1
|
Masoumifeshani B, Abedian Kenari A, Sottorff I, Crüsemann M, Amiri Moghaddam J. Identification and Evaluation of Antioxidant and Anti-Aging Peptide Fractions from Enzymatically Hydrolyzed Proteins of Spirulina platensis and Chlorella vulgaris. Mar Drugs 2025; 23:162. [PMID: 40278283 PMCID: PMC12028799 DOI: 10.3390/md23040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
Microalgae are a promising source of bioactive compounds, particularly proteins and peptides, with potential applications in skin health and the cosmetic industry. This study investigated the antioxidant and anti-aging properties of peptide fractions derived from Spirulina platensis and Chlorella vulgaris. Both microalgae were cultivated, and their proteins were subsequently extracted, enzymatically hydrolyzed with alcalase, and fractionated through ultrafiltration. Alkaline extraction yielded 82% protein from S. platensis and 72% from C. vulgaris. Enzymatic hydrolysis predominantly yielded <3 kDa peptides, which exhibited strong antioxidant activity reaching 78% for 2,2-diphenyl-1-picrylhidrazol (DPPH), 82% for 2,2'-azinobis-3-etilbenzothiazoline-6-sulfonic acid (ABTS), and 74% for ferric reducing antioxidant power (FRAP), with IC50 values as low as 23.44 µg/mL for ABTS inhibition in C. vulgaris. These peptides also significantly inhibited skin-aging enzymes, showing 84% inhibition of elastase, 90% of collagenase, and 66% of tyrosinase. Mass spectrometry and GNPS molecular networking of the <3 kDa fraction identified several di- and tri-peptides, including Lys-Val, Val-Arg, His-Ile, Lys-Leu, Ile-Leu, and Leu-Phe, Tyr-Phe, and Leu-Gly-Leu, potentially contributing to these bioactivities. These findings suggest that the enzymatic hydrolysis of S. platensis and C. vulgaris proteins provides a sustainable and natural source of bioactive peptides for antioxidant and anti-aging applications in food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Baran Masoumifeshani
- Aquaculture Department, Natural Resources and Marine Science Faculty, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran;
| | - Abdolmohammad Abedian Kenari
- Aquaculture Department, Natural Resources and Marine Science Faculty, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran;
| | - Ignacio Sottorff
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany; (I.S.); (M.C.)
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany; (I.S.); (M.C.)
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
2
|
Zhou M, Hong J, Qiu X, Xiong Z, Liu X, Qin Z, Luo Z, Chen Q, Lin M, Min L, Yang X, Guo X, Xu B, Mao J. Serum-derived extracellular vesicles mediate acquired multidrug resistance of MCF-7 breast cancer cells induced by chemotherapeutic drugs. Biochem Pharmacol 2025; 237:116923. [PMID: 40194604 DOI: 10.1016/j.bcp.2025.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Multidrug resistance (MDR) in tumor cells presents a significant challenge in cancer therapy. This study investigates the role of serum-derived extracellular vesicles (EVs) in mediating MDR during chemotherapeutic exposure. The findings indicate that short- or long-term co-incubation of doxorubicin (Dox)-pretreated serum derived EVs (EVs(S-PT)) caused drug-sensitive MCF-7 breast cancer cells to develop a MDR phenotype. In addition, serum EVs contain a high concentration of unglycosylated P-glycoprotein (P-gp). Chemotherapy treatment of tumor patients or exposure to chemotherapeutic drugs in vitro activates serum glycosyltransferases, inducing glycosylation of EVs P-gp and giving it drug-pumping activity. Furthermore, damage caused by Dox to the vascular endothelial barrier facilitates the crossing of serum EVs into the tumor microenvironment. These EVs are then taken up by tumor cells, providing them with access to a significant quantity of glycosylated P-gp proteins that possess transporter activity and the ability to evade degradation by the ubiquitin proteasome system. The results indicate that EVs(S-PT) transfers glycosylated P-gp across the damaged vascular endothelial barrier into MCF-7 cells and that these glycosylated P-gp remain intracellular for a long period of time, inducing MDR in the cells. Our study highlights a novel mechanism of acquired MDR and provides a potential avenue for therapeutic interventions targeting the serum EVs pathway in cancer therapy.
Collapse
Affiliation(s)
- Mi Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahuan Hong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaofeng Qiu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zixian Xiong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyong Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhuan Qin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhesi Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mianjie Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ling Min
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, China
| | - Xiaorong Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong 510220, China.
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jianwen Mao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Deghrigue M, Cherif D, Lajili S, Mesmia HB, Muller CD, Majdoub H, Bouraoui A. Structural characterizations and bioactivities of fucoidans from Dyctyopteris membranaceae and Padina pavonica with in silico investigations. Int J Biol Macromol 2025; 307:142133. [PMID: 40090661 DOI: 10.1016/j.ijbiomac.2025.142133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 02/23/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Fucoidans, a complex water-soluble sulfated polysaccharide is regarded as a valuable source of new drug development. The aim of this study was to characterize the chemical properties of fucoidans isolated from two brown algae Dyctyopteris membranaceae and Padina pavonica and to evaluate their anti-inflammatory, gastroprotective, antioxidant and immunomodulatory activities. The characterization of fucoidans was investigated with colorimetric techniques and Fourier transform infrared spectroscopy. The different macromolecular characteristics of fucoidans were determined by size exclusion chromatography. The immunomodulatory activity was evaluated using cytometric bead array technology to follow up the secretion of TNF-α in lipopolysaccharide activated THP-1 cells. The antioxidant effect was determined using the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). The anti-inflammatory activity was evaluated using the carrageenan-induced rat paw edema model. The gastroprotective activity was determined using HCl/EtOH induced gastric ulcers in rats. Pharmacokinetic and molecular docking analysis was conducted. As a result, only fucoidan from D. membranaceae showed an effect on the synthesis of TNF-α in THP-1 cells induced by LPS with IC50 of 77 μg/mL. Fucoidans from both algae showed antioxidant properties with EC50 of 0.2 mg/mL for fucoidan from D. membranaceae, and 0.21 mg/mL for fucoidan from P. pavonica. Furthermore, isolated fucoidans from D. membranaceae and P. pavonica showed important anti-inflammatory activity with percentages of inhibition of oedema of 75 % and 57 %, respectively, at dose of 50 mg/kg, associated with significant gastroprotective activity with percentages of ulcer inhibition of 97 % and 88 %, respectively, at the same dose. Docking study showed the reactivity of this fucoidans. The study highlights the potential pharmacological importance of D. membranaceae and P. pavonica as sources of natural compounds with biological activities.
