1
|
Jin A, Lu C, Gao C, Qiao H, Zhang Y, Liu H, Sun W, Dai Q, Liu Y. Biomimetic basement membranes: advances in materials, preparation techniques, and applications in in vitro biological models. Biomater Sci 2025; 13:2179-2200. [PMID: 40100740 DOI: 10.1039/d4bm01682c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In vitro biological model technology has become a cornerstone of modern biological research, driving advancements in drug screening, physiological and pathological studies, and tissue implantation applications. The natural basement membrane (BM), a homogeneous structure, provides critical physical and biological support for tissues and organs. To replicate its function, researchers have developed biomimetic BMs using advanced fabrication technologies, which are increasingly applied to in vitro models. This review explores the materials, preparation techniques, and applications of biomimetic BMs across various biological models, highlighting their advantages and limitations. Additionally, it discusses recent progress in the field and identifies current challenges in achieving BM simulations that closely mimic native structures. Future directions and recommendations are provided to guide the development of high-performance biomimetic BM materials and their manufacturing processes.
Collapse
Affiliation(s)
- Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenbin Sun
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
2
|
Ni J, Dong X, Wang H, Zhang Y, Xu J, Wang T. Oxidized regenerated cellulose-based supermolecular hydrogel for controlled drug release: Integrating cyclodextrin-mediated hydrophobic drug distribution, wound-specific degradation, and multifunctional therapeutic effects. Int J Biol Macromol 2025; 310:143445. [PMID: 40274142 DOI: 10.1016/j.ijbiomac.2025.143445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Multifunctional wound dressings with rapid hemostasis, antimicrobial and anti-inflammatory properties, healing promotion, pain relief, and controlled degradation hold significant clinical potential. Herein, we developed a novel hydrogel system by functionalizing oxidized regenerated cellulose (ORC) with l-lysine (L-Lys) through dynamic Schiff base linkages. This strategy endowed the hydrogel with natural antimicrobial activity and enabled controlled release of L-Lys for tissue regeneration. Moreover, hydrophobic ibuprofen (IBU) was encapsulated using hydroxypropyl-β-cyclodextrin (HP-β-CD), effectively improving its solubility, dispersion, and delivery within the hydrophilic hydrogel matrix. This supramolecular host-guest approach solved the common challenge of incorporating hydrophobic drugs into aqueous systems. The hydrogel's structure and morphology were systematically characterized, confirming successful fabrication. Antimicrobial assays revealed strong inhibition against E. coli and S. aureus, with inhibition zones of 25.3 ± 0.12 mm and 34.4 ± 0.11 mm, respectively. Degradation studies showed complete disintegration within 60 h, with easy removal using saline. In vivo wound healing experiments demonstrated 98.5 % wound closure within 13 days. Histological analysis confirmed that the combined release of L-Lys and IBU significantly promoted tissue regeneration. This work introduces an innovative platform that leverages dynamic covalent chemistry and cyclodextrin-based drug delivery for next-generation wound dressings with enhanced therapeutic performance.
Collapse
Affiliation(s)
- Jiayi Ni
- Aulin College, Northeast Forestry University, Harbin, Heilongjiang 150000, China
| | - Xielong Dong
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Hao Wang
- Aulin College, Northeast Forestry University, Harbin, Heilongjiang 150000, China
| | - Yi Zhang
- Aulin College, Northeast Forestry University, Harbin, Heilongjiang 150000, China
| | - Juan Xu
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Haidian district, No.12, Da Hui Si Road, Beijing 100081, China; National Research Institute for Family Planning, Haidian district, No.12, Da Hui Si Road, Beijing 100081, China.
| | - Ting Wang
- Aulin College, Northeast Forestry University, Harbin, Heilongjiang 150000, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China.
| |
Collapse
|
3
|
Oh N, Hwang J, Kang MS, Yoo CY, Kwak M, Han DW. Versatile and Marvelous Potentials of Polydeoxyribonucleotide for Tissue Engineering and Regeneration. Biomater Res 2025; 29:0183. [PMID: 40231205 PMCID: PMC11994882 DOI: 10.34133/bmr.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
Over the past decade, substantial focus has been placed on polydeoxyribonucleotide (PDRN) due to its promising pharmacological properties, making it a valuable candidate for tissue engineering applications. Accordingly, this paper aims to review and summarize the latest experimental research on PDRN in the context of tissue engineering and regeneration. The unique biochemical mechanisms of PDRN to promote cellular behavior and regeneration are summarized. We categorize commonly utilized PDRN-based tissue engineering fields as neuromuscular tissues, diabetic wound or skin, and bone regeneration. At the same time, we explore scaffold strategies for integrating PDRN into bioceramics, polymers, and cell/tissue-derived materials, along with its combination with photo/electromodulation techniques. Furthermore, we discuss potential opportunities and challenges in translating PDRN-based approaches into clinical practice. We expect future interdisciplinary research and clinical trials to evaluate the long-term efficacy and safety of PDRN while emphasizing standardization and quality control to ensure its consistency and effectiveness in regenerative applications.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Chemistry and Biology,
Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, Republic of Korea
| | - Juyoung Hwang
- Department of Chemistry,
Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare,
Pukyong National University, Busan 48513, Republic of Korea
- Ajou Energy Science Research Center,
Ajou University, Suwon 16499, Republic of Korea
| | - Moon Sung Kang
- Research Institute of Mechanical Technology,
Pusan National University, Busan 46241, Republic of Korea
| | - Chung-Yul Yoo
- Department of Energy Systems Research and Chemistry,
Ajou University, Suwon 16499, Republic of Korea
| | - Minseok Kwak
- Department of Chemistry,
Pukyong National University, Busan 48513, Republic of Korea
- Smart Gym-Based Translational Research Center for Active Senior’s Healthcare,
Pukyong National University, Busan 48513, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering,
Pukyong National University, Busan 48513, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering,
Pusan National University, Busan 46241, Republic of Korea
- Institute of Nano-Bio Convergence,
Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Sathi Devi L, Gigliobianco MR, Gabrielli S, Agas D, Sabbieti MG, Morelli MB, Amantini C, Casadidio C, Di Martino P, Censi R. Localized Cancer Treatment Using Thiol-Ene Hydrogels for Dual Drug Delivery. Biomacromolecules 2025. [PMID: 40198273 DOI: 10.1021/acs.biomac.5c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Combinatorial cancer therapy benefits from injectable hydrogels for localized, controlled drug delivery. This study presents a thiol-ene conjugated hydrogel formed by cross-linking thiol-modified hyaluronic acid (HASH) with vinyl sulfone-modified β-cyclodextrin (CDVS). Four formulations (23Gel-16, 23Gel-33, 99Gel-16, 99Gel-33) were synthesized by varying HASH molecular weight (23 or 99 kDa) and CDVS modification (16% or 33%). Rheological analysis confirmed enhanced viscoelasticity with increasing molecular weight and modification (99Gel-33 > 99Gel-16 > 23Gel-33 > 23Gel-16). The system enabled combinatorial delivery of doxorubicin (DOX) and carvacrol (CRV), exhibiting tumor-responsive degradation and tunable release. DOX release accelerated under tumor-mimicking conditions (100% in 46 h vs 58.7% in PBS), while CRV showed an initial burst followed by sustained release. The hydrogel promoted mesenchymal stem cell proliferation and effectively inhibited triple-negative breast cancer cells. This injectable, tumor-responsive hydrogel system offers a promising platform for minimally invasive, personalized cancer therapy.
Collapse
Affiliation(s)
- Lakshmi Sathi Devi
- School of Pharmacy, ChIP Chemistry Interdisciplinary Project Research Centre, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Maria Rosa Gigliobianco
- Department of Pharmacy, University of "G. D'Annunzio" Chieti and Pescara, Via dei Vestini 1, 66100 Chieti, CH, Italy
| | - Serena Gabrielli
- School of Science and Technology, ChIP Chemistry Interdisciplinary Project Research Centre, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Cristina Casadidio
- School of Pharmacy, ChIP Chemistry Interdisciplinary Project Research Centre, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Piera Di Martino
- Department of Pharmacy, University of "G. D'Annunzio" Chieti and Pescara, Via dei Vestini 1, 66100 Chieti, CH, Italy
| | - Roberta Censi
- School of Pharmacy, ChIP Chemistry Interdisciplinary Project Research Centre, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| |
Collapse
|
5
|
Agbna GHD, Zaidi SJ. Hydrogel Performance in Boosting Plant Resilience to Water Stress-A Review. Gels 2025; 11:276. [PMID: 40277712 PMCID: PMC12027221 DOI: 10.3390/gels11040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Hydrogels have emerged as a transformative technology in agriculture, offering significant potential to enhance crop resilience, improve water use efficiency, and promote sustainable farming practices. These three-dimensional polymeric networks can absorb and retain water, making them particularly valuable in regions facing water scarcity and unpredictable rainfall patterns. This review examines the types, properties, and applications of hydrogels in agriculture, highlighting their role in improving soil moisture retention, enhancing nutrient delivery by, and increasing crop yield. The discussion extends to the economic and environmental implications of hydrogel use, including their potential to reduce irrigation costs by and minimize soil erosion. The review also explores the latest innovations in hydrogel technology, such as smart hydrogels and biodegradable alternatives, which offer new possibilities for precision agriculture and environmental sustainability. Despite promising benefits, challenges such as the higher cost of synthetic hydrogels, environmental impact, and performance variability across different soil types remain. Addressing these challenges requires a multidisciplinary approach that integrates advancements in material science, agronomy, and environmental policy. The future outlook for hydrogels in agriculture is optimistic, with ongoing research poised to refine their applications and expand their use across diverse agricultural systems. By leveraging the capabilities of hydrogels, agriculture can achieve increase in productivity, ensure food security, and move towards a more sustainable and resilient agricultural landscape.
Collapse
Affiliation(s)
- Gamareldawla H. D. Agbna
- UNESCO-Chair in Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
- Department of Agricultural Engineering, College of Agricultural Studies, Sudan University of Science and Technology, Shambat, Khartoum North P.O. Box 71, Sudan
| | - Syed Javaid Zaidi
- UNESCO-Chair in Desalination and Water Treatment, Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
6
|
Ivaskiene T, Kaspute G, Ramanavicius A, Prentice U. Molecularly Imprinted Polymer Advanced Hydrogels as Tools for Gastrointestinal Diagnostics. Gels 2025; 11:269. [PMID: 40277704 PMCID: PMC12026608 DOI: 10.3390/gels11040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Gastroenterology faces significant challenges due to the global burden of gastrointestinal (GI) diseases, driven by socio-economic disparities and their wide-ranging impact on health and healthcare systems. Advances in molecularly imprinted polymers (MIPs) offer promising opportunities for developing non-invasive, cost-effective diagnostic tools that enhance the accuracy and accessibility of GI disease detection. This research explores the potential of MIP-based sensors in revolutionizing gastrointestinal diagnostics and improving early detection and disease management. Biomarkers are vital in diagnosing, monitoring, and personalizing disease treatment, particularly in gastroenterology, where advancements like MIPs offer highly selective and non-invasive diagnostic solutions. MIPs mimic natural recognition mechanisms, providing stability and sensitivity even in complex biological environments, making them ideal for early disease detection and real-time monitoring. Their integration with advanced technologies, including conducting polymers, enhances their functionality, enabling rapid, point-of-care diagnostics for gastrointestinal disorders. Despite regulatory approval and scalability challenges, ongoing innovations promise to revolutionize diagnostics and improve patient outcomes through precise approaches.
