1
|
Bonaldo MC, Goldenberg S, Galler R, Duarte Dos Santos CN. Dengue: Historical Aspects. Curr Top Microbiol Immunol 2025. [PMID: 40299029 DOI: 10.1007/82_2025_289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
To write about dengue retrospective epidemiology is a challenging subject because until laboratory diagnosis tests were developed to confirm human infections by dengue virus (DENV) between 1940 and 1950, all reports about disease or epidemics referred to a generic "dengue/break bone fever/contagious fever/bilious remitting fever." These nomenclatures employed in past times had perspectives based on medical reports, letters and diaries of people living in the affected areas at the time, and local newspaper reports. As Packard (Bull Hist Med 90(2):193-221) highlighted, the difficulty of using historical sources and "the ambiguous nature" of eighteenth-century disease categories turns the analysis puzzling. Nevertheless, if judiciously used, it can illuminate the history of dengue epidemics over time.In this chapter, we will focus on three periods that were pivotal to shaping our current understanding of dengue disease and epidemiology: (1) First reports of a dengue-like disease and the impact of the infection during the seventeenth and eighteenth centuries; (2) The impact of the II World War (II WW) on the spread of the DENV and its vector worldwide; and (3) The re-introduction of dengue in the Americas and the challenge of Public Health services to control the dramatic escalation of cases and the introduction of new serotypes/genotypes. It is worth mentioning that in the last years, South and Central America and Caribe account for more than 80% of dengue cases in the world (PAHO).
Collapse
Affiliation(s)
- Myrna Cristina Bonaldo
- Laboratório de Medicina Experimental e Saúde, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Samuel Goldenberg
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas/Fiocruz PR, Curitiba, Brazil
| | - Ricardo Galler
- Laboratório de Biologia Molecular de Flavivirus, Instituto Oswaldo Cruz/Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
2
|
Karupudayyan D, Iyaloo D, Cheeneebash J, Neergheen V, Biranjia-Hurdoyal S. Knowledge, attitude and prevention practices toward dengue among the Mauritian population. A cross-sectional study. Pathog Glob Health 2025:1-11. [PMID: 40237704 DOI: 10.1080/20477724.2025.2493995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION After an absence of more than four decades, dengue reemerged in Mauritius in 2009, with seven outbreaks being recorded to date. AIM This study assessed the knowledge, attitudes, and practices (KAPs) of the Mauritian population on dengue. METHODS A questionnaire was designed, and a survey was carried out among 405 participants. The KAP scores of respondents were calculated and categorized as excellent, adequate or poor. RESULT The correlation between knowledge and practice was very weak (τ = 0.088; p = 0.022) while that between attitude and practice was moderate (τ = 0.198; p = 0.001). It was noted that 47.2 % respondents had excellent scores on general knowledge on dengue, 96.5% obtained excellent scores on the knowledge of preventive practices and 17.5% had excellent scores on implementation of the preventive measures. Poor knowledge was noted on the cure for dengue (4.2%), re-infections could lead to health complications (22.5 %), and dengue vector biting in the early mornings and evenings (36.8 %). Furthermore, only 20.0% used mosquito repellent creams, 21.0% used mosquito nets on windows, 33.8% wore protective clothes and 36.8% checked their yards for water accumulation weekly. Elderly, those with lower education background, of lower socio-economic class and residing in rural areas obtained significantly lower KAP scores within their respective sub-group. Females were more likely to wear mosquito repellent cream (p = 0.028) and long-sleeved clothes (p = 0.015). CONCLUSION This study revealed high knowledge of dengue preventive practices but poor prevention practices among respondents. This calls for additional sensitization programs in specific identified groups.
Collapse
Affiliation(s)
- Dp Karupudayyan
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Dr A G Jeetoo Hospital Pathology Laboratory, Ministry of Health & Wellness, Port Louis, Mauritius
| | - Dp Iyaloo
- Vector Biology and Control Division, Ministry of Health and Wellness, Curepipe, Mauritius
| | - J Cheeneebash
- Department of Mathematics, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - V Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Reduit, Mauritius
| | - Sd Biranjia-Hurdoyal
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| |
Collapse
|
3
|
Sousa SSDS, Cruz ACR, Aragão CF, Cereja GJGP, da Silva SP, de Sousa RMM, Amorim MT, da Silva EVP, Nunes BTD, Pinheiro VCS. Retrospective Study of Arbovirus Circulation in Northeast Brazil in 2019 and 2022: Insights into the Re-Emergence of DENV-3 and the Co-Infection of DENV-1 and CHIKV. Viruses 2025; 17:475. [PMID: 40284918 PMCID: PMC12031139 DOI: 10.3390/v17040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Arboviruses transmitted by Aedes aegypti cause high number of cases and deaths annually. The aim was to investigate the presence of the presence of Dengue (DENV), Zika (ZIKV) and Chikungunya (CHIKV) viruses in endemic areas of Maranhão, northeastern Brazil. The study was carried out in Caxias, Codó, Peritoró, and São Mateus do Maranhão in 2019 (Caxias) and 2022. The blood samples were subjected to RNA extraction and then tested by RT-qPCR. Cell culture was used to attempt viral isolation and subsequent sequencing. In total, 171 samples were analyzed (32 from 2019, 18.7%) and 72 (42.1%) were found to have arboviruses: 68 (39.7%) from Caxias; 2 (1.1%) from Codó; 1 (0.6%) from Peritoró; and 1 (0.6%) from São Mateus. Overall, 85.3% (n = 58) of the positive samples were infected with DENV-1, 4 (four) (5.9%) with DENV-2 (Caxias), 1 (one) (1.5%) with DENV-3 (Caxias), and in 6 (six) (7.3%) samples CHIKV was detected, with one co-infection of DENV-1 and CHIKV (Caxias). The DENV-1 genotype V and the ECSA genotype of CHIKV were characterized in samples from Caxias. The detection of DENV-1, DENV-2, DENV-3, and more CHIKV in the interior of Maranhão alerts to the importance of virological studies in these areas.
Collapse
Affiliation(s)
- Sêmilly Suélen da Silva Sousa
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Estadual do Maranhão—UEMA, São Luis 65055-310, Brazil;
- Laboratório de Entomologia Médica—LABEM, Universidade Estadual do Maranhão—UEMA, Campus Caxias, Caxias 65604-380, Brazil;
| | - Ana Cecília Ribeiro Cruz
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
- Centro de Ciencias Biológicas e da Saúde, Universidade Estadual do Pará—UEPA, Belém 66087-662, Brazil
| | - Carine Fortes Aragão
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Glennda Juscely Galvão Pereira Cereja
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Sandro Patroca da Silva
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Raira Maria Morais de Sousa
- Laboratório de Entomologia Médica—LABEM, Universidade Estadual do Maranhão—UEMA, Campus Caxias, Caxias 65604-380, Brazil;
| | - Murilo Tavares Amorim
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Eliana Vieira Pinto da Silva
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Bruno Tardelli Diniz Nunes
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Ananindeua 67030-000, Brazil; (A.C.R.C.); (C.F.A.); (G.J.G.P.C.); (S.P.d.S.); (M.T.A.); (E.V.P.d.S.); (B.T.D.N.)
| | - Valéria Cristina Soares Pinheiro
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Estadual do Maranhão—UEMA, São Luis 65055-310, Brazil;
- Laboratório de Entomologia Médica—LABEM, Universidade Estadual do Maranhão—UEMA, Campus Caxias, Caxias 65604-380, Brazil;
| |
Collapse
|
4
|
Sun B, Xu M, Jia L, Liu H, Li A, Hui L, Wang Z, Liu D, Yan Y. Genomic variants and molecular epidemiological characteristics of dengue virus in China revealed by genome-wide analysis. Virus Evol 2025; 11:veaf013. [PMID: 40135062 PMCID: PMC11934549 DOI: 10.1093/ve/veaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/10/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Since its first academic record in 1978, dengue epidemics have occurred in all provinces of China, except Xizang. The epidemiological and molecular features of the whole genome of dengue virus (DENV) have not yet been completely elucidated, interfering with prevention and control strategies for dengue fever in China. Here, we obtained 553 complete genomes of the four serotypes of DENV (DENV1-4) isolated in China from the GenBank database to analyze the phylogeny, recombination, genomic variants, and selection pressure and to estimate the substitution rates of DENV genomes. Phylogenetic analyses indicated that DENV sequences from China did not cluster together and were genetically closer to those from Southeast Asian countries in the maximum likelihood trees, indicating that DENV was not endemic in China. Thirty intra-serotype recombinant sequences were identified for DENV1-4, with the highest frequency in DENV4. Selection pressure analyses revealed that 13 codons under positive selection were located in the C, NS1, NS2A, NS3, and NS5 proteins. For DENV1 to DENV3, the substitution rates evaluated in this study were 9.23 × 10-4, 7.59 × 10-4, and 7.06 × 10-4 substitutions per site per year, respectively. These findings improve our understanding of the evolution of DENV in China.
Collapse
Affiliation(s)
- Bangyao Sun
- School of Medical Laboratory, Shandong Second Medical University, Baotong West Street 7166#, Weifang 261053, China
| | - Meng Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Jinlong Street 262#, Wuhan 430207, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Jinlong Street 262#, Wuhan 430207, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Kaiyuan Avenue 190#, Guangzhou 510530, China
- University of Chinese Academy of Sciences,Yuquan Road 19#, Beijing 100049, China
| | - Lijia Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Jinlong Street 262#, Wuhan 430207, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Jinlong Street 262#, Wuhan 430207, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Jinlong Street 262#, Wuhan 430207, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Jinlong Street 262#, Wuhan 430207, China
| | - Aixin Li
- School of Medical Laboratory, Shandong Second Medical University, Baotong West Street 7166#, Weifang 261053, China
| | - Lixia Hui
- School of Medical Laboratory, Shandong Second Medical University, Baotong West Street 7166#, Weifang 261053, China
| | - Zhitao Wang
- School of Life Science and Technology, Shandong Second Medical University, Baotong West Street 7166#, Weifang 261053, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Jinlong Street 262#, Wuhan 430207, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Jinlong Street 262#, Wuhan 430207, China
| | - Yi Yan
- Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road 100#, Wuhan 430015,China
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road 100#, Wuhan 430015,China
| |
Collapse
|
5
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
6
|
Viafara-Campo JD, Vivero-Gómez RJ, Fernando-Largo D, Manjarrés LM, Moreno-Herrera CX, Cadavid-Restrepo G. Diversity of Gut Bacteria of Field-Collected Aedes aegypti Larvae and Females, Resistant to Temephos and Deltamethrin. INSECTS 2025; 16:181. [PMID: 40003811 PMCID: PMC11856030 DOI: 10.3390/insects16020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The Aedes aegypti mosquito serves as a vector for several diseases, including dengue, Zika, chikungunya, and yellow fever. This species is well adapted to urban environments and poses a significant threat to public health. Some studies suggest that the gut bacteria of insect vectors may play a crucial role in developing resistance to insecticides. This study assessed the resistance of Ae. aegypti from Florencia, Caquetá, to temephos and deltamethrin and analyzed the diversity of gut bacteria in resistant larvae and adult females. Larvae exhibited resistance to temephos at a lethal concentration 50 (LC50) of 0.034 µg/mL, while females showed resistance to deltamethrin at a discriminant concentration of 10 µg/mL. The bacterial load in the guts of deltamethrin-treated females (3.42 × 106 CFU/mL) was significantly higher compared to temephos-treated larvae (9.4 × 105 CFU/mL) and untreated females (8 × 104 CFU/mL). A total of sixty-eight bacterial strains were isolated from the guts of both larval and resistant females Ae. aegypti, with 31 strains identified through 16S rRNA gene analysis and 11 confirmed by gyrB gene sequencing. In untreated females, Bacillus comprised 12.55% of the gut bacteria and was identified as an exclusive genus. In resistant larvae, Serratia was the most abundant and exclusive genus, accounting for 35.29%, while in resistant females, Cedecea was the predominant genus, representing 66.67%. These findings suggest that gut bacteria may influence the resistance of Ae. aegypti to temephos and deltamethrin. Furthermore, this research provides valuable information that can be considered for the design of local vector control strategies. The results highlight new research focused on the study of insecticide tolerance and degradation within the gut microbiota of insect vectors of arboviruses.