Collapse
Affiliation(s)
- Monia Deghrigue
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, Université de Monastir, Monastir, Tunisia.
| | - Dora Cherif
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, Université de Monastir, Monastir, Tunisia
| | - Sirine Lajili
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, Université de Monastir, Monastir, Tunisia
| | - Hela Ben Mesmia
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, Université de Monastir, Monastir, Tunisia
| | - Christian D Muller
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Faculté de Pharmacie, Université de Strasbourg, France
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| | - Abderrahman Bouraoui
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, Université de Monastir, Monastir, Tunisia
| |
Collapse
|
4
|
Lim JS, Cho S, Capek P, Kim SC, Bleha R, Choi DJ, Ree J, Lee J, Synytsya A, Park YI. Water-extractable polysaccharide fraction PNE-P1 from Pinus koraiensis pine nut: Structural features and immunostimulatory activity. Carbohydr Res 2023; 534:108980. [PMID: 37952447 DOI: 10.1016/j.carres.2023.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
The polysaccharide fraction PNE-P1 was isolated from hot water extract (PNE) of the defatted meal of pine nuts (Pinus koraiensis) using DEAE-cellulose column chromatography. This fraction had three components of molecular masses 1251, 616, and 303 g/mol consisting mainly of arabinose, xylose, and galacturonic acid at a molar ratio of 2:1.6:1. Structural analysis with FTIR/Raman, methylation and GC-MS, and NMR revealed that PNE-P1 is a cell wall polysaccharide complex including arabinan, heteroxylan, homogalacturonan (HM) and rhamnogalacturonan I (RG-I) parts. Being nontoxic to RAW 264.7 macrophages in the concentration range of 10-200 μg/mL, PNE-P1 promoted proliferation of these cells, significantly induced the secretion of proinflammatory cytokines (TNF-α and IL-6) and chemokines (RANTES and MIP-1α) and enhanced the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nitric oxide (NO). PNE-P1 also markedly induced macrophage-mediated phagocytosis of apoptotic Jurkat T cells. These results demonstrate that pine nuts Pinus koraiensis contain a complex of water-soluble plant cell wall polysaccharides, which can stimulate innate immunity by potentiating macrophage function.
Collapse
Affiliation(s)
- Jung Sik Lim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Sarang Cho
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Peter Capek
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovakia.
| | - Seong Cheol Kim
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Doo Jin Choi
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Jin Ree
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Jisun Lee
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| | - Yong Il Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea; Department of Medical and Biological Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
5
|
Carvajal-Barriga EJ, Fields RD. Sulfated polysaccharides as multi target molecules to fight COVID 19 and comorbidities. Heliyon 2023; 9:e13797. [PMID: 36811015 PMCID: PMC9936785 DOI: 10.1016/j.heliyon.2023.e13797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
The majority of research to combat SARS-CoV-2 infection exploits the adaptive immune system, but innate immunity, the first line of defense against pathogenic microbes, is equally important in understanding and controlling infectious diseases. Various cellular mechanisms provide physiochemical barriers to microbe infection in mucosal membranes and epithelia, with extracellular polysaccharides, particularly sulfated polysaccharides, being among the most widespread and potent extracellular and secreted molecules blocking and deactivating bacteria, fungi, and viruses. New research reveals that a range of polysaccharides effectively inhibits COV-2 infection of mammalian cells in culture. This review provides an overview of sulfated polysaccharides nomenclature, its significance as immunomodulators, antioxidants, antitumors, anticoagulants, antibacterial, and as potent antivirals. It summarizes current research on various interactions of sulfated polysaccharide with a range of viruses, including SARS-CoV-2, and their application for potential treatments for COVID-19. These molecules interact with biochemical signaling in immune cell responses, by actions in oxidative reactions, cytokine signaling, receptor binding, and through antiviral and antibacterial toxicity. These properties provide the potential for the development of novel therapeutic treatments for SARS-CoV-2 and other infectious diseases from modified polysaccharides.
Collapse
Affiliation(s)
- Enrique Javier Carvajal-Barriga
- Pontificia Universidad Católica Del Ecuador, Neotropical Center for the Biomass Research, Quito, Ecuador.,The Eunice Kennedy Shriver National Institutes of Health, National Institute of Children and Human Development, Bethesda, MD, USA
| | - R Douglas Fields
- The Eunice Kennedy Shriver National Institutes of Health, National Institute of Children and Human Development, Bethesda, MD, USA
| |
Collapse
|
6
|
Sulfated Polysaccharides from Macroalgae-A Simple Roadmap for Chemical Characterization. Polymers (Basel) 2023; 15:polym15020399. [PMID: 36679279 PMCID: PMC9861475 DOI: 10.3390/polym15020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The marine environment presents itself as a treasure chest, full of a vast diversity of organisms yet to be explored. Among these organisms, macroalgae stand out as a major source of natural products due to their nature as primary producers and relevance in the sustainability of marine ecosystems. Sulfated polysaccharides (SPs) are a group of polymers biosynthesized by macroalgae, making up part of their cell wall composition. Such compounds are characterized by the presence of sulfate groups and a great structural diversity among the different classes of macroalgae, providing interesting biotechnological and therapeutical applications. However, due to the high complexity of these macromolecules, their chemical characterization is a huge challenge, driving the use of complementary physicochemical techniques to achieve an accurate structural elucidation. This review compiles the reports (2016-2021) of state-of-the-art methodologies used in the chemical characterization of macroalgae SPs aiming to provide, in a simple way, a key tool for researchers focused on the structural elucidation of these important marine macromolecules.
Collapse
|
7
|
Lee S, Lee EJ, Lee GM, Yun JH, Yoo W. Inhibitory effect of fucoidan on TNF-α-induced inflammation in human retinal pigment epithelium cells. Front Nutr 2023; 10:1162934. [PMID: 37125026 PMCID: PMC10130517 DOI: 10.3389/fnut.2023.1162934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Sargassum horneri (S. horneri) is a brown seaweed that contains a fucose-rich sulfated polysaccharide called fucoidan and is known to possess beneficial bioactivities, such as anti-inflammatory, antiviral, antioxidative, and antitumoral effects. This study aimed to determine the anti-inflammatory effects of AB_SH (hydrothermal extracts from S. horneri) and its bioactive compound (fucoidan) against tumor necrosis factor alpha (TNF-α)-induced inflammation in human retinal pigment epithelial (RPE) cells. AB_SH did not exhibit any cytotoxicity, and it decreased the mRNA expression of interleukin (IL)-6 and IL-8 and the production of the cytokines IL-6 and TNF-α. It also suppressed the expression levels of phosphorylated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), including c-Jun amino-terminal kinases (JNK), p38 protein kinases (p38), and extracellular signal-regulated kinase (ERK) proteins, suggesting that AB_SH inhibits activation of the NF-kB/MAPK signaling pathway. Since fucoidan was identified in the composition analysis of AB_SH, it was additionally shown to be required for its anti-inflammatory effects in TNF-α-stimulated human RPE cells. In line with the AB_SH results, fucoidan reduced the mRNA levels of IL-6, IL-1ß, and IL-8 and production of the cytokines IL-6, TNF-α, and IL-8 through the downregulation of the NF-kB/MAPK signaling pathway in a dose-dependent manner. Collectively, the ability of AB_SH from S. horneri hydrothermal extracts to reduce inflammation indicates that it may be a good functional ingredient for managing ocular disorders.