Collapse
Affiliation(s)
- Tatjana Ivaskiene
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
| | - Greta Kaspute
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Urte Prentice
- State Research Institute Centre for Innovative Medicine, LT-08410 Vilnius, Lithuania; (T.I.); (G.K.)
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, LT-03225 Vilnius, Lithuania
| |
Collapse
|
7
|
Lucic Skoric M, Lukic I, Pantic M, Kalagasidis Krusic M, Novak Z, Milovanovic S. Biopolymer aerogels: Structural and functional tailoring of starch/sodium alginate networks. Int J Biol Macromol 2025; 309:142774. [PMID: 40180100 DOI: 10.1016/j.ijbiomac.2025.142774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
This study explores the synthesis, structural, and functional properties of starch/sodium alginate aerogels prepared via two-step and multi-step solvent exchange methods, with and without calcium chloride (CaCl2) crosslinking. Fourier-transform infrared (FTIR) spectroscopy confirmed that both polymers were incorporated in an aerogel matrix, while Brunauer-Emmett-Teller (BET) analysis revealed that the preparation method and composition of initial polymer solution had a significant influence on surface area and porosity. Specifically, the surface area ranged from 4 to 132 m2/g, with multi-step solvent exchange producing aerogels with higher surface area and porosity. Scanning electron microscopy (SEM) showed that multi-step solvent exchange produced more homogeneous aerogel structures, while the two-step method was more effective for sodium alginate-rich aerogels. Mechanical testing revealed that crosslinked aerogels achieved a maximum stress force of up to 12 MPa, significantly higher than non-crosslinked aerogels, which showed a maximum stress of 9 MPa. Swelling studies in PBS buffer (pH 7.4) indicated that the equilibrium swelling degree (SDeq) increased with sodium alginate content, with values ranging from 330 to 656 % for sodium alginate-rich samples, due to carboxyl group dissociation, whereas non-crosslinked samples, particularly those with higher sodium alginate content, dissolve in PBS buffer. Neat starch aerogels exhibited lower swelling behavior, with SDeq values around 300 %, and were largely unaffected by the addition of the crosslinker. These findings highlight the tunable structural, mechanical, and swelling properties of starch/sodium alginate aerogels, making them promising candidates for numerous applications such as drug delivery and environmental remediation applications.
Collapse
Affiliation(s)
- Marija Lucic Skoric
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivana Lukic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Milica Pantic
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | | | - Zoran Novak
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Stoja Milovanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
| |
Collapse
|
8
|
Romero-Antolín JA, Gómez-Cerezo N, Manzano M, Pablos JL, Vallet-Regí M. Anti-inflammatory and antibacterial hydrogel based on a polymerizable ionic liquid. Acta Biomater 2025; 196:78-92. [PMID: 40068713 DOI: 10.1016/j.actbio.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
In the present era, the treatment of skin-infected wounds and their associated inflammation constitutes a significant challenge. These infections have the potential to impede the healing process and become a life-threatening pathology, particularly due to the rise of bacterial resistance. Hydrogels could successfully address this issue due to their unique capabilities and versatility. Among them, natural polymer-based hydrogels are especially advantageous as they resemble the extracellular matrix (ECM) and mechanical properties of natural tissues. In this study, we propose a dual-action hydrogel composed of methacrylated gelatin as a matrix and a salicylate (Sal) anion-exchanged polymerizable ionic liquid (PIL) to achieve anti-inflammatory and antibacterial activities. This material facilitated cell attachment and colonization with mouse endothelial fibroblasts. A flow cytometry assay was conducted to evaluate the anti-inflammatory effect, and demonstrated the differentiation of mouse macrophages to an M2 (reparative) phenotype. Therefore, the levels of TNF-α, interleukin-6 (IL-6), and interleukin (IL-10) were quantified to further evaluate this effect, demonstrating an inhibition on the pro-inflammatory ones. The inherent antibacterial capacity of the PIL was demonstrated against Staphylococcus aureus and Escherichia coli, thereby corroborating its potential as a wound dressing. To the best of our knowledge, this is the first reported hydrogel incorporating an anion-exchanged polymerizable ionic liquid that is capable of promoting macrophage differentiation into a reparative phenotype, of reducing pro-inflammatory cytokines, and of simultaneously retaining antibacterial activity. These features open the gate to the potential application of this hydrogel as a wound dressing. STATEMENT OF SIGNIFICANCE: Bacterial wound infections may lead to severe problems due to their associate tissue inflammation and the emergence of bacterial resistance. In this sense, local therapies such as hydrogels have gathered much attention as alternative therapies for these pathologies. In this work, we have developed a natural polymer-based hydrogel copolymerized with a polymerizable ionic liquid containing salicylate as an anion. The hydrogel was shown to be biocompatible, and promoted macrophage differentiation to a reparative phenotype, while reducing the levels of pro-inflammatory cytokines. Finally, the high antibacterial capability against both gram-positive and gram-negative bacteria makes it a promising candidate for use in wound dressings.
Collapse
Affiliation(s)
- J A Romero-Antolín
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid (UCM), 28040, Spain
| | - N Gómez-Cerezo
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid (UCM), 28040, Spain
| | - M Manzano
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid (UCM), 28040, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - J L Pablos
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid (UCM), 28040, Spain.
| | - M Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (Imas12), Universidad Complutense de Madrid (UCM), 28040, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| |
Collapse
|
9
|
Strazzabosco G, Liboni A, Pezzi G, Alogna A, Bortolotti D. Insights into Liposomal and Gel-Based Formulations for Dermatological Treatments. Gels 2025; 11:245. [PMID: 40277680 PMCID: PMC12027463 DOI: 10.3390/gels11040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/26/2025] Open
Abstract
Dermatological diseases pose a significant challenge due to their chronic nature, complex pathophysiology, and the need for effective, patient-friendly treatments. Recent advancements in liposomal and gel-based formulations have played a crucial role in improving drug delivery, therapeutic efficacy, and patient compliance. Liposomal formulations have garnered considerable attention in dermatology due to their ability to encapsulate both hydrophilic and lipophilic compounds, enabling controlled drug release and enhanced skin penetration. However, challenges such as formulation complexity, stability issues, and regulatory constraints remain. Similarly, gel-based formulations are widely used due to their ease of application, biocompatibility, and ability to retain active ingredients. However, they also face limitations, including restricted penetration depth, susceptibility to microbial contamination, and challenges in achieving sustained drug release. The integration of liposomal and gel-based technologies offers a promising strategy to overcome current challenges and optimize dermatological drug delivery. This review explores both well-established therapies and recent innovations, offering a comprehensive overview of their applications in the treatment of prevalent dermatological conditions. Ultimately, continued research is essential to refine these formulations, expanding their clinical utility and enhancing therapeutic effectiveness in dermatology.
Collapse
Affiliation(s)
- Giovanni Strazzabosco
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.S.); (A.L.)
| | - Alessia Liboni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.S.); (A.L.)
| | - Giulia Pezzi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| | - Andrea Alogna
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| | - Daria Bortolotti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (G.P.); (D.B.)
| |
Collapse
|
10
|
Abbasi M, Aghamollaei H, Vaez A, Amani AM, Kamyab H, Chelliapan S, Jamalpour S, Zambrano-Dávila R. Bringing ophthalmology into the scientific world: Novel nanoparticle-based strategies for ocular drug delivery. Ocul Surf 2025; 37:140-172. [PMID: 40147816 DOI: 10.1016/j.jtos.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The distinctive benefits and drawbacks of various drug delivery strategies to supply corneal tissue improvement for sense organs have been the attention of studies worldwide in recent decades. Static and dynamic barriers of ocular tissue prevent foreign chemicals from entering and inhibit the active absorption of therapeutic medicines. The distribution of different medications to ocular tissue is one of the most appealing and demanding tasks for investigators in pharmacology, biomaterials, and ophthalmology, and it is critical for cornea wound healing due to the controlled release rate and increased drug bioavailability. It should be mentioned that the transport of various types of medications into the different sections of the eye, particularly the cornea, is exceedingly challenging because of its distinctive structure and various barriers throughout the eye. Nanoparticles are being studied to improve medicine delivery strategies for ocular disease. Repetitive corneal drug delivery using biodegradable nanocarriers allows a medicine to remain in different parts of the cornea for extended periods of time and thus improve administration route effectiveness. In this review, we discussed eye anatomy, ocular delivery barriers, as well as the emphasis on the biodegradable nanomaterials ranging from organic nanostructures, such as nanomicelles, polymers, liposomes, niosomes, nanowafers, nanoemulsions, nanosuspensions, nanocrystals, cubosomes, olaminosomes, hybridized NPs, dendrimers, bilosomes, solid lipid NPs, nanostructured lipid carriers, and nanofiber to organic nanomaterials like silver, gold, and mesoporous silica nanoparticles. In addition, we describe the nanotechnology-based ophthalmic medications that are presently on the market or in clinical studies. Finally, drawing on current trends and therapeutic approaches, we discuss the challenges that innovative optical drug delivery systems confront and propose future research routes. We hope that this review will serve as a source of motivation and inspiration for developing innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Milad Abbasi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Universidad UTE, Quito, 170527, Ecuador.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sajad Jamalpour
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Renato Zambrano-Dávila
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito, 170527, Ecuador
| |
Collapse
|
11
|
De Pace R, Iaquinta MR, Benkhalqui A, D'Agostino A, Trevisiol L, Nocini R, Mazziotta C, Rotondo JC, Bononi I, Tognon M, Martini F, Mazzoni E. Revolutionizing bone healing: the role of 3D models. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:7. [PMID: 40113735 PMCID: PMC11926310 DOI: 10.1186/s13619-025-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The increasing incidence of bone diseases has driven research towards Bone Tissue Engineering (BTE), an innovative discipline that uses biomaterials to develop three-dimensional (3D) scaffolds capable of mimicking the natural environment of bone tissue. Traditional approaches relying on two-dimensional (2D) models have exhibited significant limitations in simulating cellular interactions and the complexity of the bone microenvironment. In response to these challenges, 3D models such as organoids and cellular spheroids have emerged as effective tools for studying bone regeneration. Adult mesenchymal stem cells have proven crucial in this context, as they can differentiate into osteoblasts and contribute to bone tissue repair. Furthermore, the integration of composite biomaterials has shown substantial potential in enhancing bone healing. Advanced technologies like microfluidics offer additional opportunities to create controlled environments for cell culture, facilitating more detailed studies on bone regeneration. These advancements represent a fundamental step forward in the treatment of bone pathologies and the promotion of skeletal health. In this review, we report on the evolution of in vitro culture models applied to the study of bone healing/regrowth, starting from 2 to 3D cultures and microfluids. The different methodologies of in vitro model generation, cells and biomaterials are presented and discussed.
