1
|
Baldelli S, Lombardo M, D’Amato A, Karav S, Tripodi G, Aiello G. Glucosinolates in Human Health: Metabolic Pathways, Bioavailability, and Potential in Chronic Disease Prevention. Foods 2025; 14:912. [PMID: 40231924 PMCID: PMC11940962 DOI: 10.3390/foods14060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025] Open
Abstract
Glucosinolates (GSLs) are sulfur-containing compounds predominantly found in cruciferous vegetables such as broccoli, kale, and Brussels sprouts, and are recognized for their health-promoting properties. Upon consumption, GSLs undergo hydrolysis by the enzyme myrosinase, resulting in bioactive compounds like isothiocyanates and specific indole glucosinolate degradation products, such as indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM), which contribute to a range of health benefits, including anti-cancer, anti-inflammatory, and cardioprotective effects. This review explores the structure, metabolism, and bioavailability of GSLs. Recent evidence supports the protective role of GSLs in chronic diseases, with mechanisms including the modulation of oxidative stress, inflammation, and detoxification pathways. Furthermore, the innovative strategies to enhance GSL bioactivity, such as biofortification, genetic introgression, and optimized food processing methods, have been examined. These approaches seek to increase GSL content in edible plants, thereby maximizing their health benefits. This comprehensive review provides insights into dietary recommendations, the impact of food preparation, and recent advances in GSL bioavailability enhancement, highlighting the significant potential of these bioactive compounds in promoting human health and preventing chronic diseases.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye;
| | - Gianluca Tripodi
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (S.B.); (M.L.); (G.A.)
| |
Collapse
|
2
|
Yao F, He J, Nyaruaba R, Wei H, Li Y. Endolysins as Effective Agents for Decontaminating S. typhimurium, E. coli, and L. monocytogenes on Mung Bean Seeds. Int J Mol Sci 2025; 26:2047. [PMID: 40076670 PMCID: PMC11900444 DOI: 10.3390/ijms26052047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Seeds are a major source of contamination by foodborne pathogens such as Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes, significantly increasing the risk of foodborne diseases associated with fresh produce like sprouts. In this study, we described novel endolysins and the engineered variants that exhibited potent bactericidal activity against these pathogens. These endolysins demonstrated strong bactericidal effects independently of outer membrane permeabilizers, effectively killing S. typhimurium, E. coli, and L. monocytogenes to undetectable levels (>4-log kill) at concentrations as low as 12.5 μg/mL. The enzymes retained their activity in complex environments, such as a wide range of temperatures (4-100 °C), pH values (4-10), serum concentrations (0-50%), and sodium chloride concentrations (0-500 mM). Furthermore, their rapid bactericidal kinetics, excellent storage stability (>18 months), and broad-spectrum antimicrobial activity enhanced their potential for application. These endolysins remained effective against stationary-phase bacteria and biofilm-forming bacteria, achieving more than 99% biofilm eradication at 200 μg/mL. Notably, at concentrations as low as 50 μg/mL, these enzymes completely decontaminated foodborne pathogens in a mung bean seed model contaminated with 4-5 log CFU of bacteria. This study is the first to report the successful use of lysins to control both Gram-negative and Gram-positive pathogens on mung bean seeds.
Collapse
Affiliation(s)
- Fangfang Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jiajun He
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Raphael Nyaruaba
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongping Wei
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuhong Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
3
|
Balik S, Elgudayem F, Dasgan HY, Kafkas NE, Gruda NS. Nutritional quality profiles of six microgreens. Sci Rep 2025; 15:6213. [PMID: 39979322 PMCID: PMC11842852 DOI: 10.1038/s41598-025-85860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Globally, one in every four individuals faces a deficiency in essential micronutrients. Harvested early from various vegetables, grains, and herbs, microgreens have rich nutritional profiles that can mitigate nutrient deficiencies. Here, we analyzed six microgreens' nutritional profiles for broccoli, black radish, red beet, pea, sunflower, and bean. Ascorbic acid content varied widely, from 32.72 mg/100 g fresh weight (FW) in red beet to 80.45 mg/100 g FW in beans. All microgreens exhibited high macro elements (mg/100 g FW), with potassium ranging from 187.07 to 416.05, magnesium from 45.96 to 86.83, calcium from 67.18 to 148.63, and phosphorus from 2.57 to 4.88. They also contained significant microelements (µg/100 g FW), including iron from 524 to 2610, manganese from 176.32 to 350.56, zinc from 31.92 to 129.78, and copper from 458.84 to 956.34. Glucose content surpassed sucrose and fructose, ranging from 0.114 to 0.580 mg/100 g FW. Among organic acids, citric acid was highest in red beet, succinic acid in beans, and fumaric acid in sunflower. Broccoli microgreens had the highest total phenolic content (825.53 mg GA/100 g FW), while beans had the highest total flavonoid content (758.0 mg RU/100 g FW). Black radish microgreens demonstrated the highest antioxidant capacity. Additionally, volatile aromatic compounds were analyzed across the six microgreen species. These findings highlight the nutritional potential of microgreens, advocating for their inclusion in diets to enhance human health. Red beet microgreens were the richest in organic acids, particularly citric acid, and flavonoids, supporting antioxidant activity, while black radish microgreens exhibited the highest DPPH antioxidant capacity and phenolic content. Bean microgreens stood out for their high ascorbic acid content. Sunflower microgreens had the highest levels of calcium and fumaric acid. Broccoli microgreens were abundant in phenolic compounds and contained high concentrations of iron and manganese. Finally, pea microgreens excelled in phosphorus and copper content.
Collapse
Affiliation(s)
- Sibel Balik
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, 01330, Adana, Turkey
| | - Farah Elgudayem
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, 01330, Adana, Turkey
- Laboratory of Ecosystems and Biodiversity in Arid areas in Tunisia, Department of Life Sciences, Faculty of Sciences of Sfax, University of Sfax, 3000, Sfax, Tunisia
| | - Hayriye Yildiz Dasgan
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, 01330, Adana, Turkey.
| | - Nesibe Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, 01330, Adana, Turkey
| | - Nazim S Gruda
- Institute of Crop Science and Resource Conservation, Division of Horticultural Sciences, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Seth T, Mishra GP, Chattopadhyay A, Deb Roy P, Devi M, Sahu A, Sarangi SK, Mhatre CS, Lyngdoh YA, Chandra V, Dikshit HK, Nair RM. Microgreens: Functional Food for Nutrition and Dietary Diversification. PLANTS (BASEL, SWITZERLAND) 2025; 14:526. [PMID: 40006785 PMCID: PMC11859409 DOI: 10.3390/plants14040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Microgreens are tender, edible seedlings harvested 7-21 days after germination containing a central stem, cotyledons, and true leaves. Known as a fresh, ready-to-eat functional food, they are mostly rich in vitamins, antioxidants, bioactive compounds, and minerals, with distinctive flavors, colors, and textures. These attributes make microgreens a valuable component in nutrition and health research. In countries like India, where low-income households spend 50-80% of their income on food, micronutrient deficiencies are common, particularly among women. Indian women, facing a double burden of malnutrition, experience both underweight (18.7%) and obesity (24.0%) issues, with 57% suffering from anemia. Women's unique health requirements vary across life stages, from infancy to their elderly years, and they require diets rich in vitamins and minerals to ensure micronutrient adequacy. Microgreens, with their high nutrient density, hold promise in addressing these deficiencies. Fresh and processed microgreens based products can enhance food variety, nutritive value, and appeal. Rethinking agriculture and horticulture as tools to combat malnutrition and reduce the risk of non-communicable diseases (NCDs) is vital for achieving nutritional security and poverty reduction. This review compiles recent research on microgreens, focusing on their nutrient profiles, health benefits, suitable crops, substrates, seed density, growing methods, sensory characteristics, and applications as fresh and value-added products. It offers valuable insights into sustainable agriculture and the role of microgreens in enhancing human nutrition and health.
Collapse
Affiliation(s)
- Tania Seth
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Gyan Prakash Mishra
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, Delhi, India;
| | - Arup Chattopadhyay
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741 252, West Bengal, India;
| | - Partha Deb Roy
- ICAR-Indian Institute of Water Management, Bhubaneswar 751 023, Odisha, India;
| | - Mridula Devi
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Ankita Sahu
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Sukanta Kumar Sarangi
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Chaitrali Shashank Mhatre
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Yvonne Angel Lyngdoh
- ICAR-Central Potato Research Institute, Regional Station, Shillong 793 009, Meghalaya, India;
| | - Visalakshi Chandra
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram 695 017, Kerala, India;
| | - Harsh Kumar Dikshit
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, Delhi, India;
| | | |
Collapse
|
5
|
Çoban F. Fenugreek Sprouts Around the World: Exploring Therapeutic and Nutritional Benefits. Food Sci Nutr 2025; 13:e4668. [PMID: 39803269 PMCID: PMC11717055 DOI: 10.1002/fsn3.4668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/19/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
This study investigates the therapeutic and nutritional potential of fenugreek sprouts from 30 diverse genotypes sourced from various regions. The aim was to characterize and compare their therapeutic attributes, including antioxidant capacity, antidiabetic, and anti-cholinesterase activities, along with their nutritional compositions, particularly minerals, and protein content. Results revealed significant variations among the genotypes in terms of their therapeutic properties. China genotypes exhibited notable α-amylase inhibition 64.57%, suggesting potential antidiabetic properties, while South Sudan genotypes demonstrated significant acetylcholinesterase (14.44%) and butyrylcholinesterase inhibitions, indicating possible cognitive health benefits. The Morocco and Konya/Türkiye genotypes exhibited noteworthy antioxidant effects, with showing DPPH • scavenging activities of 7.79% and 7.23%, and ABTS •+ activities of 27.87% and 27.31%, respectively. Mineral analysis revealed considerable differences across genotypes. Israel genotypes had the highest iron content (43.18 mg/100 g), Sivas/Türkiye genotype had the highest potassium levels (2259.87 mg/100 g), and Kayseri/Türkiye genotype had the highest sodium content (616.91 mg/100 g). Ukraine genotypes contained the most magnesium (266.61 mg/100 g), while Israel genotypes also had the highest zinc content (54.44 mg/100 g). The protein content of the fenugreek sprouts varied significantly, with Corum/Türkiye showing the highest protein content at 5.75/100 g. Principal component analysis (PCA) highlighted the relationships among the mineral nutrients and protein content, revealing distinct groupings of genotypes based on their mineral compositions. Correlation analysis further elucidated the associations between various minerals and protein content. In conclusion, this study underscores the potential therapeutic and nutritional significance of fenugreek sprouts.
Collapse
Affiliation(s)
- Furkan Çoban
- Department of Plant BreedingThe Swedish University of Agricultural SciencesLommaSweden
- Department of Field Crops, Faculty of AgricultureAtatürk UniversityErzurumTürkiye
| |
Collapse
|
6
|
Yuan H, Wang Q, Tan J, Wu J, Liang C, Wang Y, Deng T, Hu Z, Liu C, Ye X, Wu Q, Wu X, Zheng X, Sun W, Fan Y, Jiang L, Peng L, Zou L, Huang J, Wan Y. Ionic titanium is expected to improve the nutritional quality of Tartary buckwheat sprouts through flavonoids and amino acid metabolism. Food Chem 2024; 461:140907. [PMID: 39173266 DOI: 10.1016/j.foodchem.2024.140907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Tartary buckwheat sprouts are highly valued by consumers for their superior nutritional content. Ionic titanium (Ti) has been shown to enhance crop growth and improve nutritional quality. However, there is limited research on the impact of ionic Ti on the nutritional quality of Tartary buckwheat sprouts. This study cultivated Tartary buckwheat sprouts with ionic Ti and found that the high concentration of ionic Ti significantly increased the contents of chlorophyll a, chlorophyll b, and carotenoids (increased by 25.5%, 27.57%, and 15.11%, respectively). The lower concentration of ionic Ti has a higher accumulation of total flavonoids and total polyphenols. Metabolomics analysis by LC-MS revealed 589 differentially expressed metabolites and 54 significantly different metabolites, enriching 82 metabolic pathways, especially including amino acid biosynthesis and flavonoid biosynthesis. This study shows that ionic Ti can promote the growth of Tartary buckwheat sprouts, improve nutritional quality, and have huge development potential in food production.