Collapse
Affiliation(s)
- Sol Lee
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
| | - Eun Jeoung Lee
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
| | - Gyu Min Lee
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
| | - Ji-Hyun Yun
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
| | - Wonbeak Yoo
- AceBiome Inc., Seoul, Republic of Korea
- R&D Center, AceBiome Inc., Daejeon, Republic of Korea
- *Correspondence: Wonbeak Yoo,
| |
Collapse
|
8
|
Rudtanatip T, Somintara S, Sakaew W, El-Abid J, Cano ME, Jongsomchai K, Wongprasert K, Kovensky J. Sulfated Galactans from Gracilaria fisheri with Supplementation of Octanoyl Promote Wound Healing Activity In Vitro and In Vivo. Macromol Biosci 2022; 22:e2200172. [PMID: 36066490 DOI: 10.1002/mabi.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/22/2022] [Indexed: 01/15/2023]
Abstract
Sulfated galactans (SG) isolated from Gracilaria fisheri is partially degraded (DSG), and subsequentially supplemented with octanoyl (DSGO) and sulfate (DSGS) groups. The molecular weights of DSG, DSGO, and DSGS are 7.87, 152.79, and 97.07 kDa, respectively. The modification is confirmed using FTIR and NMR, while in vitro wound healing activity is assessed using scratched wound fibroblasts. The results reveal that DSGO exhibits highest percentage of wound closure in scratched fibroblast L929 cells. Furthermore, DSGO is able to promote proliferation and accelerate migration of scratched fibroblasts, which correspond to the regulation of proteins and mRNA (Ki67, p-FAK, vimentin, and E-cadherin) determined by Western blotting and qPCR analysis. The superior wound healing activity of DSGO is also confirmed in excision wound of rats. The results demonstrate that DSGO significantly enhances the percentage of wound closure, re-epithelialization, and collagen arrangement, increases α-smoth muscle actin (α-SMA) and vimentin expression, and decreases that of tumor necrosis factor-α (TNF-α) at the wound site. The results suggest that degraded SG supplemented with medium-chain fatty acids of octanoyl group may pass through the membrane, subsequently activating the mediators associated with proliferation and migration of fibroblasts, which can potentially lead to the promotion of wound healing activity.
Collapse
Affiliation(s)
- Tawut Rudtanatip
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Somsuda Somintara
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Mueang, Khon Kaen, 40002, Thailand
| | - Jamal El-Abid
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) CNRS UMR 7378, Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, 80039, France
| | - Maria Emilia Cano
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - Kamonwan Jongsomchai
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - José Kovensky
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) CNRS UMR 7378, Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens, 80039, France
| |
Collapse
|
9
|
Michalak I, Tiwari R, Dhawan M, Alagawany M, Farag MR, Sharun K, Emran TB, Dhama K. Antioxidant effects of seaweeds and their active compounds on animal health and production - a review. Vet Q 2022; 42:48-67. [PMID: 35363108 PMCID: PMC9004519 DOI: 10.1080/01652176.2022.2061744] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Natural antioxidants applied as feed additives can improve not only animals' health and overall performance but also increase their resistance to environmental stress such as heat stress, bad housing conditions, diseases, etc. Marine organisms, for example seaweeds - red, brown, and green macroalgae contain a plethora of biologically active substances, including phenolic compounds, polysaccharides, pigments, vitamins, micro- and macroelements, and proteins known for their antioxidant activity, which can help in the maintenance of appropriate redox status in animals and show pleiotropic effects for enhancing good health, and productivity. The dysregulated production of free radicals is a marked characteristic of several clinical conditions, and antioxidant machinery plays a pivotal role in scavenging the excessive free radicals, thereby preventing and treating infections in animals. Supplementation of seaweeds to animal diet can boost antioxidant activity, immunity, and the gut environment. Dietary supplementation of seaweeds can also enhance meat quality due to the deposition of marine-derived antioxidant components in muscles. The use of natural antioxidants in the meat industry is a practical approach to minimize or prevent lipid oxidation. However, overconsumption of seaweeds, especially brown macroalgae, should be avoided because of their high iodine content. An important point to consider when including seaweeds in animal feed is their variable composition which depends on the species, habitat, location, harvest time, growing conditions such as nutrient concentration in water, light intensity, temperature, etc. This review highlights the beneficial applications of seaweeds and their extracted compounds, which have antioxidant properties as feed additives and impact animal health and production.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
10
|
Structure and Anticoagulant Activity of a Galactofuranose-Containing Sulfated Polysaccharide from the Green Seaweed, Codium isthmocladum. Molecules 2022; 27:molecules27228012. [PMID: 36432110 PMCID: PMC9695659 DOI: 10.3390/molecules27228012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
A water-soluble sulfated polysaccharide, F2-1, was obtained from the marine green alga, Codium isthmocladum, using ion-exchange and size-exclusion chromatography. Structure analysis showed that the F2-1 was a sulfated arabinan comprising Ara, Rha, Man, Gal, and Xyl with an 18% sulfate content and a molecular weight of 100 kDa. Methylation analysis combined with desulfation, GC-MS, IR, and NMR spectroscopy showed that the backbone of F2-1 was →4)-β-L-Arap(1→ residue. Its 2-O and/or 3-O positions showed sulfate modification; additionally, the 2-O or 3-O position showed branch points. The side chains were composed of →5)-β-D-Galf, (1→2,6)-β-D-Galf(1→, (1→2)-β-L-Rhap4S, →4)-α-D-Glcp(1→, and terminal α-D-Galp(1→ and β-D-Xylp(1→. Polysaccharides containing β-D-galactofuranose are rarely found in seaweed. F2-1 exhibited significant anticoagulant activity in vitro. Our findings suggested that the green-tide alga, Codium isthmocladum, can be considered as a useful resource for bioactive polysaccharides.
Collapse
|
11
|
A Comprehensive Review of the Cardioprotective Effect of Marine Algae Polysaccharide on the Gut Microbiota. Foods 2022; 11:foods11223550. [PMID: 36429141 PMCID: PMC9689188 DOI: 10.3390/foods11223550] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease (CVD) is the number one cause of death worldwide. Recent evidence has demonstrated an association between the gut microbiota and CVD, including heart failure, cerebrovascular illness, hypertension, and stroke. Marine algal polysaccharides (MAPs) are valuable natural sources of diverse bioactive compounds. MAPs have many pharmaceutical activities, including antioxidant, anti-inflammatory, immunomodulatory, and antidiabetic effects. Most MAPs are not utilized in the upper gastrointestinal tract; however, they are fermented by intestinal flora. The relationship between MAPs and the intestinal microbiota has drawn attention in CVD research. Hence, this review highlights the main action by which MAPs are known to affect CVD by maintaining homeostasis in the gut microbiome and producing gut microbiota-generated functional metabolites and short chain fatty acids. In addition, the effects of trimethylamine N-oxide on the gut microbiota composition, bile acid signaling properties, and CVD prevention are also discussed. This review supports the idea that focusing on the interactions between the host and gut microbiota may be promising for the prevention or treatment of CVD. MAPs are a potential sustainable source for the production of functional foods or nutraceutical products for preventing or treating CVD.
