (PAT) tool for real-time monitoring of antibody quality attributes (QAs) in biopharmaceutical processes. This technology can be used to monitor multiple CQAs and process parameters during cell culture production, enabling real-time decisions.
Collapse
|
34
|
Daniel S, Kis Z, Kontoravdi C, Shah N. Quality by Design for enabling RNA platform production processes. Trends Biotechnol 2022; 40:1213-1228. [DOI: 10.1016/j.tibtech.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
35
|
Solid Dispersion Formulations by FDM 3D Printing-A Review. Pharmaceutics 2022; 14:pharmaceutics14040690. [PMID: 35456524 PMCID: PMC9032529 DOI: 10.3390/pharmaceutics14040690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023] Open
Abstract
Additive manufacturing (AM) is revolutionizing the way medicines are designed, manufactured, and utilized. Perhaps, AM appears to be ideal for the fit-for-purpose manufacturing of medicines in contrast to the several disadvantages associated with the conventional fit-for-all mass production that accounts for less than 50% of pharmacotherapeutic treatment/management of diseases especially among children and elderly patients, as well as patients with special needs. In this review, we discuss the current trends in the application of additive manufacturing to prepare personalized dosage forms on-demand focusing the attention on the relevance of coupling solid dispersion with FDM 3D printing. Combining the two technologies could offer many advantages such as to improve the solubility, dissolution, and oral bioavailability of poorly soluble drugs in tandem with the concept of precision medicine and personalized dosing and to address the dilemma of commercial availability of FDM filaments loaded with Class II and/or Class IV drugs. However, thermal treatment especially for heat-sensitive drugs, regulatory, and ethical obligations in terms of quality control and quality assurance remain points of concern. Hence, a concerted effort is needed between the scientific community, the pharmaceutical industries, the regulatory agencies, the clinicians and clinical pharmacists, and the end-users to address these concerns.
Collapse
|
36
|
Lee JH, Park C, Weon KY, Kang CY, Lee BJ, Park JB. Improved Bioavailability of Poorly Water-Soluble Drug by Targeting Increased Absorption through Solubility Enhancement and Precipitation Inhibition. Pharmaceuticals (Basel) 2021; 14:ph14121255. [PMID: 34959655 PMCID: PMC8707685 DOI: 10.3390/ph14121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Itraconazole (ITZ) is a class II drug according to the biopharmaceutical classification system. Its solubility is pH 3-dependent, and it is poorly water-soluble. Its pKa is 3.7, which makes it a weak base drug. The aim of this study was to prepare solid dispersion (SD) pellets to enhance the release of ITZ into the gastrointestinal environment using hot-melt extrusion (HME) technology and a pelletizer. The pellets were then filled into capsules and evaluated in vitro and in vivo. The ITZ changed from a crystalline state to an amorphous state during the HME process, as determined using DSC and PXRD. In addition, its release into the gastrointestinal tract was enhanced, as was the level of ITZ recrystallization, which was lower than the marketed drug (Sporanox®), as assessed using an in vitro method. In the in vivo study that was carried out in rats, the AUC0-48h of the commercial formulation, Sporanox®, was 1073.9 ± 314.7 ng·h·mL-1, and the bioavailability of the SD pellet (2969.7 ± 720.6 ng·h·mL-1) was three-fold higher than that of Sporanox® (*** p < 0.001). The results of the in vivo test in beagle dogs revealed that the AUC0-24h of the SD-1 pellet (which was designed to enhance drug release into gastric fluids) was 3.37 ± 3.28 μg·h·mL-1 and that of the SD-2 pellet (which was designed to enhance drug release in intestinal fluids) was 7.50 ± 4.50 μg·h·mL-1. The AUC of the SD-2 pellet was 2.2 times higher than that of the SD-1 pellet. Based on pharmacokinetic data, ITZ would exist in a supersaturated state in the area of drug absorption. These results indicated that the absorption area is critical for improving the bioavailability of ITZ. Consequently, the bioavailability of ITZ could be improved by inhibiting precipitation in the absorption area.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
| | - Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Kwon-Yeon Weon
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si 38430, Korea;
| | - Chin-Yang Kang
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea;
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea; (J.-H.L.); (C.-Y.K.)