Collapse
Affiliation(s)
- Raffaella De Pace
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Assia Benkhalqui
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Department of Surgery, University of Verona, Verona, Italy
| | | | - Lorenzo Trevisiol
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
- Unit of Maxillofacial Surgery, Santa Chiara Regional Hospital, APSS, Trento, Italy
| | | | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Centralized Laboratory of Pre-Clinical Research, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy.
| |
Collapse
|
12
|
Calderón Moreno JM, Chelu M, Popa M. Eco-Friendly Conductive Hydrogels: Towards Green Wearable Electronics. Gels 2025; 11:220. [PMID: 40277656 PMCID: PMC12026593 DOI: 10.3390/gels11040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
The rapid advancement of wearable electronics has catalyzed the development of flexible, lightweight, and highly conductive materials. Among these, conductive hydrogels have emerged as promising candidates due to their tissue-like properties, which can minimize the mechanical mismatch between flexible devices and biological tissues and excellent electrical conductivity, stretchability and biocompatibility. However, the environmental impact of synthetic components and production processes in conventional conductive hydrogels poses significant challenges to their sustainable application. This review explores recent advances in eco-friendly conductive hydrogels used in healthcare, focusing on their design, fabrication, and applications in green wearable electronics. Emphasis is placed on the use of natural polymers, bio-based crosslinkers, and green synthesis methods to improve sustainability while maintaining high performance. We discuss the incorporation of conductive polymers and carbon-based nanomaterials into environmentally benign matrices. Additionally, the article highlights strategies for improving the biodegradability, recyclability, and energy efficiency of these materials. By addressing current limitations and future opportunities, this review aims to provide a comprehensive understanding of environmentally friendly conductive hydrogels as a basis for the next generation of sustainable wearable technologies.
Collapse
Affiliation(s)
- José María Calderón Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | | |
Collapse
|
13
|
Khader BA, Volpe C, Waldman SD, Hwang DK. Highly elastic bioactive bR-GelMA micro-particles: synthesis and precise micro-fabrication via stop-flow lithography. Biomed Mater 2025; 20:035003. [PMID: 40081020 DOI: 10.1088/1748-605x/adc059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis poses a significant public health challenge, necessitating advanced bone regeneration solutions. While gelatin methacrylate (GelMA) hydrogels show promise, conventional fabrication methods using aqueous two-phase systems (ATPS) often result in inconsistent mechanical properties and structural irregularities. This study presents an approach synthesizing new methods and parameters for bR-GelMA, utilizing stop-flow lithography (SFL) to fabricate highly elastic micro-particles incorporating bioactive glass particles. SFL, in contrast to ATPS, offers precise control over micro-particle formation, enabling the production of uniform and stable structures ideal for biomedical applications. The resulting elastic micro-particles demonstrate rapid degradation, enhanced cell proliferation, and improved mechanical strength without compromising flexibility. This innovative approach using SFL to fabricate GelMA-based micro-particles holds significant promise for bone regeneration and other critical therapeutic applications.
Collapse
Affiliation(s)
- Basel A Khader
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute for Biomedical Engineering Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Christian Volpe
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Stephen D Waldman
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute for Biomedical Engineering Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute for Biomedical Engineering Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
14
|
Tiskratok W, Chuinsiri N, Limraksasin P, Kyawsoewin M, Jitprasertwong P. Extracellular Matrix Stiffness: Mechanotransduction and Mechanobiological Response-Driven Strategies for Biomedical Applications Targeting Fibroblast Inflammation. Polymers (Basel) 2025; 17:822. [PMID: 40292716 PMCID: PMC11946729 DOI: 10.3390/polym17060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic network providing mechanical and biochemical cues that regulate cellular behavior. ECM stiffness critically influences fibroblasts, the primary ECM producers, particularly in inflammation and fibrosis. This review explores the role of ECM stiffness in fibroblast-driven inflammation and tissue remodeling, focusing on the physicochemical and biological mechanisms involved. Engineered materials, hydrogels, and polydimethylsiloxane (PDMS) are highlighted for replicating tissue-specific stiffness, enabling precise control over cell-matrix interactions. The surface functionalization of substrate materials, including collagen, polydopamine, and fibronectin, enhances bioactivity and fibroblast adhesion. Key mechanotransduction pathways, such as integrin signaling and YAP/TAZ activation, are related to regulating fibroblast behaviors and inflammatory responses. The role of fibroblasts in driving chronic inflammatory diseases emphasizes their therapeutic potentials. Advances in ECM-modifying strategies, including tunable biomaterials and hydrogel-based therapies, are explored for applications in tissue engineering, drug delivery, anti-inflammatory treatments, and diagnostic tools for the accurate diagnosis and prognosis of ECM stiffness-related inflammatory diseases. This review integrates mechanobiology with biomedical innovations, providing a comprehensive prognosis of fibroblast responses to ECM stiffness and outlining future directions for targeted therapies.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Nontawat Chuinsiri
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
15
|
Sepe F, Valentino A, Marcolongo L, Petillo O, Calarco A, Margarucci S, Peluso G, Conte R. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels 2025; 11:198. [PMID: 40136903 PMCID: PMC11942403 DOI: 10.3390/gels11030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Polysaccharide-based hydrogels have emerged as indispensable materials in tissue engineering and wound healing, offering a unique combination of biocompatibility, biodegradability, and structural versatility. Indeed, their three-dimensional polymeric network and high water content closely resemble the natural extracellular matrix, creating a microenvironment for cell growth, differentiation, and tissue regeneration. Moreover, their intrinsic biodegradability, tunable chemical structure, non-toxicity, and minimal immunogenicity make them optimal candidates for prolonged drug delivery systems. Notwithstanding numerous advantages, these polysaccharide-based hydrogels are confronted with setbacks such as variability in material qualities depending on their source, susceptibility to microbial contamination, unregulated water absorption, inadequate mechanical strength, and unpredictable degradation patterns which limit their efficacy in real-world applications. This review summarizes recent advancements in the application of polysaccharide-based hydrogels, including cellulose, starch, pectin, zein, dextran, pullulan and hyaluronic acid as innovative solutions in wound healing, drug delivery, tissue engineering, and regenerative medicine. Future research should concentrate on optimizing hydrogel formulations to enhance their effectiveness in regenerative medicine and antimicrobial therapy.
Collapse
Affiliation(s)
- Fabrizia Sepe
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (F.S.); (A.V.); (L.M.); (O.P.); (S.M.); (G.P.); (R.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
16
|
Shukla A, Syaifie PH, Rochman NT, Jaya Syaifullah S, Jauhar MM, Mardliyati E. A recent study of natural hydrogels: improving mechanical properties for biomedical applications. Biomed Mater 2025; 20:022010. [PMID: 39908671 DOI: 10.1088/1748-605x/adb2cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies.
Collapse
Affiliation(s)
- Atharva Shukla
- ACS (Anglo Chinese School) Jakarta-Cilangkap, Jl. Bantar Jati, Setu, Kec. Cipayung, Kota Jakarta Timur, Daerah Khusus Ibukota, Jakarta 13880, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Banten 15314, Indonesia
| | - Nurul Taufiqu Rochman
- Center of Excellence Applied Nanotechnology, Nano Center Indonesia Research Institute Puspiptek Street, South Tangerang, Banten 15314, Indonesia
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Puspiptek, South Tangerang, Banten 15314, Indonesia
| | - Syahnanda Jaya Syaifullah
- Center of Excellence Applied Nanotechnology, Nano Center Indonesia Research Institute Puspiptek Street, South Tangerang, Banten 15314, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Banten 15314, Indonesia
- Biomedical Engineering, Graduate School of Universitas Gadjah Mada, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| |
Collapse
|
17
|
Uysal B, Madduma-Bandarage USK, Jayasinghe HG, Madihally S. 3D-Printed Hydrogels from Natural Polymers for Biomedical Applications: Conventional Fabrication Methods, Current Developments, Advantages, and Challenges. Gels 2025; 11:192. [PMID: 40136897 PMCID: PMC11942323 DOI: 10.3390/gels11030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are network polymers with high water-bearing capacity resembling the extracellular matrix. Recently, many studies have focused on synthesizing hydrogels from natural sources as they are biocompatible, biodegradable, and readily available. However, the structural complexities of biological tissues and organs limit the use of hydrogels fabricated with conventional methods. Since 3D printing can overcome this barrier, more interest has been drawn toward the 3D printing of hydrogels. This review discusses the structure of hydrogels and their potential biomedical applications with more emphasis on natural hydrogels. There is a discussion on various formulations of alginates, chitosan, gelatin, and hyaluronic acid. Furthermore, we discussed the 3D printing techniques available for hydrogels and their advantages and limitations.
Collapse
Affiliation(s)
- Berk Uysal
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| | | | - Hasani G. Jayasinghe
- Mathematics, Physical and Natural Sciences Division, University of New Mexico-Gallup, 705 Gurley Ave., Gallup, NM 87301, USA;
| | - Sundar Madihally
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA;
| |
Collapse
|
18
|
Holme S, Richardson SM, Bella J, Pinali C. Hydrogels for Cardiac Tissue Regeneration: Current and Future Developments. Int J Mol Sci 2025; 26:2309. [PMID: 40076929 PMCID: PMC11900105 DOI: 10.3390/ijms26052309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Myocardial infarction remains a leading cause of death worldwide due to the heart's limited regenerative capability and the current lack of viable therapeutic solutions. Therefore, there is an urgent need to develop effective treatment options to restore cardiac function after a heart attack. Stem cell-derived cardiac cells have been extensively utilised in cardiac tissue regeneration studies. However, the use of Matrigel as a substrate for the culture and maturation of these cells has been a major limitation for the translation of this research into clinical application. Hydrogels are emerging as a promising system to overcome this problem. They are biocompatible and can provide stem cells with a supportive scaffold that mimics the extracellular matrix, which is essential for repairing damaged tissue in the myocardium after an infarction. Thus, hydrogels provide an alternative and reproducible option in addressing myocardial infarction due to their unique potential therapeutic benefits. This review explores the different types of natural and synthetic polymers used to create hydrogels and their various delivery methods, the most common being via injection and cardiac patches and other applications such as bioprinting. Many challenges remain before hydrogels can be used in a clinical setting, but they hold great promise for the future of cardiac tissue regeneration.
Collapse
Affiliation(s)
- Sonja Holme
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Jordi Bella
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; (S.H.); (S.M.R.)
| | - Christian Pinali
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
19
|
Manaila E, Calina IC, Dumitru M, Craciun G. Poly(Acrylic Acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized Using Electron-Beam Irradiation-Part III: An Evaluation of Their Degradation in Soil. Molecules 2025; 30:1126. [PMID: 40076349 PMCID: PMC11901601 DOI: 10.3390/molecules30051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Global challenges in agriculture, in terms of water and nutrient loss control, require new approaches to maintaining or even increasing crop production. Promising materials, such as superabsorbent hydrogels of hybrid types obtained from natural polymers grafted with synthetic polymers, represent a viable solution to solve these problems and maintain a clean environment. In view of this, two types of hydrogels based on sodium alginate, acrylic acid and polyethylene oxide obtained using 5.5 MeV electron-beam irradiation were subjected to degradation through burial in the soil. Swollen hydrogels in two types of water (distilled and tap) and two types of nutrient solutions (synthetic nutrient solution and 100% natural organic nutrient solution), with different pHs of 5.40, 6.05, 7.45 and 7.66, were buried in soil for 30 and 60 days and then extracted and analyzed in terms of their mass loss, swelling behavior and cross-linking structure. The highest mass losses after both 30 and 60 days were recorded for the hydrogels buried in soils whose humidity was maintained by watering them with the basic solutions (tap water and the organic nutrient solution). Structural modifications associated with the degradation process were highlighted by decreases in the cross-link densities and increases in the mesh sizes and swelling. These results were confirmed using FTIR and SEM techniques.