Collapse
|
12
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Monterrey DT, Ayuso-Fernández I, Oroz-Guinea I, García-Junceda E. Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol Adv 2022; 60:108016. [PMID: 35781046 DOI: 10.1016/j.biotechadv.2022.108016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
Fusion proteins, understood as those created by joining two or more genes that originally encoded independent proteins, have numerous applications in biotechnology, from analytical methods to metabolic engineering. The use of fusion enzymes in biocatalysis may be even more interesting due to the physical connection of enzymes catalyzing successive reactions into covalently linked complexes. The proximity of the active sites of two enzymes in multi-enzyme complexes can make a significant contribution to the catalytic efficiency of the reaction. However, the physical proximity of the active sites does not guarantee this result. Other aspects, such as the nature and length of the linker used for the fusion or the order in which the enzymes are fused, must be considered and optimized to achieve the expected increase in catalytic efficiency. In this review, we will relate the new advances in the design, creation, and use of fused enzymes with those achieved in biocatalysis over the past 20 years. Thus, we will discuss some examples of genetically fused enzymes and their application in carbon‑carbon bond formation and oxidative reactions, generation of chiral amines, synthesis of carbohydrates, biodegradation of plant biomass and plastics, and in the preparation of other high-value products.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Iván Ayuso-Fernández
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica, Instituto de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
15
|
Oliyaei N, Moosavi-Nasab M, Mazloomi SM. Therapeutic activity of fucoidan and carrageenan as marine algal polysaccharides against viruses. 3 Biotech 2022; 12:154. [PMID: 35765662 PMCID: PMC9233728 DOI: 10.1007/s13205-022-03210-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022] Open
|
16
|
Silver Nanoparticles Containing Fucoidan Synthesized by Green Method Have Anti- Trypanosoma cruzi Activity. NANOMATERIALS 2022; 12:nano12122059. [PMID: 35745396 PMCID: PMC9231105 DOI: 10.3390/nano12122059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/26/2022]
Abstract
The brown seaweed Spatoglossum schröederi synthesizes three bioactive fucoidans, the most abundant of which is fucan A. This fucoidan was extracted and its identity was confirmed by chemical analysis, Fourier-transform infrared spectroscopy (FTIR), and agarose gel electrophoresis. Thereafter, silver nanoparticles containing fucan A (AgFuc) were produced using an environmentally friendly synthesis method. AgFuc synthesis was analyzed via UV-vis spectroscopy and FTIR, which confirmed the presence of both silver and fucan A in the AgFuc product. Dynamic light scattering (DLS), X-ray diffraction, scanning electron microscopy, and atomic force microscopy revealed that the AgFuc particles were ~180.0 nm in size and spherical in shape. DLS further demonstrated that AgFuc was stable for five months. Coupled plasma optical emission spectrometry showed that the AgFuc particles contained 5% silver and 95% sugar. AgFuc was shown to be more effective in inhibiting the ability of parasites to reduce MTT than fucan A or silver, regardless of treatment time. In addition, AgFuc induced the death of ~60% of parasites by necrosis and ~17% by apoptosis. Therefore, AgFuc induces damage to the parasites' mitochondria, which suggests that it is an anti-Trypanosoma cruzi agent. This is the first study to analyze silver nanoparticles containing fucan as an anti-Trypanosoma cruzi agent. Our data indicate that AgFuc nanoparticles have potential therapeutic applications, which should be determined via preclinical in vitro and in vivo studies.
Collapse
|
17
|
Thixotropic Red Microalgae Sulfated Polysaccharide-Peptide Composite Hydrogels as Scaffolds for Tissue Engineering. Biomedicines 2022; 10:biomedicines10061388. [PMID: 35740409 PMCID: PMC9220243 DOI: 10.3390/biomedicines10061388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Sulfated polysaccharides of red marine microalgae have recently gained much attention for biomedical applications due to their anti-inflammatory and antioxidant properties. However, their low mechanical properties limit their use in tissue engineering. Herein, to enhance the mechanical properties of the sulfated polysaccharide produced by the red marine microalga, Porphyridium sp. (PS), it was integrated with the fluorenylmethoxycarbonyl diphenylalanine (FmocFF) peptide hydrogelator. Transparent, stable hydrogels were formed when mixing the two components at a 1:1 ratio in three different concentrations. Electron microscopy showed that all hydrogels exhibited a nanofibrous structure, mimicking the extracellular matrix. Furthermore, the hydrogels were injectable, and tunable mechanical properties were obtained by changing the hydrogel concentration. The composite hydrogels allowed the sustained release of curcumin which was controlled by the change in the hydrogel concentration. Finally, the hydrogels supported MC3T3-E1 preosteoblasts viability and calcium deposition. The synergy between the sulfated polysaccharide, with its unique bioactivities, and FmocFF peptide, with its structural and mechanical properties, bears a promising potential for developing novel tunable scaffolds for tissue engineering that may allow cell differentiation into various lineages.
Collapse
|
18
|
Role of sulfated polysaccharides from seaweeds in bone regeneration: A systematic review. Carbohydr Polym 2022; 284:119204. [DOI: 10.1016/j.carbpol.2022.119204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023]
|
19
|
Rocha GA, Ferreira RB. Antimicrobial polysaccharides obtained from natural sources. Future Microbiol 2022; 17:701-716. [PMID: 35392662 DOI: 10.2217/fmb-2021-0257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With the increase in resistance to conventional antibiotics among bacterial pathogens, the search for new antimicrobials becomes more and more necessary. Although most studies focus on the discovery of antimicrobial peptides for the development of new antibiotics, several others in the literature have described polysaccharides with the same biological activity with the potential for use as therapeutic alternatives. Here we review the currently available literature on antimicrobial polysaccharides isolated from different sources to demonstrate that there are several possible unconventional carbohydrate polymers that could act as therapeutic alternatives in the battle against drug-resistant pathogens.
Collapse
Affiliation(s)
- Giulia A Rocha
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| | - Rosana Br Ferreira
- Departamento de Microbiologia Médica Instituto de Microbiologia Paulo de Góes CCS, Bloco I2-028, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brasil
| |
Collapse
|
20
|
Qin L, Xu H, He Y, Liang C, Wang K, Cao J, Qu C, Miao J. Purification, Chemical Characterization and Immunomodulatory Activity of a Sulfated Polysaccharide from Marine Brown Algae Durvillaea antarctica. Mar Drugs 2022; 20:223. [PMID: 35447896 PMCID: PMC9026115 DOI: 10.3390/md20040223] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
An immunomodulatory polysaccharide (DAP4) was extracted, purified, and characterized from Durvillaea antarctica. The results of chemical and spectroscopic analyses demonstrated that the polysaccharide was a fucoidan, and was mainly composed of (1→3)-α-l-Fucp and (1→4)-α-l-Fucp residues with a small degree of branching at C-3 of (1→4)-α-l-Fucp residues. Sulfate groups were at C-4 of (1→3)-α-l-Fucp, C-2 of (1→4)-α-l-Fucp and minor C-6 of (1→4)-β-d-Galp. Small amounts of xylose and galactose exist in the forms of β-d-Xylp-(1→ and β-d-Gal-(1→. The immunomodulatory activity of DAP4 was measured on RAW 264.7 cells, the results proved that DAP4 exhibited excellent immunomodulatory activities, such as promoted the proliferation of spleen lymphocytes, increased NO production, as well as enhanced phagocytic of macrophages. Besides, DAP4 could also produce better enhancement on the vitality of NK cells. For the high immunomodulatory activity, DAP4 might be a potential source of immunomodulatory fucoidan with a novel structure.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Q.); (H.X.); (Y.H.); (C.L.); (K.W.); (J.C.)
| | - Hui Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Q.); (H.X.); (Y.H.); (C.L.); (K.W.); (J.C.)