Collapse
Affiliation(s)
- Jennifer D. Viafara-Campo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| | - Rafael José Vivero-Gómez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| | - Daniel Fernando-Largo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| | - Lina Marcela Manjarrés
- Secretaría de Salud Departamental, Laboratorio de Entomología Departamental, Gobernación del Caquetá, Florencia 180001, Colombia;
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (J.D.V.-C.); (D.F.-L.); (C.X.M.-H.)
| |
Collapse
|
7
|
Troupin C, Intavong K, Somlor S, Viengphouthong S, Keosenhom S, Chindavong TA, Bounmany P, Vachouaxiong L, Xaybounsou T, Vanhnollat C, Khattignavong P, Phonekeo D, Khamphaphongphane B, Xangsayarath P, Lacoste V, Buchy P, Wong G. Molecular Epidemiology of Dengue Viruses in Lao People's Democratic Republic, 2020-2023. Microorganisms 2025; 13:318. [PMID: 40005687 PMCID: PMC11857872 DOI: 10.3390/microorganisms13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Dengue fever is a widespread mosquito-borne viral disease caused by infections with dengue virus (DENV). Since its initial detection in 1979, the disease has posed a significant public health threat to the Lao People's Democratic Republic (Lao PDR). Surveillance is crucial for understanding the circulation of DENV in endemic regions and identifying potential hot spots with higher-than-expected case numbers of dengue fever. In this study, we present the results from our surveillance activities in the Lao PDR spanning 2020-2023. While quarantine restrictions from the COVID-19 pandemic posed substantial disruptions to performing DENV surveillance, over 8800 samples were tested during this period, with a positive rate of close to 60%. Cases were reported from all three regions (northern, Central, and southern) of the Lao PDR. Three circulating serotypes (DENV-1, DENV-2, and DENV-4) were detected, with DENV-1 dominant in 2021 and 2022, while DENV-2 was dominant in 2020 and 2023. Phylogenetic analyses suggest that the genotypes of DENV-1, DENV-2, and DENV-4 were closely related to corresponding isolates from neighboring countries. These findings provide an update on the nature of DENV cases detected in the Lao PDR and underscore the critical importance of sustaining a robust surveillance network to track infections.
Collapse
Affiliation(s)
- Cécile Troupin
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Kedkeo Intavong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Somphavanh Somlor
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Souksakhone Viengphouthong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Sitsana Keosenhom
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Thep Aksone Chindavong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Phaithong Bounmany
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Longthor Vachouaxiong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Thonglakhone Xaybounsou
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Chittaphone Vanhnollat
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | | | - Darouny Phonekeo
- Administration Department, Institut Pasteur du Laos, Vientiane 01030, Laos;
| | | | | | - Vincent Lacoste
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| | - Philippe Buchy
- Administration Department, Institut Pasteur du Laos, Vientiane 01030, Laos;
| | - Gary Wong
- Virology Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (C.T.); (K.I.); (S.S.); (S.V.); (S.K.); (T.A.C.); (P.B.); (L.V.); (T.X.); (C.V.); (V.L.)
| |
Collapse
|
8
|
Sacchetto L, Bernardi V, Brancini ML, Marques BDC, Negri A, Vasilakis N, Estofolete CF, Nogueira ML. Early insights of dengue virus serotype 3 (DENV-3) re-emergence in São Paulo, Brazil. J Clin Virol 2025; 176:105763. [PMID: 39848015 DOI: 10.1016/j.jcv.2025.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND In dengue hyperendemic regions, the evolution of the virus is marked by frequent virus introduction/reintroduction and clade replacement events, occasionally linked to an epidemic outbreak. From 2023 onwards, an increase in the detection of DENV-3 cases has been reported in different regions of Brazil. Thus, molecular and genomic surveillance of circulating DENV strains is crucial for public health preparedness and response efforts for the disease. OBJECTIVES This work aimed to characterize and provide preliminary insights into dengue virus serotype 3 (DENV-3) re-emergence in São Paulo state, Brazil. STUDY DESIGN We conducted active arbovirus molecular surveillance on samples from patients with acute febrile illness combined with next-generation sequencing and phylogenetic analyses. RESULTS We detected and characterized DENV-3 circulation in São Paulo, Brazil, since late 2023. The genomes clustered within genomes recently (2022-2024) identified in Florida, the Caribbean region, and Brazil. CONCLUSIONS Our results demonstrate the resurgence of DENV-3 in the region since 2009, raising concerns about a potential outbreak in regions with a high epidemic history.
Collapse
Affiliation(s)
- Lívia Sacchetto
- Departmento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Victória Bernardi
- Departmento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Marini L Brancini
- Departmento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Beatriz de C Marques
- Departmento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil
| | - Andreia Negri
- Departamento de Vigilância Epidemiológica, São José do Rio Preto, São Paulo, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Cassia F Estofolete
- Departmento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil.
| | - Maurício L Nogueira
- Departmento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, São Paulo, Brazil; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
9
|
Selvaraj AD, Ramaian Santhaseela A, Tamilmani E. Overview of dengue diagnostic limitations and potential strategies for improvement. Diagnosis (Berl) 2025:dx-2024-0173. [PMID: 39871600 DOI: 10.1515/dx-2024-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
INTRODUCTION Dengue is a viral infection caused by any one of the four related dengue virus (DENV) serotypes, 1-4. DENV is a single-stranded RNA virus belonging to the genus Flavivirus. Dengue can cause a range of symptoms, from mild to severe life-threatening illness. Currently, treatment for DENV is limited to supportive care, with better outcomes achieved through early diagnosis. The WHO has suggested that dengue mortality can be reduced to nearly zero by implementing appropriate clinical management strategies, such as early laboratory diagnosis. This calls for diagnostic approaches that combine high sensitivity and specificity, while also being suitable for point-of-care testing (POCT) in remote locations with minimal staff training and low testing costs. CONTENT In this paper, we outline the limitations of existing confirmatory dengue diagnostic methods, such as ELISA and RT-PCR, which are time-consuming, expensive, and require skilled personnel. We also highlight alternative strategies to overcome these challenges. Additionally, the paper emphasizes the growing clinical demand for diagnosing severe dengue to reduce the risk of death, which must be addressed by next-generation dengue diagnostic approaches. SUMMARY We propose the adoption of alternative strategies, such as fluorescence immunoassay (FIA) and chemiluminescence immunoassay (CLIA), which have the potential to overcome the limitations of existing dengue diagnostic methods. OUTLOOK Improvements in dengue diagnosis, with a specific focus on identifying severe dengue in POCT setting, can help achieve the goal of zero deaths from dengue.
Collapse
|
10
|
Yadav AK, Chowdhary R, Siddiqui A, Malhotra AG, Kanwar JR, Kumar A, Biswas D, Khadanga S, Joshi R, Pakhare A, Goel SK. Emergence of a Novel Dengue Virus Serotype-2 Genotype IV Lineage III Strain and Displacement of Dengue Virus Serotype-1 in Central India (2019-2023). Viruses 2025; 17:144. [PMID: 40006899 PMCID: PMC11861835 DOI: 10.3390/v17020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Dengue fever remains a significant public health concern in tropical regions, including Central India, where outbreaks are frequent and associated with high morbidity and mortality. This study investigated the dynamics of dengue virus transmission and evolution in Central India from 2019 to 2023, focusing on the emergence of new strains and their impact on outbreak patterns. For this, 40 mosquito pools and 300 patient samples were recruited for the study. Phylogenetic and Bayesian evolutionary analyses performed on CPrM region and whole genome sequences generated by Sanger and Illumina sequencing, respectively, revealed the emergence and predominance of a novel DENV-2 genotype IV lineage III strain in the 2019 and 2023 outbreaks, which displaced the previously circulating DENV-1 genotype responsible for the 2016-2017 outbreak. Despite pre-existing DENV-1 neutralizing antibodies in the community (67 healthy volunteers), the novel DENV-2 strain exhibited higher viral loads and a greater reproduction number (R0), contributing to rapid disease spread. Molecular clock and Shannon entropy analyses suggest that DENV evolution occurred within the mosquito vector, driven by natural selection. Our findings highlight the importance of continuous DENV surveillance, including genetic characterization in both vectors and hosts, to understand viral evolution and predict future outbreaks. Rapid urbanization and inadequate sanitation in densely populated regions like India create ideal breeding grounds for mosquitoes, facilitating the introduction and establishment of novel DENV strains. Interrupting the vector-DENV-host cycle through targeted interventions is crucial for effective dengue control.
Collapse
Affiliation(s)
- Ashish Kumar Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India; (A.K.Y.); (J.R.K.)
| | - Rashmi Chowdhary
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India; (A.K.Y.); (J.R.K.)
| | - Arshi Siddiqui
- Department of Biotechnology, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Anvita Gupta Malhotra
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India; (A.G.M.)
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India; (A.K.Y.); (J.R.K.)
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India; (A.K.Y.); (J.R.K.)
| | - Debasis Biswas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India; (A.G.M.)
| | - Sagar Khadanga
- Department of Medicine, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India
| | - Rajnish Joshi
- Community and Family Medicine, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India
| | - Abhijit Pakhare
- Community and Family Medicine, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India
| | - Sudhir Kumar Goel
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal 462 026, Madhya Pradesh, India; (A.K.Y.); (J.R.K.)
| |
Collapse
|
11
|
de Almeida MT, Merighi DGS, Visnardi AB, Boneto Gonçalves CA, Amorim VMDF, Ferrari ASDA, de Souza AS, Guzzo CR. Latin America's Dengue Outbreak Poses a Global Health Threat. Viruses 2025; 17:57. [PMID: 39861846 PMCID: PMC11768874 DOI: 10.3390/v17010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of Aedes albopictus mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change. Additionally, global travel accelerates the cross-border spread of mosquito-borne diseases. DENV manifests clinically in a spectrum from asymptomatic cases to severe conditions like dengue hemorrhagic fever and dengue shock syndrome, influenced by viral serotype and host factors. In 2024, Brazil experienced a fourfold increase in dengue cases compared to 2023, accompanied by higher mortality. Conventional control measures, such as vector control, community engagement, and vaccination, proved insufficient as climate change exacerbated mosquito proliferation, challenging containment efforts. In this regard, our review analyzes prevention measures and therapeutic protocols during the outbreak while addressing DENV transmission dynamics, clinical presentations, and epidemiological shifts. It also evaluates diagnostic strategies combining clinical assessment with serological and molecular testing, providing information to improve diagnostic and preventive measures. The global expansion of dengue-endemic regions, including outbreaks in Europe, highlights the urgent need for enhanced surveillance, proactive interventions, and international collaboration to mitigate the growing threat of Dengue and other arboviruses like West Nile, Zika, Chikungunya, Oropouche, and Yellow Fever viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (M.T.d.A.); (D.G.S.M.); (C.A.B.G.); (A.S.d.A.F.)
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (M.T.d.A.); (D.G.S.M.); (C.A.B.G.); (A.S.d.A.F.)
| |
Collapse
|
12
|
Yang CH, Lee IK, Chen YC, Huang WC, Hsu JC, Tai CH, Huang CH, Lin CY, Chen YH. Prognostic factors in severe dengue patients: A multi-center retrospective cohort study. PLoS Negl Trop Dis 2025; 19:e0012846. [PMID: 39874386 PMCID: PMC11805397 DOI: 10.1371/journal.pntd.0012846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/07/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/PURPOSE Early detection of severe dengue (SD) and appropriate management are crucial in reducing the case fatality rate. The objective of this study was to investigate the clinical characteristics of SD and identify independent risk factors associated with mortality among SD patients. METHODS A retrospective study was conducted at two medical center hospitals between 2002 and 2019, involving patients aged ≧18 years with laboratory-confirmed SD. RESULTS This study included 294 patients with SD, of whom 203 (69%) survived and 91 (31%) died. Among the 294 SD patients, 103 (35%) experienced acute kidney injury, 54 (18.4%) had pneumonia, and 19 (6.5%) had bacteremia. Among the 286 patients with available alanine aminotransferase (ALT) data, 41 (14.3%) experienced severe hepatitis (ALT>1000U/L). The median time from illness onset to death among the 91 SD patients who died was 5 days. Multivariable regression analysis revealed increasing odds of death associated with older age (odds ratio [OR], 1.037; 95% confidence interval [CI], 1.009-1.066), altered consciousness (OR, 8.591; 95% CI, 2.914-25.330), gastrointestinal bleeding (OR, 1.939; 95% CI, 1.037-3.626), and leukocytosis (OR, 2.504; 95% CI, 1.124-5.578) upon arrival, as well as organ impairment during hospitalization, including acute kidney injury (OR, 2.627; 95% CI, 1.373-5.028), severe hepatitis (OR, 5.324; 95% CI, 2.199-12.889), and pneumonia (OR, 2.250; 95% CI, 1.054-4.802). CONCLUSIONS Our findings underscore the importance of early recognition and intervention by frontline physicians in identifying SD patients at high risk of mortality. This information can significantly contribute to reducing fatalities and improving the overall management of SD cases.