Collapse
Affiliation(s)
| | | | | | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania; (E.M.); (I.C.C.); (M.D.)
| |
Collapse
|
20
|
Cota Quintero JL, Ramos-Payán R, Romero-Quintana JG, Ayala-Ham A, Bermúdez M, Aguilar-Medina EM. Hydrogel-Based Scaffolds: Advancing Bone Regeneration Through Tissue Engineering. Gels 2025; 11:175. [PMID: 40136878 PMCID: PMC11942283 DOI: 10.3390/gels11030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Bone tissue engineering has emerged as a promising approach to addressing the limitations of traditional bone grafts for repairing bone defects. This regenerative medicine strategy leverages biomaterials, growth factors, and cells to create a favorable environment for bone regeneration, mimicking the body's natural healing process. Among the various biomaterials explored, hydrogels (HGs), a class of three-dimensional, hydrophilic polymer networks, have gained significant attention as scaffolds for bone tissue engineering. Thus, this review aimed to investigate the potential of natural and synthetic HGs, and the molecules used for its functionalization, for enhanced bone tissue engineering applications. HGs offer several advantages such as scaffolds, including biocompatibility, biodegradability, tunable mechanical properties, and the ability to encapsulate and deliver bioactive molecules. These properties make them ideal candidates for supporting cell attachment, proliferation, and differentiation, ultimately guiding the formation of new bone tissue. The design and optimization of HG-based scaffolds involve adapting their composition, structure, and mechanical properties to meet the specific requirements of bone regeneration. Current research focuses on incorporating bioactive molecules, such as growth factors and cytokines, into HG scaffolds to further enhance their osteoinductive and osteoconductive properties. Additionally, strategies to improve the mechanical strength and degradation kinetics of HGs are being explored to ensure long-term stability and support for new bone formation. The development of advanced HG-based scaffolds holds great potential for revolutionizing bone tissue engineering and providing effective treatment options for patients with bone defects.
Collapse
Affiliation(s)
- Juan Luis Cota Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| | - José Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| | - Alfredo Ayala-Ham
- Faculty of Odontology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico;
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Circuito Universitario Campus I, Chihuahua 31000, Chihuahua, Mexico;
| | - Elsa Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80010, Sinaloa, Mexico; (R.R.-P.); (J.G.R.-Q.)
| |
Collapse
|
21
|
Jeong JO, Kim M, Kim S, Lee KK, Choi H. Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief. Gels 2025; 11:131. [PMID: 39996674 PMCID: PMC11854925 DOI: 10.3390/gels11020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Local anesthetics (LAs) have been indispensable in clinical pain management, yet their limitations, such as short duration of action and systemic toxicity, necessitate improved delivery strategies. Hydrogels, with their biocompatibility, tunable properties, and ability to modulate drug release, have been extensively explored as platforms for enhancing LA efficacy and safety. This narrative review explores the historical development of LAs, their physicochemical properties, and clinical applications, providing a foundation for understanding the integration of hydrogels in anesthetic delivery. Advances in thermoresponsive, stimuli-responsive, and multifunctional hydrogels have demonstrated significant potential in prolonging analgesia and reducing systemic exposure in preclinical studies, while early clinical findings highlight the feasibility of thermoresponsive hydrogel formulations. Despite these advancements, challenges such as burst release, mechanical instability, and regulatory considerations remain critical barriers to clinical translation. Emerging innovations, including nanocomposite hydrogels, biofunctionalized matrices, and smart materials, offer potential solutions to these limitations. Future research should focus on optimizing hydrogel formulations, expanding clinical validation, and integrating advanced fabrication technologies such as 3D printing and artificial intelligence-driven design to enhance personalized pain management. By bridging materials science and anesthetic pharmacology, this review provides a comprehensive perspective on current trends and future directions in hydrogel-based LA delivery systems.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (J.-O.J.); (K.K.L.)
| | - Minjoo Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Seonwook Kim
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Kyung Kwan Lee
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (J.-O.J.); (K.K.L.)
| | - Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
22
|
Eom S, Park SG, Koo Y, Noh Y, Choi C, Kim Y, Jun H, Cha C, Joo J, Kang S. In situ forming and self-crosslinkable protein hydrogels for localized cancer therapy and topical wound healing. J Control Release 2025; 378:460-475. [PMID: 39701457 DOI: 10.1016/j.jconrel.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Proteins, inherently biocompatible and biodegradable, face a challenge in forming stable hydrogels without external chemical crosslinkers. Here, we construct a ring-shaped trimeric SpyTag-fused Proliferating Cell Nuclear Antigen Protein (ST-PCNA) as a core protein building block, and a dumbbell-shaped tandem dimeric SpyCatcher (SC-SC) as a bridging component. Self-crosslinked PCNA/SC-SC Protein (2SP) hydrogels are successfully formed by simply mixing the solutions of ST-PCNA and SC-SC, without chemical crosslinkers. During their formation by mixing, various cargo molecules, including anti-cancer drugs, photosensitizers, and functional proteins, are efficiently incorporated, producing cargo@2SP hydrogels. Most of the entrapped cargo molecules gradually release as the hydrogels erode. Anti-cancer drug- or photosensitizer-incorporated 2SP hydrogels are successfully formed through localized injection beneath the 4 T1 tumor in mice. The localized gradual release of drugs in physiological microenvironment substantially suppresses tumor growth, and highly localized photosensitizers retained in the 2SP hydrogels raises the local temperature above 45 °C upon laser irradiation, resulting in a significant suppression of tumor growth. Additionally, the topical administration of growth factor proteins-incorporated 2SP hydrogels to the incision wound area effectively regenerates the skin, with rapid reconstruction of extracellular matrix. The injectable and self-crosslinkable 2SP hydrogels developed here offer promise as novel biocompatible scaffolds for local therapy.
Collapse
Affiliation(s)
- Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yonghoe Koo
- Department of Biomedical engineering and Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeongjin Noh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Cholong Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yunjung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jinmyoung Joo
- Department of Biomedical engineering and Graduate School of Health Science and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; Materials Research Science and Engineering Center, University of California, San Diego, La Jolla, CA 92093, United States.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
23
|
Alberts A, Tudorache DI, Niculescu AG, Grumezescu AM. Advancements in Wound Dressing Materials: Highlighting Recent Progress in Hydrogels, Foams, and Antimicrobial Dressings. Gels 2025; 11:123. [PMID: 39996666 PMCID: PMC11854827 DOI: 10.3390/gels11020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Recent advancements in wound dressing materials have significantly improved acute and chronic wound management by addressing challenges such as infection control, moisture balance, and enhanced healing. Important progress has been made, especially with hydrogels, foams, and antimicrobial materials for creating optimized dressings. Hydrogels are known for maintaining optimal moisture levels, while foam dressings are excellent exudate absorbents. Meanwhile, antimicrobial dressing incorporates various antimicrobial agents to reduce infection risks. These dressing options reduce wound healing time while focusing on customized patient needs. Therefore, this review highlights the newest research materials and prototypes for wound healing applications, emphasizing their particular benefits and clinical importance. Innovations such as stimuli-responsive hydrogels and hybrid bioengineered composites are discussed in relation to their enhanced properties, including responsiveness to pH, temperature, glucose, or enzymes and drug delivery precision. Moreover, ongoing clinical trials have been included, demonstrating the potential of emerging solutions to be soon translated from the laboratory to clinical settings. By discussing interdisciplinary approaches that integrate advanced materials, nanotechnology, and biological insights, this work provides a contemporary framework for patient-centric, efficient wound care strategies.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dana-Ionela Tudorache
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
24
|
Kim YH, Kim HS, Hong IS. Advances in biomaterials-based tissue engineering for regeneration of female reproductive tissues. Biofabrication 2025; 17:022001. [PMID: 39854843 DOI: 10.1088/1758-5090/adae38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
The anatomical components of the female reproductive system-comprising the ovaries, uterus, cervix, vagina, and fallopian tubes-interact intricately to provide the structural and hormonal support essential for reproduction. However, this system is susceptible to various detrimental factors, both congenital and acquired, that can impair fertility and adversely affect quality of life. Recent advances in bioengineering have led to the development of sophisticated three-dimensional models that mimic the complex architecture and functionality of reproductive organs. These models, incorporating diverse cell types and tissue layers, are crucial for understanding physiological processes within the reproductive tract. They offer insights into decidualization, ovulation, folliculogenesis, and the progression of reproductive cancers, thereby enhancing personalized medical treatments and addressing female infertility. This review highlights the pivotal role of tissue engineering in diagnosing and treating female infertility, emphasizing the importance of considering factors like biocompatibility, biomaterial selection, and mechanical properties in the design of bioengineered systems. The challenge of replicating the functionally specialized and structurally complex organs, such as the uterus and ovary, underscores the need for reliable techniques that improve morphological and functional restoration. Despite substantial progress, the goal of creating a fully artificial female reproductive system is still a challenge. Nonetheless, the recent fabrication of artificial ovaries, uteruses, cervixes, and vaginas marks significant advancements toward this aim. Looking forward, the challenges in bioengineering are expected to spur further innovations in both basic and applied sciences, potentially hastening the clinical adoption of these technologies.
Collapse
Affiliation(s)
- Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840, Republic of Korea
| |
Collapse
|
25
|
Alberts A, Bratu AG, Niculescu AG, Grumezescu AM. New Perspectives of Hydrogels in Chronic Wound Management. Molecules 2025; 30:686. [PMID: 39942790 PMCID: PMC11820815 DOI: 10.3390/molecules30030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Chronic wounds pose a substantial healthcare concern due to their prevalence and cost burden. This paper presents a detailed overview of chronic wounds and emphasizes the critical need for novel therapeutic solutions. The pathophysiology of wound healing is discussed, including the healing stages and the factors contributing to chronicity. The focus is on diverse types of chronic wounds, such as diabetic foot necrosis, pressure ulcers, and venous leg ulcers, highlighting their etiology, consequences, and the therapeutic issues they provide. Further, modern wound care solutions, particularly hydrogels, are highlighted for tackling the challenges of chronic wound management. Hydrogels are characterized as multipurpose materials that possess vital characteristics like the capacity to retain moisture, biocompatibility, and the incorporation of active drugs. Hydrogels' effectiveness in therapeutic applications is demonstrated by how they support healing, including preserving ideal moisture levels, promoting cellular migration, and possessing antibacterial properties. Thus, this paper presents hydrogel technology's latest developments, emphasizing drug-loaded and stimuli-responsive types and underscoring how these advanced formulations greatly improve therapy outcomes by enabling dynamic and focused reactions to the wound environment. Future directions for hydrogel research promote the development of customized hydrogel treatments and the incorporation of digital health tools to improve the treatment of chronic wounds.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Andreea Gabriela Bratu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
26
|
Modi A, Sanal R, Suresh A, Saraswathy M. Enhanced mucoadhesive properties of ionically cross-linked thiolated gellan gum films. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:137-151. [PMID: 39223735 DOI: 10.1080/09205063.2024.2397199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Localized oral drug delivery offers several advantages for treating various disease conditions. However, drug retention at the disease site within the oral cavity is indeed a significant challenge due to the dynamic oral environment. The present study aimed to develop a mucoadhesive inner layer for a three-layer mucoadhesive bandage suitable for localized oral drug delivery. using gellan gum (GG) biopolymer. Gellan gum (GG) was modified using L-cysteine moieties via carbodiimide chemistry. Subsequently, gellan gum solution at different extents of thiolation was ionically cross-linked using aluminum ammonium sulfate. Thiolated gellan gum films of uniform thickness were prepared using a solvent casting method. The thickness of bare gellan gum film was 0.035 ± 0.0043 mm, whereas the thiolated gellan gum films, GG 1S and GG 2S showed a thickness of 0.0191 ± 0.0011 mm and 0.0188 ± 0.0004 mm respectively. A high work of adhesion was noted for thiolated gellan gum (GG 2S) with a value of 10 N.mm while using porcine buccal mucosa. An average tensile strength of 48.2 ± 2.46 MPa was measured for thiolated gellan gum films irrespective of the extent of thiolation. The high work of adhesion, favorable cytocompatibility, desirable mechanical properties, and free swell capacity in saline confirmed the suitability of ionically cross-linked thiolated gellan gum films as an inner mucoadhesive layer for the mucoadhesive bandage.