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Q.); (H.X.); (Y.H.); (C.L.); (K.W.); (J.C.)
| | - Chen Liang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Q.); (H.X.); (Y.H.); (C.L.); (K.W.); (J.C.)
| | - Kai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Q.); (H.X.); (Y.H.); (C.L.); (K.W.); (J.C.)
| | - Junhan Cao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Q.); (H.X.); (Y.H.); (C.L.); (K.W.); (J.C.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Q.); (H.X.); (Y.H.); (C.L.); (K.W.); (J.C.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Q.); (H.X.); (Y.H.); (C.L.); (K.W.); (J.C.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| |
Collapse
|
21
|
Swathi N, Kumar AG, Parthasarathy V, Sankarganesh P. Isolation of Enteromorpha species and analyzing its crude extract for the determination of in vitro antioxidant and antibacterial activities. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-10. [PMID: 35345496 PMCID: PMC8941838 DOI: 10.1007/s13399-022-02591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The extract of green algae (Enteromorpha species) was prepared by the cold extraction technique. The prepared algal extract exhibits a high antioxidant potential due to the presence of sulfated polysaccharides (SPs). The extract of Enteromorpha species was analyzed to identify the presence of significant biochemical composition. The extract of Enteromorpha species was evaluated to assess the DPPH-free radical scavenging activity, total antioxidant activity by phosphomolybdenum assay, in vitro anti-bacterial by agar diffusion method, and cell viability by MTT assay. It was found that the extract of Enteromorpha species contains the various chemical composition such as carbohydrates (0.13 g/ml), xylose (0.0819 g/ml), sulfate (0.0153 g/ml), and proteins (0.0363 g/ml). Phytochemicals such as flavonoids and phenolic compounds were found in the extract. The antioxidant potential of the crude extract was investigated by the total antioxidant assay (400 µl/ml) and DPPH-free radical scavenging assay (5 µl/ml). The prepared green algal extract produced the highest inhibitory zone up to 18 mm, 13 mm, and 18 mm at 200 µl/ml concentrations against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, respectively. The above results revealed that the extract of Enteromorpha species exhibited strong antioxidant and anti-bacterial activities due to the presence of sulfated polysaccharides.
Collapse
Affiliation(s)
- N. Swathi
- Department of Microbiology, United Alacrity India Pvt. Ltd, Chennai-600 058, Ambattur, Tamil Nadu India
| | - A. Ganesh Kumar
- Center for Research and Development, Department of Microbiology, Hindustan College of Arts & Science, Chennai-603 103, Padur, Tamil Nadu India
| | - V. Parthasarathy
- Department of Physics, Hindustan Institute of Technology and Science, Chennai-603 103, Padur, Tamil Nadu India
| | - P. Sankarganesh
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai-603 103, Padur, Tamil Nadu India
| |
Collapse
|
22
|
Dhahri M, Alghrably M, Mohammed HA, Badshah SL, Noreen N, Mouffouk F, Rayyan S, Qureshi KA, Mahmood D, Lachowicz JI, Jaremko M, Emwas AH. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases. Pharmaceutics 2021; 14:1. [PMID: 35056897 PMCID: PMC8777698 DOI: 10.3390/pharmaceutics14010001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are a serious and widespread global public health burden amongst aging populations. The total estimated worldwide global cost of dementia was US$818 billion in 2015 and has been projected to rise to 2 trillion US$ by 2030. While advances have been made to understand different neurodegenerative disease mechanisms, effective therapeutic strategies do not generally exist. Several drugs have been proposed in the last two decades for the treatment of different types of neurodegenerative diseases, with little therapeutic benefit, and often with severe adverse and side effects. Thus, the search for novel drugs with higher efficacy and fewer drawbacks is an ongoing challenge in the treatment of neurodegenerative disease. Several natural compounds including polysaccharides have demonstrated neuroprotective and even therapeutic effects. Natural polysaccharides are widely distributed in plants, animals, algae, bacterial and fungal species, and have received considerable attention for their wide-ranging bioactivity, including their antioxidant, anti-neuroinflammatory, anticholinesterase and anti-amyloidogenic effects. In this review, we summarize different mechanisms involved in neurodegenerative diseases and the neuroprotective effects of natural polysaccharides, highlighting their potential role in the prevention and therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Fouzi Mouffouk
- Department of Chemistry, Faculty of Science, Kuwait University, Safat 13060, Kuwait;
| | - Saleh Rayyan
- Chemistry Department, Birzeit University, Birzeit P627, Palestine;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
23
|
Bogolitsyn KG, Parshina AE, Druzhinina AS, Shulgina EV. Comparative Characteristics of the Chemical Composition of Some Brown Algae from the White and Yellow Seas. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021070025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zvyagintseva TN, Usoltseva RV, Shevchenko NM, Surits VV, Imbs TI, Malyarenko OS, Besednova NN, Ivanushko LA, Ermakova SP. Structural diversity of fucoidans and their radioprotective effect. Carbohydr Polym 2021; 273:118551. [PMID: 34560963 DOI: 10.1016/j.carbpol.2021.118551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022]
Abstract
Fucoidans are biologically active sulfated polysaccharides of brown algae. They have a great structural diversity and a wide spectrum of biological activity. This review is intended to outline what is currently known about the structures of fucoidans and their radioprotective effect. We classified fucoidans according to their composition and structure, examined the structure of fucoidans of individual representatives of algae, summarized the available data on changes in the yields and compositions of fucoidans during algae development, and focused on information about underexplored radioprotective effect of these polysaccharides. Based on the presented in the review data, it is possible to select algae, which are the sources of fucoidans of desired structures and to determine the best time to harvest them. The use of high purified polysaccharides with established structures increase the value of studies of their biological effects and the determination of the dependence "structure - biological effect".
Collapse
Affiliation(s)
- Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation.
| | - Natalia M Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Valerii V Surits
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Tatiana I Imbs
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| | - Natalia N Besednova
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Lyudmila A Ivanushko
- G.P. Somov Scientific Research Institute of Epidemiology and Microbiology, 1, Selskaya str., 690087 Vladivostok, Russian Federation
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 Let Vladivostoku, 690022 Vladivostok, Russian Federation
| |
Collapse
|
25
|
Sirajunnisa AR, Surendhiran D, Kozani PS, Kozani PS, Hamidi M, Cabrera-Barjas G, Delattre C. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
González-Ballesteros N, Flórez-Fernández N, Torres M, Domínguez H, Rodríguez-Argüelles M. Synthesis, process optimization and characterization of gold nanoparticles using crude fucoidan from the invasive brown seaweed Sargassum muticum. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhang W, Hwang J, Yadav D, An EK, Kwak M, Lee PCW, Jin JO. Enhancement of Immune Checkpoint Inhibitor-Mediated Anti-Cancer Immunity by Intranasal Treatment of Ecklonia cava Fucoidan against Metastatic Lung Cancer. Int J Mol Sci 2021; 22:9125. [PMID: 34502035 PMCID: PMC8431244 DOI: 10.3390/ijms22179125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Although fucoidan, a well-studied seaweed-extracted polysaccharide, has shown immune stimulatory effects that elicit anticancer immunity, mucosal adjuvant effects via intranasal administration have not been studied. In this study, the effect of Ecklonia cava-extracted fucoidan (ECF) on the induction of anti-cancer immunity in the lung was examined by intranasal administration. In C57BL/6 and BALB/c mice, intranasal administration of ECF promoted the activation of dendritic cells (DCs), natural killer (NK) cells, and T cells in the mediastinal lymph node (mLN). The ECF-induced NK and T cell activation was mediated by DCs. In addition, intranasal injection with ECF enhanced the anti-PD-L1 antibody-mediated anti-cancer activities against B16 melanoma and CT-26 carcinoma tumor growth in the lungs, which were required cytotoxic T lymphocytes and NK cells. Thus, these data demonstrated that ECF functioned as a mucosal adjuvant that enhanced the immunotherapeutic effect of immune checkpoint inhibitors against metastatic lung cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; (W.Z.); (J.H.)