Collapse
Affiliation(s)
- Cheng-Hsun Yang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (R.O.C.)
| | - Ing-Kit Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (R.O.C.)
- Chang Gung University College of Medicine, Taoyuan, Taiwan (R.O.C.)
| | - Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (R.O.C.)
- Chang Gung University College of Medicine, Taoyuan, Taiwan (R.O.C.)
| | - Wen-Chi Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (R.O.C.)
| | - Jui-Chi Hsu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (R.O.C.)
| | - Chien-Hsiang Tai
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (R.O.C.)
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan (R.O.C.)
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan (R.O.C.)
| |
Collapse
|
13
|
Santos TMIL, Versiani AF, Campos GRF, Moraes MM, Parra MCP, Mistrao NFB, Negri AF, Bagno FF, Galves MG, Moreno CM, Da Fonseca FG, Estofolete CF, Vasilakis N, Nogueira ML. Dengue and SARS-CoV-2 co-circulation and overlapping infections in hospitalized patients. Front Cell Infect Microbiol 2024; 14:1429309. [PMID: 39583156 PMCID: PMC11582011 DOI: 10.3389/fcimb.2024.1429309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
Since its emergence in 2019, coronavirus disease (COVID-19) has spread worldwide and consumed public health resources. However, the world still has to address the burdens of other infectious diseases that continue to thrive. Countries in the tropics and neotropics, including Brazil, are affected by annual, cyclic dengue epidemics. Little is known about the impact of subsequent infections between DENV and SARS-CoV-2. Our study was performed on 400 serum samples collected from laboratory-confirmed COVID-19 patients between January and June 2021, months historically known for DENV outbreaks in Brazil. The samples were tested by serology and molecular assays for the presence of DENV and other arboviruses. While no DENV PCR results were detected, 6% were DENV IgM-positive, and 0.25% were DENV NS1-positive according to ELISA. IgM antibodies were isolated by chromatography, and 62.5% of the samples were positive for neutralizing antibodies (FRNT80) against DENV IgM, suggesting a recent infection. We also observed increased IL-10, TNF-α, and IL-1β levels in patients with overlapping SARS-CoV-2/DENV infections. Intriguingly, diabetes was the only relevant comorbidity (p=0.046). High rates of hospitalization (94.9%) and mortality (50%) were found, with a significant increase in invasive mechanical ventilatory support (86.96%) in SARS-CoV-2/DENV- infected patients, suggesting an impact on patient clinical outcomes. When analyzing previous exposure to DENV, secondary dengue patients infected with SARS-CoV-2 more frequently presented with dyspnea and respiratory distress, longer hospital and intensive care unit (ICU) stays (4 and 20.29 days, respectively) and a higher mortality rate (60%). However, a greater proportion of patients with primary DENV infection had fever and cough than patients with secondary dengue (87.50% vs. 33.33%, p=0.027 for fever). Our data demonstrate that differentiating between the two diseases is a great concern for tropical countries and should be explored to improve patient management.
Collapse
Affiliation(s)
- Thayza M. I. L. Santos
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Alice F. Versiani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Guilherme R. F. Campos
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Marilia M. Moraes
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Maisa C. P. Parra
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Natalia F. B. Mistrao
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Andreia F. Negri
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Prefeitura de São José do Rio Preto, Vigilância Epidemiológica, São José do Rio Preto, Brazil
| | - Flavia F. Bagno
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina G. Galves
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Camila M. Moreno
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Flavio G. Da Fonseca
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratorio de Virologia Basica e Aplicada, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cassia F. Estofolete
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Mauricio L. Nogueira
- Laboratório de Pesquisa em Virologia, Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
14
|
Hafsia S, Barbar T, Alout H, Baudino F, Lebon C, Gomard Y, Wilkinson DA, Fourié T, Mavingui P, Atyame C. Vector competence of Aedes albopictus field populations from Reunion Island exposed to local epidemic dengue viruses. PLoS One 2024; 19:e0310635. [PMID: 39298440 DOI: 10.1371/journal.pone.0310635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne Flavivirus that affects humans worldwide. Aedes albopictus, which is naturally infected with the bacteria Wolbachia, is considered to be a secondary vector of DENV. However, it was responsible for a recent DENV outbreak of unprecedented magnitude in Reunion Island, a French island in the South West Indian Ocean. Moreover, the distribution of the cases during this epidemic showed a spatially heterogeneous pattern across the island, leading to questions about the differential vector competence of mosquito populations from different geographic areas. The aim of this study was to gain a better understanding of the vector competence of the Ae. albopictus populations from Reunion Island for local DENV epidemic strains, while considering their infection by Wolbachia. Experimental infections were conducted using ten populations of Ae. albopictus sampled across Reunion Island and exposed to three DENV strains: one strain of DENV serotype 1 (DENV-1) and two strains of DENV serotype 2 (DENV-2). We analyzed three vector competence parameters including infection rate, dissemination efficiency and transmission efficiency, at different days post-exposition (dpe). We also assessed whether there was a correlation between the density of Wolbachia and viral load/vector competence parameters. Our results show that the Ae. albopictus populations tested were not able to transmit the two DENV-2 strains, while transmission efficiencies up to 40.79% were observed for the DENV-1 strain, probably due to difference in viral titres. Statistical analyses showed that the parameters mosquito population, generation, dpe and area of sampling significantly affect the transmission efficiencies of DENV-1. Although the density of Wolbachia varied according to mosquito population, no significant correlation was found between Wolbachia density and either viral load or vector competence parameters for DENV-1. Our results highlight the importance of using natural mosquito populations for a better understanding of transmission patterns of dengue.
Collapse
Affiliation(s)
- Sarah Hafsia
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Tatiana Barbar
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Haoues Alout
- Unité Mixte de Recherche Animal Santé Territoires Risques Écosystèmes, F-34398, CIRAD/INRAE/Université de Montpellier, Université de Montpellier, Montpellier, France
| | - Fiona Baudino
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Cyrille Lebon
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - David A Wilkinson
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Toscane Fourié
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Célestine Atyame
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| |
Collapse
|
15
|
Phadungsombat J, Nakayama EE, Shioda T. Unraveling Dengue Virus Diversity in Asia: An Epidemiological Study through Genetic Sequences and Phylogenetic Analysis. Viruses 2024; 16:1046. [PMID: 39066210 PMCID: PMC11281397 DOI: 10.3390/v16071046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue. Although most infected individuals are asymptomatic or present with only mild symptoms, severe manifestations could potentially devastate human populations in tropical and subtropical regions. In hyperendemic regions such as South Asia and Southeast Asia (SEA), all four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) have been prevalent for several decades. Each DENV serotype is further divided into multiple genotypes, reflecting the extensive diversity of DENV. Historically, specific DENV genotypes were associated with particular geographical distributions within endemic regions. However, this epidemiological pattern has changed due to urbanization, globalization, and climate change. This review comprehensively traces the historical and recent genetic epidemiology of DENV in Asia from the first time DENV was identified in the 1950s to the present. We analyzed envelope sequences from a database covering 16 endemic countries across three distinct geographic regions in Asia. These countries included Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka from South Asia; Cambodia, Laos, Myanmar, Thailand, and Vietnam from Mainland SEA; and Indonesia, the Philippines, Malaysia, and Singapore from Maritime SEA. Additionally, we describe the phylogenetic relationships among DENV genotypes within each serotype, along with their geographic distribution, to enhance the understanding of DENV dynamics.
Collapse
Affiliation(s)
| | | | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (J.P.); (E.E.N.)
| |
Collapse
|
16
|
Procopio AC, Colletta S, Laratta E, Mellace M, Tilocca B, Ceniti C, Urbani A, Roncada P. Integrated One Health strategies in Dengue. One Health 2024; 18:100684. [PMID: 39010969 PMCID: PMC11247296 DOI: 10.1016/j.onehlt.2024.100684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 07/17/2024] Open
Abstract
Zoonoses have rapidly spread globally, necessitating the implementation of vaccination strategies as a control measure. Emerging and re-emerging vector-borne diseases are among the major global public health concerns. Dengue, a zoonotic viral infection transmitted to humans by a vector, the Aedes mosquito, is a severe global health problem. Dengue is a serious tropical infectious disease, second only to malaria, causing around 25,000 deaths each year. The resurgence of Dengue is mainly due to climate change, demographic transitions and evolving social dynamics. The development of an effective vaccine against Dengue has proven to be a complex undertaking due to four different viral serotypes with distinct antigenic profiles. This review highlights the urgent need to address the dengue threat by exploring the application of biotechnological and -OMICS sciences.
Collapse
Affiliation(s)
- Anna Caterina Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Simona Colletta
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Emanuela Laratta
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Matteo Mellace
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Andrea Urbani
- Department of Diagnostic and Laboratory Medicine, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Basic Biotechnological Sciences, Intensive Care and Perioperative Clinics Research, Catholic University of the Sacred Heart, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
17
|
Chem YK, Yenamandra SP, Chong CK, Mudin RN, Wan MK, Tajudin N, Abu Bakar RS, Yamin MA, Yahya R, Chang CC, Koo C, Ng LC, Hapuarachchi HC. Molecular epidemiology of dengue in Malaysia: 2015-2021. Front Genet 2024; 15:1368843. [PMID: 38863443 PMCID: PMC11165242 DOI: 10.3389/fgene.2024.1368843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 06/13/2024] Open
Abstract
Dengue has been one of the major public health problems in Malaysia for decades. Over 600,000 dengue cases and 1,200 associated fatalities have been reported in Malaysia from 2015 to 2021, which was 100% increase from the cumulative total of dengue cases reported during the preceding 07-year period from 2008 to 2014. However, studies that describe the molecular epidemiology of dengue in Malaysia in recent years are limited. In the present study, we describe the genetic composition and dispersal patterns of Dengue virus (DENV) by using 4,004 complete envelope gene sequences of all four serotypes (DENV-1 = 1,567, DENV-2 = 1,417, DENV-3 = 762 and DENV-4 = 258) collected across Malaysia from 2015 to 2021. The findings revealed that DENV populations in Malaysia were highly diverse, and the overall heterogeneity was maintained through repetitive turnover of genotypes. Phylogeography analyses suggested that DENV dispersal occurred through an extensive network, mainly among countries in South and East Asia and Malaysian states, as well as among different states, especially within Peninsular Malaysia. The results further suggested Selangor and Johor as major hubs of DENV emergence and spread in Malaysia.
Collapse
Affiliation(s)
- Yu Kie Chem
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Malaysia
| | | | - Chee Keong Chong
- Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Rose Nani Mudin
- Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Ming Keong Wan
- Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | - Norazimah Tajudin
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Malaysia
| | | | - Mohd Asri Yamin
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Malaysia
| | - Rokiah Yahya
- National Public Health Laboratory, Ministry of Health, Sungai Buloh, Malaysia
| | - Chia-Chen Chang
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
- School of Biological Sciences, Nangyang Technological University, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
18
|
Ribeiro JR, Roca TP, Cartonilho GDS, Passos-Silva AM, Moreira HM, Teixeira KS, da Silva ALF, Lugtenburg CAB, dos Santos AO, Villalobos Salcedo JM, do Nascimento VA, de Souza VC, Roque RA, Krieger MA, Naveca FG, Rampazzo RDCP, Vieira DS. DENV-2 Outbreak Associated With Cosmopolitan Genotype Emergence in Western Brazilian Amazon. Bioinform Biol Insights 2024; 18:11779322241251581. [PMID: 38737722 PMCID: PMC11088811 DOI: 10.1177/11779322241251581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/14/2024] [Indexed: 05/14/2024] Open
Abstract
Background Dengue virus (DENV) causes an important disease and directly affects public health, being the arbovirus that presents the highest number of infections and deaths in the Western Brazilian Amazon. This virus is divided into 4 serotypes that have already circulated in the region. Methodology Molecular characterization of a cohort containing 841 samples collected from febrile patients between 2021 and 2023 was analyzed using a commercial kit to detect the main arboviruses circulating in Brazil: Zika, DENV-1, DENV-2, DENV-3, DENV-4 and, Chikungunya. Subsequently, Sanger sequencing was performed for positive samples. Results The cohort detected 162 positive samples, 12 for DENV-1 and 150 identified as DENV-2, indicating co-circulation of serotypes. The samples were subjected to sequencing and the analysis of the sequences that obtained good quality revealed that 5 samples belonged to the V genotype of DENV-1 and 46 were characterized as DENV-2 Cosmopolitan genotype-lineage 5. Conclusion The results allowed us to identify for the first time the Cosmopolitan genotype in Rondônia, Brazilian Western Amazon, and its fast spread dispersion.