Collapse
Affiliation(s)
- Ankita Modi
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Reshma Sanal
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ashika Suresh
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Manju Saraswathy
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
27
|
Vipin CL, Kumar GSV. Exosome laden sprayable thermo-sensitive polysaccharide-based hydrogel for enhanced burn wound healing. Int J Biol Macromol 2025; 290:138712. [PMID: 39710019 DOI: 10.1016/j.ijbiomac.2024.138712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Severe burns pose significant threats to patient well-being, characterized by pain, inflammation, bacterial infection, and extended recovery periods. While exosome-loaded hydrogels have demonstrated considerable promise in wound healing, current formulations often fall short of achieving optimal therapeutic efficacy for burn wounds due to challenges related to their adaptability to wound shape and limited anti-bacterial capabilities. In this study a novel exosome laden sprayable thermosensitive polysaccharide-based hydrogel (ADA-aPF127@LL18/Exo) comprising alginate dialdehyde (ADA) and aminated Pluronic F127 (aPF127) was fabricated via Schiff base reaction. ADA-aPF127@LL18/Exo exhibited sustained release of exosome and enhanced antibacterial efficacy. Furthermore, the biological assessments displayed excellent biocompatibility and enhanced in vitro cell proliferation and migration. In a deep partial thickness burn model, ADA-aPF127@LL18/Exo significantly augmented wound healing processes by accelerating epithelialization, promoting granulation tissue formation and collagen deposition, inducing hair follicle regeneration, effectively mitigating inflammatory responses, and facilitating enhanced neovascularization. In conclusion, ADA-aPF127@LL18/Exo represents a highly promising therapeutic dressing for the treatment of deep burns, exhibiting multifaceted properties conducive to efficient wound management.
Collapse
Affiliation(s)
- C L Vipin
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thycaud P.O, Poojappura, Thiruvananthapuram, Kerala 695014, India; Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana 121001, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thycaud P.O, Poojappura, Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
28
|
Gaikwad D, Patil D, Chougale R, Sutar S. Development and characterization of bael fruit gum-pectin hydrogel for enhanced antimicrobial activity. Int J Biol Macromol 2025; 291:139082. [PMID: 39716706 DOI: 10.1016/j.ijbiomac.2024.139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Natural polymers are crucial for developing sustainable biomedical solutions, as their bioactivity, biocompatibility, and biodegradability make them superior alternatives to synthetic materials. The objective of the study is to develop and characterize a chemically modified bael fruit gum (BFG) and pectin hydrogel to enhance antimicrobial activity. Due to BFG's anionic nature, it was chemically modified to introduce cationic groups, facilitating cross-linking with pectin. Physicochemical characterization of BFG and pectin was conducted using FTIR and DSC, which confirmed functional groups and thermal stability, respectively. Hydrogel optimization was achieved through Central Composite Design (CCD). Rheological evaluations indicated shear-thinning behavior with a viscosity reduction under high shear stress, reflecting thixotropic properties. The hydrogel exhibited satisfactory erosion and swelling within 24 h, suggesting controlled release. Zeta potential measurements confirmed the hydrogel's stability, attributed to its negative surface charge. SEM revealed a porous structure, aiding in drug encapsulation and release. Antimicrobial testing showed synergistic antimicrobial effects with inhibition zones of 1.4 cm and 1.5 cm against Staphylococcus aureus and Escherichia coli, respectively. Stability studies demonstrated robustness over time. Overall, this study highlights the potential of natural polymer-based hydrogels as sustainable alternatives to synthetic polymers in pharmaceutical and biomedical fields, offering safer, environmentally friendly solutions.
Collapse
Affiliation(s)
- Dinanath Gaikwad
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India.
| | - Dhanashri Patil
- Department of Pharmaceutical Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| | - Rutuja Chougale
- Department of Pharmaceutical Quality Assurance, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra State 416013, India
| | - Shubhangi Sutar
- Department of Quality Assurance, Ashokrao Mane College of Pharmacy, Peth-Vadgaon, Maharashtra State 416112, India
| |
Collapse
|
29
|
Liu S, Rahman MR, Wu H, Qin W, Wang Y, Su G. Development and application of hydrogels in pathogenic bacteria detection in foods. J Mater Chem B 2025; 13:1229-1251. [PMID: 39690945 DOI: 10.1039/d4tb01341g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Hydrogels are 3D networks of water-swollen hydrophilic polymers. It possesses unique properties (e.g., carrying biorecognition elements and creating a micro-environment) that make it highly suitable for bacteria detection (e.g., expedited and effective bacteria detection) and mitigation of bacterial contamination in specific environments (e.g., food systems). This study first introduces the materials used to create hydrogels for bacteria detection and the mechanisms for detection. We also summarize different hydrogel-based detection methods that rely on external stimuli and biorecognition elements, such as enzymes, temperature, pH, antibodies, and oligonucleotides. Subsequently, a range of widely utilized bacterial detection technologies were discussed where recently hydrogels are being used. These modifications allow for precise, real-time diagnostics across varied food matrices, responding effectively to industry needs for sensitivity, scalability, and portability. After highlighting the utilization of hydrogels and their role in these detection techniques, we outline limitations and advancements in the methods for the detection of foodborne pathogenic bacteria, especially the potential application of hydrogels in the food industry.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Md Rashidur Rahman
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| |
Collapse
|
30
|
Rumon MM, Akib AA, Sarkar SD, Khan MAR, Uddin MM, Nasrin D, Roy CK. Polysaccharide-Based Hydrogels for Advanced Biomedical Engineering Applications. ACS POLYMERS AU 2024; 4:463-486. [PMID: 39679058 PMCID: PMC11638789 DOI: 10.1021/acspolymersau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 12/17/2024]
Abstract
In recent years, numerous applications of hydrogels using polysaccharides have evolved, benefiting from their widespread availability, excellent biodegradability, biocompatibility, and nonpoisonous nature. These natural polymers are typically sourced from renewable materials or from manufacturing processes, contributing collaboratively to waste management and demonstrating the potential for enhanced and enduring sustainability. In the field of novel bioactive molecule carriers for biotherapeutics, natural polymers are attracting attention due to their inherent properties and adaptable chemical structures. These polymers offer versatile matrices with a range of architectures and mechanical properties, while retaining the bioactivity of incorporated biomolecules. However, conventional polysaccharide-based hydrogels suffer from inadequate mechanical toughness with large swelling properties, which prohibit their efficacy in real-world applications. This review offers insights into the latest advancements in the development of diverse polysaccharide-based hydrogels for biotherapeutic administrations, either standalone or in conjunction with other polymers or drug delivery systems, in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Md. Mahamudul
Hasan Rumon
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Anwarul Azim Akib
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Stephen Don Sarkar
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Houston, Houston, Texas 77204, United
States
| | | | - Md. Mosfeq Uddin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
- Department
of Chemistry, University of Victoria, Victoria 3800, Canada
| | - Dina Nasrin
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| | - Chanchal Kumar Roy
- Department
of Chemistry, Bangladesh University of Engineering
and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
31
|
Samchenko Y, Terpilowski K, Samchenko K, Golovkova L, Oranska O, Goncharuk O. Calcium Alginate/Laponite Nanocomposite Hydrogels: Synthesis, Swelling, and Sorption Properties. COATINGS 2024; 14:1519. [DOI: 10.3390/coatings14121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
This study presents the synthesis, characterization, and evaluation of hybrid hydrogels based on calcium alginate (Ca-Alg) and synthetic nanoclay LaponiteRD (Lap), with an emphasis on their swelling and sorption properties. The motivation behind the development of these hybrid hydrogels stems from the need for sustainable materials with enhanced mechanical strength, swelling properties, and sorption capacity for environmental remediation and controlled-release applications. Synthesis methods for the ionotropically cross-linked Ca-Alg hydrogel and Alg–Lap composite hydrogels, based on Alg and Lap in the form of granules and fibres, have been developed. The Fourier-transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses of composite hydrogels confirmed the successful incorporation of Lap into the Ca-Alg matrix, indicating strong interactions between the polymer and clay, which enhanced the structural integrity of the hydrogels. The morphology of the surface and pore structure of nanocomposites were studied using Scanning Electron Microscopy (SEM). The swelling behaviour of the nanocomposites was largely dependent on the concentrations of Lap and the cross-linking agent (CaCl2), with higher concentrations leading to more rigid, less swellable structures due to the increased cross-linking density. The sorption studies, specifically with Fe(II) ions, demonstrated that the hybrid hydrogels possess a large sorption capacity, with Lap contributing to selective sorption at lower Fe(II) ion concentrations and Alg enhancing overall capacity at higher concentrations. This suggests that the synergistic interaction between Alg and Lap not only improves mechanical stability but also tailors the sorption properties of the hydrogels. These findings position the Alg-Lap hydrogels as promising materials for a range of environmental applications, including wastewater treatment, heavy metal ion removal, and the design of advanced filtration systems. The study’s insights into the tunability of these hydrogels pave the way for further research into their use in diverse fields such as biomedicine, agriculture, and industrial water management.