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; (W.Z.); (J.H.)
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (D.Y.); (E.-K.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (D.Y.); (E.-K.A.)
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (D.Y.); (E.-K.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, Korea;
| | - Peter Chang-Whan Lee
- ASAN Medical Center, Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; (W.Z.); (J.H.)
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (D.Y.); (E.-K.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
28
|
Sauruk da Silva K, Carla da Silveira B, Bueno LR, Malaquias da Silva LC, da Silva Fonseca L, Fernandes ES, Maria-Ferreira D. Beneficial Effects of Polysaccharides on the Epithelial Barrier Function in Intestinal Mucositis. Front Physiol 2021; 12:714846. [PMID: 34366901 PMCID: PMC8339576 DOI: 10.3389/fphys.2021.714846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal mucositis is a clinically relevant side effect of anticancer therapies. It is experienced by 60–100% of patients undergoing treatment with high doses of chemotherapy, radiation therapy, and bone marrow transplantation. Intestinal mucositis can manifest as pain, weight loss, inflammation, diarrhea, rectal bleeding, and infection; affecting normal nutritional intake and intestinal function. It often impacts adherence to anticancer therapy as it frequently limits patient’s ability to tolerate treatment, causing schedule delays, interruptions, or premature discontinuation. In some cases, local and systemic secondary infections are observed, increasing the costs toward medical care and hospitalization. Several strategies for managing mucositis are available which do not always halt this condition. In this context, new therapeutic strategies are under investigation to prevent or treat intestinal mucositis. Polysaccharides from natural resources have recently become promising molecules against intestinal damage due to their ability to promote mucosal healing and their anti-inflammatory actions. These effects are associated with the protection of intestinal mucosa and regulation of microbiota and immune system. This review aims to discuss the recent advances of polysaccharides from natural resources as potential therapies for intestinal mucositis. The source, species, doses, treatment schedules, and mechanisms of action of polysaccharides will be discussed in detail.
Collapse
Affiliation(s)
- Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Bruna Carla da Silveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Laryssa Regis Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Liziane Cristine Malaquias da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Lauany da Silva Fonseca
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil.,Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
29
|
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res 2021; 505:108326. [PMID: 34015720 PMCID: PMC8091805 DOI: 10.1016/j.carres.2021.108326] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
The viral infection caused by SARS-CoV-2 has increased the mortality rate and engaged several adverse effects on the affected individuals. Currently available antiviral drugs have found to be unsuccessful in the treatment of COVID-19 patients. The demand for efficient antiviral drugs has created a huge burden on physicians and health workers. Plasma therapy seems to be less accomplishable due to insufficient donors to donate plasma and low recovery rate from viral infection. Repurposing of antivirals has been evolved as a suitable strategy in the current treatment and preventive measures. The concept of drug repurposing represents new experimental approaches for effective therapeutic benefits. Besides, SARS-CoV-2 exhibits several complications such as lung damage, blood clot formation, respiratory illness and organ failures in most of the patients. Based on the accumulation of data, sulfated marine polysaccharides have exerted successful inhibition of virus entry, attachment and replication with known or unknown possible mechanisms against deadly animal and human viruses so far. Since the virus entry into the host cells is the key process, the prevention of such entry mechanism makes any antiviral strategy effective. Enveloped viruses are more sensitive to polyanions than non-enveloped viruses. Besides, the viral infection caused by RNA virus types embarks severe oxidative stress in the human body that leads to malfunction of tissues and organs. In this context, polysaccharides play a very significant role in providing shielding effect against the virus due to their polyanionic rich features and a molecular weight that hinders their reactive surface glycoproteins. Significantly the functional groups especially sulfate, sulfate pattern and addition, uronic acids, monosaccharides, glycosidic linkage and high molecular weight have greater influence in the antiviral activity. Moreover, they are very good antioxidants that can reduce the free radical generation and provokes intracellular antioxidant enzymes. Additionally, polysaccharides enable a host-virus immune response, activate phagocytosis and stimulate interferon systems. Therefore, polysaccharides can be used as candidate drugs, adjuvants in vaccines or combination with other antivirals, antioxidants and immune-activating nutritional supplements and antiviral materials in healthcare products to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
30
|
Danglad-Flores J, Leichnitz S, Sletten ET, Abragam Joseph A, Bienert K, Le Mai Hoang K, Seeberger PH. Microwave-Assisted Automated Glycan Assembly. J Am Chem Soc 2021; 143:8893-8901. [PMID: 34060822 PMCID: PMC8213053 DOI: 10.1021/jacs.1c03851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Automated synthesis
of DNA, RNA, and peptides provides quickly
and reliably important tools for biomedical research. Automated glycan
assembly (AGA) is significantly more challenging, as highly branched
carbohydrates require strict regio- and stereocontrol during synthesis.
A new AGA synthesizer enables rapid temperature adjustment from −40
to +100 °C to control glycosylations at low temperature and accelerates
capping, protecting group removal, and glycan modifications using
elevated temperatures. Thereby, the temporary protecting group portfolio
is extended from two to four orthogonal groups that give rise to oligosaccharides
with up to four branches. In addition, sulfated glycans and unprotected
glycans can be prepared. The new design reduces the typical coupling
cycles from 100 to 60 min while expanding the range of accessible
glycans. The instrument drastically shortens and generalizes the synthesis
of carbohydrates for use in biomedical and material science.
Collapse
Affiliation(s)
- José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Sabrina Leichnitz
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - A Abragam Joseph
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Klaus Bienert
- Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Kim Le Mai Hoang
- GlycoUniverse GmbH & Co KGaA, Am Mühlenberg 11, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
31
|
Plant Biostimulants from Cyanobacteria: An Emerging Strategy to Improve Yields and Sustainability in Agriculture. PLANTS 2021; 10:plants10040643. [PMID: 33805266 PMCID: PMC8065465 DOI: 10.3390/plants10040643] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.
Collapse
|
32
|
He D, Yan L, Hu Y, Wu Q, Wu M, Choi JI, Tong H. Optimization of Porphyran Extraction from Pyropia yezoensis by Response Surface Methodology and Its Lipid-Lowering Effects. Mar Drugs 2021; 19:53. [PMID: 33498781 PMCID: PMC7911723 DOI: 10.3390/md19020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022] Open
Abstract
Macroalgae polysaccharides are phytochemicals that are beneficial to human health. In this study, response surface methodology was applied to optimize the extraction procedure of Pyropia yezoensis porphyran (PYP). The optimum extraction parameters were: 100 °C (temperature), 120 min (time), and 29.32 mL/g (liquid-solid ratio), and the maximum yield of PYP was 22.15 ± 0.55%. The physicochemical characteristics of PPYP, purified from PYP, were analyzed, along with its lipid-lowering effect, using HepG2 cells and Drosophila melanogaster larvae. PPYP was a β-type sulfated hetero-rhamno-galactan-pyranose with a molecular weight of 151.6 kDa and a rhamnose-to-galactose molar ratio of 1:5.3. The results demonstrated that PPYP significantly reduced the triglyceride content in palmitic acid (PA)-induced HepG2 cells and high-sucrose-fed D. melanogaster larvae by regulating the expression of lipid metabolism-related genes, reducing lipogenesis and increasing fatty acid β-oxidation. To summarize, PPYP can lower lipid levels in HepG2 cells and larval fat body (the functional homolog tissue of the human liver), suggesting that PPYP may be administered as a potential marine lipid-lowering drug.