Collapse
Affiliation(s)
- Jessiane Rodrigues Ribeiro
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—Fiocruz Rondônia (FIOCRUZ/RO), Porto Velho, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental—INCT-EpiAmO, Porto Velho, Brazil
| | - Tárcio Peixoto Roca
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental—INCT-EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz/IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gleense dos Santos Cartonilho
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—Fiocruz Rondônia (FIOCRUZ/RO), Porto Velho, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental—INCT-EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia—UNIR/FIOCRUZ/RO, Porto Velho, Brazil
| | - Ana Maísa Passos-Silva
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—Fiocruz Rondônia (FIOCRUZ/RO), Porto Velho, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental—INCT-EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia—UNIR/FIOCRUZ/RO, Porto Velho, Brazil
| | - Hillquias Monteiro Moreira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—Fiocruz Rondônia (FIOCRUZ/RO), Porto Velho, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental—INCT-EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia—UNIR/FIOCRUZ/RO, Porto Velho, Brazil
| | - Karolaine Santos Teixeira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—Fiocruz Rondônia (FIOCRUZ/RO), Porto Velho, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental—INCT-EpiAmO, Porto Velho, Brazil
| | - André Luiz Ferreira da Silva
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—Fiocruz Rondônia (FIOCRUZ/RO), Porto Velho, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental—INCT-EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia—UNIR/FIOCRUZ/RO, Porto Velho, Brazil
| | | | | | | | | | - Victor Costa de Souza
- Instituto Leônidas & Maria Deane—Fundação Oswaldo Cruz do Amazonas, ILMD, Manaus, Brazil
| | | | | | - Felipe Gomes Naveca
- Instituto Leônidas & Maria Deane—Fundação Oswaldo Cruz do Amazonas, ILMD, Manaus, Brazil
| | | | - Deusilene Souza Vieira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia—Fiocruz Rondônia (FIOCRUZ/RO), Porto Velho, Brazil
- Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental—INCT-EpiAmO, Porto Velho, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia—UNIR/FIOCRUZ/RO, Porto Velho, Brazil
| |
Collapse
|
19
|
Vogels CBF, Hill V, Breban MI, Chaguza C, Paul LM, Sodeinde A, Taylor-Salmon E, Ott IM, Petrone ME, Dijk D, Jonges M, Welkers MRA, Locksmith T, Dong Y, Tarigopula N, Tekin O, Schmedes S, Bunch S, Cano N, Jaber R, Panzera C, Stryker I, Vergara J, Zimler R, Kopp E, Heberlein L, Herzog KS, Fauver JR, Morrison AM, Michael SF, Grubaugh ND. DengueSeq: a pan-serotype whole genome amplicon sequencing protocol for dengue virus. BMC Genomics 2024; 25:433. [PMID: 38693476 PMCID: PMC11062901 DOI: 10.1186/s12864-024-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/μL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.
Collapse
Affiliation(s)
- Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA.
| | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Lauren M Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Emma Taylor-Salmon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Dennis Dijk
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
| | - Timothy Locksmith
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Yibo Dong
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Namratha Tarigopula
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Omer Tekin
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Sarah Schmedes
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Sylvia Bunch
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Natalia Cano
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Rayah Jaber
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Charles Panzera
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Ian Stryker
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Julieta Vergara
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Rebecca Zimler
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Edgar Kopp
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Lea Heberlein
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Kaylee S Herzog
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joseph R Fauver
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrea M Morrison
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Scott F Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA.
| |
Collapse
|
20
|
Kumar S, Mishra R, Singh D. "Seven-Plus-One Model": A Move Toward Dengue Free Community. Indian J Community Med 2024; 49:249-252. [PMID: 38665463 PMCID: PMC11042148 DOI: 10.4103/ijcm.ijcm_212_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/21/2023] [Indexed: 04/28/2024] Open
Abstract
Dengue is a wide spectrum of diseases creating menace in the community. This vector-born disease alone has a significant impact on global public health and the economy. Resources need to be mobilized to tackle the situation. The present article focused on the novice concept of "Seven-Plus-One models" as an approach to dengue prevention with vector management through community participation. A multidisciplinary approach along with exemplifying effective methods of inspectorial coordination and community participation is much required. The implementation of the Seven-Plus-One model has a positive impact on reducing dengue cases, indicating acceptance and effectiveness of the concept among the public. Dengue morbidity rate can be reduced through early detection and mobilizing the community for active participation in dengue prevention and control.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Community and Family Medicine, AIIMS, Rishikesh, Uttarakhand, India
| | - Rakhi Mishra
- Department of Community and Family Medicine, AIIMS, Rishikesh, Uttarakhand, India
| | - Dharnidhar Singh
- Department of Community and Family Medicine, AIIMS, Rishikesh, Uttarakhand, India
| |
Collapse
|
21
|
Carrazco-Montalvo A, Gutiérrez-Pallo D, Arévalo V, Ponce P, Rodríguez-Polit C, Alarcón D, Echeverría-Garcés G, Coloma J, Nipaz V, Cevallos V. Whole Genome Sequencing of DENV-2 isolated from Aedes aegypti mosquitoes in Esmeraldas, Ecuador. Genomic epidemiology of genotype III Southern Asian-American in the country. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579255. [PMID: 38370752 PMCID: PMC10871324 DOI: 10.1101/2024.02.06.579255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Ecuador is a tropical country reporting Dengue virus (DENV) outbreaks with areas of hyperendemic viral transmission. Entomo-virological surveillance and monitoring effort conducted in the Northwestern border province of Esmeraldas in April 2022, five pools of female Aedes aegypti mosquitoes from a rural community tested positive for DENV serotype 2 by RT-qPCR. One pool was sequenced by Illumina MiSeq, and it corresponded to genotype III Southern Asian-American. Comparison with other genomes revealed genetic similarity to a human DENV genome sequenced in 2021, also from Esmeraldas. Potential introduction events to the country could have originated from Colombia, considering the vicinity of the collection sites to the neighboring country and high human movement. The inclusion of genomic information complements entomo-virological surveillance, providing valuable insights into genetic variants. This contribution enhances our understanding of Dengue virus (DENV) epidemiology in rural areas and guides evidence-based decisions for surveillance and interventions.
Collapse
Affiliation(s)
- Andrés Carrazco-Montalvo
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Diana Gutiérrez-Pallo
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Valentina Arévalo
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Cristina Rodríguez-Polit
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Damaris Alarcón
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Gabriela Echeverría-Garcés
- Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática (GENSBIO), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Victoria Nipaz
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales (CIREV), Instituto Nacional de Investigación en Salud Pública (INSPI), Quito, Ecuador
| |
Collapse
|
22
|
Roberts JA, Kapadia RK, Pastula DM, Thakur KT. Public health trends in neurologically relevant infections: a global perspective. Ther Adv Infect Dis 2024; 11:20499361241274206. [PMID: 39301451 PMCID: PMC11412215 DOI: 10.1177/20499361241274206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neuroinfectious diseases represent a growing threat to public health globally. Infections of the central nervous system remain challenging to diagnose and treat, partially driven by the fact that a high proportion of emerging pathogens are capable of causing neurological disease. Many of the trends driving the emergence of novel pathogens, including climate change, ecological degradation, urbanization, and global travel, have accelerated in recent years. These circumstances raise concern for the potential emergence of additional pathogens of pandemic potential in the coming years, necessitating a stronger understanding of the forces that give rise to the emergence and spread of neuroinvasive pathogens and a commitment to public health infrastructure to identify and treat these diseases. In this review, we discuss the clinical and epidemiological features of three types of emerging neuroinvasive pathogens of significant public health consequences that are emblematic of key ongoing trends in global health. We first discuss dengue viruses in the context of climate change, considering the environmental factors that allow for the expansion of the geographic range and seasonal population of the viruses' vector. We then review the rising prevalence of fungal meningitis secondary to medical tourism, a trend representative of the highly globalized nature of modern healthcare. Lastly, we discuss the increasing prevalence of antibiotic-resistant neurological infections driven by the intersection of antibiotic overuse in medical and agricultural settings. Taken together, the rising prevalence of these conditions necessitates a recommitment to investment in public health infrastructure focused on local and global infectious disease surveillance coupled with ongoing development of novel therapeutics and vaccines for emerging pathogens. Such emerging threats also obviate the need to address the root causes driving the emergence of novel infectious diseases, including a sustained effort to address anthropogenic climate change and environmental degradation.
Collapse
Affiliation(s)
- Jackson A Roberts
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ronak K Kapadia
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Daniel M Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Kiran T Thakur
- Program in Neuroinfectious Diseases, Division of Critical Care and Hospitalist Neurology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Kakde U, Khatib MN. Neurological Complications in Dengue Among Males of the Adult Age Group. Cureus 2024; 16:e51586. [PMID: 38313931 PMCID: PMC10835196 DOI: 10.7759/cureus.51586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Neurological problems are more frequently linked to dengue, a mosquito-transmitted virus common in tropical areas. This review study thoroughly examines the effects of dengue on adult males' neurological systems. Dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) can develop in severe cases of dengue fever caused by the dengue virus (DENV). Unsettlingly, it is thought that a sizable portion of DENV infections impact the central nervous system (CNS), which calls into question the former theory that the DENV is not neurotropic. This review dissects the many neurological manifestations of dengue, spanning from encephalopathy, encephalitis, and other CNS implications to peripheral neuromuscular issues, through the systematic analysis of publications gathered from PubMed. The essay emphasizes the immunological reactions brought on by DENV infections and offers a deeper understanding of the pathophysiology. Given that they exhibit similar first symptoms, Zika and chikungunya are two more illnesses that must be distinguished from dengue. The mainstay of current diagnostic methods is serum and cerebrospinal fluid (CSF) tests, although supportive care is still used. This review highlights the importance of tracking neurological symptoms in dengue patients and encourages more studies in this area.
Collapse
Affiliation(s)
- Umesh Kakde
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Research and Higher Education, Wardha, IND
| | - Mahalaqua Nazli Khatib
- School of Epidemiology and Public Health, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
24
|
Cime-Castillo J, Vargas V, Hernández-Tablas JM, Quezada-Ruiz E, Díaz G, Lanz-Mendoza H. The costs of transgenerational immune priming for homologous and heterologous infections with different serotypes of dengue virus in Aedes aegypti mosquitoes. Front Immunol 2023; 14:1286831. [PMID: 38170025 PMCID: PMC10760805 DOI: 10.3389/fimmu.2023.1286831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The immune system is a network of molecules, signaling pathways, transcription, and effector modulation that controls, mitigates, or eradicates agents that may affect the integrity of the host. In mosquitoes, the innate immune system is highly efficient at combating foreign organisms but has the capacity to tolerate vector-borne diseases. These implications lead to replication, dissemination, and ultimately the transmission of pathogenic organisms when feeding on a host. In recent years, it has been discovered that the innate immune response of mosquitoes can trigger an enhanced immunity response to the stimulus of a previously encountered pathogen. This phenomenon, called immune priming, is characterized by a molecular response that prevents the replication of viruses, parasites, or bacteria in the body. It has been documented that immune priming can be stimulated through homologous organisms or molecules, although it has also been documented that closely related pathogens can generate an enhanced immune response to a second stimulus with a related organism. However, the cost involved in this immune response has not been characterized through the transmission of the immunological experience from parents to offspring by transgenerational immune priming (TGIP) in mosquitoes. Here, we address the impact on the rates of oviposition, hatching, development, and immune response in Aedes aegypti mosquitoes, the mothers of which were stimulated with dengue virus serotypes 2 and/or 4, having found a cost of TGIP on the development time of the progeny of mothers with heterologous infections, with respect to mothers with homologous infections. Our results showed a significant effect on the sex ratio, with females being more abundant than males. We found a decrease in transcripts of the siRNA pathway in daughters of mothers who had been exposed to an immune challenge with DV. Our research demonstrates that there are costs and benefits associated with TGIP in Aedes aegypti mosquitoes exposed to DV. Specifically, priming results in a lower viral load in the offspring of mothers who have previously been infected with the virus. Although some results from tests of two dengue virus serotypes show similarities, such as the percentage of pupae emergence, there are differences in the percentage of adult emergence, indicating differences in TGIP costs even within the same virus with different serotypes. This finding has crucial implications in the context of dengue virus transmission in endemic areas where multiple serotypes circulate simultaneously.