- Bioavailability Control Lab, Sahmyook University, Seoul 01795, Korea
- Correspondence: ; Tel.: +82-2-3399-1624
| |
Collapse
|
37
|
Quodbach J, Bogdahn M, Breitkreutz J, Chamberlain R, Eggenreich K, Elia AG, Gottschalk N, Gunkel-Grabole G, Hoffmann L, Kapote D, Kipping T, Klinken S, Loose F, Marquetant T, Windolf H, Geißler S, Spitz T. Quality of FDM 3D Printed Medicines for Pediatrics: Considerations for Formulation Development, Filament Extrusion, Printing Process and Printer Design. Ther Innov Regul Sci 2021; 56:910-928. [PMID: 34826120 PMCID: PMC9492703 DOI: 10.1007/s43441-021-00354-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
3d printing is capable of providing dose individualization for pediatric medicines and translating the precision medicine approach into practical application. In pediatrics, dose individualization and preparation of small dosage forms is a requirement for successful therapy, which is frequently not possible due to the lack of suitable dosage forms. For precision medicine, individual characteristics of patients are considered for the selection of the best possible API in the most suitable dose with the most effective release profile to improve therapeutic outcome. 3d printing is inherently suitable for manufacturing of individualized medicines with varying dosages, sizes, release profiles and drug combinations in small batch sizes, which cannot be manufactured with traditional technologies. However, understanding of critical quality attributes and process parameters still needs to be significantly improved for this new technology. To ensure health and safety of patients, cleaning and process validation needs to be established. Additionally, adequate analytical methods for the in-process control of intermediates, regarding their printability as well as control of the final 3d printed tablets considering any risk of this new technology will be required. The PolyPrint consortium is actively working on developing novel polymers for fused deposition modeling (FDM) 3d printing, filament formulation and manufacturing development as well as optimization of the printing process, and the design of a GMP-capable FDM 3d printer. In this manuscript, the consortium shares its views on quality aspects and measures for 3d printing from drug-loaded filaments, including formulation development, the printing process, and the printed dosage forms. Additionally, engineering approaches for quality assurance during the printing process and for the final dosage form will be presented together with considerations for a GMP-capable printer design.
Collapse
Affiliation(s)
- Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Malte Bogdahn
- Merck Healthcare KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Rebecca Chamberlain
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | | | | | | | - Lena Hoffmann
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | | | - Thomas Kipping
- Merck Life Science KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Fabian Loose
- Laboratory for Manufacturing Systems, University of Applied Sciences Cologne, Betzdorfer Str. 2, 50679, Cologne, Germany
| | | | - Hellen Windolf
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Simon Geißler
- Merck Healthcare KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | - Tilmann Spitz
- Laboratory for Manufacturing Systems, University of Applied Sciences Cologne, Betzdorfer Str. 2, 50679, Cologne, Germany
| |
Collapse
|
38
|
Wahlich J. Review: Continuous Manufacturing of Small Molecule Solid Oral Dosage Forms. Pharmaceutics 2021; 13:1311. [PMID: 34452272 PMCID: PMC8400279 DOI: 10.3390/pharmaceutics13081311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Continuous manufacturing (CM) is defined as a process in which the input material(s) are continuously fed into and transformed, and the processed output materials are continuously removed from the system. CM can be considered as matching the FDA's so-called 'Desired State' of pharmaceutical manufacturing in the twenty-first century as discussed in their 2004 publication on 'Innovation and Continuous Improvement in Pharmaceutical Manufacturing'. Yet, focused attention on CM did not really start until 2014, and the first product manufactured by CM was only approved in 2015. This review describes some of the benefits and challenges of introducing a CM process with a particular focus on small molecule solid oral dosage forms. The review is a useful introduction for individuals wishing to learn more about CM.
Collapse
Affiliation(s)
- John Wahlich
- Academy of Pharmaceutical Sciences, c/o Bionow, Greenheys Business Centre, Manchester Science Park, Pencroft Way, Manchester M15 6JJ, UK
| |
Collapse
|