Collapse
Affiliation(s)
- Hang Yuan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Agronomy College, Jilin Agricultural University, Changchun 130118, Jilin, PR China; Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, Jilin, PR China
| | - Jianxin Tan
- Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, Tibet, PR China
| | - Jingyu Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Chenggang Liang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, PR China
| | - Yan Wang
- Research Center of Buckwheat Industry Technology, School of Life Sciences, Guizhou Normal University, Guiyang 550001, PR China
| | - Tingting Deng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Zhiming Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China; Sichuan Institute of Food Inspection, Chengdu 610097, Sichuan, PR China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Xiaoqin Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Jingwei Huang
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China.
| |
Collapse
|
7
|
Sandez Penidez SH, Velasco Manini MA, Gerez CL, Rollán GC. Quinoa sourdough fermented with Lactiplantibacillus plantarum CRL 1964, a powerful tool to enhance the nutritional features of quinoa snacks. J Food Sci 2024; 89:8410-8419. [PMID: 39437230 DOI: 10.1111/1750-3841.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024]
Abstract
The remarkable nutritional attributes and potential health advantages of quinoa make it an important candidate for developing innovative ready-to-eat food products. This work aimed to develop a functional ready-to-eat snack based on quinoa sourdough fermented by Lactiplantibacillus (L.) plantarum CRL 1964. Phytate, phosphates, and soluble mineral content (Fe, Mn, Zn, Mg, Ca, and P) were determined in snacks formulated with sourdough and control doughs. An in vitro digestion model was performed on quinoa snacks to assess their mineral bioaccessibility and dialyzability. Phytate content was significantly lower (ca. 42.3%) while phosphates were higher (ca. eightfold) in quinoa-based sourdough and sourdough-based snacks (S1964) than in controls. Soluble minerals were higher (10.2%-32.0%) in S1964 than in controls. Mineral bioaccessibility and mineral dialyzability were also higher (ca. 24.5%) among S1964 and control snacks. The developed quinoa snack made from sourdough fermented by L. plantarum CRL 1964 had less phytate concentration and high bioaccessibility of minerals. These findings underscore the relevance of this innovative technology in creating food products that are not only highly nutritious but also represent a valuable contribution to the market of healthy foods. PRACTICAL APPLICATION: In this study, a novel snack based on quinoa sourdough with improved nutritional properties was developed. The addition of quinoa sourdough fermented by Lactiplantibacillus plantarum CRL 1964 to the preparation of quinoa snacks resulted in a product with a lower concentration of phytate and a higher content of phosphates and minerals (soluble, bioaccessible, and dialyzable). These results underline the efficacy of the new snack as a promising alternative to conventional mineral fortification methods. This innovative approach holds promise for addressing nutritional deficiencies and the demand for healthy snack options in today's market.
Collapse
Affiliation(s)
| | | | - Carla Luciana Gerez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Argentina
| | | |
Collapse
|
8
|
Sheikhi H, Nicola S, Delshad M, Bulgari R. Sodium selenate biofortification, through seed priming, on dill microgreens grown in two different cultivation systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1474420. [PMID: 39691483 PMCID: PMC11651346 DOI: 10.3389/fpls.2024.1474420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024]
Abstract
Human health is significantly influenced by the quality of vegetables included in the diet. Soilless cultivation methods have the potential to enhance and standardize the levels of secondary metabolites or specific bioactive compounds in plants, even when utilizing LED lighting. In recent years, tailored foods, enriched with important microelements, are growing in popularity. The present research was conducted to explore the quantitative and qualitative aspects of dill (Anethum graveolens L.), grown either indoor or in a greenhouse and harvested during the microgreen stage. Seeds of dill were primed with 1.5 and 3 mg L-1 selenium (Se). Untreated dry and hydro-primed seeds were used as the control and positive control groups, respectively. Results demonstrated a higher yield in indoor farm environment (1255.6 g FW m-2) compared to greenhouse (655.1 g FW m-2), with a general positive effect on the morphological traits studied, with no significant influence from priming and Se. The mean value of phenolic index of microgreens grown in the greenhouse was 13.66% greater than that grown in indoor condition. It was also observed that seeds priming with Se can effectively raise the Se content in dill microgreens, in both tested conditions. Overall, our results suggest that the 3 mg L-1 Se seems to be the most promising concentration to obtain Se-enriched microgreens.
Collapse
Affiliation(s)
- Hossein Sheikhi
- Horticultural Sciences Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| | - Mojtaba Delshad
- Horticultural Sciences Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roberta Bulgari
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, Italy
| |
Collapse
|
9
|
Šola I, Vujčić Bok V, Popović M, Gagić S. Phytochemical Composition and Functional Properties of Brassicaceae Microgreens: Impact of In Vitro Digestion. Int J Mol Sci 2024; 25:11831. [PMID: 39519385 PMCID: PMC11546364 DOI: 10.3390/ijms252111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The aim of this study was to compare the concentration of phenolic compounds, glucosinolates, proteins, sugars and vitamin C between kohlrabi (Brassica oleracea var. acephala gongylodes), Savoy cabbage (B. oleracea sabauda), Brussels sprouts (B. oleracea gemmifera), cauliflower (B. oleracea botrytis), radish (Raphanus sativus) and garden cress (Lepidium sativum) microgreens for their antioxidant and hypoglycemic potential. In addition, we applied an in vitro-simulated system of human digestion in order to track the bioaccessibility of the selected phenolic representatives, and the stability of the microgreens' antioxidant and hypoglycemic potential in terms of α-amylase and α-glucosidase inhibition after each digestion phase. Using spectrophotometric and RP-HPLC methods with statistical analyses, we found that garden cress had the lowest soluble sugar content, while Savoy cabbage and Brussels sprouts had the highest glucosinolate levels (76.21 ± 4.17 mg SinE/g dm and 77.73 ± 3.33 mg SinE/g dm, respectively). Brussels sprouts were the most effective at inhibiting protein glycation (37.98 ± 2.30% inhibition). A very high positive correlation (r = 0.830) between antiglycation potential and conjugated sinapic acid was recorded. For the first time, the antidiabetic potential of microgreens after in vitro digestion was studied. Kohlrabi microgreens best inhibited α-amylase in both initial and intestinal digestion (60.51 ± 3.65% inhibition and 62.96 ± 3.39% inhibition, respectively), and also showed the strongest inhibition of α-glucosidase post-digestion (19.22 ± 0.08% inhibition). Brussels sprouts, cauliflower, and radish had less stable α-glucosidase than α-amylase inhibitors during digestion. Kohlrabi, Savoy cabbage, and garden cress retained inhibition of both enzymes after digestion. Kohlrabi antioxidant capacity remained unchanged after digestion. The greatest variability was seen in the original samples, while the intestinal phase resulted in the most convergence, indicating that digestion reduced differences between the samples. In conclusion, this study highlights the potential of various microgreens as sources of bioactive compounds with antidiabetic and antiglycation properties. Notably, kohlrabi microgreens demonstrated significant enzyme inhibition after digestion, suggesting their promise in managing carbohydrate metabolism and supporting metabolic health.
Collapse
Affiliation(s)
- Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
| | - Valerija Vujčić Bok
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
- Division for Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Maja Popović
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
| | - Sanja Gagić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia; (V.V.B.); (M.P.); (S.G.)
- Division for Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Zhang X, Wu G, Wu Y, Tang N, Huang L, Dai D, Yuan X, Xue C, Chen X. Diversity Analysis and Comprehensive Evaluation of 101 Soybean ( Glycine max L.) Germplasms Based on Sprout Quality Characteristics. Foods 2024; 13:3524. [PMID: 39517308 PMCID: PMC11545536 DOI: 10.3390/foods13213524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Soybean sprouts are a common culinary vegetable due to their high nutrition and tasty flavors. To select soybean varieties with excellent sprout quality, 101 soybean materials were collected from different regions of China, and eight sprout quality parameters were determined for overall evaluation. The results showed that eight sprout quality parameters achieved varying degrees of difference and correlation. Based on the principal component analysis (PCA), three principal components were extracted, with a cumulative contribution rate of 78.314%. Further, the comprehensive evaluation value (D) of soybean sprout quality was calculated by membership function analysis based on PCA, and the quality of soybean sprouts was ranked accordingly. Subsequently, a regression equation for the prediction of soybean sprout quality was established using a stepwise regression analysis, and the model showed a good prediction performance (correlation coefficient of prediction > 0.8; residual predictive deviation > 2.0). On these grounds, it was proposed that the quality of soybean sprouts could be comprehensively predicted by four parameters: hypocotyl length, edible rate, 100-seed weight, and total isoflavone content and saponin content. In conclusion, this study provides excellent varieties for soybean sprout production and new variety breeding, and it provides an important reference for the prediction of soybean sprout quality.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (G.W.); (L.H.); (D.D.); (X.Y.); (X.C.)
| | - Gufeng Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (G.W.); (L.H.); (D.D.); (X.Y.); (X.C.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhe Wu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; (Y.W.); (N.T.)
| | - Ning Tang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; (Y.W.); (N.T.)
| | - Lu Huang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (G.W.); (L.H.); (D.D.); (X.Y.); (X.C.)
| | - Dongqing Dai
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (G.W.); (L.H.); (D.D.); (X.Y.); (X.C.)
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (G.W.); (L.H.); (D.D.); (X.Y.); (X.C.)
| | - Chenchen Xue
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (G.W.); (L.H.); (D.D.); (X.Y.); (X.C.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.Z.); (G.W.); (L.H.); (D.D.); (X.Y.); (X.C.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Kowalczewski PŁ, Wróbel MM, Smarzyński K, Zembrzuska J, Ślachciński M, Jeżowski P, Tomczak A, Kulczyński B, Zielińska-Dawidziak M, Sałek K, Kmiecik D. Potato Protein-Based Vegan Burgers Enriched with Different Sources of Iron and Fiber: Nutrition, Sensory Characteristics, and Antioxidants before and after In Vitro Digestion. Foods 2024; 13:3060. [PMID: 39410095 PMCID: PMC11475115 DOI: 10.3390/foods13193060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The aim of this research was to develop a technology for the production of plant-based burgers (PBBs) based on potato protein, also containing high content of iron and appropriately selected fats. The produced PBBs were characterized in terms of their nutritional and bioactive properties both before and after the in vitro digestion process. It was found that the produced burger was characterized by high protein content, ranging from 20.80 to 22.16 g/100 g. It was also shown to have a high dietary fiber content, ranging from 8.35 to 9.20 g/100 g. The main fraction of dietary fiber in the tested samples was insoluble fiber, which accounted for approximately 89% of the total fiber content. In addition, noteworthy is the high digestibility of the protein, reaching approximately 95% for the potato fiber used in the formulation, and about 85% for the oat fiber. Produced PBBs also provide significant amounts of iron, with the use of an organic iron source greatly increasing its quantity in the final product. The analyzed antioxidant properties before and after the digestion process showed a tenfold increase in biological activity after digestion, indicating that the examined PBBs may counteract oxidative stress. Analyzing the chemical and biological properties, it is impossible not to assess consumer attractiveness. It has been shown that PBB1, which contains potato fiber and powdered sprouts enriched with ferritin, received the highest attractiveness ratings among respondents.