Collapse
Affiliation(s)
- Jorge Cime-Castillo
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Valeria Vargas
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
- Biomedical Research Institute, Universidad Nacional Autonoma de México, Ciudad de México, Mexico
| | - Juan Manuel Hernández-Tablas
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Edgar Quezada-Ruiz
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Grecia Díaz
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| | - Humberto Lanz-Mendoza
- Infection and Immunity Direction/Vector Borne Disease Department, Centro de Investigaciones Sobre Enfermedades Infecciosas-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Mexico
| |
Collapse
|
25
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
27
|
de Souza UJB, Macedo YDSM, dos Santos RN, Cardoso FDP, Galvão JD, Gabev EE, Franco AC, Roehe PM, Spilki FR, Campos FS. Circulation of Dengue Virus Serotype 1 Genotype V and Dengue Virus Serotype 2 Genotype III in Tocantins State, Northern Brazil, 2021-2022. Viruses 2023; 15:2136. [PMID: 38005815 PMCID: PMC10674946 DOI: 10.3390/v15112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
In Brazil, the state of Tocantins, located in north-central Brazil, has experienced a significant number of cases of arboviral disease, particularly Dengue virus (DENV). This study aimed to deepen the knowledge on DENV circulation within that state by conducting full genome sequencing of viral genomes recovered from 61 patients between June 2021 and July 2022. There were a total of 8807 and 20,692 cases in 2021 and 2022, respectively, as reported by the state's Secretary of Health. Nucleotide sequencing confirmed the circulation of DENV serotype 1, genotype V and DENV serotype 2, genotype III in the State. Younger age groups (4 to 43 years old) were mostly affected; however, no significant differences were detected regarding the gender distribution of cases in humans. Phylogenetic analysis revealed that the circulating viruses belong to DENV-1 genotype V American and DENV-2 genotype III Southeast Asian/American. The Bayesian analysis of DENV-1 genotype V genomes sequenced here are closely related to genomes previously sequenced in the state of São Paulo. Regarding the DENV-2 genotype III genomes, these clustered in a distinct, well-supported subclade, along with previously reported isolates from the states of Goiás and São Paulo. The findings reported here suggest that multiple introductions of these genotypes occurred in the Tocantins state. This observation highlights the importance of major population centers in Brazil on virus dispersion, such as those observed in other Latin American and North American countries. In the SNP analysis, DENV-1 displayed 122 distinct missense mutations, while DENV-2 had 44, with significant mutations predominantly occurring in the envelope and NS5 proteins. The analyses performed here highlight the concomitant circulation of distinct DENV-1 and -2 genotypes in some Brazilian states, underscoring the dynamic evolution of DENV and the relevance of surveillance efforts in supporting public health policies.
Collapse
Affiliation(s)
- Ueric José Borges de Souza
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | - Ygor da Silva Miranda Macedo
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | - Raíssa Nunes dos Santos
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
| | | | - Jucimária Dantas Galvão
- Central Public Health Laboratory of the State of Tocantins, Palmas 77054-970, Brazil; (F.D.P.C.); (J.D.G.)
| | - Evgeni Evgeniev Gabev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Ana Cláudia Franco
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| | - Paulo Michel Roehe
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| | | | - Fabrício Souza Campos
- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil; (Y.d.S.M.M.); (R.N.d.S.)
- Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; (A.C.F.); (P.M.R.)
| |
Collapse
|
28
|
Vogels CB, Hill V, Breban MI, Chaguza C, Paul LM, Sodeinde A, Taylor-Salmon E, Ott IM, Petrone ME, Dijk D, Jonges M, Welkers MR, Locksmith T, Dong Y, Tarigopula N, Tekin O, Schmedes S, Bunch S, Cano N, Jaber R, Panzera C, Stryker I, Vergara J, Zimler R, Kopp E, Heberlein L, Morrison AM, Michael SF, Grubaugh ND. DengueSeq: A pan-serotype whole genome amplicon sequencing protocol for dengue virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.13.23296997. [PMID: 37873191 PMCID: PMC10592998 DOI: 10.1101/2023.10.13.23296997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/μL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.
Collapse
Affiliation(s)
- Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
| | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
| | - Lauren M. Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Emma Taylor-Salmon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Isabel M. Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mary E. Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, NSW, Australia
| | - Dennis Dijk
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Matthijs R.A. Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
| | - Timothy Locksmith
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Yibo Dong
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, United States of America
| | - Namratha Tarigopula
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, United States of America
| | - Omer Tekin
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, United States of America
| | - Sarah Schmedes
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, United States of America
| | - Sylvia Bunch
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Natalia Cano
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Rayah Jaber
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Charles Panzera
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Ian Stryker
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Julieta Vergara
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Rebecca Zimler
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, United States of America
| | - Edgar Kopp
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Lea Heberlein
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Andrea M. Morrison
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, United States of America
| | - Scott F. Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
29
|
Nwe KM, Ngwe Tun MM, Muthugala R, Nabeshima T, Balingit JC, Rajamanthri L, Jayawardana D, Attanayake S, Inoue S, Takamatsu Y, Urano T, Morita K. Clinical, Virological, and Immunological Features in Cosmopolitan Genotype DENV-2-Infected Patients during a Large Dengue Outbreak in Sri Lanka in 2017. Am J Trop Med Hyg 2023; 109:917-925. [PMID: 37696512 PMCID: PMC10551097 DOI: 10.4269/ajtmh.22-0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/05/2023] [Indexed: 09/13/2023] Open
Abstract
In 2017, Sri Lanka experienced its largest dengue epidemic and reported severe and unusual presentations of dengue with high morbidity. This outbreak was associated with the reemergence of dengue virus-2 (DENV-2), with the responsible strain identified as a variant of the previously circulating DENV-2 cosmopolitan genotype. In this study, we characterized the DENV-2 cosmopolitan genotype from patients during this epidemic. Also, we identified host factors that contributed to the severity of dengue infection in patients infected with this particular virus. Ninety-one acute serum samples from patients at the National Hospital in Kandy were randomly selected. Of these, 40.2% and 48.9% were positive for dengue IgM and IgG, respectively. NS1 antigen levels were significantly higher in primary infections. The severe dengue (SD) and dengue with warning signs (DWWS) groups exhibited significantly higher viral genome and infectivity titers than the dengue without warning signs (DWoWS) group. The highest viremia level was observed in SD patients. As for host cytokine response, interferon α (IFN-α) levels were significantly higher in the DWoWS group than in the DWWS and SD groups, whereas interleukin (IL)-12p40 and tumor necrosis factor α (TNF-α) levels in SD patients were significantly higher than in the other two groups. The TNF-α, IL-4, and monocyte chemoattractant protein-1 concentrations were positively correlated with NS1 antigen levels. From whole-genome analysis, NS4 had the highest frequency of amino acid variants, followed by the E gene. Our study suggests that viremia levels and immune responses contributed to SD outcomes, and these findings may help in identifying an effective therapeutic strategy against SD infection.
Collapse
Affiliation(s)
- Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo, Japan
| | | | - Takeshi Nabeshima
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jean Claude Balingit
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | | | | | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
30
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Duran V, Rebellon-Sanchez DE, Sanz AM, Rosso F, Doranz BJ, Einav S, Matsen IV FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. PLoS Pathog 2023; 19:e1011722. [PMID: 37812640 PMCID: PMC10586629 DOI: 10.1371/journal.ppat.1011722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/19/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasures that avoid enhancement of infection associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following repeated DENV infections. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
Affiliation(s)
- Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan K. Ralph
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Catiana H. Cartwright-Acar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caroline Kikawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Shruthi Kannan
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Edgar Davidson
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | | | - Ana M. Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Department of Internal Medicine, Division of Infectious Diseases, Fundación Valle del Lili, Cali, Colombia
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Frederick A. Matsen IV
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
31
|
Chen PK, Chang JH, Ke LY, Kao JK, Chen CH, Yang RC, Yoshimura T, Ito E, Tsai JJ. Advanced Detection Method for Dengue NS1 Protein Using Ultrasensitive ELISA with Thio-NAD Cycling. Viruses 2023; 15:1894. [PMID: 37766300 PMCID: PMC10534902 DOI: 10.3390/v15091894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Dengue fever, a mosquito-borne disease in tropical and subtropical climates caused by the dengue virus (DENV), has become a major social and economic burden in recent years. However, current primary detection methods are inadequate for early diagnosis of DENV because they are either time-consuming, expensive, or require training. Non-structural protein 1 (NS1) is secreted during DENV infection and is thus considered a suitable biomarker for the development of an early detection method. In the present study, we developed a detection method for the NS1 protein based on a previously reported thio-NAD cycling ELISA (i.e., ultrasensitive ELISA) and successfully achieved a LOD of 1.152 pg/mL. The clinical diagnosis potential of the detection system was also evaluated by using 85 patient specimens, inclusive of 60 DENV-positive and 25 DENV-negative specimens confirmed by the NAAT method. The results revealed 98.3% (59/60) sensitivity and 100% (25/25) specificity, which was in almost perfect agreement with the NAAT data with a kappa coefficient of 0.972. The present study demonstrates the diagnostic potential of using an ultrasensitive ELISA as a low-cost, easy-to-use method for the detection of DENV compared with NAAT and could be of great benefit in low-income countries.
Collapse
Affiliation(s)
- Po-Kai Chen
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (P.-K.C.); (J.-H.C.)
| | - Jyun-Hao Chang
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (P.-K.C.); (J.-H.C.)
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jun-Kai Kao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children’s Hospital, Changhua 50006, Taiwan; (J.-K.K.); (R.-C.Y.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402204, Taiwan;
| | - Chang-Hua Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402204, Taiwan;
- Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Rei-Cheng Yang
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children’s Hospital, Changhua 50006, Taiwan; (J.-K.K.); (R.-C.Y.)
- Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80756, Taiwan
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Hokkaido 061-0293, Japan;
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (P.-K.C.); (J.-H.C.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
32
|
de Souza Andrade A, Oliveira Campos S, Dias J, Campos MA, Kroon EG. Dengue virus 3 genotype I (GI) lineage 1 (L1) isolates elicit differential cytopathic effect with syncytium formation in human glioblastoma cells (U251). Virol J 2023; 20:204. [PMID: 37661255 PMCID: PMC10476378 DOI: 10.1186/s12985-023-02168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) is a Flaviviridae member classified into four antigenically distinct serotypes (DENV 1, 2, 3, and 4) and further subdivided genotypes. DENV3 is subdivided into four or five genotypes, depending on the classification adopted. Despite their high genetic proximity, as revealed by phylogenetic complete polyprotein analysis, DENV3 MG-20 and DENV3 PV_BR showed different neurovirulence in mice models. Our group identified six amino acid mutations in protein E, including the E62K and E123Q, which may affect interactions of hydrophobic clusters on domain II, thus leading to the observed differences in the studied viruses. METHODS Human glioblastoma cells (U251) derived from a malignant glioblastoma tumor by explant technique were infected by the DENV3 GIL1 isolates DENV3 MG-20 and DENV3 PV_BR and analyzed by plaque assays and titration, optical, immunofluorescence, and transmission electronic microscopy. RESULTS The two isolates showed different cytopathic effects (CPE) and fusogenic patterns, further confirmed by indirect immunofluorescence. Transmission electron microscopy revealed intense cytopathic effects in DENV3 MG-20 infected U251 cells, displaying endoplasmic reticulum hypertrophy and turgid vesicles with proteins and multiple viruses, distinct from DENV3 PV_BR infected cells. It is hypothesized that the different amino acids in the DENV3 MG-20 isolate are related to an increased membrane fusion ability in viral infection, thus facilitating immune system evasion and increased chances of central nervous system cell infection. CONCLUSION These results emphasize the biological differences between the isolates, which could be a critical factor in host-virus interaction and severe dengue development. Our study presents comparative results of highly similar isolates with the potential to generate more subsidies for a deeper understanding of the DENV pathogenesis. The neurotropism of the isolate DENV3 MG-20 (belonging to the DENV3 GI L1 genotype) showing infection of nervous system cells (U251) could contribute to understanding neurological dengue disease.