Collapse
Affiliation(s)
- Yurii Samchenko
- F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 42 Vernadskogo Ave., 03142 Kyiv, Ukraine
| | - Konrad Terpilowski
- Department of Interfacial Phenomena, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20031 Lublin, Poland
| | - Kateryna Samchenko
- Department of Bioenergy, Bioinformatics and Environmental Biotechnology, Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37/4 Peremogy Ave., 03056 Kyiv, Ukraine
| | - Lyudmila Golovkova
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 03142 Kyiv, Ukraine
| | - Olena Oranska
- Chuiko Institute of Surface Chemistry, NAS of Ukraine, 03142 Kyiv, Ukraine
| | - Olena Goncharuk
- F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 42 Vernadskogo Ave., 03142 Kyiv, Ukraine
- Institute of Agrophysics, Polish Academy of Sciences, 20290 Lublin, Poland
| |
Collapse
|
32
|
Manohar D, Babu RS, Vijaya B, Nallakumar S, Gobi R, Anand S, Nishanth DS, Anupama A, Rani MU. A review on exploring the potential of PVA and chitosan in biomedical applications: A focus on tissue engineering, drug delivery and biomedical sensors. Int J Biol Macromol 2024; 283:137318. [PMID: 39549801 DOI: 10.1016/j.ijbiomac.2024.137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Polymers have been integral to the advancement of biomedicine, owing to their exceptional versatility and functionality. Among these, polyvinyl alcohol (PVA) and chitosan both natural polymers stand out for their remarkable biocompatibility, biodegradability, and unique properties. This review article provides a comprehensive examination of the diverse applications of PVA and chitosan in three pivotal areas: tissue engineering, drug delivery, and biosensors. In tissue engineering, the discussion centres on how PVA and chitosan are engineered into scaffolds that not only support cell growth and differentiation but also promote tissue regeneration by closely mimicking the extracellular matrix. These scaffolds offer the necessary mechanical strength and adaptability for various biomedical applications. For drug delivery, the article delves into the development of sophisticated controlled release systems and targeted drug carriers, highlighting the polymers' customizable properties and their mucoadhesive nature, which make them highly effective across multiple drug delivery methods. Furthermore, the potential of PVA and chitosan in biosensor technology is explored, particularly their ability to interact with biomolecules and their intrinsic conductivity attributes that are essential for creating sensitive, reliable, and biocompatible sensors for medical diagnostics. By synthesizing recent research findings and suggesting future research directions, this review underscores the versatility and critical role of PVA and chitosan in pushing the boundaries of biomedical innovation. It offers valuable insights for researchers and scientists dedicated to advancing healthcare through the application of these natural polymers.
Collapse
Affiliation(s)
- D Manohar
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Ravi Shanker Babu
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - B Vijaya
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Santhosh Nallakumar
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Ravichandhran Gobi
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - S Anand
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - D S Nishanth
- Department of Biotechnology, School of Bio Science and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Arpita Anupama
- Department of Biotechnology, School of Bio Science and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - M Usha Rani
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India.
| |
Collapse
|
33
|
Mashweu AR, Azov VA. Nanotechnology in Drug Delivery: Anatomy and Molecular Insight into the Self-Assembly of Peptide-Based Hydrogels. Molecules 2024; 29:5654. [PMID: 39683812 PMCID: PMC11643151 DOI: 10.3390/molecules29235654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The bioavailability, release, and stability of pharmaceuticals under physicochemical conditions is the major cause of drug candidates failing during their clinical trials. Therefore, extensive efforts have been invested in the development of novel drug delivery systems that are able to transport drugs to a desired site and improve bioavailability. Hydrogels, and peptide hydrogels in particular, have been extensively investigated due to their excellent biocompatibility and biodegradability properties. However, peptide hydrogels often have weak mechanical strength, which limits their therapeutic efficacy. Therefore, a number of methods for improving their rheological properties have been established. This review will cover the broad area of drug delivery, focusing on the recent developments in this research field. We will discuss the variety of different types of nanocarrier drug delivery systems and then, more specifically, the significance and perspectives of peptide-based hydrogels. In particular, the interplay of intermolecular forces that govern the self-assembly of peptide hydrogels, progress made in understanding the distinct morphologies of hydrogels, and applications of non-canonical amino acids in hydrogel design will be discussed in more detail.
Collapse
Affiliation(s)
- Adelaide R. Mashweu
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Vladimir A. Azov
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
34
|
Macchia A, Zaratti C, Ciogli D, Rivici G, Pilati S, Sbiri N, de Caro T, Navarra MA. Developing Innovative Apolar Gels Based on Cellulose Derivatives for Cleaning Metal Artworks. Gels 2024; 10:747. [PMID: 39590103 PMCID: PMC11593746 DOI: 10.3390/gels10110747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The use of organic solvents, particularly those of a non-polar nature, is a common practice during cleaning operations in the restoration of polychrome artworks and metallic artifacts. However, these solvents pose significant risks to the health of operators and the environment. This study explores the formulation of innovative gels based on non-polar solvents and cellulose derivatives, proposing a safe and effective method for cleaning metallic artworks. The study is focused on a toxic apolar solvent, Ligroin, identified as one of the most widely used solvents in the cultural heritage treatments, and some "green" alternatives such as Methyl Myristate and Isopropyl Palmitate. The main challenge lies in overcoming the chemical incompatibility between non-polar solvents and polar thickening agents like cellulose ethers. To address this problem, the research was based on a hydrophilic-lipophilic balance (HLB) system and Hansen solubility parameters (HSPs) to select appropriate surfactants, ensuring the stability and effectiveness of the formulated gels. Stability, viscosity, and solvent release capacity of gels were analyzed using Static Light Multiple Scattering (Turbiscan), viscometry, and thermogravimetric analysis (TGA). The efficacy of cleaning in comparison with Ligroin liquid was evaluated on a metal specimen treated with various apolar protective coatings used commonly in the restoration of metallic artifacts, such as microcrystalline waxes (Reswax, Soter), acrylic resins (Paraloid B44), and protective varnishes (Incral, Regalrez). Multispectral analysis, digital optical microscopy, FTIR spectroscopy, and spectrocolorimetry allowed for the assessment of the gels' ability to remove the different protective coatings, the degree of cleaning achieved, and the presence of any residues. The results obtained highlight the ability of the formulated gels to effectively remove protective coatings from metallic artifacts. Cetyl Alcohol proved to be the most versatile surfactant to realize a stable and efficient gel. The gels based on Methyl Myristate and Isopropyl Palmitate showed promising results as "green" alternatives to Ligroin, although in some cases, they exhibited less selectivity in the removal of protective coatings.
Collapse
Affiliation(s)
- Andrea Macchia
- YOCOCU APS, Youth in Conservation of Cultural Heritage, Via Torquato Tasso 108, 00185 Rome, Italy; (A.M.); (D.C.); (G.R.); (S.P.); (N.S.)
| | - Camilla Zaratti
- YOCOCU APS, Youth in Conservation of Cultural Heritage, Via Torquato Tasso 108, 00185 Rome, Italy; (A.M.); (D.C.); (G.R.); (S.P.); (N.S.)
| | - Davide Ciogli
- YOCOCU APS, Youth in Conservation of Cultural Heritage, Via Torquato Tasso 108, 00185 Rome, Italy; (A.M.); (D.C.); (G.R.); (S.P.); (N.S.)
| | - Giovanni Rivici
- YOCOCU APS, Youth in Conservation of Cultural Heritage, Via Torquato Tasso 108, 00185 Rome, Italy; (A.M.); (D.C.); (G.R.); (S.P.); (N.S.)
| | - Silvia Pilati
- YOCOCU APS, Youth in Conservation of Cultural Heritage, Via Torquato Tasso 108, 00185 Rome, Italy; (A.M.); (D.C.); (G.R.); (S.P.); (N.S.)
| | - Nereo Sbiri
- YOCOCU APS, Youth in Conservation of Cultural Heritage, Via Torquato Tasso 108, 00185 Rome, Italy; (A.M.); (D.C.); (G.R.); (S.P.); (N.S.)
| | - Tilde de Caro
- CNR-ISMN, Strada Provinciale 35 d n. 9, 00010 Rome, Italy;
| | - Maria Assunta Navarra
- Department of Chemistry, La Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
35
|
Beddok C, Zimmer A, Blanchard CC, Fuks G. Synthesis and Comprehensive Characterization of Amino Acid-Derived Vinyl Monomer Gels. ACS OMEGA 2024; 9:45053-45058. [PMID: 39554408 PMCID: PMC11561632 DOI: 10.1021/acsomega.4c05246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 11/19/2024]
Abstract
In this study, we report an easy synthetic pathway to vinyl monomers derivatized with amino acids. Tyrosine-, phenylalanine-, tryptophan-, leucine-, and methionine-based monomers were synthesized, and their polymerization in the presence of cross-linking agents led to the formation of amino acid-based gels. The nature of cross-linker, the time of polymerization, and the type of initiation (photopolymerization or thermopolymerization) were investigated. The obtained gels were characterized using a combination of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheology, scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance (NMR) spectroscopy. These novel amino acid-based gels could find applications in various areas such as drug delivery, biosensing, and biotechnology.
Collapse
Affiliation(s)
- Claire Beddok
- Centre
de Recherches Insulaires et Observatoire de l’Environnement,
UAR 3278 UPVD-CNRS-EPHE-PSL Labex CORAIL, Université de Perpignan Via Domitia, Perpignan 66860, France
- Biocapteurs-Analyse-Environnement, Université de Perpignan Via Domitia, Perpignan 66860, France
- Laboratoire
de Biodiversité et Biotechnologie Microbienne, USR3579 −
Observatoire Océanologique, Sorbonne
Université, CNRS, Avenue Pierre Fabre, Banyuls-sur-mer 66650, France
| | - Alicia Zimmer
- Centre
de Recherches Insulaires et Observatoire de l’Environnement,
UAR 3278 UPVD-CNRS-EPHE-PSL Labex CORAIL, Université de Perpignan Via Domitia, Perpignan 66860, France
| | - Carole Calas Blanchard
- Biocapteurs-Analyse-Environnement, Université de Perpignan Via Domitia, Perpignan 66860, France
- Laboratoire
de Biodiversité et Biotechnologie Microbienne, USR3579 −
Observatoire Océanologique, Sorbonne
Université, CNRS, Avenue Pierre Fabre, Banyuls-sur-mer 66650, France
| | - Gad Fuks
- Centre
de Recherches Insulaires et Observatoire de l’Environnement,
UAR 3278 UPVD-CNRS-EPHE-PSL Labex CORAIL, Université de Perpignan Via Domitia, Perpignan 66860, France
| |
Collapse
|
36
|
Ndlovu SP, M Motaung SC, Adeyemi SA, Ubanako P, Ngema LM, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate/carboxymethylcellulose gel formulations containing Capparis sepieria plant extract for wound healing. Ther Deliv 2024; 15:921-937. [PMID: 39529611 PMCID: PMC11583625 DOI: 10.1080/20415990.2024.2418800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: Using appropriate wound dressings is crucial when treating burn wounds to promote accelerated healing.Materials & methods: Sodium alginate (SA)-based gels containing Carboxymethyl cellulose (CMC) and Pluronic F127 were prepared. The formulations. SA/CMC/Carbopol and SA/CMC/PluronicF127 were loaded with aqueous root extract of Capparis sepiaria. The formulations were characterized using appropriate techniques.Results: The gels' viscosity was in the range of 676.33 ± 121.76 to 20.00 ± 9.78 cP and in vitro whole blood kinetics showed their capability to induce a faster clotting rate. They also supported high cell viability of 80% with cellular migration and proliferation. Their antibacterial activity was significant against most bacteria strains used in the study.Conclusion: The gels' distinct features reveal their potential application as wound dressings for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice Eastern Cape, 5700, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Thierry Youmbi Fonkui
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, Gauteng, 2028, South Africa
| | - Derek Tantoh Ndinteh
- Drug Discovery and SmartMolecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy & Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, 2193, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice Eastern Cape, 5700, South Africa
| |
Collapse
|
37
|
Suleimenov I, Gabrielyan O, Kopishev E, Kadyrzhan A, Bakirov A, Vitulyova Y. Advanced Applications of Polymer Hydrogels in Electronics and Signal Processing. Gels 2024; 10:715. [PMID: 39590071 PMCID: PMC11593912 DOI: 10.3390/gels10110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
The current state of affairs in the field of using polymer hydrogels for the creation of innovative systems for signal and image processing, of which computing is a special case, is analyzed. Both of these specific examples of systems capable of forming an alternative to the existing semiconductor-based computing technology, but assuming preservation of the used algorithmic basis, and non-trivial signal converters, the nature of which requires transition to fundamentally different algorithms of data processing, are considered. It is shown that the variability of currently developed information processing systems based on the use of polymers, including polymer hydrogels, leads to the need to search for complementary algorithms. Moreover, the well-known thesis that modern polymer science allows for the realization of functional materials with predetermined properties, at the present stage, receives a new sounding: it is acceptable to raise the question of creating systems built on a quasi-biological basis and realizing predetermined algorithms of information or image processing. Specific examples that meet this thesis are considered, in particular, promising information protection systems for UAV groups, as well as systems based on the coupling of neural networks with holograms that solve various applied problems. These and other case studies demonstrate the importance of interdisciplinary cooperation for solving problems arising from the need for further modernization of signal processing systems.