Collapse
Affiliation(s)
- Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland;
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
| | - Martyna Maria Wróbel
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Quality Management, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Quality Management, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Mariusz Ślachciński
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Paweł Jeżowski
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznań, Poland; (J.Z.); (M.Ś.)
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 60-623 Poznań, Poland; (A.T.); (M.Z.-D.)
| | - Bartosz Kulczyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 60-624 Poznań, Poland (P.J.); (B.K.)
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Magdalena Zielińska-Dawidziak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 60-623 Poznań, Poland; (A.T.); (M.Z.-D.)
| | - Karina Sałek
- Institute of Biological Chemistry, Biophysics & Bioengineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Dominik Kmiecik
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland;
| |
Collapse
|
12
|
Zhou Q, Chen Y, Peng L, Wu J, Hao W, Wang M. Sprouting facilitates the antiglycative effect of black soybean ( Glycine max (L.) Merr.) by promoting the accumulation of isoflavones. Curr Res Food Sci 2024; 9:100827. [PMID: 39281341 PMCID: PMC11399799 DOI: 10.1016/j.crfs.2024.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
The exposure of advanced glycation end products (AGEs) can induce chronic inflammation, oxidative stress, and accelerated aging, contributing the onset and progression of many diseases especially diabetic complications. Therefore, the searching of antiglycative foods is of practical significance, which may serve as a strategy in the attenuation of AGEs-associated diseases. In this study, we evaluated the antiglycative potential of some beans and bean sprouts that were common in our daily life. The results revealed that sprouting enhanced the antiglycative activity of beans, with black soybean sprouts demonstrating the highest efficacy (4.92-fold higher than the unsprouted beans). To assess practical implications, we examined the antiglycative activity of black soybean sprouts in pork soup, a popular food model that incorporates sprouts. Our findings confirmed the inhibitory effect on a dose-dependent manner. Through open column fractionation, we identified isoflavones and soyasaponin Bb as the candidates responsible for these effects. Additionally, compare to the unsprouted black soybeans, we found significant increases in the levels of antioxidative properties (2.51-fold), total phenolics (7.28-fold), isoflavones, and soyasaponin Bb during the sprouting process. Further studies determined that genistein, genistin, and daidzin were the major antiglycative compounds in black soybean sprouts. Collectively, this study emphasizes the benefits of sprouted beans and offers foundation for the development of functional sprouting foods.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Chen
- School of Biological Sciences, The University of Hong Kong, 999077 China
| | - Lifang Peng
- School of Biological Sciences, The University of Hong Kong, 999077 China
| | - Jun Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wen Hao
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao 266000, China
- Qingdao Institute of Preventive Medicine, Qingdao 266000, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
13
|
Ren Y, Zhang Q, Li X, Zhang T, Tian D, Liu L, Dong X, Wang ZY, Chai M. Effects of Selenium Content on Growth, Antioxidant Activity, and Key Selenium-Enriched Gene Expression in Alfalfa Sprouts. Foods 2024; 13:2261. [PMID: 39063347 PMCID: PMC11276560 DOI: 10.3390/foods13142261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
To enhance the selenium (Se) intake of the general public, the present study implemented biofortification techniques in alfalfa sprouts. Alfalfa sprouts possess unique nutritional value and provide an optimal Se-enriched supplemental Se source. The impact of sodium selenite (Na2SeO3) on alfalfa shoot germination, shoot length, and biomass was assessed experimentally, and changes in the antioxidant capacity of sprouts treated with optimal Se concentrations were investigated. In addition, the transcriptome of alfalfa sprouts treated with the optimal Na2SeO3 concentration was sequenced. Gene co-expression networks, constructed through differential gene analysis and weighted gene co-expression network analysis, were used to identify the core genes responsible for Se enrichment in alfalfa sprouts. The findings of the present study offer novel insights into the effects of Se treatment on the nutrient composition of alfalfa sprouts, in addition to introducing novel methods and references that could facilitate production of Se-enriched alfalfa sprouts and associated products.
Collapse
Affiliation(s)
- Yaru Ren
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiang Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Tianyi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Daicai Tian
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Maofeng Chai
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Sharma A, Hazarika M, Heisnam P, Pandey H, Devadas VASN, Kesavan AK, Kumar P, Singh D, Vashishth A, Jha R, Misra V, Kumar R. Controlled Environment Ecosystem: A Cutting-Edge Technology in Speed Breeding. ACS OMEGA 2024; 9:29114-29138. [PMID: 39005787 PMCID: PMC11238293 DOI: 10.1021/acsomega.3c09060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
The controlled environment ecosystem is a meticulously designed plant growing chamber utilized for cultivating biofortified crops and microgreens, addressing hidden hunger and malnutrition prevalent in the growing population. The integration of speed breeding within such controlled environments effectively eradicates morphological disruptions encountered in traditional breeding methods such as inbreeding depression, male sterility, self-incompatibility, embryo abortion, and other unsuccessful attempts. In contrast to the unpredictable climate conditions that often prolong breeding cycles to 10-15 years in traditional breeding and 4-5 years in transgenic breeding within open ecosystems, speed breeding techniques expedite the achievement of breeding objectives and F1-F6 generations within 2-3 years under controlled growing conditions. In comparison, traditional breeding may take 5-10 years for plant population line creation, 3-5 years for field trials, and 1-2 years for variety release. The effectiveness of speed breeding in trait improvement and population line development varies across different crops, requiring approximately 4 generations in rice and groundnut, 5 generations in soybean, pea, and oat, 6 generations in sorghum, Amaranthus sp., and subterranean clover, 6-7 generations in bread wheat, durum wheat, and chickpea, 7 generations in broad bean, 8 generations in lentil, and 10 generations in Arabidopsis thaliana annually within controlled environment ecosystems. Artificial intelligence leverages neural networks and algorithm models to screen phenotypic traits and assess their role in diverse crop species. Moreover, in controlled environment systems, mechanistic models combined with machine learning effectively regulate stable nutrient use efficiency, water use efficiency, photosynthetic assimilation product, metabolic use efficiency, climatic factors, greenhouse gas emissions, carbon sequestration, and carbon footprints. However, any negligence, even minor, in maintaining optimal photoperiodism, temperature, humidity, and controlling pests or diseases can lead to the deterioration of crop trials and speed breeding techniques within the controlled environment system. Further comparative studies are imperative to comprehend and justify the efficacy of climate management techniques in controlled environment ecosystems compared to natural environments, with or without soil.
Collapse
Affiliation(s)
- Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Mainu Hazarika
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Punabati Heisnam
- College of Agriculture, Central Agricultural University, Iroisemba, Manipur 795004, India
| | - Himanshu Pandey
- PG Department of Agriculture, Khalsa College, Amritsar, Punjab 143002, India
| | | | - Ajith Kumar Kesavan
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India
| | - Praveen Kumar
- Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan 342304, India
| | - Devendra Singh
- Faculty of Biotechnology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh 225003, India
| | - Amit Vashishth
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Rani Jha
- ISBM University, Gariyaband, Chhattishgarh 493996, India
| | - Varucha Misra
- Division of Crop Improvement, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| | - Rajeev Kumar
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
15
|
Li J, Feng J, Luo X, Qu Mo MM, Li WB, Huang JW, Wang S, Hu YC, Zou L, Wu DT. Potential structure-function relationships of pectic polysaccharides from quinoa microgreens: Impact of various esterification degrees. Food Res Int 2024; 187:114395. [PMID: 38763655 DOI: 10.1016/j.foodres.2024.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Feng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine (Chinese Materia Medica), Chengdu 610045, Sichuan, China
| | - Mei-Mei Qu Mo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China
| | - Wen-Bing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Southwest Minzu University, Chengdu 610225, Sichuan, China.
| | - Jing-Wei Huang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
16
|
Polyiam P, Thukhammee W. A Comparison of Phenolic, Flavonoid, and Amino Acid Compositions and In Vitro Antioxidant and Neuroprotective Activities in Thai Plant Protein Extracts. Molecules 2024; 29:2990. [PMID: 38998943 PMCID: PMC11243576 DOI: 10.3390/molecules29132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.
Collapse
Affiliation(s)
- Pontapan Polyiam
- Department of Physiology, Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukhammee
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
17
|
Bhabani MG, Shams R, Dash KK. Microgreens and novel non-thermal seed germination techniques for sustainable food systems: a review. Food Sci Biotechnol 2024; 33:1541-1557. [PMID: 38623424 PMCID: PMC11016050 DOI: 10.1007/s10068-024-01529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 04/17/2024] Open
Abstract
There are a number of cutting-edge techniques implemented in the germination process, including high pressure processing, ultrasonic, ultraviolet, light, non-thermal plasma, magnetic field, microwave radiation, electrolyzed oxidizing water, and plasma activated water. The influence of these technological advances on seed germination procedure is addressed in this review. The use of these technologies has several benefits, including the enhancement of plant growth rate and the modulation of bioactive chemicals like ABA, protein, and peroxidase concentrations, as well as the suppression of microbial development. Microgreens' positive health effects, such as their antioxidant, anticancer, antiproliferative/pro-oxidant, anti-obesity, and anti-inflammatory properties are extensively reviewed. The phytochemical and bioactive components of microgreens were investigated, including the concentrations of vitamin K, vitamin C, vitamin E, micro and macro nutrients, pro-vitamin A, polyphenols, and glucosinolates. Furthermore, the potential commercial uses of microgreens, as well as the current market transformation and prospects for the future are explored.
Collapse
Affiliation(s)
- Mulakala Geeta Bhabani
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| |
Collapse
|
18
|
Castellaneta A, Höring M, Losito I, Leoni B, Santamaria P, Calvano CD, Cataldi TRI, Matysik S, Liebisch G. Exploration of the Lipid Profile of Edible Oleaginous Microgreens by Mass Spectrometry-Based Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11438-11451. [PMID: 38728027 DOI: 10.1021/acs.jafc.3c09347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 μmol/g of DW, respectively), followed by flax (ca. 20 and 3 μmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. β-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.
Collapse
Affiliation(s)
- Andrea Castellaneta
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Marcus Höring
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Beniamino Leoni
- Dipartimento di Scienze del Suolo e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Pietro Santamaria
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Dipartimento di Scienze del Suolo e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Centro Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Silke Matysik
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinikum Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
19
|
Kathi S, Laza H, Singh S, Thompson L, Li W, Simpson C. Simultaneous biofortification of vitamin C and mineral nutrients in arugula microgreens. Food Chem 2024; 440:138180. [PMID: 38104455 DOI: 10.1016/j.foodchem.2023.138180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Microgreens have shown promise in improving the overall nutritional value of diets due to their high nutrient density. Agronomic biofortification, is an efficient strategy for enhancing the nutritional value of crops, including microgreens. This study aimed to biofortify vitamin C and other essential nutrients in arugula microgreens using four treatments containing 0.25 % ascorbic acid, pH adjusted with different bases: KOH, Ca(OH)2, ZnCO3, or NaOH and a deionized water control. The results indicate that ascorbic acid-treated microgreens had more vitamin C, greater fresh weight and % dry matter than the control. The ascorbic acid + Zn treatment had an 135 % average increase in vitamin C compared to the control. Microgreens treated with ascorbic acid also showed increased levels of minerals that are present in the nutrient solution, such as potassium, sodium, calcium, and zinc. This research contributes to the growing interest in microgreens biofortification and their role in addressing multi-nutrient deficiencies.