Collapse
Affiliation(s)
- Adriana de Souza Andrade
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Imunologia de Doenças Virais, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Sofia Oliveira Campos
- Imunologia de Doenças Virais, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Jamile Dias
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Antônio Campos
- Imunologia de Doenças Virais, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Kapuganti SK, Saumya KU, Verma D, Giri R. Investigating the aggregation perspective of Dengue virus proteome. Virology 2023; 586:12-22. [PMID: 37473502 DOI: 10.1016/j.virol.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Dengue viruses are human pathogens that are transmitted through mosquitoes. Apart from the typical symptoms associated with viral fevers, DENV infections are known to cause several neurological complications such as meningitis, encephalitis, intracranial haemorrhage, retinopathies along with the more severe, and sometimes fatal, vascular leakage and dengue shock syndrome. This study was designed to investigate, in detail, the predicted viral protein aggregation prone regions among all serotypes. Further, in order to understand the cross-talk between viral protein aggregation and aggregation of cellular proteins, cross-seeding experiments between the DENV NS1 (1-30), corresponding to the β-roll domain and the diabetes hallmark protein, amylin, were performed. Various techniques such as fluorescence spectroscopy, circular dichroism, atomic force microscopy and immunoblotting have been employed for this. We observe that the DENV proteomes have many predicted APRs and the NS1 (1-30) of DENV1-3, 2K and capsid anchor of DENV2 and DENV4 are capable of forming amyloids, in vitro. Further, the DENV NS1 (1-30), aggregates are also able to cross-seed and enhance amylin aggregation and vice-versa. This knowledge may lead to an opportunity for designing suitable inhibitors of protein aggregation that may be beneficial for viral infections and comorbidities.
Collapse
Affiliation(s)
- Shivani Krishna Kapuganti
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Kumar Udit Saumya
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Deepanshu Verma
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India
| | - Rajanish Giri
- Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
34
|
de Carvalho Marques B, Sacchetto L, Banho CA, Estofolete CF, Dourado FS, da Silva Cândido D, Dutra KR, da Silva Salles FC, de Jesus JG, Sabino EC, Faria NR, Nogueira ML. Genetic differences of dengue virus 2 in patients with distinct clinical outcome. Braz J Microbiol 2023; 54:1411-1419. [PMID: 37178262 PMCID: PMC10485208 DOI: 10.1007/s42770-023-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The genetic diversity of the dengue virus is characterized by four circulating serotypes, several genotypes, and an increasing number of existing lineages that may have differences in the potential to cause epidemics and disease severity. Accurate identification of the genetic variability of the virus is essential to identify lineages responsible for an epidemic and understanding the processes of virus spread and virulence. Here, we characterize, using portable nanopore genomic sequencing, different lineages of dengue virus 2 (DENV-2) detected in 22 serum samples from patients with and without dengue warning signs attended at Hospital de Base of São José do Rio Preto (SJRP) in 2019, during a DENV-2 outbreak. Demographic, epidemiological, and clinical data were also analyzed. The phylogenetic reconstruction and the clinical data showed that two lineages belonging to the American/Asian genotype of DENV-2-BR3 and BR4 (BR4L1 and BR4L2)-were co-circulating in SJRP. Although preliminary, these results indicate no specific association between clinical form and phylogenetic clustering at the virus consensus sequence level. Studies with larger sample sizes and which explore single nucleotide variants are needed. Therefore, we showed that portable nanopore genome sequencing could generate quick and reliable sequences for genomic surveillance to monitor viral diversity and its association with disease severity as an epidemic unfolds.
Collapse
Affiliation(s)
- Beatriz de Carvalho Marques
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias, Faculdade de Medicina de São José Do Rio Preto, Avenida Brigadeiro Faria Lima, 5416 São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias, Faculdade de Medicina de São José Do Rio Preto, Avenida Brigadeiro Faria Lima, 5416 São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Cecília Artico Banho
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias, Faculdade de Medicina de São José Do Rio Preto, Avenida Brigadeiro Faria Lima, 5416 São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Cássia Fernanda Estofolete
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias, Faculdade de Medicina de São José Do Rio Preto, Avenida Brigadeiro Faria Lima, 5416 São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Fernanda Simões Dourado
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias, Faculdade de Medicina de São José Do Rio Preto, Avenida Brigadeiro Faria Lima, 5416 São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | | | - Karina Rocha Dutra
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias, Faculdade de Medicina de São José Do Rio Preto, Avenida Brigadeiro Faria Lima, 5416 São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | | | - Jaqueline Góes de Jesus
- Instituto de Medicina Tropical da Faculdade de Medicina - Universidade de São Paulo, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Instituto de Medicina Tropical da Faculdade de Medicina - Universidade de São Paulo, São Paulo, Brazil
| | - Nuno Rodrigues Faria
- Department of Zoology, University of Oxford, Oxford, UK
- Instituto de Medicina Tropical da Faculdade de Medicina - Universidade de São Paulo, São Paulo, Brazil
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, UK
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas Em Virologia, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias, Faculdade de Medicina de São José Do Rio Preto, Avenida Brigadeiro Faria Lima, 5416 São José Do Rio Preto, São Paulo, 15090-000, Brazil.
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
35
|
Wolf J, de Souza AP, de Schardosim RF, Pille A, Maccari JG, Mutlaq MP, Nasi LA. Molecular evolution of dengue virus: a Bayesian approach using 1581 whole-genome sequences from January 1944 to July 2022. Arch Virol 2023; 168:202. [PMID: 37410187 DOI: 10.1007/s00705-023-05833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
Dengue is a viral disease transmitted by mosquitoes that has spread rapidly across all continents in recent years. There are four distinct but closely related serotypes of the virus that causes dengue (DENV-1, DENV-2, DENV-3, and DENV-4). In the present study, we evaluated temporal spreading and molecular evolution of dengue virus (DENV) serotypes. Bayesian coalescent analysis was performed to study viral evolution, and it was estimated that the most recent common ancestor of DENV-1 was present in 1884 in Southeast Asia, that of DENV-2 was present in 1723 in Europe, that of DENV-3 was present in 1921 in Southeast Asia, and that of DENV-4 was present in 1876 in Southeast Asia. DENV appears to have originated in Spain in approximately 1682, and it was disseminated in Asia and Oceania in approximately 1847. After this period, the virus was introduced into North America in approximately 1890. In South America, it was first disseminated to Ecuador in approximately 1897 and then to Brazil in approximately 1910. Dengue has had a significant impact on global health worldwide, and the present study provides an overview of the molecular evolution of DENV serotypes.
Collapse
Affiliation(s)
- Jonas Wolf
- Value Management Office, Medical Manager at Hospital Moinhos de Vento, Porto Alegre, RS, Brazil.
| | | | | | - Arthur Pille
- Value Management Office, Medical Manager at Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | | | - Mohamed Parrini Mutlaq
- Chief Executive Officer at Hospital Moinhos de Vento, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Antonio Nasi
- Chief Medical Officer, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| |
Collapse
|
36
|
Phadungsombat J, Vu HTT, Nguyen QT, Nguyen HTV, Nguyen HTN, Dang BT, Nakayama EE, Ishizaki A, Ichimura H, Shioda T, Pham TN. Molecular Characterization of Dengue Virus Strains from the 2019-2020 Epidemic in Hanoi, Vietnam. Microorganisms 2023; 11:1267. [PMID: 37317240 DOI: 10.3390/microorganisms11051267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Dengue virus (DENV), which has circulated in Vietnam for several decades, has multiple serotypes and genotypes. A 2019 dengue outbreak resulted in a larger number of cases than any other outbreak. We conducted a molecular characterization using samples collected in 2019-2020 from dengue patients in Hanoi and nearby cities located in northern Vietnam. The circulating serotypes were DENV-1 (25%, n = 22) and DENV-2 (73%, n = 64). Phylogenetic analyses revealed that all DENV-1 (n = 13) were genotype I and clustered to local strains circulating during the previous outbreak in the 2017, whereas DENV-2 consisted of two genotypes: Asian-I (n = 5), related to local strains from 2006-2022, and cosmopolitan (n = 18), the predominant genotype in this epidemic. The current cosmopolitan virus was identified as having an Asian-Pacific lineage. The virus was closely related to strains in other recent outbreaks in Southeast Asian countries and China. Multiple introductions occurred in 2016-2017, which were possibly from maritime Southeast Asia (Indonesia, Singapore, and Malaysia), mainland Southeast Asia (Cambodia and Thailand), or China, rather than from an expansion of localized Vietnamese cosmopolitan strains that were previously detected in the 2000s. We also analyzed the genetic relationship between Vietnam's cosmopolitan strain and recent global strains reported from Asia, Oceania, Africa, and South America. This analysis revealed that viruses of Asian-Pacific lineage are not restricted to Asia but have spread to Peru and Brazil in South America.
Collapse
Affiliation(s)
- Juthamas Phadungsombat
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | - Quynh Thi Nguyen
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | - Bich Thi Dang
- National Hospital for Tropical Disease, Hanoi 100000, Vietnam
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Azumi Ishizaki
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Hiroshi Ichimura
- Department of Viral infection and International Health, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Thach Ngoc Pham
- National Hospital for Tropical Disease, Hanoi 100000, Vietnam
| |
Collapse
|
37
|
Rahim R, Hasan A, Phadungsombat J, Hasan N, Ara N, Biswas SM, Nakayama EE, Rahman M, Shioda T. Genetic Analysis of Dengue Virus in Severe and Non-Severe Cases in Dhaka, Bangladesh, in 2018-2022. Viruses 2023; 15:v15051144. [PMID: 37243230 DOI: 10.3390/v15051144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Dengue virus (DENV) infections have unpredictable clinical outcomes, ranging from asymptomatic or minor febrile illness to severe and fatal disease. The severity of dengue infection is at least partly related to the replacement of circulating DENV serotypes and/or genotypes. To describe clinical profiles of patients and the viral sequence diversity corresponding to non-severe and severe cases, we collected patient samples from 2018 to 2022 at Evercare Hospital Dhaka, Bangladesh. Serotyping of 495 cases and sequencing of 179 cases showed that the dominant serotype of DENV shifted from DENV2 in 2017 and 2018 to DENV3 in 2019. DENV3 persisted as the only representative serotype until 2022. Co-circulation of clades B and C of the DENV2 cosmopolitan genotype in 2017 was replaced by circulation of clade C alone in 2018 with all clones disappearing thereafter. DENV3 genotype I was first detected in 2017 and was the only genotype in circulation until 2022. We observed a high incidence of severe cases in 2019 when the DENV3 genotype I became the only virus in circulation. Phylogenetic analysis revealed clusters of severe cases in several different subclades of DENV3 genotype I. Thus, these serotype and genotype changes in DENV may explain the large dengue outbreaks and increased severity of the disease in 2019.
Collapse
Affiliation(s)
- Rummana Rahim
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Abu Hasan
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | | | - Nazmul Hasan
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Nikhat Ara
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Suma Mita Biswas
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0781, Japan
| | - Mizanur Rahman
- Evercare Hospital Dhaka (Ex Apollo Hospitals Dhaka), Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0781, Japan
| |
Collapse
|
38
|
Qureshi H, Khan MI, Bae SJ, Akhtar S, Khattak AA, Haider A, Nisar A. Prevalence of dengue virus in Haripur district, Khyber Pakhtunkhwa, Pakistan. J Infect Public Health 2023; 16:1131-1136. [PMID: 37244095 DOI: 10.1016/j.jiph.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/16/2023] [Accepted: 04/30/2023] [Indexed: 05/29/2023] Open
Abstract
Dengue virus (DENV) has caused about 12 large outbreaks in Pakistan, resulting in 286,262 morbidities and 1108 deaths. The most affected province is Khyber Pakhtunkhwa (KP). This study was conducted to determine the average DENV prevalence in different areas of the Haripur endemic district of KP and the causing factors of DENV. METHODS This work was a cross-sectional study that was performed in the DENV endemic district Haripur. A total of 761 individuals were included in this study. The data were categorized according to sex, age and symptoms (like fever, body aches, bleeding, and skin rash). For data analysis, SPSS 23 version was applied. ArcGIS version 10.8 was used to map the study area. RESULTS In this study, there were 716 confirmed cases of DENV fever, including 421 males (58.8%) and 295 females (41.2%). The most affected age range, 16-30 years, reported by 301 (42.0%), was followed by 31-45 years, 184 (25.7%), above 46 years, 132 (18.4%), and 0-15 years, 99 (13.8%). The positive IgG cases were 581(81.0%). Those whose age ranges from 1 to 15 years 82 (8.7%) cases, 16-30 years 244 (34.1%), 31-45 years 156 (21.8%), above 46-year age 99 (13.8%) cases. In addition, this suggests that those between the ages of 16 and 30 are at the highest risk for DENV infection. However, this might be the fact that individuals in this age range are more likely to be out in the environment, making them more vulnerable to the virus. CONCLUSION Over the past ten years, DENV fever has become increasingly prevalent in Pakistan. The risk is substantially higher for males. Dengue outbreaks hit those between the ages of 16 and 30 the hardest. The proper monitoring and assessment of DENV are necessary for prevention and controlling the disease. Disease surveillance includes identification and molecular characterization of infected persons and monitoring mosquito populations in high-risk locations for the purpose of vector surveillance. In order to assess the community's willingness to participate in DENV preventive efforts, behavioral impact surveillance is also necessary.