Collapse
Affiliation(s)
- Ibragim Suleimenov
- National Engineering Academy of the Republic of Kazakhstan, Almaty 050010, Kazakhstan;
| | - Oleg Gabrielyan
- Department of Philosophy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Russia;
| | - Eldar Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Aruzhan Kadyrzhan
- Department of Space Engineering, Institute of Communications and Space Engineering, Almaty University of Power Engineering and Telecommunication Named Gumarbek Daukeev, Almaty 050040, Kazakhstan;
| | - Akhat Bakirov
- Department of Telecommunication Engineering, Almaty University of Power Engineering and Telecommunication Named Gumarbek Daukeev, Almaty 050040, Kazakhstan;
- Department of Chemistry and Technology of Organic Substances, Natural Compounds and Polymers, Faculty of Chemistry and Chemical Technology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yelizaveta Vitulyova
- Department of Philosophy, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
38
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
39
|
Pan C, Zuo C, Chen J, Zhang Q, Deng L, Liu Y, Ding P. Constructing sodium alginate/carboxymethyl chitosan coating capable of catalytically releasing NO or CO for improving the hemocompatibility and endothelialization of magnesium alloys. Int J Biol Macromol 2024; 279:135166. [PMID: 39214216 DOI: 10.1016/j.ijbiomac.2024.135166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Although significant progress in developing biodegradable magnesium alloy materials in cardiovascular stents has been achieved recently, they still face challenges such as rapid in vivo corrosion degradation, inferior blood compatibility, and limited re-endothelialization after the implantation. Hydrogel coating that can catalyze the liberation of gas signal molecules offers a good solution to alleviate the corrosion rate and enhance the biocompatibility of magnesium and its alloys. In this study, based on alkaline heat treatment and construction of polydopamine coating on the surface of magnesium alloy, sodium alginate/carboxymethyl chitosan (SA/CMCS) gel was simultaneously covalently grafted onto the surface to build a natural polymer hydrogel coating, and selenocystamine (SeCA) and CO release molecules (CORM-401) were respectively immobilized on the surface of the hydrogel coating to ameliorate the anticoagulant performance and accelerate endothelial cells (ECs) growth by catalyzing the release of endogenous gas signal molecules (NO or CO). The findings verified that the as-prepared hydrogel coating can catalyze the liberation of CO or NO and significantly improve the corrosion resistance of magnesium alloy. At the same time, owing to the excellent hydrophilicity of the hydrogel coating, the good anticoagulant property of sodium alginate, and the ability of CMCS to promote the ECs growth, the modified magnesium alloy could significantly improve the albumin adsorption while preventing the adsorption of fibrinogen, hence significantly augmenting the anticoagulant properties and promoting the ECs growth. Under the catalytic release of NO or CO, the released gas molecules further enhanced hemocompatibility and promoted endothelial cell (EC) growth and the expression of vascular endothelial growth factor (VEGF) and NO of ECs. Therefore, the bioactive coatings that can catalyze the release of NO or CO have potential applications in constructing surface bioactive coatings for magnesium alloy materials used for intravascular stents.
Collapse
Affiliation(s)
- Changjiang Pan
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Changpeng Zuo
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Linghong Deng
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Yang Liu
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| | - Pingyun Ding
- School of Medical and Health Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
| |
Collapse
|
40
|
Ghorpade VS, Mali KK, Dias RJ, Dhawale SC, Digole RR, Gandhi JM, Bobde KA, Mali RK. Citric acid crosslinked hydroxyethyl tamarind gum-based hydrogel films: A promising biomaterial for drug delivery. Int J Biol Macromol 2024; 282:137127. [PMID: 39486708 DOI: 10.1016/j.ijbiomac.2024.137127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/22/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
This investigation explored citric acid crosslinked hydroxyethyl tamarind gum hydrogel films as a potential biomaterial for drug delivery. Hydroxyethylation of tamarind gum aimed to improve its solubility, swelling, and crosslinking potential. The synthesized hydroxyethylated tamarind gum (HETG) was comprehensively characterized, revealing the presence of hydroxyethyl groups and increased viscosity in comparison to unmodified tamarind gum. The citric acid crosslinked HETG hydrogel films were developed by esterification-crosslinking mechanism. The films were characterized using instrumental techniques and evaluated for total carboxyl content, mechanical properties, swelling behavior, drug loading, drug release, antibacterial activity, hemocompatibility and in vitro wound healing activity. The presence of ester crosslinks and extent of crosslinking was confirmed through total carboxyl content and instrumental analysis. Varying HETG (2-2.5%w/v) and citric acid (1-1.4 %w/v) concentrations resulted in films with tunable mechanical strength, swelling, and drug loading. The films effectively controlled the release of a water-soluble drug (80.87-99.70 % in 24 h) through a non-Fickian diffusion mechanism. The optimized HETG hydrogel film showed antimicrobial activity, hemocompatibility, and support for cell growth, confirming its biocompatibility and potential for wound healing. Citric acid-crosslinked HETG films appear promising for drug delivery to wounds, meriting further in vivo study.
Collapse
Affiliation(s)
- Vishwajeet Sampatrao Ghorpade
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad 415539, Maharashtra, India
| | - Kailas Krishnat Mali
- Department of Pharmaceutics, Adarsh College of Pharmacy, Vita A/p - 421/2, Near MIDC, Khambale (Bha.), Vita Tal-Khanapur 415311 Dist-Sangli, Maharashtra, India.
| | - Remeth Jacky Dias
- Department of Pharmacy, Government College of Pharmacy, Vidyanagar, Karad 415124, Tal-Satara, Maharashtra, India
| | - Shashikant Chhaburao Dhawale
- Department of Pharmacology, School of Pharmacy, Swami Ramanand Teerth Marathwada University, Nanded 431606, India
| | - Rohit Ramesh Digole
- Department of Pharmaceutics, Adarsh College of Pharmacy, Vita A/p - 421/2, Near MIDC, Khambale (Bha.), Vita Tal-Khanapur 415311 Dist-Sangli, Maharashtra, India
| | - Jotsna Mohanlal Gandhi
- Department of Pharmacognosy, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad 415539, Maharashtra, India
| | - Kiran Ashok Bobde
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad 415539, Maharashtra, India
| | - Rahul Krishnat Mali
- Lotus Pharmaceutical Co., Ltd., Sinsing Village, Nantou City, Nantou County 54066, Taiwan, ROC
| |
Collapse
|
41
|
Zhang M, Ye Q, Zhu Z, Shi S, Xu C, Xie R, Li Y. Hyaluronic Acid-Based Dynamic Hydrogels for Cartilage Repair and Regeneration. Gels 2024; 10:703. [PMID: 39590059 PMCID: PMC11594165 DOI: 10.3390/gels10110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hyaluronic acid (HA), an important natural polysaccharide and meanwhile, an essential component of extracellular matrix (ECM), has been widely used in tissue repair and regeneration due to its high biocompatibility, biodegradation, and bioactivity, and the versatile chemical groups for modification. Specially, HA-based dynamic hydrogels, compared with the conventional hydrogels, offer an adaptable network and biomimetic microenvironment to optimize tissue repair and the regeneration process with a striking resemblance to ECM. Herein, this review comprehensively summarizes the recent advances of HA-based dynamic hydrogels and focuses on their applications in articular cartilage repair. First, the fabrication methods and advantages of HA dynamic hydrogels are presented. Then, the applications of HA dynamic hydrogels in cartilage repair are illustrated from the perspective of cell-free and cell-encapsulated and/or bioactive molecules (drugs, factors, and ions). Finally, the current challenges and prospective directions are outlined.
Collapse
Affiliation(s)
- Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Zebo Zhu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuanglian Shi
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
42
|
Hutomo DI, Deandra FA, Ketherin K, García-Gareta E, Bachtiar EW, Amir L, Tadjoedin FM, Widaryono A, Haerani N, Lessang R, Soeroso Y. The Effect of Carbodiimide Crosslinkers on Gelatin Hydrogel as a Potential Biomaterial for Gingival Tissue Regeneration. Gels 2024; 10:674. [PMID: 39590030 PMCID: PMC11593530 DOI: 10.3390/gels10110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Connective tissue grafts for gingival recession treatment present significant challenges as they require an additional surgical site, leading to increased morbidity, extended operative times, and a more painful postoperative recovery for patients. Gelatin contains the arginine-glycine-aspartic acid (RGD) sequence, which supports cell adhesion and interactions. The development of gelatin hydrogels holds significant promise due to their biocompatibility, ease of customization, and structural resemblance to the extracellular matrix, making them a potential candidate for gingival regeneration. This study aimed to assess the physical and biological properties of crosslinked gelatin hydrogels using EDC/NHS with two crosslinker concentrations (GelCL12 and GelCL24) and compare these to non-crosslinked gelatin. Both groups underwent morphological, rheological, and chemical analysis. Biological assessments were conducted to evaluate human gingival fibroblast (HGF) proliferation, migration, and COL1 expression in response to the scaffolds. The crosslinked gelatin group exhibited greater interconnectivity and better physical characteristics without displaying cytotoxic effects on the cells. FTIR analysis revealed no significant chemical differences between the groups. Notably, the GelCL12 group significantly enhanced HGF migration and upregulated COL1 expression. Overall, GelCL12 met the required physical characteristics and biocompatibility, making it a promising scaffold for future gingival tissue regeneration applications.