Collapse
Affiliation(s)
- Shivani Kathi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Haydee Laza
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Sukhbir Singh
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Catherine Simpson
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
20
|
Park YR, Kwon SJ, Kim JH, Duan S, Eom SH. Light-Induced Antioxidant Phenolic Changes among the Sprouts of Lentil Cultivar. Antioxidants (Basel) 2024; 13:399. [PMID: 38671847 PMCID: PMC11047427 DOI: 10.3390/antiox13040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Lentil is a leguminous crop with a high content of health-beneficial polyphenols. Lentil sprouts are popularly consumed in fresh vegetable markets, although their phytochemical qualities are not well understood. In this study, we investigated the accumulation of phenolics in lentil sprouts in response to photosynthetic and stress light qualities, including fluorescent light (FL), red LED (RL), blue LED (BL), ultraviolet A (UV-A), and ultraviolet B (UV-B). Three lentil cultivars, Lentil Green (LG), French Green (FG), and Lentil Red (LR), were used to evaluate sprouts grown under each light condition. The adequate light intensities for enhancing the antioxidant activity of lentil sprouts were found to be 11 W/m2 under photosynthetic lights (FL, RL, BL), and 1 W/m2 under stress lights (UV-A, UV-B). Subsequently, HPLC-ESI/Q-TOF MS analysis was conducted for the quantitative analysis of the individual phenolics that were accumulated in response to light quality. Four main phenolic compounds were identified: ferulic acid, tricetin, luteolin, and kaempferol. Notably, tricetin accumulation was significantly enhanced under BL across all three lentil cultivars examined. Furthermore, the study revealed that the other phenolic compounds were highly dependent on FL, BL, or UV-B exposure, exhibiting cultivar-specific variations. Additionally, the antioxidant activities of lentil extracts indicated that BL was most effective for LG and FG cultivars, whereas FL was most effective for enhancing antioxidant activity of LR cultivars as the sprouts grew.
Collapse
Affiliation(s)
- You Rang Park
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.R.P.); (J.H.K.); (S.D.)
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea;
| | - Ji Hye Kim
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.R.P.); (J.H.K.); (S.D.)
| | - Shucheng Duan
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.R.P.); (J.H.K.); (S.D.)
| | - Seok Hyun Eom
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea; (Y.R.P.); (J.H.K.); (S.D.)
- Smart Farm Science, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
21
|
Varga I, Kristić M, Lisjak M, Tkalec Kojić M, Iljkić D, Jović J, Kristek S, Markulj Kulundžić A, Antunović M. Antioxidative Response and Phenolic Content of Young Industrial Hemp Leaves at Different Light and Mycorrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:840. [PMID: 38592854 PMCID: PMC10976054 DOI: 10.3390/plants13060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Due to the increasing presence of industrial hemp (Cannabis sativa L.) and its multiple possibilities of use, the influence of different light and several biopreparations based on beneficial fungi and bacteria on hemp's morphological and physiological properties were examined. Different biopreparations and their combinations were inoculated on hemp seed and/or substrate and grown under blue and white light. A completely randomized block design was conducted in four replications within 30 days. For biopreparation treatment, vesicular arbuscular mycorrhiza (VAM) in combination with Azotobacter chroococum and Trichoderma spp. were inoculated only on seed or both on seed and in the substrate. Generally, the highest morphological parameters (stem, root and plant length) were recorded on plants in white light and on treatment with applied Trichoderma spp., both on seed and substrate. Blue light negatively affected biopreparation treatments, resulting in lower values of all morphological parameters compared to control. Leaves pigments were higher under blue light, as compared to the white light. At the same time, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), flavonoids, total flavanol content and phenolic acids were not influenced by light type. Biopreparation treatments did not significantly influence the leaves' pigments content (Chl a, Chl b and Car), nor the phenolic and flavanol content.
Collapse
Affiliation(s)
- Ivana Varga
- Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.T.K.); (D.I.) (M.A.)
| | - Marija Kristić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.K.); (M.L.); (J.J.); (S.K.)
| | - Miroslav Lisjak
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.K.); (M.L.); (J.J.); (S.K.)
| | - Monika Tkalec Kojić
- Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.T.K.); (D.I.) (M.A.)
| | - Dario Iljkić
- Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.T.K.); (D.I.) (M.A.)
| | - Jurica Jović
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.K.); (M.L.); (J.J.); (S.K.)
| | - Suzana Kristek
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.K.); (M.L.); (J.J.); (S.K.)
| | - Antonela Markulj Kulundžić
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia;
| | - Manda Antunović
- Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.T.K.); (D.I.) (M.A.)
| |
Collapse
|
22
|
Lone JK, Pandey R, Gayacharan. Microgreens on the rise: Expanding our horizons from farm to fork. Heliyon 2024; 10:e25870. [PMID: 38390124 PMCID: PMC10881865 DOI: 10.1016/j.heliyon.2024.e25870] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Escalating public health concerns necessitate innovative approaches to food sources. Microgreens, nutrient-rich seedlings of vegetables and herbs, have gained recognition as functional foods. This review explores the evolution of microgreens, cultivation methods, biochemical changes during germination, nutritional content, health benefits, and commercial significance. Comprehensive studies have demonstrated that microgreens have an elevated level of various nutrients. Further, in vitro and in vivo research validated their antioxidant, anticancer, antibacterial, anti-inflammatory, anti-obesity, and antidiabetic properties. Microgreens, termed "desert food," show promise for sustainable food production in climate-vulnerable regions. This paper synthesizes recent research on microgreens, addressing challenges and gaps in understanding their nutritional content and health benefits. It contributes valuable insights for future research, fostering sustainable agriculture and enhancing understanding of microgreens in human health and nutrition.
Collapse
Affiliation(s)
- Jafar K. Lone
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| |
Collapse
|
23
|
Belošević SD, Milinčić DD, Gašić UM, Kostić AŽ, Salević-Jelić AS, Marković JM, Đorđević VB, Lević SM, Pešić MB, Nedović VA. Broccoli, Amaranth, and Red Beet Microgreen Juices: The Influence of Cold-Pressing on the Phytochemical Composition and the Antioxidant and Sensory Properties. Foods 2024; 13:757. [PMID: 38472870 DOI: 10.3390/foods13050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to analyze in detail the phytochemical composition of amaranth (AMJ), red beet (RBJ), and broccoli (BCJ) microgreens and cold-pressed juices and to evaluate the antioxidant and sensory properties of the juices. The results showed the presence of various phenolic compounds in all samples, namely betalains in amaranth and red beet microgreens, while glucosinolates were only detected in broccoli microgreens. Phenolic acids and derivatives dominated in amaranth and broccoli microgreens, while apigenin C-glycosides were most abundant in red beet microgreens. Cold-pressing of microgreens into juice significantly altered the profiles of bioactive compounds. Various isothiocyanates were detected in BCJ, while more phenolic acid aglycones and their derivatives with organic acids (quinic acid and malic acid) were identified in all juices. Microgreen juices exhibited good antioxidant properties, especially ABTS•+ scavenging activity and ferric reducing antioxidant power. Microgreen juices had mild acidity, low sugar content, and good sensory acceptability and quality with the typical flavors of the respective microgreen species. Cold-pressed microgreen juices from AMJ, RBJ, and BCJ represent a rich source of bioactive compounds and can be characterized as novel functional products.
Collapse
Affiliation(s)
- Spasoje D Belošević
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Danijel D Milinčić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Ana S Salević-Jelić
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Jovana M Marković
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Verica B Đorđević
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Steva M Lević
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Mirjana B Pešić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Viktor A Nedović
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
24
|
Li R, Zhou Z, Zhao X, Li J. Application of Tryptophan and Methionine in Broccoli Seedlings Enhances Formation of Anticancer Compounds Sulforaphane and Indole-3-Carbinol and Promotes Growth. Foods 2024; 13:696. [PMID: 38472809 DOI: 10.3390/foods13050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Broccoli is a popular cruciferous vegetable that is well known for its abundant health-promoting biochemicals. The most important of these beneficial biochemicals are glucosinolates, including glucoraphanin and glucobrassicin. Glucoraphanin and glucobrassicin can be broken down by myrosinases into sulforaphane and indole-3-carbinol, which have been demonstrated to have potent cancer-preventive properties. Efforts to increase glucoraphanin in broccoli seedlings have long been a focus; however, increasing glucoraphanin and glucobrassicin simultaneously, as well as enhancing myrosinase activity to release more sulforaphane and indole-3-carbinol, have yet to be investigated. This study aims to investigate the impact of the combined application of tryptophan and methionine on the accumulation of sulforaphane and indole-3-carbinol, as well as their precursors. Furthermore, we also examined whether this application has any effects on seedling growth and the presence of other beneficial compounds. We found that the application of methionine and tryptophan not only increased the glucoraphanin content by 2.37 times and the glucobrassicin content by 3.01 times, but that it also caused a higher myrosinase activity, resulting in a1.99 times increase in sulforaphane and a 3.05 times increase in indole-3-carbinol. In addition, better plant growth and an increase in amino acids and flavonoids were observed in broccoli seedlings with this application. In conclusion, the simultaneous application of tryptophan and methionine to broccoli seedlings can effectively enhance their health-promoting value and growth. Our study provides a cost-effective and multi-benefit strategy for improving the health value and yield of broccoli seedlings, benefiting both consumers and farmers.
Collapse
Affiliation(s)
- Rui Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zihuan Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
25
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
26
|
Bottiglione B, Villani A, Mastropasqua L, De Leonardis S, Paciolla C. Blue and Red LED Lights Differently Affect Growth Responses and Biochemical Parameters in Lentil ( Lens culinaris). BIOLOGY 2023; 13:12. [PMID: 38248443 PMCID: PMC10813626 DOI: 10.3390/biology13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Light-emitting diodes are an attractive tool for improving the yield and quality of plant products. This study investigated the effect of different light intensity and spectral composition on the growth, bioactive compound content, and antioxidant metabolism of lentil (Lens culinaris Medik.) seedlings after 3 and 5 days of LED treatment. Two monochromatic light quality × three light intensity treatments were tested: red light (RL) and blue light (BL) at photosynthetic photon flux density (PPFD) of 100, 300, and 500 μmol m-2 s-1. Both light quality and intensity did not affect germination. At both harvest times, the length of seedling growth under BL appeared to decrease, while RL stimulated the growth with an average increase of 26.7% and 62% compared to BL and seedlings grown in the darkness (D). A significant blue light effect was detected on ascorbate reduced form, with an average increase of 35% and 50% compared to RL-grown plantlets in the two days of harvesting, respectively. The content of chlorophyll and carotenoids largely varied according to the wavelength and intensity applied and the age of the seedlings. Lipid peroxidation increased with increasing light intensity in both treatments, and a strong H2O2 formation occurred in BL. These results suggest that red light can promote the elongation of lentil seedlings, while blue light enhances the bioactive compounds and the antioxidant responses.
Collapse
Affiliation(s)
- Benedetta Bottiglione
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (B.B.); (L.M.); (S.D.L.)