Collapse
Affiliation(s)
- Humera Qureshi
- Department of Industrial Engineering, Hanyang University, South Korea
| | | | - Suk Joo Bae
- Department of Industrial Engineering, Hanyang University, South Korea.
| | - Sohail Akhtar
- Department of Mathematics and Statistics, University of Haripur, KP, Pakistan
| | - Aamer Ali Khattak
- Department of Medical Lab Technology, University of Haripur, KP, Pakistan
| | - Ayesha Haider
- Department of Mathematics and Statistics, University of Haripur, KP, Pakistan
| | - Alisha Nisar
- Department of Mathematics and Statistics, University of Haripur, KP, Pakistan
| |
Collapse
|
39
|
Lubow J, Levoir LM, Ralph DK, Belmont L, Contreras M, Cartwright-Acar CH, Kikawa C, Kannan S, Davidson E, Doranz BJ, Duran V, Sanchez DE, Sanz AM, Rosso F, Einav S, Matsen FA, Goo L. Single B cell transcriptomics identifies multiple isotypes of broadly neutralizing antibodies against flaviviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536175. [PMID: 37090561 PMCID: PMC10120628 DOI: 10.1101/2023.04.09.536175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasure strategies that avoid infection enhancement associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following secondary DENV infection. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.
Collapse
|
40
|
Dafalla O, Abdulhaq AA, Almutairi H, Noureldin E, Ghzwani J, Mashi O, Shrwani KJ, Hobani Y, Sufyani O, Ayed R, Alamri A, Al-Mekhlafi HM, Eisa ZM. The emergence of an imported variant of dengue virus serotype 2 in the Jazan region, southwestern Saudi Arabia. Trop Dis Travel Med Vaccines 2023; 9:5. [PMID: 36922890 PMCID: PMC10018863 DOI: 10.1186/s40794-023-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection is a global economic and public health concern, particularly in tropical and subtropical countries where it is endemic. Saudi Arabia has seen an increase in DENV infections, especially in the western and southwestern regions. This study aims to investigate the genetic variants of DENV-2 that were circulating during a serious outbreak in Jazan region in 2019. METHODS A total of 482 serum samples collected during 2019 from Jazan region were tested with reverse transcription-polymerase chain reaction (RT-PCR) to detect and classify DENV; positive samples underwent sequencing and bioinformatics analyses. RESULTS Out of 294 positive samples, type-specific RT-PCR identified 58.8% as DENV-2 but could not identify 41.2%. Based on sequencing and bioinformatics analyses, the samples tested PCR positive in the first round but PCR negative in the second round were found to be imported genetic variant of DENV-2. The identified DENV-2 imported variant showed similarities to DENV-2 sequences reported in Malaysia, Singapore, Korea and China. The results revealed the imported genetic variant of DENV-2 was circulating in Jazan region that was highly prevalent and it was likely a major factor in this outbreak. CONCLUSIONS The emergence of imported DENV variants is a serious challenge for the dengue fever surveillance and control programmes in endemic areas. Therefore, further investigations and continuous surveillance of existing and new viral strains in the region are warranted.
Collapse
Affiliation(s)
- Ommer Dafalla
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia.
| | | | - Hatim Almutairi
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia.
| | | | - Jaber Ghzwani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Omar Mashi
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | | | - Yahya Hobani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Ohood Sufyani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Reem Ayed
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Abdullah Alamri
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | | | - Zaki M Eisa
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Wang G, Gao J, Ma Z, Liu Y, Wang M, Xing D, Li C, Guo X, Zhao T, Jiang Y, Dong Y, Zhang H, Zhao T. Population genetic characteristics of Aedes aegypti in 2019 and 2020 under the distinct circumstances of dengue outbreak and the COVID-19 pandemic in Yunnan Province, China. Front Genet 2023; 14:1107893. [PMID: 36968606 PMCID: PMC10033842 DOI: 10.3389/fgene.2023.1107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Since Aedes aegypti invaded Yunnan Province in 2002, its total population has continued to expand. Shi et al. used microsatellite and mitochondrial molecular markers to study the Ae. aegypti populations in Yunnan Province in 2015 and 2016, found that it showed high genetic diversity and genetic structure. However, there are few studies on the population genetic characteristics of Ae. aegypti in Yunnan Province under different levels of human intervention. This study mainly used two common types of molecular markers to analyze the genetic characteristics of Ae. aegypti, revealing the influence of different input, prevention and control pressures on the genetic diversity and structure of this species. Understanding the genetic characteristics of Ae. aegypti populations and clarifying the diversity, spread status, and source of invasion are essential for the prevention, control and elimination of this disease vector. Methods: We analyzed the genetic diversity and genetic structure of 22 populations sampled in Yunnan Province in 2019 and 17 populations sampled in 2020 through nine microsatellite loci and COI and ND4 fragments of mitochondrial DNA. In 2019, a total of 22 natural populations were obtained, each containing 30 samples, a total of 660 samples. In 2020, a total of 17 natural populations were obtained. Similarly, each population had 30 samples, and a total of 510 samples were obtained. Results: Analysis of Ae. aegypti populations in 2019 and 2020 based on microsatellite markers revealed 67 and 72 alleles, respectively. The average allelic richness of the populations in 2019 was 3.659, while that in 2020 was 3.965. The HWE analysis of the 22 populations sampled in 2019 revealed significant departure only in the QSH-2 population. The 17 populations sampled in 2020 were all in HWE. The average polymorphic information content (PIC) values were 0.546 and 0.545, respectively, showing high polymorphism. The average observed heterozygosity of the 2019 and 2020 populations was 0.538 and 0.514, respectively, and the expected average heterozygosity was 0.517 and 0.519, showing high genetic diversity in all mosquito populations. By analyzing the COI and ND4 fragments in the mitochondrial DNA of Ae. aegypti, the populations sampled in 2019 had a total of 10 COI haplotypes and 17 ND4 haplotypes. A total of 20 COI haplotypes were found in the populations sampled in 2020, and a total of 24 ND4 haplotypes were obtained. STRUCTURE, UPGMA and DAPC cluster analyses and a network diagram constructed based on COI and ND4 fragments showed that the populations of Ae. aegypti in Yunnan Province sampled in 2019 and 2020 could be divided into two clusters. At the beginning of 2020, due to the impact of COVID-19, the flow of goods between the port areas of Yunnan Province and neighboring countries was reduced, and the sterilization was more effective when goods enter the customs, leading to different immigration pressures on Ae. aegypti population in Yunnan Province between 2019 and 2020, the source populations of the 2019 and 2020 populations changed. Mantel test is generally used to detect the correlation between genetic distance and geographical distance, the analysis indicated that population geographic distance and genetic distance had a moderately significant correlation in 2019 and 2020 (2019: p < 0.05 R2 = 0.4807, 2020: p < 0.05 R2 = 0.4233). Conclusion: Ae. aegypti in Yunnan Province maintains a high degree of genetic diversity. Human interference is one reason for the changes in the genetic characteristics of this disease vector.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
42
|
Association of Dengue Virus Serotypes 1&2 with Severe Dengue Having Deletions in Their 3′Untranslated Regions (3′UTRs). Microorganisms 2023; 11:microorganisms11030666. [PMID: 36985238 PMCID: PMC10057630 DOI: 10.3390/microorganisms11030666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Dengue virus infections are recorded as hyper-endemic in many countries, including India. Research pertaining to the reasons for frequent outbreaks and severe dengue is ongoing. Hyderabad city, India, has been recorded as a ‘hotspot’ for dengue virus infections. Dengue virus strains circulating over the past few years in Hyderabad city have been characterized at the molecular level to analyze the serotype/genotypes; 3′UTRs were further amplified and sequenced. The disease severity in patients infected with dengue virus strains with complete and 3′UTR deletion mutants was analyzed. Genotype I of the serotype 1 replaced genotype III, which has been circulating over the past few years in this region. Coincidentally, the number of dengue virus infections significantly increased in this region during the study period. Nucleotide sequence analysis suggested twenty-two and eight nucleotide deletions in the 3′UTR of DENV-1. The eight nucleotide deletions observed in the case of DENV-1 3′UTR were the first reported in this instance. A 50 nucleotide deletion was identified in the case of the serotype DENV-2. Importantly, these deletion mutants were found to cause severe dengue, even though they were found to be replication incompetent. This study emphasized the role of dengue virus 3′UTRs on severe dengue and emerging outbreaks.
Collapse
|
43
|
Rios FGF, Alves do Nascimento V, Naveca FG, Vieira DS, Julião GR. Arbovirus detection in synanthropic mosquitoes from the Brazilian Amazon and in mosquito saliva using Flinders Technology Associates cards. Microbes Infect 2023; 25:105046. [PMID: 36167274 DOI: 10.1016/j.micinf.2022.105046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/03/2022] [Accepted: 09/19/2022] [Indexed: 02/03/2023]
Abstract
Although arbovirus transmission and identifying target vectors may provide a baseline for planning disease control strategies, there are many gaps in knowledge regarding these mosquitoes and viral species in urban, rural, or sylvatic habitats in the Brazilian Amazon. Our goal was to screen for dengue, chikungunya, and Zika viruses in synanthropic mosquitoes and with Flinders Technology Associates (FTA) cards using insect saliva. Mosquitoes were caught using ovitraps and aspirators in the city of Porto Velho, Rondônia, Brazil. Honey-baited FTA cards were placed in mosquito cages for 15 days; whole mosquitoes and FTA cards were analysed for viral RNA using RT-qPCR assays. One pool of Aedes aegypti females was found to be infected with the Zika virus and one male mosquito was infected with dengue-4, suggesting natural vertical/venereal transmission. Our study also reported evidence of vertical/venereal transmission of ZIKV in Culex quinquefasciatus males for the first time in the Brazilian Amazon, and the feasibility of using FTA cards to detect arboviruses in the saliva of field-collected mosquitoes. Vertical/venereal transmission of viruses by atypical mosquito species reinforces the need for combined viral and entomological screening in arbovirus surveillance programs.