Collapse
Affiliation(s)
- Dan He
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Liping Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Yingxia Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Qifang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| | - Jong-il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Korea
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (D.H.); (L.Y.); (Y.H.); (Q.W.)
| |
Collapse
|
33
|
Bellan D, Biscaia S, Rossi G, Cristal A, Gonçalves J, Oliveira C, Simas F, Sabry D, Rocha H, Franco C, Chammas R, Gillies R, Trindade E. Green does not always mean go: A sulfated galactan from Codium isthmocladum green seaweed reduces melanoma metastasis through direct regulation of malignancy features. Carbohydr Polym 2020; 250:116869. [DOI: 10.1016/j.carbpol.2020.116869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 01/19/2023]
|
34
|
Han Y, Wu Y, Li G, Li M, Yan R, Xu Z, Lei H, Sun Y, Duan X, Hu L, Huang R. Structural characterization and transcript-metabolite correlation network of immunostimulatory effects of sulfated polysaccharides from green alga Ulva pertusa. Food Chem 2020; 342:128537. [PMID: 33183876 DOI: 10.1016/j.foodchem.2020.128537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Three water-soluble polysaccharides (UPPs 1-3) were obtained from edible green alga Ulva pertusa. The chemico-physical analyses indicated that UPPs 1-3 possessed molecular weights of 376.7 kDa, 57.21 kDa, and 131.13 kDa, with sulfate contents of 26.01 ± 8.13%, 9.86 ± 3.24%, and 13.32 ± 6.56%, respectively, and composed of arabinose, galactose, glucose, xylose, galacturonic acid, glucuronic acid, and mannuronic acid, with different ratios. The in vitro studies revealed that UPP-1 showed significant effects on the proliferation and phagocytic activity of macrophage, release of nitric oxide, and secretion of cytokines (TNF-α and IL-6). The transcript-metabolite analysis of UPP-1 treated macrophage revealed 4747 differential genes (2416 up-regulated and 2331 down-regulated) and 94 differential metabolites (77 up-regulated and 17 down-regulated) that significantly co-mapped a transcript-metabolite correlation network of biosynthesis of amino acids, glycerophospholipid metabolism, and carbon metabolism. Thus, these findings provide a valuable foundation for the potential application of U. pertusa polysaccharides.
Collapse
Affiliation(s)
- Yu Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guoqiang Li
- Department of Food Science and Engineering/South China National Center for Food Safety Research and Development, Foshan University, Foshan 528231, China
| | - Meiying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Ismail MM, Alotaibi BS, EL-Sheekh MM. Therapeutic Uses of Red Macroalgae. Molecules 2020; 25:4411. [PMID: 32992919 PMCID: PMC7583832 DOI: 10.3390/molecules25194411] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Red Seaweed "Rhodophyta" are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40-50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles.
Collapse
Affiliation(s)
- Mona M. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Alexandria 21556, Egypt;
| | - Badriyah S. Alotaibi
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | | |
Collapse
|
36
|
Xiong Y, Xiong M, Li Y, Qian J, Li Y, Han X, Tan J, Luo Y, Wang Q, Qin C. Chitosan oligosaccharide combined with running benefited the immune status of rats. Int Immunopharmacol 2020; 88:106915. [PMID: 32890793 DOI: 10.1016/j.intimp.2020.106915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 11/17/2022]
Abstract
Chitosan oligosaccharide (COS) degraded by chitosan, is an easily accessible and biocompatible natural molecule, which can facilitate the immune system. Running is one of the most effective forms of exercise. Persistence in running can effectively improve the body's resistance against pathogens. However, whether the combination of COS and running could benefit immune status still remains to be elucidated. We used Sprague-Dawley (SD) rats to explore the combinatory effect of COS and running. The organs and blood of the rats were collected after four weeks and the organ body mass index, biochemical and blood routine examination, cytokines, and T cells in the spleen and blood were detected and analyzed. In the group intragastric administration of COS only, the level of blood lactate dehydrogenase was increased, while the blood creatinine, red blood cells, lymphocytes, and serum TNF were decreased. Furthermore, COS combined with running promoted the development of spleen and lung, the level of lymphocytes, T cell and CD8+ T cell ratio in the blood, and serum TNF level. At the same time, the level of lactate dehydrogenase, serum IL-2, and T cell ratio in spleen were decreased. Therefore, our study indicated that COS combined with running could improve the immune status of rats.
Collapse
Affiliation(s)
- Youming Xiong
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China; Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Meng Xiong
- School of Life Sciences and Biotechnology, Hubei Engineering University, Xiaogan, Hubei 432000, China; Hubei Key Laboratory of Biomass-Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China
| | - Yangyang Li
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jin Qian
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yuwei Li
- School of Life Sciences and Biotechnology, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Xu Han
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jing Tan
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yanli Luo
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Qiuxiang Wang
- School of Physical Education, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Caiqin Qin
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| |
Collapse
|
37
|
Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar Drugs 2020; 18:E390. [PMID: 32726987 PMCID: PMC7459887 DOI: 10.3390/md18080390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
With twice the number of cancer's deaths, cardiovascular diseases have become the leading cause of death worldwide. Atherosclerosis, in particular, is a progressive, chronic inflammatory cardiovascular disease caused by persistent damage to blood vessels due to elevated cholesterol levels and hyperlipidemia. This condition is characterized by an increase in serum cholesterol, triglycerides, and low-density lipoprotein, and a decrease in high-density lipoprotein. Although existing therapies with hypolipidemic effects can improve the living standards of patients with cardiovascular diseases, the drugs currently used in clinical practice have certain side effects, which insists on the need for the development of new types of drugs with lipid-lowering effects. Some marine-derived substances have proven hypolipidemic activities with fewer side effects and stand as a good alternative for drug development. Recently, there have been thousands of studies on substances with lipid-lowering properties of marine origin, and some are already implemented in clinical practice. Here, we summarize the active components of marine-derived products having a hypolipidemic effect. These active constituents according to their source are divided into algal, animal, plant and microbial and contribute to the development and utilization of marine medicinal products with hypolipidemic effects.
Collapse
Affiliation(s)
- Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Zeyu Cheng
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
B V, K S, R A, K Usha S, M A. Bioactive and thermostable sulphated polysaccharide from Sargassum swartzii with drug delivery applications. Int J Biol Macromol 2020; 153:190-200. [PMID: 32135254 DOI: 10.1016/j.ijbiomac.2020.02.332] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Sulphated Polysaccharides (SP) were extracted from a brown seaweed Sargassum swartzii by two extraction methods using hydrochloric acid and hot water. The sulphated polysaccharide yield using the hot water extraction method was found to be higher and hence used for further study. The extracted polysaccharide was characterized using UV, FT-IR, biochemical and thin layer chromatography analyses. Further, the purity of the extracted polysaccharide was ascertained by HPLC analysis. The sugars present in the sulphated polysaccharide were revealed by acid hydrolysis. The structure of the extracted SP was revealed as fucoidan using the NMR spectrum. Thermal stability of the sulphated polysaccharide was assessed using Thermogravimetric analysis and polymer was found to be stable up to 700 °C. Anti-oxidant and anti-inflammatory activities were evaluated using phosphomolybdenum and BSA assay, respectively. Cell proliferation analysis using MTT assay against normal cell lines revealed that the polysaccharide is biocompatible while with cancer cell lines, the compound exhibited potential anti-proliferative activity. Application of this sulphated polysaccharide as a carrier for drug delivery with rutin as a model drug was explored. The drug release kinetics was modeled and the stability of the rutin encapsulated SP nano formulation was studied.