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Linda Mastropasqua
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (B.B.); (L.M.); (S.D.L.)
| | - Silvana De Leonardis
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (B.B.); (L.M.); (S.D.L.)
| | - Costantino Paciolla
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (B.B.); (L.M.); (S.D.L.)
| |
Collapse
|
27
|
Frąszczak B, Kula-Maximenko M, Podsędek A, Sosnowska D, Unegbu KC, Spiżewski T. Morphological and Photosynthetic Parameters of Green and Red Kale Microgreens Cultivated under Different Light Spectra. PLANTS (BASEL, SWITZERLAND) 2023; 12:3800. [PMID: 38005697 PMCID: PMC10674929 DOI: 10.3390/plants12223800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Microgreens are plants eaten at a very early stage of development, having a very high nutritional value. Among a large group of species, those from the Brassicaceae family, including kale, are very popularly grown as microgreens. Typically, microgreens are grown under controlled conditions under light-emitting diodes (LEDs). However, the effect of light on the quality of grown microgreens varies. The present study aimed to determine the effect of artificial white light with varying proportions of red (R) and blue (B) light on the morphological and photosynthetic parameters of kale microgreens with green and red leaves. The R:B ratios were for white light (W) 0.63, for red-enhanced white light (W + R) 0.75, and for white and blue light (W + B) 0.38 at 230 µmol m-2 s-1 PPFD. The addition of both blue and red light had a positive effect on the content of active compounds in the plants, including flavonoids and carotenoids. Red light had a stronger effect on the seedling area and the dry mass and relative chlorophyll content of red-leaved kale microgreens. Blue light, in turn, had a stronger effect on green kale, including dry mass. The W + B light combination negatively affected the chlorophyll content of both cultivars although the leaves were significantly thicker compared to cultivation under W + R light. In general, the cultivar with red leaves had less sensitivity to the photosynthetic apparatus to the spectrum used. The changes in PSII were much smaller in red kale compared to green kale. Too much red light caused a deterioration in the PSII vitality index in green kale. Red and green kale require an individual spectrum with different proportions of blue and red light at different growth stages to achieve plants with a large leaf area and high nutritional value.
Collapse
Affiliation(s)
- Barbara Frąszczak
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland;
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (A.P.); (D.S.)
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (A.P.); (D.S.)
| | - Kingsley Chinazor Unegbu
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| |
Collapse
|
28
|
Bouranis JA, Wong CP, Beaver LM, Uesugi SL, Papenhausen EM, Choi J, Davis EW, Da Silva AN, Kalengamaliro N, Chaudhary R, Kharofa J, Takiar V, Herzog TJ, Barrett W, Ho E. Sulforaphane Bioavailability in Healthy Subjects Fed a Single Serving of Fresh Broccoli Microgreens. Foods 2023; 12:3784. [PMID: 37893677 PMCID: PMC10606698 DOI: 10.3390/foods12203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cruciferous vegetable consumption is associated with numerous health benefits attributed to the phytochemical sulforaphane (SFN) that exerts antioxidant and chemopreventive properties, among other bioactive compounds. Broccoli sprouts, rich in SFN precursor glucoraphanin (GRN), have been investigated in numerous clinical trials. Broccoli microgreens are similarly rich in GRN but have remained largely unexplored. The goal of this study was to examine SFN bioavailability and the microbiome profile in subjects fed a single serving of fresh broccoli microgreens. Eleven subjects participated in a broccoli microgreens feeding study. Broccoli microgreens GRN and SFN contents and stability were measured. Urine and stool SFN metabolite profiles and microbiome composition were examined. Broccoli microgreens had similar GRN content to values previously reported for broccoli sprouts, which was stable over time. Urine SFN metabolite profiles in broccoli microgreens-fed subjects were similar to those reported previously in broccoli sprouts-fed subjects, including the detection of SFN-nitriles. We also reported the detection of SFN metabolites in stool samples for the first time. A single serving of broccoli microgreens did not significantly alter microbiome composition. We showed in this study that broccoli microgreens are a significant source of SFN. Our work provides the foundation for future studies to establish the health benefits of broccoli microgreens consumption.
Collapse
Affiliation(s)
- John A. Bouranis
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M. Beaver
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| | - Sandra L. Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Ethan M. Papenhausen
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
| | - Edward W. Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | | | | | - Rekha Chaudhary
- Department of Medical Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Thomas J. Herzog
- Department of OB/GYN, Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - William Barrett
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.K.); (V.T.); (W.B.)
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; (J.A.B.); (C.P.W.); (L.M.B.); (S.L.U.); (E.M.P.); (J.C.)
- School of Public Health and Nutrition, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
29
|
Barakat H, Alkhurayji RI, Aljutaily T. Immune-Boosting Potentiating Properties of Brassica nigra Hydroalcoholic Extract in Cyclophosphamide-Induced Immunosuppression in Rats. Foods 2023; 12:3652. [PMID: 37835305 PMCID: PMC10572729 DOI: 10.3390/foods12193652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The antioxidative and immune-boosting properties of the hydroalcoholic extract of Brassica nigra sprouts in cyclophosphamide-induced immunosuppression in rats were investigated in this study. B. nigra sprouts were prepared in the lab to monitor the bio-changes in bioactive compounds during the sprouting period up to 7 days at 17 ± 1 °C and 90% relative humidity. The total phenolic content (TPC), antioxidant activity (AOA), total flavonoids (TFs), total flavonols (TFLs), and total carotenoids (TCs) were evaluated. Consequently, the identification and quantification of phenolic acids, their derivatives, and flavonoids were carried out using HPLC. Subsequently, the selected BN sprout (6-day-old sprout) was biologically examined, and oxidative stress biomarkers, hematological parameters, immunoglobulins (Igs), and pro-inflammatory and anti-inflammatory cytokines were investigated. An increase in TPC, AOA, TFs, TFLs, and TCs was observed by increasing the sprouting time. The HPLC analysis indicated that the B. nigra seeds contained 10 phenolic acids and 4 flavonoids, predominantly syringic acid and quercetin, respectively. After 3 days, the number of phenolic acids increased to 16, predominantly syringic acid, and the number of flavonoids increased to 7, predominantly quercetin. On the 6th day, 13 phenolic acids were estimated, with the highest being benzoic acid, and 6 flavonoids were estimated, with the highest being quercetin. The greatest rise in phenols was seen on the sixth day of sprouting. These included caffeic acid, chlorogenic acid, cinnamic acid, ferulic acid, coumaric acid, benzoic acid, and rosmarinic acid. Flavonoids such as kaempferol and myricetin increased. The sprouts on day 6 were recorded as having the highest bioactive compounds and AOA content. The selected B. nigra sprouts were examined for antioxidative and immunomodulatory properties in a rat model. Dosing 250 and 500 mg kg-1, the rats exhibited significant improvements in terms of antioxidative stress and the number of white blood cells (WBCs), lymphocytes, and neutrophils in the blood, indicating stimulation of the immune response in a dose-dependent manner. In addition, the production of immune proteins, such as IgG, IgM, and IgA, was enhanced in the blood. Moreover, the 500 mg kg-1 concentration of BN extract stimulated cytokine production in a stronger manner than the 250 mg kg-1 concentration, indicating that the extract significantly increased immune activity. In conclusion, the results indicate that mustard seed extracts have immunosuppressive properties against cyclophosphamide-induced immunosuppression in rats.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (R.I.A.); (T.A.)
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Qaliuobia, Egypt
| | - Raghad I. Alkhurayji
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (R.I.A.); (T.A.)
| | - Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (R.I.A.); (T.A.)
| |
Collapse
|
30
|
Tilahun S, Baek MW, An KS, Choi HR, Lee JH, Hong JS, Jeong CS. Radish microgreens produced without substrate in a vertical multi-layered growing unit are rich in nutritional metabolites. FRONTIERS IN PLANT SCIENCE 2023; 14:1236055. [PMID: 37780508 PMCID: PMC10536316 DOI: 10.3389/fpls.2023.1236055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Growing microgreens on trays without substrate in a vertical multilayered growing unit offers several advantages over traditional agriculture methods. This study investigated the yield performance and nutritional quality of five selections of radish microgreens grown in sprouting trays, without a substrate using only water, in an indoor multilayer cultivation system using artificial light. Various parameters were measured, including fresh weight, dry matter, chlorophyll, minerals, amino acids, phenolics, flavonoids, anthocyanins, vitamin C, glucosinolates, and antioxidant activity with four different in vitro assays. After ten days, the biomass had increased by 6-10 times, and the dry matter varied from 4.75-7.65%. The highest yield was obtained from 'Asia red', while the lowest was from 'Koregon red'. However, 'Koregon red' and 'Asia red' had the highest dry matter. 'Asia red' was found to have the highest levels of both Chls and vitamin C compared to the other cultivars, while 'Koregon red' exhibited the highest levels of total phenolics and flavonoids. Although variations in the levels of individual glucosinolates were observed, there were no significant differences in the total content of glucosinolates among the five cultivars. 'Asia purple' had the highest anthocyanin content, while 'Asia green 2' had the lowest. The K, Mg, and Na concentrations were significantly highest in 'Asia green 2', and the highest Ca was recorded in 'Asia purple'. Overall, 'Asia purple' and 'Koregon red' were the best cultivars in terms of nutritional quality among the tested radish microgreens. These cultivars exhibited high levels of dry weight, total phenolics, flavonoids, anthocyanins, essential and total amino acids, and antioxidant activities. Moreover, the implementation of this vertical cultivation method for microgreens, which relies solely on water and seeds known for their tall shoots during the sprouting could hold promise as a sustainable approach. This method can effectively be utilized for cultivar screening and fulfilling the nutritional and functional needs of the population while minimizing the environmental impacts associated with traditional agriculture practices.
Collapse
Affiliation(s)
- Shimeles Tilahun
- Agriculture and Life Science Research Institute, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture and Plant Sciences, Jimma University, Jimma, Ethiopia
| | - Min Woo Baek
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki-Seok An
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
- Kangwon National University Eco-friendly Agricultural Product Safety Center, Chuncheon, Republic of Korea
| | - Han Ryul Choi
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| | - Jong Hwan Lee
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Sung Hong
- Department of Applied Biology, Kangwon National University, Chuncheon, Republic of Korea
| | - Cheon Soon Jeong
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Republic of Korea
- Department of Horticulture, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
31
|
Lee S, Park CH, Kim JK, Ahn K, Kwon H, Kim JK, Park SU, Yeo HJ. LED Lights Influenced Phytochemical Contents and Biological Activities in Kale ( Brassica oleracea L. var. acephala) Microgreens. Antioxidants (Basel) 2023; 12:1686. [PMID: 37759989 PMCID: PMC10525181 DOI: 10.3390/antiox12091686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Light-emitting diodes (LEDs) are regarded as an effective artificial light source for producing sprouts, microgreens, and baby leaves. Thus, this study aimed to investigate the influence of different LED lights (white, red, and blue) on the biosynthesis of secondary metabolites (glucosinolates, carotenoids, and phenolics) and the biological effects on kale microgreens. Microgreens irradiated with white LEDs showed higher levels of carotenoids, including lutein, 13-cis-β-carotene, α-carotene, β-carotene, and 9-cis-β-carotene, than those irradiated with red or blue LEDs. These findings were consistent with higher expression levels of carotenoid biosynthetic genes (BoPDS and BoZDS) in white-irradiated kale microgreens. Similarly, microgreens irradiated with white and blue LEDs showed slightly higher levels of glucosinolates, including glucoiberin, progoitrin, sinigrin, and glucobrassicanapin, than those irradiated with red LEDs. These results agree with the high expression levels of BoMYB28-2, BoMYB28-3, and BoMYB29 in white- and blue-irradiated kale microgreens. In contrast, kale microgreens irradiated with blue LEDs contained higher levels of phenolic compounds (gallic acid, catechin, ferulic acid, sinapic acid, and quercetin). According to the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assays, the extracts of kale microgreens irradiated with blue LEDs had slightly higher antioxidant activities, and the DPPH inhibition percentage had a positive correlation with TPC in the microgreens. Furthermore, the extracts of kale microgreens irradiated with blue LEDs exhibited stronger antibacterial properties against normal pathogens and multidrug-resistant pathogens than those irradiated with white and red LEDs. These results indicate that white-LED lights are suitable for carotenoid production, whereas blue-LED lights are efficient in increasing the accumulation of phenolics and their biological activities in kale microgreens.