Collapse
Affiliation(s)
- Dimas Ilham Hutomo
- Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia;
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.A.D.); (K.K.)
| | - Elena García-Gareta
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Aragon Institute of Health Research (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain;
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London WC1E 6DE, UK
| | - Endang Winiati Bachtiar
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Lisa Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (E.W.B.); (L.A.)
| | - Fatimah Maria Tadjoedin
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Adityo Widaryono
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Natalina Haerani
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Robert Lessang
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; (F.M.T.); (A.W.); (N.H.); (R.L.)
| |
Collapse
|
43
|
Ji M, Yuan Z, Ma H, Feng X, Ye C, Shi L, Chen X, Han F, Zhao C. Dandelion-shaped strontium-gallium microparticles for the hierarchical stimulation and comprehensive regulation of wound healing. Regen Biomater 2024; 11:rbae121. [PMID: 39544394 PMCID: PMC11561401 DOI: 10.1093/rb/rbae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 11/17/2024] Open
Abstract
The management of full-thickness skin injuries continues to pose significant challenges. Currently, there is a dearth of comprehensive dressings capable of integrating all stages of wound healing to spatiotemporally regulate biological processes following full-thickness skin injuries. In this study, we report the synthesis of a dandelion-shaped mesoporous strontium-gallium microparticle (GE@SrTPP) achieved through dopamine-mediated strontium ion biomineralization and self-assembly, followed by functionalization with gallium metal polyphenol networks. As a multifunctional wound dressing, GE@SrTPP can release bioactive ions in a spatiotemporal manner akin to dandelion seeds. During the early stages of wound healing, GE@SrTPP demonstrates rapid and effective hemostatic performance while also exhibiting antibacterial properties. In the inflammatory phase, GE@SrTPP promotes M2 polarization of macrophages, suppresses the expression of pro-inflammatory factors, and decreases oxidative stress in wounds. Subsequently, during the stages of proliferation and tissue remodeling, GE@SrTPP facilitates angiogenesis through the activation of the Hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway. Analogous to the dispersion and rooting of dandelion seeds, the root-like new blood vessels supply essential nutrients for wound healing. Ultimately, in a rat chronic wound model, GE@SrTPP achieved successful full-thickness wound repair. In summary, these dandelion-shaped GE@SrTPP microparticles demonstrate comprehensive regulatory effects in managing full-thickness wounds, making them highly promising materials for clinical applications.
Collapse
Affiliation(s)
- Minrui Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zaixin Yuan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hongdong Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xian Feng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Ye
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Shi
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Fei Han
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Caichou Zhao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
44
|
Alaghawani NA, Alkhatib H, Elmancy L, Daou A. Harmonizing Innovations: An In-Depth Comparative Review on the Formulation, Applications, and Future Perspectives of Aerogels and Hydrogels in Pharmaceutical Sciences. Gels 2024; 10:663. [PMID: 39451316 PMCID: PMC11507152 DOI: 10.3390/gels10100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Gels, specifically hydrogels and aerogels, have emerged as versatile materials with profound implications in pharmaceutical sciences. This comprehensive review looks into detail at hydrogels and aerogels, providing a general introduction to gels as a foundation. The paper is then divided into distinct sections for hydrogels and aerogels, each delving into their unique formulations, advantages, disadvantages, and applications. In the realm of hydrogels, we scrutinize the intricacies of formulation, highlighting the versatile advantages they offer. Conversely, potential limitations are explored, paving the way for a detailed discussion on their applications, with a specific focus on their role in antimicrobial applications. Shifting focus to aerogels, a thorough overview is presented, followed by a detailed explanation of the complex formulation process involving sol-gel chemistry; aging; solvent exchange; and drying techniques, including freeze drying, supercritical drying, and ambient-pressure drying (APD). The intricacies of drug loading and release from aerogels are addressed, providing insights into their pharmaceutical potential. The advantages and disadvantages of aerogels are examined, accompanied by an exploration of their applications, with a specific emphasis on antimicrobial uses. The review culminates in a comparative analysis, juxtaposing the advantages and disadvantages of hydrogels and aerogels. Furthermore, the current research and development trends in the applications of these gels in pharmaceutical sciences are discussed, providing a holistic view of their potential and impact. This review serves as a comprehensive guide for researchers, practitioners, and enthusiasts, seeking a deeper understanding of the distinctive attributes and applications of hydrogels and aerogels in the ever-evolving research concerning pharmaceutical sciences.
Collapse
Affiliation(s)
| | | | | | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.A.); (H.A.); (L.E.)
| |
Collapse
|
45
|
Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS OMEGA 2024; 9:41107-41129. [PMID: 39398164 PMCID: PMC11465465 DOI: 10.1021/acsomega.4c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
46
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
47
|
Parvin N, Kumar V, Joo SW, Mandal TK. Cutting-Edge Hydrogel Technologies in Tissue Engineering and Biosensing: An Updated Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4792. [PMID: 39410363 PMCID: PMC11477805 DOI: 10.3390/ma17194792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Hydrogels, known for their unique ability to retain large amounts of water, have emerged as pivotal materials in both tissue engineering and biosensing applications. This review provides an updated and comprehensive examination of cutting-edge hydrogel technologies and their multifaceted roles in these fields. Initially, the chemical composition and intrinsic properties of both natural and synthetic hydrogels are discussed, highlighting their biocompatibility and biodegradability. The manuscript then probes into innovative scaffold designs and fabrication techniques such as 3D printing, electrospinning, and self-assembly methods, emphasizing their applications in regenerating bone, cartilage, skin, and neural tissues. In the realm of biosensing, hydrogels' responsive nature is explored through their integration into optical, electrochemical, and piezoelectric sensors. These sensors are instrumental in medical diagnostics for glucose monitoring, pathogen detection, and biomarker identification, as well as in environmental and industrial applications like pollution and food quality monitoring. Furthermore, the review explores cross-disciplinary innovations, including the use of hydrogels in wearable devices, and hybrid systems, and their potential in personalized medicine. By addressing current challenges and future directions, this review aims to underscore the transformative impact of hydrogel technologies in advancing healthcare and industrial practices, thereby providing a vital resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
48
|
Zhang P, Qin Q, Cao X, Xiang H, Feng D, Wusiman D, Li Y. Hydrogel microspheres for bone regeneration through regulation of the regenerative microenvironment. BIOMATERIALS TRANSLATIONAL 2024; 5:205-235. [PMID: 39734698 PMCID: PMC11681181 DOI: 10.12336/biomatertransl.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 12/31/2024]
Abstract
Bone defects are a prevalent category of skeletal tissue disorders in clinical practice, with a range of pathogenic factors and frequently suboptimal clinical treatment effects. In bone regeneration of bone defects, the bone regeneration microenvironment-composed of physiological, chemical, and physical components-is the core element that dynamically coordinates to promote bone regeneration. In recent years, medical biomaterials with bioactivity and functional tunability have been widely researched upon and applied in the fields of tissue replacement/regeneration, and remodelling of organ structure and function. The biomaterial treatment system based on the comprehensive regulation strategy of bone regeneration microenvironment is expected to solve the clinical problem of bone defect. Hydrogel microspheres (HMS) possess a highly specific surface area and porosity, an easily adjustable physical structure, and high encapsulation efficiency for drugs and stem cells. They can serve as highly efficient carriers for bioactive factors, gene agents, and stem cells, showing potential advantages in the comprehensive regulation of bone regeneration microenvironment to enhance bone regeneration. This review aims to clarify the components of the bone regeneration microenvironment, the application of HMS in bone regeneration, and the associated mechanisms. It also discusses various preparation materials and methods of HMS and their applications in bone tissue engineering. Furthermore, it elaborates on the relevant mechanisms by which HMS regulates the physiological, chemical, and physical microenvironment in bone regeneration to achieve bone regeneration. Finally, we discuss the future prospects of the HMS system application for comprehensive regulation of bone regeneration microenvironment, to provide novel perspectives for the research and application of HMS in the bone tissue engineering field.
Collapse
Affiliation(s)
- Pengrui Zhang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Qiwei Qin
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Xinna Cao
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Honglin Xiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Yuling Li
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| |
Collapse
|
49
|
Lambrecht S, Gazizova A, Kara S, Meyer J, Jopp S. Antimicrobial properties and biocompatibility of semi-synthetic carbohydrate-based ionic hydrogels. RSC Adv 2024; 14:30719-30731. [PMID: 39328876 PMCID: PMC11425042 DOI: 10.1039/d4ra05695g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels have gained significant interest in the last decades, especially in the medical sector, due to their versatile properties. While hydrogels from naturally occurring polysaccharides (e.g. cellulose) are well-known, those produced from polymerizable carbohydrate-based monomers remain underexplored. However, these semi-synthetic hydrogels offer the great advantage of having adjustable properties for customization depending on their application. The objective of this study was to characterize semi-synthetic carbohydrate-based ionic hydrogels produced from GVIM-I (glucosyl vinyl imidazolium iodide). The antimicrobial activity was evaluated using the disk diffusion method, which demonstrated that all samples exhibit inhibitory effects on the growth of Candida auris. In vitro biocompatibility was determined by cell viability studies with L929 mouse fibroblasts, and a correlation was observed between eluate concentration and cell viability. In particular, the type of initiator system employed for polymerization was found to affect cell viability. The direct contact assessments showed that specific pre-treatments of the hydrogels resulted in higher cell viability than non-treated hydrogels. The results also revealed the impact of crosslinker concentration and type and identified poly(ethylene glycol)diacrylate (PEGDA) 575 as a promising crosslinker for future medical applications. LC-MS analysis of the wash medium identified unreacted GVIM-I as the leached material, which is presumed to be the cause of the observed cytotoxicity. Overall, the study provides valuable insights into the characteristics of GVIM-I based hydrogels and sheds light on the factors that influence their cytotoxicity and potential for medical application.
Collapse
Affiliation(s)
- Sina Lambrecht
- Department Life, Light & Matter, University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Alina Gazizova
- Institute of Chemistry, University of Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Selin Kara
- Institute of Technical Chemistry, Leibniz University Hannover Callinstraße 5 30167 Hannover Germany
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Johanna Meyer
- Institute of Technical Chemistry, Leibniz University Hannover Callinstraße 5 30167 Hannover Germany
| | - Stefan Jopp
- Department Life, Light & Matter, University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| |
Collapse
|
50
|
Manaila E, Craciun G. Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation-Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media. Gels 2024; 10:609. [PMID: 39330211 PMCID: PMC11431746 DOI: 10.3390/gels10090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Hybrid hydrogels with superabsorbent properties based on acrylic acid (20%), sodium alginate (0.5%) and poly(ethylene oxide) (0.1%) were obtained by electron-beam irradiation between 5 and 20 kGy, and are characterized by different physical and chemical methods; the first results reported showed gel fractions over 87%, cross-link densities under 9.9 × 103 mol/cm3 and swelling degrees of 400 g/g. Two types of hydrogels (without and with 0.1% initiator potassium persulfate) have been subjected to swelling and deswelling experiments in different swelling media with different pHs, chosen in accordance with the purpose for which these superabsorbent materials were obtained, i.e., water and nutrients carriers for agricultural purposes: 6.05 (distilled water), 7.66 (tap water), 5.40 (synthetic nutrient solution) and 7.45 (organic nutrient solution). Swelling kinetics and swelling dynamics have been also studied in order to investigate the influence of swelling media type and pH on the absorption phenomenon. The swelling and deswelling behaviors were influenced by the hydrogel characteristics and pH of the swelling media. Both the polymeric chain relaxation (non-Fickian diffusion) and macromolecular relaxation (super case II) phenomenon were highlighted as a function of swelling media type.
Collapse
Affiliation(s)
- Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|