Collapse
Affiliation(s)
- Vanavil B
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India; Microbial Processes and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvanathapuram 695019, Kerala, India
| | - Selvaraj K
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Aanandhalakshmi R
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Sri K Usha
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Arumugam M
- Microbial Processes and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvanathapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
39
|
Besednova NN, Zaporozhets TS, Kuznetsova TA, Makarenkova ID, Kryzhanovsky SP, Fedyanina LN, Ermakova SP. Extracts and Marine Algae Polysaccharides in Therapy and Prevention of Inflammatory Diseases of the Intestine. Mar Drugs 2020; 18:E289. [PMID: 32486405 PMCID: PMC7345783 DOI: 10.3390/md18060289] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a serious public health problem worldwide. Current therapeutic strategies that use anti-inflammatory drugs, immunosuppressants, and biological treatments are often ineffective and have adverse health effects. In this regard, the use of natural compounds aimed at key pathogenic therapeutic targets in IBD attracts universal attention. Seaweed is a valuable source of structurally diverse biologically active compounds. The materials presented in the review indicate that seaweed extracts and polysaccharides are effective candidates for the development of drugs, biological food additives, and functional nutrition products for the treatment and prevention of IBD. The structural features of algal polysaccharides provide the possibility of exposure to therapeutic targets of IBD, including proinflammatory cytokines, chemokines, adhesion molecules, nuclear factor NF-kB, intestinal epithelial cells, reactive oxygen and nitrogen. Further study of the relationship between the effect of polysaccharides from different types of algae, with different structure and molecular weights on immune and epithelial cells, intestinal microorganisms will contribute to a deeper understanding of their mechanisms and will help in the development of drugs, dietary supplements, functional foods for the treatment of patients with IBD.
Collapse
Affiliation(s)
- Natalya N. Besednova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (N.N.B.); (T.A.K.); (I.D.M.)
| | - Tatyana S. Zaporozhets
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (N.N.B.); (T.A.K.); (I.D.M.)
| | - Tatyana A. Kuznetsova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (N.N.B.); (T.A.K.); (I.D.M.)
| | - Ilona D. Makarenkova
- Somov Institute of Epidemiology and Microbiology, Vladivostok 690087, Russia; (N.N.B.); (T.A.K.); (I.D.M.)
| | - Sergey P. Kryzhanovsky
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690087, Russia; (S.P.K.); (L.N.F.)
| | - Lydmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690087, Russia; (S.P.K.); (L.N.F.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, FEB RAS, Vladivostok 690022, Russia;
| |
Collapse
|
40
|
Antioxidant, Hypolipidemic and Hepatic Protective Activities of Polysaccharides from Phascolosoma esculenta. Mar Drugs 2020; 18:md18030158. [PMID: 32178323 PMCID: PMC7142949 DOI: 10.3390/md18030158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
The aims of this study were to investigate the antioxidant, hypolipidemic and hepatic protective effects of Phascolosoma esculenta polysaccharides (PEP). PEP was prepared from Phascolosoma esculenta by enzyme hydrolysis and its characterization was analyzed. The antioxidant activities of PEP were evaluated by the assays of scavenging 1,1-Diphenyl-2-picrylhydrazyl (DPPH), superoxide anion, hydroxyl radicals and chelating ferrous ion in vitro. It showed that PEP could scavenge radicals effectively and had favorable antioxidant activities. In the meantime, the hypolipidemic effect of PEP was investigated in vivo by using mice model fed with high-fat diet with or without PEP treatment. Compared with the hyperlipidemic mice without treatment, the serum levels of total cholesterol (TC) (30.1–35.7%, p < 0.01), triglyceride (TG) (24.5–50.8%, p < 0.01 or p < 0.05), low-density lipoprotein cholesterol (LDL-C) (49.6–56.8%, p < 0.01) and liver levels of TC (21.0–28.4%, p < 0.01), TG (23.8–37.0%, p < 0.01) decreased significantly, whereas serum high-density lipoprotein cholesterol (HDL-C) (47.7–59.9%, p < 0.01 or p < 0.05) increased significantly after treatment with different dosage of PEP (0.2, 0.4 and 0.8 g per kg body weight, respectively). In addition, superoxide dismutase (SOD) (10.2–22.2% and 18.8–26.9%, p < 0.05), glutathione peroxidase (GSH-Px) (11.9–15.4% and 26.6–30.4%, p < 0.05) activities in serum and liver enhanced markedly while aspartate aminotransferase (AST) (18.7–29.6% and 42.4–58.0%, p < 0.05), alanine transaminase (ALT) (42.7–46.0% and 31.2–42.2%, p < 0.05) activities, as well as the levels of malondialdehyde (MDA) (15.9–24.4% and 15.0–16.8%, p < 0.01 or p < 0.05) in serum and liver reduced markedly. Moreover, the histopathological observation of livers indicated that PEP could attenuate liver cell injury. The animal experimental results demonstrated that PEP exerted hypolipidemic and hepatoprotective roles in hyperlipidemic mice. In summary, our results above suggest that PEP might be a potential natural antioxidant and utilized as a therapeutic candidate for hyperlipidemia.
Collapse
|
41
|
Osman KM, Kamal OE, Deif HN, Ahmed MM. Phoenix dactylifera, mentha piperita and montanide™ ISA-201 as immunological adjuvants in a chicken model. Acta Trop 2020; 202:105281. [PMID: 31759920 DOI: 10.1016/j.actatropica.2019.105281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
This study evaluated plant-based immune-adjuvants from crude extracts of Phoenix dactylifera and Mentha piperita as promising adjuvants for vaccines because of the limited side effects associated with plant extracts. In addition, Montanide™ ISA 201 previously used in vaccines in cattle. Eight different infectious coryza (IC) vaccines were prepared from three serovars [A (W strain and local strain), C (Modesto strain) and B (0222 strain)] with eight Avibacterium paragallinarum vaccines adjuvants formulae using liquid paraffin, Montanide™ ISA 71, Montanide™ ISA 201, and Montanide™ Gel adjuvants, P. dactylifera and M. piperita as immune-stimulants at a concentration of 1 mg and 2 mg incorporated with or without liquid paraffin oil as an adjuvant. These vaccines were applied in a chicken model. After a single immunization, the eight vaccine formulations were evaluated using the ELISA and Microplate agglutination test. Evidence of protection in the immunized birds was based on the results after challenge and bacterial isolation. The incorporation of the crude aqueous extract of P. dactylifera or M. piperita at a concentration of 2 mg in a liquid paraffin oil adjuvanted IC vaccine could be employed as an efficient adjuvant for chicken to IC vaccine to enhance immune responses. Also,Montanide™ ISA 201 may be the best adjuvant to be used to enhance the protective response against Av. paragallinarum. Our results confirm that aqueous extracts of M. piperita leaves and P. dactylifera fruit have immunomodulatory potentials in vivo and elevated serum antibodies against Av. Paragallinarum.
Collapse
|
42
|
Yang C, Merlin D. Can naturally occurring nanoparticle-based targeted drug delivery effectively treat inflammatory bowel disease? Expert Opin Drug Deliv 2019; 17:1-4. [PMID: 31770040 DOI: 10.1080/17425247.2020.1698543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|