Collapse
Affiliation(s)
- Seom Lee
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Kyungmin Ahn
- Department of Statistics, Keimyung University, Daegu 42601, Republic of Korea
| | - Haejin Kwon
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeon Ji Yeo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea
| |
Collapse
|
32
|
Lin Y, Zhou C, Li D, Wu Y, Dong Q, Jia Y, Yu H, Miao P, Pan C. Integrated non-targeted and targeted metabolomics analysis reveals the mechanism of inhibiting lignification and optimizing the quality of pea sprouts by combined application of nano-selenium and lentinans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5096-5107. [PMID: 36974656 DOI: 10.1002/jsfa.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignification causes a detrimental impact on the quality of edible sprouts. However, the mechanism of inhibition of lignification of edible sprouts by nano-selenium and lentinans remains unclear. RESULTS To reveal the mechanism of lignification regulation of sprouts by nano-selenium and lentinans, this study investigated the changes in antioxidant indicators, phytohormones, polyphenols, and metabolites in the lignin biosynthesis in pea sprouts following sprays of nano-selenium or/and lentinans twice. There was an overall increase in the aforementioned indices following treatment. In particular, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans was more effective than their individual applications in enhancing peroxidase, catalase, DPPH free-radical scavenging rate, luteolin, and sinapic acid, as well as inhibiting malondialdehyde generation and lignin accumulation. Combined with the results from correlation analysis, nano-selenium and lentinans may inhibit lignification by enhancing antioxidant systems, inducing phytohormone-mediated signaling, and enriching precursor metabolites (caffeyl alcohol, sinapyl alcohol, 4-coumaryl alcohol). In terms of the results of non-targeted metabolomics, the combined application of 5 mg L-1 nano-selenium and 20 mg L-1 lentinans mainly affected biosynthesis of plant secondary metabolites, biosynthesis of phenylpropanoids, phenylpropanoid biosynthesis, arginine and proline metabolism, and linoleic acid metabolism pathways, which supported and complemented results from targeted screenings. CONCLUSION Overall, the combined sprays of nano-selenium and lentinans showed synergistic effects in delaying lignification and optimizing the quality of pea sprouts. This study provides a novel and practicable technology for delaying lignification in the cultivation of edible sprouts. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Izzo LG, El Nakhel C, Rouphael Y, Proietti S, Paglialunga G, Moscatello S, Battistelli A, Iovane M, Romano LE, De Pascale S, Aronne G. Applying productivity and phytonutrient profile criteria in modelling species selection of microgreens as Space crops for astronaut consumption. FRONTIERS IN PLANT SCIENCE 2023; 14:1210566. [PMID: 37636122 PMCID: PMC10450622 DOI: 10.3389/fpls.2023.1210566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Introduction Long-duration missions in outer Space will require technologies to regenerate environmental resources such as air and water and to produce food while recycling consumables and waste. Plants are considered the most promising biological regenerators to accomplish these functions, due to their complementary relationship with humans. Plant cultivation for Space starts with small plant growth units to produce fresh food to supplement stowed food for astronauts' onboard spacecrafts and orbital platforms. The choice of crops must be based on limiting factors such as time, energy, and volume. Consequently, small, fast-growing crops are needed to grow in microgravity and to provide astronauts with fresh food rich in functional compounds. Microgreens are functional food crops recently valued for their color and flavor enhancing properties, their rich phytonutrient content and short production cycle. Candidate species of microgreens to be harvested and eaten fresh by crew members, belong to the families Brassicaceae, Asteraceae, Chenopodiaceae, Lamiaceae, Apiaceae, Amarillydaceae, Amaranthaceae, and Cucurbitaceae. Methods In this study we developed and applied an algorithm to objectively compare numerous genotypes of microgreens intending to select those with the best productivity and phytonutrient profile for cultivation in Space. The selection process consisted of two subsequent phases. The first selection was based on literature data including 39 genotypes and 25 parameters related to growth, phytonutrients (e.g., tocopherol, phylloquinone, ascorbic acid, polyphenols, lutein, carotenoids, violaxanthin), and mineral elements. Parameters were implemented in a mathematical model with prioritization criteria to generate a ranking list of microgreens. The second phase was based on germination and cultivation tests specifically designed for this study and performed on the six top species resulting from the first ranking list. For the second selection, experimental data on phytonutrients were expressed as metabolite production per day per square meter. Results and discussion In the final ranking list radish and savoy cabbage resulted with the highest scores based on their productivity and phytonutrient profile. Overall, the algorithm with prioritization criteria allowed us to objectively compare candidate species and obtain a ranking list based on the combination of numerous parameters measured in the different species. This method can be also adapted to new species, parameters, or re-prioritizing the parameters for specific selection purposes.
Collapse
Affiliation(s)
- Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Simona Proietti
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Gabriele Paglialunga
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Stefano Moscatello
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Alberto Battistelli
- National Research Council of Italy, Research Institute on Terrestrial Ecosystems, Porano, Italy
| | - Maurizio Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
34
|
Lin Y, Zhou C, Li D, Jia Y, Dong Q, Yu H, Wu T, Pan C. Mitigation of Acetamiprid Residue Disruption on Pea Seed Germination by Selenium Nanoparticles and Lentinans. PLANTS (BASEL, SWITZERLAND) 2023; 12:2781. [PMID: 37570938 PMCID: PMC10420818 DOI: 10.3390/plants12152781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The use of pesticides for pest control during the storage period of legume seeds is a common practice. This study evaluated the disruptive effects on pea seed germination and the repair effects of selenium nanoparticles (SeNPs) and lentinans (LNTs) This study examined the biomass, nutrient content, antioxidant indicators, plant hormones, phenolic compounds, and metabolites associated with the lignin biosynthesis pathway in pea sprouts. The application of acetamiprid resulted in a significant decrease in yield, amino-acid content, and phenolic compound content of pea sprouts, along with observed lignin deposition. Moreover, acetamiprid residue exerted a notable level of stress on pea sprouts, as evidenced by changes in antioxidant indicators and plant hormones. During pea seed germination, separate applications of 5 mg/L SeNPs or 20 mg/L LNTs partially alleviated the negative effects induced by acetamiprid. When used in combination, these treatments restored most of the aforementioned indicators to levels comparable to the control group. Correlation analysis suggested that the regulation of lignin content in pea sprouts may involve lignin monomer levels, reactive oxygen species (ROS) metabolism, and plant hormone signaling mediation. This study provides insight into the adverse impact of acetamiprid residues on pea sprout quality and highlights the reparative mechanism of SeNPs and LNTs, offering a quality assurance method for microgreens, particularly pea sprouts. Future studies can validate the findings of this study from the perspective of gene expression.
Collapse
Affiliation(s)
- Yongxi Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
- Huizhou Yinnong Technology Co., Ltd., Huizhou 516057, China
| | - Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Ministry of Education, Hainan University, Haikou 570228, China
| | - Yujiao Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Qinyong Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Huan Yu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Tong Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China; (Y.L.)
| |
Collapse
|
35
|
Fabek Uher S, Radman S, Opačić N, Dujmović M, Benko B, Lagundžija D, Mijić V, Prša L, Babac S, Šic Žlabur J. Alfalfa, Cabbage, Beet and Fennel Microgreens in Floating Hydroponics-Perspective Nutritious Food? PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112098. [PMID: 37299078 DOI: 10.3390/plants12112098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Microgreens are young plants of various vegetables, medicinal and aromatic plants, cereals and edible wild plants that were first associated with nouvelle cuisine as decoration in dishes due to their attractive appearance and strong flavor. Recently, they have become more sought after in the market due to their high nutritional value. This is due to the growing interest of consumers in a healthy lifestyle that includes a varied diet with emphasis on fresh, functional foods. Nowadays, commercial production of microgreens is shifting to modern hydroponic systems due to their numerous advantages, such as accelerated plant growth and biomass production, earlier harvesting, and more production cycles that positively affect yield and chemical composition. Therefore, the aim of this study was to determine the content of specialized metabolites and antioxidant capacity of hydroponically grown alfalfa (Medicago sativa) cv. 'Kangaroo', yellow beet (Beta vulgaris var. conditiva) cv. 'Yellow Lady', red cabbage (Brassica oleracea L. var. rubra) cv. 'Red Carpet', and fennel (Foeniculum vulgare) cv. 'Aganarpo' microgreens. The highest content of total phenols (408.03 mg GAE/100 g fw), flavonoids (214.47 mg GAE/100 g fw), non-flavonoids (193.56 mg GAE/100 g fw) and ascorbic acid (74.94 mg/100 g fw) was found in fennel microgreens. The highest content of all analyzed chlorophyll pigments (Chl_a 0.536 mg/g fw, Chl_b 0.248 mg/g fw, and TCh 0.785 mg/g fw) was found in alfalfa microgreens. However, in addition to alfalfa, high levels of chlorophyll a (0.528 mg/g fw), total chlorophyll (0.713 mg/g fw) and the highest level of total carotenoids (0.196 mg/g fw) were also detected in fennel microgreens. The results suggest that microgreens grown on perlite in floating hydroponics have high nutritional potential as a functional food important for human health and therefore could be recommended for daily diet.
Collapse
Affiliation(s)
- Sanja Fabek Uher
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Sanja Radman
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Nevena Opačić
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Mia Dujmović
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Božidar Benko
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Denis Lagundžija
- Graduate Studies Horticulture, Organic Agriculture with Agrotourism, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Valent Mijić
- Graduate Studies Horticulture, Organic Agriculture with Agrotourism, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Lucija Prša
- Graduate Studies Horticulture, Organic Agriculture with Agrotourism, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Srđan Babac
- Graduate Studies Horticulture, Organic Agriculture with Agrotourism, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Department of Agricultural Technology, Storage and Transport, University of Zagreb Faculty of Agriculture, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
36
|
Davosir D, Šola I. Membrane permeabilizers enhance biofortification of Brassica microgreens by interspecific transfer of metabolites from tea (Camellia sinensis). Food Chem 2023; 420:136186. [PMID: 37087866 DOI: 10.1016/j.foodchem.2023.136186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/15/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Interspecific metabolite transfer (ISMT) is a novel approach for plants biofortification. In this study, the effect of tea (Camellia sinensis; Cs), with or without membrane permeabilizers EDTA and Tween, as a donor plant on broccoli, cauliflower and kale sprouts was investigated. As a result, caffeine- and catechin-enriched broccoli, cauliflower and kale microgreens were produced. Kale sprouts were most permeable for catechins from Cs, while cauliflower was most permeable for caffeine. Cs + EDTA significantly increased vitamin C in broccoli and kale. Among the tested enzymes activity, pancreatic lipase was the most affected by the treatment with broccoli and cauliflower biofortified with Cs or Cs combined with permeabilizers. Broccoli sprouts biofortified with Cs most significantly inhibited α-amylase, while those biofortified with Cs combined with permeabilizers most significantly inhibited α-glucosidase. Results point to ISMT combined with membrane permeabilizers as a promising and eco-friendly biofortification strategy to improve the biopotential of Brassica microgreens.
Collapse
Affiliation(s)
- Dino Davosir
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
37
|
Lee S, Yeo HJ, Lee SY, Kim SR, Park SU, Park CH. The Effect of Light and Dark Treatment on the Production of Rosmarinic Acid and Biological Activities in Perilla frutescens Microgreens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1613. [PMID: 37111837 PMCID: PMC10142874 DOI: 10.3390/plants12081613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to investigate the effect of light [a long-day photoperiod (16 h light/8 h dark cycle)] and dark treatment on the production of rosmarinic acid in P. frutescens microgreens and to determine its antioxidant and antibacterial activities. Microgreens of P. frutescens were grown under light and dark conditions and harvested after 10, 15, 20, and 25 days of each treatment. Although dry weight values of microgreens gradually increased from 10 to 25 days of both treatments, the microgreens grown under light treatment possessed slightly higher levels of dry weight than those grown in the dark. Rosmarinic acid and total phenolic content (TPC) were also analyzed using high-performance liquid chromatography (HPLC) and Folin-Ciocalteu assay. The accumulation patterns of rosmarinic acid and TPC gradually increased and decreased, respectively, in P. frutescens microgreens grown in continuous darkness. The highest accumulation was observed in microgreens grown for 20 days. However, rosmarinic acid and TPC values were not significantly different in microgreens grown under light conditions. According to the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assay, the extracts of P. frutescens microgreens were confirmed to be strong antioxidants, and their ability to scavenge DPPH radicals was positively correlated with the total phenolic content in the microgreens after 10, 15, 20, and 25 days of both treatments. Considering the relatively higher values of dry weight, rosmarinic acid, TPC, and DPPH assay, P. frutescens microgreens after 20 days of darkness and 20 days of light treatment, respectively, were selected for screening antibacterial activity using nine pathogens. Both microgreen extracts showed strong antibacterial activity against pathogens. In particular, the extracts of microgreens grown for 20 days under light treatment showed higher antimicrobial effects. Therefore, the light treatments for 20 days, as well as the darkness treatment for 20 days, were the best conditions for P. frutescens microgreen production because of their high levels of dry weight, phenolics, and biological activities.
Collapse
Affiliation(s)
- Seom Lee
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Hyeon Ji Yeo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Sang Yeob Lee
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Su Ryang Kim
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| |
Collapse
|
38
|
Deng W, Gibson KE. Microgreen Variety Impacts Leaf Surface Persistence of a Human Norovirus Surrogate. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:82-88. [PMID: 36151506 DOI: 10.1007/s12560-022-09536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Human norovirus (HuNoV) is a pathogenic agent that is frequently associated with foodborne disease outbreaks linked to fresh produce. Within microgreen production systems, understanding of virus transmission routes and persistence is limited. To investigate virus persistence on microgreen leaf surfaces, this study mimicked virus contaminations caused during microgreen handling by farm workers or during overhead irrigation with contaminated water. Specifically, approximately 5 log PFU of Tulane virus (TV)-a HuNoV surrogate-was inoculated on sunflower (SF) and pea shoot (PS) microgreen leaves at 7-day age. The virus reduction on SF was significantly higher than PS (p < 0.05). On day 10, total TV reduction for SF and PS were 3.70 ± 0.10 and 2.52 ± 0.30 log PFU/plant, respectively. Under the environmental scanning electron microscope (ESEM) observation, the leaf surfaces of SF were visually smoother than PS, while their specific effect on virus persistence were not further characterized. Overall, this study revealed that TV persistence on microgreen leaves was plant variety dependent. In addition, this study provided a preliminary estimation on the risk of HuNoV contamination in a microgreen production system which will aim the future development of prevention and control measures.
Collapse
Affiliation(s)
- Wenjun Deng
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, 1371 West Altheimer Dr., Fayetteville, AR, 72704, USA.
| |
Collapse
|
39
|
Deng W, Gibson KE. Persistence and transfer of Tulane virus in a microgreen cultivation system. Int J Food Microbiol 2023; 387:110063. [PMID: 36577204 DOI: 10.1016/j.ijfoodmicro.2022.110063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Microgreens are niche salad greens which have increased in popularity among consumers in recent years. Due to similarities with sprouts and leafy greens-both attributed to numerous foodborne disease outbreaks-characterization of the food safety risks associated with microgreen production is warranted. The present study aimed to determine the fate and persistence of a human norovirus (HuNoV) surrogate, Tulane virus (TV), within a microgreen production system. Initially, the persistence of TV in two types of microgreen soil-free cultivation matrix (SFCM)-BioStrate® (biostrate) and peat-was determined. On day 0, water containing 7.6 log PFU of TV was applied to SFCM in growing trays, and the trays were maintained under microgreen growth conditions. TV persisted throughout the 10-day observation in biostrate and peat with overall reductions of 3.04 and 1.76 log plaque forming units (PFU) per tray, respectively. Subsequently, the transfer of TV to microgreen edible tissue was determined when planted on contaminated SFCM. Trays containing each type of SFCM were pre-inoculated with 7.6 log PFU of TV and equally divided into two areas. On day 0, sunflower (SF) or pea shoot (PS) seeds were planted on one-half of each tray, while the other half was left unplanted to serve as a control. The microgreens were harvested on day 10, and SFCM samples were collected from planted and unplanted areas of each tray. No TV were detected from the edible portion of either type of microgreen, yet TV were still present in the SFCM. TV concentrations were significantly lower in the root-containing planted area compared with the unplanted area for both biostrate (P = 0.0282) and peat (P = 0.0054). The mean differences of TV concentrations between unplanted and planted areas were 1.22 and 0.51 log PFU/g for biostrate and peat, respectively. In a subsequent investigation, TV transfer from day 7 inoculated SFCM to microgreens edible portion was not detected either. Overall, this study characterized the viral risk in a microgreen production system, which will help to understand the potential food safety risk related to HuNoV and to develop preventive measures.
Collapse
Affiliation(s)
- Wenjun Deng
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States of America; College of Life Science, Qingdao University, Qingdao, PR China
| | - Kristen E Gibson
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, United States of America.
| |
Collapse
|
40
|
Seed Disinfestation Practices to Control Seed-Borne Fungi and Bacteria in Home Production of Sprouts. Foods 2023; 12:foods12040747. [PMID: 36832822 PMCID: PMC9955435 DOI: 10.3390/foods12040747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Concern over microbial contamination limits the adoption of home production of sprouts as a nutritious and sustainable food. Simple, accessible approaches to seed disinfection could support safe home seed sprouting. Here, we quantify bacterial and fungal contamination of seeds of 14 plant cultivars sold for home sprout production and test a range of chemical and physical methods for seed disinfestation appropriate for home use. Most seeds are contaminated with a variety of bacteria and fungi, and those microbes are usually limited to the seed surface. Heat treatments are not effective for seed disinfection because the high temperatures needed to effectively reduce microbial contamination also reduce seed germination. Two chlorine-based chemical disinfectants-dilute household bleach (0.6% sodium hypochlorite) and freshly generated hypochlorous acid (800 ppm chlorine)-were the most effective disinfection agents tested (up to a 5-log reduction in bacteria) that also did not harm seed germination.
Collapse
|
41
|
Gmižić D, Pinterić M, Lazarus M, Šola I. High Growing Temperature Changes Nutritional Value of Broccoli ( Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) Seedlings. Foods 2023; 12:foods12030582. [PMID: 36766111 PMCID: PMC9914779 DOI: 10.3390/foods12030582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
High temperature (HT) causes physiological and biochemical changes in plants, which may influence their nutritional potential. This study aimed to evaluate the nutritional value of broccoli seedlings grown at HT on the level of phytochemicals, macro- and microelements, antioxidant capacity, and their extracts' in vitro cytotoxicity. Total phenols, soluble sugars, carotenoids, quercetin, sinapic, ferulic, p-coumaric, and gallic acid were induced by HT. Contrarily, total flavonoids, flavonols, phenolic acids, hydroxycinnamic acids, proteins, glucosinolates, chlorophyll a and b, and porphyrins were reduced. Minerals As, Co, Cr, Hg, K, Na, Ni, Pb, Se, and Sn increased at HT, while Ca, Cd, Cu, Mg, Mn, and P decreased. ABTS, FRAP, and β-carotene bleaching assay showed higher antioxidant potential of seedlings grown at HT, while DPPH showed the opposite. Hepatocellular carcinoma cells were the most sensitive toward broccoli seedling extracts. The significant difference between control and HT-grown broccoli seedling extracts was recorded in mouse embryonal fibroblasts and colorectal carcinoma cells. These results show that the temperature of seedling growth is a critical factor for their nutritional value and the biological effects of their extracts and should definitely be taken into account when growing seedlings for food purposes.
Collapse
Affiliation(s)
- Daria Gmižić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Marija Pinterić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Maja Lazarus
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +38-514-898-094
| |
Collapse
|
42
|
Bhaswant M, Shanmugam DK, Miyazawa T, Abe C, Miyazawa T. Microgreens-A Comprehensive Review of Bioactive Molecules and Health Benefits. Molecules 2023; 28:molecules28020867. [PMID: 36677933 PMCID: PMC9864543 DOI: 10.3390/molecules28020867] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Microgreens, a hypothesized term used for the emerging food product that is developed from various commercial food crops, such as vegetables, grains, and herbs, consist of developed cotyledons along with partially expanded true leaves. These immature plants are harvested between 7-21 days (depending on variety). They are treasured for their densely packed nutrients, concentrated flavors, immaculate and tender texture as well as for their vibrant colors. In recent years, microgreens are on demand from high-end restaurant chefs and nutritional researchers due to their potent flavors, appealing sensory qualities, functionality, abundance in vitamins, minerals, and other bioactive compounds, such as ascorbic acid, tocopherol, carotenoids, folate, tocotrienols, phylloquinones, anthocyanins, glucosinolates, etc. These qualities attracted research attention for use in the field of human health and nutrition. Increasing public concern regarding health has prompted humans to turn to microgreens which show potential in the prevention of malnutrition, inflammation, and other chronic ailments. This article focuses on the applications of microgreens in the prevention of the non-communicable diseases that prevails in the current generation, which emerged due to sedentary lifestyles, thus laying a theoretical foundation for the people creating awareness to switch to the recently introduced category of vegetable and providing great value for the development of health-promoting diets with microgreens.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Dilip Kumar Shanmugam
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Chizumi Abe
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi 980-8579, Japan
- Correspondence: ; Tel.: +81-22-795-3205
| |
Collapse
|
43
|
Zhou Q, Liang W, Wan J, Wang M. Spinach (Spinacia oleracea) microgreen prevents the formation of advanced glycation end products in model systems and breads. Curr Res Food Sci 2023; 6:100490. [PMID: 37033738 PMCID: PMC10074504 DOI: 10.1016/j.crfs.2023.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The formation of advanced glycation end products (AGEs) in daily diets poses a great threat to human health, since AGEs are closely related to some chronic metabolic diseases. In this study, we investigated the antiglycative capabilities of some popular microgreens in chemical model. Our data indicated that baby spinach (Spinacia oleracea) had the highest antiglycative activity during 4-wks incubation, with antioxidation being the main action route. Moreover, a bread model was set up to evaluate its antiglycative potential in real food model. The results showed that the fortification of baby spinach in bread significantly inhibited AGEs formation, with acceptable taste and food quality. Further study revealed that the antiglycative components were mainly distributed in leaves, which were separated via column chromatography and tentatively identified as chlorophyll derivatives. In summary, this study highlighted the antiglycative benefits of baby spinach which can be developed into healthy functional foods.
Collapse
|
44
|
Salgado VDSCN, Zago L, Antunes AEC, Miyahira RF. Chia (Salvia hispanica L.) Seed Germination: a Brief Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:485-494. [PMID: 36083408 DOI: 10.1007/s11130-022-01011-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Chia (Salvia hispanica L.) is a seed native to northern Mexico and southern Guatemala that has started to be consumed in recent years in other regions of the world owing to its nutritional and functional properties. Germination of chia seeds seems to be able to further improve these properties, and it has been the subject of some studies. In general, germination has proven to be a simple and inexpensive process capable of improving the content of phenolic compounds and the antioxidant capacity of foods, as well as reducing antinutritional factors that interfere with nutrient absorption. A particular characteristic of chia seeds is that they produce mucilage when they are hydrated. For this reason, the germination conditions of the seed need to be adapted. The nutritional guidelines of some countries, such as Brazil, Germany and Sweden, recommend that the diet of the population should be more plant-based, thus encouraging the consumption of foods with a high content of bioactive compounds and nutrients, e.g., germinated seeds. This review briefly explored the germination conditions of chia seeds as well as the changes in phytonutrient content and antinutritional factors after their germination process. The main information available in the literature is that germination of chia seeds can increase the contents of protein, fiber, and total phenolic compounds. As a conclusion, germination of chia seeds is favorable for increasing their health benefits and nutritional value. However, chia germination parameters should be adjusted and microbiological risks should be properly evaluated.
Collapse
Affiliation(s)
| | - Lilia Zago
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil
| | | | - Roberta Fontanive Miyahira
- Institute of Nutrition, State University of Rio de Janeiro, Rua São Francisco Xavier, 524, 12° andar, sala 12006 D - Maracanã, Rio de Janeiro, RJ, CEP: 20550-013, Brazil.
| |
Collapse
|
45
|
Saavedra-Garcia L, Taboada-Ramirez X, Hernández-Vásquez A, Diez-Canseco F. Marketing techniques, health, and nutritional claims on processed foods and beverages before and after the implementation of mandatory front-of-package warning labels in Peru. Front Nutr 2022; 9:1004106. [PMID: 36407533 PMCID: PMC9666783 DOI: 10.3389/fnut.2022.1004106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/06/2022] [Indexed: 08/06/2023] Open
Abstract
In June 2019, mandatory front-of-package warning labels (FOPL) were implemented in Peru. The aim of the study was to describe changes in marketing strategies on packaging: marketing techniques (MT), health claims (HC), and nutritional claims (NC) on the packaging of products frequently consumed by children before and after the FOPL implementation. Product photos were taken pre- (March 2019) and post-implementation (March-October 2020) in three supermarkets in Lima, Peru. Following INFORMAS protocols and Peruvian Technical Norms, the presence of MT, HC, and NC was assessed on all package sides. Products were classified as "high-in" and "not high-in" based on the regulation threshold for critical nutrients. Differences in the proportion of products with each strategy in both periods were evaluated. Also, a subsample of products was matched according to the barcode and exact McNemar test was used to compare proportions of strategies pre/post-implementation. We included 883 and 1,035 products in pre- and post-implementation, respectively. In both periods, MT appeared on almost 70% of all products. The presence of HC increased significantly only for beverages (24.5-38.1%, p < 0.001). In both phases, NC were commonly used on beverages (>80%). Overall, the prevalence of "high-in" products using MT increased (73.6-82.1%, p = 0.007), while use of HC increased among "not high-in" products (32.9-41.6%, p < 0.001). There is a high frequency of MT on all products and NC on beverages. The increase in MT in "high-in" products may be an industry response to minimize the impact of the FOPL on food choices and sales. New regulatory aspects regarding labeling should be implemented to strengthen the current policy.
Collapse
Affiliation(s)
- Lorena Saavedra-Garcia
- CRONICAS Center of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | |
Collapse
|
46
|
Extraction of Bioactive Compounds from Different Vegetable Sprouts and Their Potential Role in the Formulation of Functional Foods against Various Disorders: A Literature-Based Review. Molecules 2022; 27:molecules27217320. [PMID: 36364145 DOI: 10.3390/molecules27217320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this review, we discuss the advantages of vegetable sprouts in the development of food products as well as their beneficial effects on a variety of disorders. Sprouts are obtained from different types of plants and seeds and various types of leafy, root, and shoot vegetables. Vegetable sprouts are enriched in bioactive compounds, including polyphenols, antioxidants, and vitamins. Currently, different conventional methods and advanced technologies are used to extract bioactive compounds from vegetable sprouts. Due to some issues in traditional methods, increasingly, the trend is to use recent technologies because the results are better. Applications of phytonutrients extracted from sprouts are finding increased utility for food processing and shelf-life enhancement. Vegetable sprouts are being used in the preparation of different functional food products such as juices, bread, and biscuits. Previous research has shown that vegetable sprouts can help to fight a variety of chronic diseases such as cancer and diabetes. Furthermore, in the future, more research is needed that explores the extraordinary ways in which vegetable sprouts can be incorporated into green-food processing and preservation for the purpose of enhancing shelf-life and the formation of functional meat products and substitutes.
Collapse
|
47
|
Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts. PLANTS 2022; 11:plants11192515. [PMID: 36235381 PMCID: PMC9570650 DOI: 10.3390/plants11192515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023]
Abstract
Mustard is an edible vegetable in the genus Brassica with tender and clean sprouts and short growth cycles that has become a rich source of nutrients required by humans. Here, the effects of dark exposure duration and planting density on the health-promoting phytochemicals and the antioxidant capacity of mustard sprouts were evaluated. The content of soluble sugar, soluble protein, chlorophyll, and carotenoids and the antioxidant capacity of mustard were higher in the two-day dark treatment; the content of indolic glucosinolates was also more affected in the dark day experiment than in the planting density experiment. The soluble sugar, soluble protein, and aliphatic and total glucosinolate levels were higher when sprouts were grown at high densities (6–7 g per tray); however, no significant variation was observed in the content of chlorophyll and carotenoids and the antioxidant capacity. The results of this study show that the optimum cultivation regime for maximizing the concentrations of nutrients of mustard plants is a planting density of 6 g of seeds per tray and a two-day dark treatment.
Collapse
|
48
|
Kaimuangpak K, Tamprasit K, Thumanu K, Weerapreeyakul N. Extracellular vesicles derived from microgreens of Raphanus sativus L. var. caudatus Alef contain bioactive macromolecules and inhibit HCT116 cells proliferation. Sci Rep 2022; 12:15686. [PMID: 36127415 PMCID: PMC9489735 DOI: 10.1038/s41598-022-19950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer vesicles released from cells, containing natural cargos. Microgreens of Raphanus sativus L. var. caudatus Alef were used in this study as the source of EVs. EVs were isolated by differential centrifugation. The physical properties were determined by dynamic light scattering (DLS) and electron microscopy. The biological and chemical composition were studied by Fourier-transform infrared (FTIR) microspectroscopy and high-performance liquid chromatography analysis, respectively. EVs had a median size of 227.17 and 234.90 ± 23.30 nm determined by electron microscopy and DLS, respectively with a polydispersity index of 0.293 ± 0.019. Electron microscopy indicated the intact morphology and confirmed the size. The FTIR spectra revealed that EVs are composed of proteins as the most abundant macromolecules. Using a curve-fitting analysis, β-pleated sheets were the predominant secondary structure. Notably, the micromolecular biomarkers were not detected. EVs exerted anti-cancer activity on HCT116 colon cancer over Vero normal cells with an IC50 of 448.98 µg/ml and a selectivity index of > 2.23. To conclude, EVs could be successfully prepared with a simple and effective isolation method to contain nano-sized macromolecules possessing anti-cancer activity.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (in the Program of Research and Development in Pharmaceuticals), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kawintra Tamprasit
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittrapap Road, Amphoe Muang, Khon Kaen, 40002, Thailand.
| |
Collapse
|
49
|
Growth, Yield and Photosynthetic Performance of Winter Wheat as Affected by Co-Application of Nitrogen Fertilizer and Organic Manures. Life (Basel) 2022; 12:life12071000. [PMID: 35888089 PMCID: PMC9319553 DOI: 10.3390/life12071000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
The application of organic manures was found to be beneficial, however, the integrated use of organic manures with chemical nitrogen fertilizers has proven more sustainable in increasing the photosynthetic attributes and grain yield of the winter-wheat crop. A multi-factor split-plot design was adopted, nitrogen and manure fertilizer treatments were set in the sub-plots, including nitrogen-gradient treatment of T1:0 kg N ha−1, T2:100 kg N ha−1, T3:200 kg N ha−1, and T4:300 kg N ha−1 (pure nitrogen -fertilizer application) The 25% reduction in nitrogen combined with the manure-fertilizer application includes T5:75 kg N ha−1 nitrogen and 25 kg N ha−1 manure, T6:150 kg N ha−1 nitrogen and 50 kg N ha−1 manure, and T7:225 kg N ha−1 nitrogen and 75 kg N ha−1 manure. The maximum results of the total chlorophyll content and photosynthetic rate were 5.73 mg/g FW and 68.13 m mol m−2 s−1, observed under T4 in Zhongmai 175, as compared to Jindong 22 at the heading stage. However, the maximum results of intercellular CO2 concentration were 1998.47 μmol mol−1, observed under T3 in Jindong 22, as compared to Zhongmai 175 at the tillering stage. The maximum results of LAI were 5.35 (cm2), observed under T7 in Jindong 22, as compared to Zhongmai 175 at the booting stage. However, the maximum results of Tr and Gs were 6.31 mmol H2O m−2 s−1 and 0.90 H2O mol m−2 s−1, respectively, observed under T7 in Zhongmai 175 as compared to Jindong 22 at the flowering stage. The results revealed that grain yield 8696.93 kg ha−1, grains spike−1 51.33 (g), and 1000-grain weight 39.27 (g) were significantly higher, under T3 in Zhongmai 175, as compared to Jindong 22. Moreover, the spike number plot−1 of 656.67 m2 was significantly higher in Jindong 22, as compared to Zhongmai 175. It was concluded from the study that the combined application of nitrogen and manure fertilizers in winter wheat is significant for enhancing seed at the jointing and flowering stages. For increased grain yield and higher economic return, Zhongmai 175 outperformed the other cultivars examined. This research brings awareness toward the nitrogen-fertilizer-management approach established for farmers’ practice, which might be observed as an instruction to increase agricultural management for the winter-wheat-growth season.
Collapse
|
50
|
Moraru PI, Rusu T, Mintas OS. Trial Protocol for Evaluating Platforms for Growing Microgreens in Hydroponic Conditions. Foods 2022; 11:foods11091327. [PMID: 35564050 PMCID: PMC9103178 DOI: 10.3390/foods11091327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/05/2022] Open
Abstract
The hydroponic production of microgreens has potential to develop, at both an industrial, and a family level, due to the improved production platforms. The literature review found numerous studies which recommend procedures, parameters and best intervals for the development of microgreens. This paper aims to develop, based on the review of the literature, a set of procedures and parameters, included in a test protocol, for hydroponically cultivated microgreens. Procedures and parameters proposed to be included in the trial protocol for evaluating platforms for growing microgreens in hydroponic conditions are: (1) different determinations: in controlled settings (setting the optimal ranges) and in operational environments settings (weather conditions in the area/testing period); (2) procedures and parameters related to microgreen growth (obtaining the microgreens seedling, determining microgreen germination, measurements on the morphology of plants, microgreens harvesting); (3) microgreens production and quality (fresh biomass yield, dry matter content, water use efficiency, bioactive compound analysis, statistical analysis). Procedures and parameters proposed in the protocol will provide us with the evaluation information of the hydroponic platforms to ensure: number of growing days to reach desired size; yield per area, crop health, and secondary metabolite accumulation.
Collapse
Affiliation(s)
- Paula Ioana Moraru
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Teodor Rusu
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Correspondence:
| | | |
Collapse
|