Collapse
Affiliation(s)
- Flávia Geovana Fontineles Rios
- Laboratório de Entomologia I, Fiocruz Rondônia - Fundação Oswaldo Cruz, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil; Programa de Pós-Graduação em Biologia Experimental - PGBIOEXP, Fundação Universidade Federal de Rondônia - UNIR, BR-364, km 9.5, 76801-059, Porto Velho, Rondônia State, Brazil.
| | - Valdinete Alves do Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Adrianópolis, 69057-070, Manaus, Amazonas State, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fiocruz, Manguinhos, 21040-360, Rio de Janeiro State, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Adrianópolis, 69057-070, Manaus, Amazonas State, Brazil; Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Instituto Leônidas e Maria Deane - Fiocruz Amazônia, Adrianópolis, 69057-070, Manaus, Amazonas State, Brazil
| | - Deusilene Souza Vieira
- Programa de Pós-Graduação em Biologia Experimental - PGBIOEXP, Fundação Universidade Federal de Rondônia - UNIR, BR-364, km 9.5, 76801-059, Porto Velho, Rondônia State, Brazil; Laboratório de Virologia Molecular, Fiocruz Rondônia - Fundação Oswaldo Cruz, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - INCT-EpiAmO, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil
| | - Genimar Rebouças Julião
- Laboratório de Entomologia I, Fiocruz Rondônia - Fundação Oswaldo Cruz, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil; Programa de Pós-Graduação em Biologia Experimental - PGBIOEXP, Fundação Universidade Federal de Rondônia - UNIR, BR-364, km 9.5, 76801-059, Porto Velho, Rondônia State, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - INCT-EpiAmO, Lagoa, 76812-245, Porto Velho, Rondônia State, Brazil
| |
Collapse
|
44
|
Onoja BA, Maiga M, Adesola RO, Adamu AM, Adegboye OA. Changing Ecotypes of Dengue Virus 2 Serotype in Nigeria and the Emergence of Cosmopolitan and Asian I Lineages, 1966-2019. Vaccines (Basel) 2023; 11:547. [PMID: 36992135 PMCID: PMC10052944 DOI: 10.3390/vaccines11030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Dengue virus (DENV) is a leading mosquito-borne virus with a wide geographical spread and a major public health concern. DENV serotype 1 (DENV-1) and serotype 2 (DENV-2) were first reported in Africa in 1964 in Ibadan, Nigeria. Although the burden of dengue is unknown in many African countries, DENV-2 is responsible for major epidemics. In this study, we investigated the activities of DENV-2 to determine the circulating strains and to appraise the changing dynamics in the epidemiology of the virus in Nigeria. Nineteen DENV-2 sequences from 1966-2019 in Nigeria were retrieved from the GenBank of the National Center of Biotechnology Information (NCBI). A DENV genotyping tool was used to identify the specific genotypes. The evolutionary history procedure was performed on 54 DENV-2 sequences using MEGA 7. There is a deviation from Sylvatic DENV-2 to other genotypes in Nigeria. In 2019, the Asian I genotype of DENV-2 was predominant in southern Edo State, located in the tropical rainforest region, with the first report of the DENV-2 Cosmopolitan strain. We confirmed the circulation of other non-assigned genotypes of DENV-2 in Nigeria. Collectively, this shows that DENV-2 dynamics have changed from Sylvatic transmission reported in the 1960s with the identification of the Cosmopolitan strain and Asian lineages. Sustained surveillance, including vectorial studies, is required to fully establish the trend and determine the role of these vectors.
Collapse
Affiliation(s)
- Bernard A. Onoja
- Department of Virology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Mamoudou Maiga
- Centre for Innovation in Global Health Technologies, Northwestern University, Chicago, IL 60611, USA
| | - Ridwan O. Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Andrew M. Adamu
- Australian Institute of Tropical Health and Medicine, Building 48, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Abuja 900105, Nigeria
| | - Oyelola A. Adegboye
- Australian Institute of Tropical Health and Medicine, Building 48, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
45
|
Zerfu B, Kassa T, Legesse M. Epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection, and its trend in Ethiopia: a comprehensive literature review. Trop Med Health 2023; 51:11. [PMID: 36829222 PMCID: PMC9950709 DOI: 10.1186/s41182-023-00504-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Dengue fever is a dengue virus infection, emerging rapidly and posing public health threat worldwide, primarily in tropical and subtropical countries. Nearly half of the world's population is now at risk of contracting the dengue virus, including new countries with no previous history-like Ethiopia. However, little is known about the epidemiology and impact of the disease in different countries. This is especially true in countries, where cases have recently begun to be reported. This review aims to summarize epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection and its trend in Ethiopia. It may help countries, where dengue fever is not yet on the public health list-like Ethiopia to alert healthcare workers to consider the disease for diagnosis and treatment. The review retrieved and incorporated 139 published and organizational reports showing approximately 390 million new infections. About 100 million of these infections develop the clinical features of dengue, and thousands of people die annually from severe dengue fever in 129 countries. It is caused by being bitten by a dengue virus-infected female mosquito, primarily Aedes aegypti and, lesser, Ae. albopictus. Dengue virus is a member of the Flavivirus genus of the Flaviviridae family and has four independent but antigen-related single-stranded positive-sense RNA virus serotypes. The infection is usually asymptomatic but causes illnesses ranging from mild febrile illness to fatal dengue hemorrhagic fever or shock syndrome. Diagnosis can be by detecting the virus genome using nucleic acids amplification tests or testing NS1 antigen and/or anti-dengue antibodies from serum, plasma, circulating blood cells, or other tissues. Dengue cases and outbreaks have increased in recent decades, with a significant public health impact. Ethiopia has had nearly annual outbreaks since 2013, devastating an already fragmented health system and economy. Standardization of medication, population-level screening for early diagnosis and prompt treatment, and minimization of mosquito bites reduce overall infection and mortality rates.
Collapse
Affiliation(s)
- Biruk Zerfu
- Department of Medical Laboratory Science, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia. .,Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Tesfu Kassa
- grid.7123.70000 0001 1250 5688Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mengistu Legesse
- grid.7123.70000 0001 1250 5688Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
46
|
Guo Z, Liu W, Liu X, Abudunaibi B, Luo L, Wu S, Deng B, Yang T, Huang J, Wu S, Lei L, Zhao Z, Li Z, Li P, Liu C, Zhan M, Chen T. Model-based risk assessment of dengue fever transmission in Xiamen City, China. Front Public Health 2023; 11:1079877. [PMID: 36860401 PMCID: PMC9969104 DOI: 10.3389/fpubh.2023.1079877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Background Quantitative assessment of the risk of local transmission from imported dengue cases makes a great challenge to the development of public health in China. The purpose of this study is to observe the risk of mosquito-borne transmission in Xiamen City through ecological and insecticide resistance monitoring. Quantitative evaluation of mosquito insecticide resistance, community population and the number of imported cases affecting the transmission of dengue fever (DF) in Xiamen was carried out based on transmission dynamics model, so as to reveal the correlation between key risk factors and DF transmission. Methods Based on the dynamics model and combined with the epidemiological characteristics of DF in Xiamen City, a transmission dynamics model was built to simulate the secondary cases caused by imported cases to evaluate the transmission risk of DF, and to explore the influence of mosquito insecticide resistance, community population and imported cases on the epidemic situation of DF in Xiamen City. Results For the transmission model of DF, when the community population is between 10,000 and 25,000, changing the number of imported DF cases and the mortality rate of mosquitoes will have an impact on the spread of indigenous DF cases, however, changing the birth rate of mosquitoes did not gain more effect on the spread of local DF transmission. Conclusions Through the quantitative evaluation of the model, this study determined that the mosquito resistance index has an important influence on the local transmission of dengue fever caused by imported cases in Xiamen, and the Brayton index can also affect the local transmission of the disease.
Collapse
Affiliation(s)
- Zhinan Guo
- Xiamen Center for Disease Control and Prevention, Xiamen, Fujian, China
| | - Weikang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Buasiyamu Abudunaibi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Sihan Wu
- Xiamen Center for Disease Control and Prevention, Xiamen, Fujian, China
| | - Bin Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Tianlong Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jiefeng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shenggen Wu
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Lei Lei
- Xiamen Center for Disease Control and Prevention, Xiamen, Fujian, China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Peihua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Chan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Meirong Zhan
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
47
|
Codeço CT, Coelho FC. Epidemic models and their use: Comment on "Mathematical models for dengue fever epidemiology: A 10-year systematic review" by Aguiar et al. Phys Life Rev 2023; 45:29-30. [PMID: 36933441 PMCID: PMC9890876 DOI: 10.1016/j.plrev.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Claudia T Codeço
- Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Flávio C Coelho
- School of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
48
|
Sang S, Yue Y, Wang Y, Zhang X. The epidemiology and evolutionary dynamics of massive dengue outbreak in China, 2019. Front Microbiol 2023; 14:1156176. [PMID: 37138627 PMCID: PMC10149964 DOI: 10.3389/fmicb.2023.1156176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction In 2019, China experienced massive dengue outbreaks with high incidence and expanded outbreak areas. The study aims to depict dengue's epidemiology and evolutionary dynamics in China and explore the possible origin of these outbreaks. Methods Records of confirmed dengue cases in 2019 were obtained from the China Notifiable Disease Surveillance System. The sequences of complete envelope gene detected from the outbreak provinces in China in 2019 were retrieved from GenBank. Maximum Likelihood trees were constructed to genotype the viruses. The median-joining network was used to visualize fine-scale genetic relationships. Four methods were used to estimate the selective pressure. Results A total of 22,688 dengue cases were reported, 71.4% of which were indigenous cases and 28.6% were imported cases (including from abroad and from other domestic provinces). The abroad cases were predominantly imported from Southeast Asia countries (94.6%), with Cambodia (3,234 cases, 58.9%), and Myanmar (1,097 cases, 20.0%) ranked as the top two. A total of 11 provinces with dengue outbreaks were identified in the central-south of China, of which Yunnan and Guangdong provinces had the highest number of imported and indigenous cases. The primary source of imported cases in Yunnan was from Myanmar, while in the other ten provinces, the majority of imported cases were from Cambodia. Guangdong, Yunnan and Guangxi provinces were China's primary sources of domestically imported cases. Phylogenetic analysis of the viruses in outbreak provinces revealed three genotypes: (I, IV, and V) in DENV 1, Cosmopolitan and Asian I genotypes in DENV 2, and two genotypes (I and III) in DENV 3. Some genotypes concurrently circulated in different outbreak provinces. Most of the viruses were clustered with those from Southeast Asia. Haplotype network analysis showed that Southeast Asia, possibly Cambodia and Thailand, was the respective origin of the viruses in clade 1 and 4 for DENV 1. Positive selection was detected at codon 386 in clade 1. Conclusion Dengue importation from abroad, especially from Southeast Asia, resulted in the dengue epidemic in China in 2019. Domestic transmission between provinces and positive selection on virus evolution may contribute to the massive dengue outbreaks.
Collapse
Affiliation(s)
- Shaowei Sang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Clinical Research Center of Shandong University, Jinan, Shandong, China
- *Correspondence: Shaowei Sang,
| | - Yujuan Yue
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable, Disease Control and Prevention, Beijing, China
| | - Yiguan Wang
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiangwei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Xiangwei Zhang,
| |
Collapse
|
49
|
Le TN, Hsiao WWW, Cheng YY, Lee CC, Huynh TT, Pham DM, Chen M, Jen MW, Chang HC, Chiang WH. Spin-Enhanced Lateral Flow Immunoassay for High-Sensitivity Detection of Nonstructural Protein NS1 Serotypes of the Dengue Virus. Anal Chem 2022; 94:17819-17826. [PMID: 36512513 DOI: 10.1021/acs.analchem.2c03521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dengue fever is a global mosquito-borne viral infectious disease that has, in recent years, rapidly spread to almost all regions of the world. Lack of vaccination and directed treatment makes detection at the infection's early stages extremely important for disease prevention and clinical care. In this paper, we developed a rapid and highly sensitive dengue detection tool using a novel platform of diagnosis, called spin-enhanced lateral flow immunoassay (SELFIA) with a fluorescent nanodiamond (FND) as a reporter. Taking advantage of the unique magneto-optical properties of negatively charged nitrogen-vacancy centers in the FND, the SELFIA platform utilizes alternating electromagnetic fields to modulate signals from FND's fluorescence to provide sensitive and specific results. With sandwich SELFIA, we could efficiently detect all four dengue non-structural protein (NS1) serotypes (DV1, DV2, DV3, and DV4). The lowest detection concentration of the dengue NS1 antigens varied from 0.1 to 1.3 ng/mL, which is among the lowest limits of detection to date. The FND-based SELFIA technique is up to 500 and 5000 times more sensitive than carbon black and conventional gold nanoparticles, respectively. By using different anti-NS1 antibodies, we could differentiate the NS1 antigen serotypes contained in the tested samples via three simultaneous assays. Proposed SELFIA allows for both qualitative and quantitative differentiation between different NS1 protein serotypes, which will assist in the development of a highly sensitive and specific detection platform for dengue screening that has the potential to detect the disease at its early stages, especially in high-risk and limited-resource areas.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yu-Yuan Cheng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 10617, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 10617, Taiwan
| | - Tan-Thanh Huynh
- School of Applied Chemistry, Tra Vinh University, Tra Vinh 87110, Viet Nam
| | - Dinh Minh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Marvin Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- College of Letter and Science, the University of California, Berkeley, California 94720, U.S.A
| | - Ming-Wei Jen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- College of Education and Human Ecology, the Ohio State University, Columbus, Ohio 43210, U.S.A
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
50
|
Dieng I, Fall C, Barry MA, Gaye A, Dia N, Ndione MHD, Fall A, Diop M, Sarr FD, Ndiaye O, Dieng M, Diop B, Diagne CT, Ndiaye M, Fall G, Sylla M, Faye O, Loucoubar C, Faye O, Sall AA. Re-Emergence of Dengue Serotype 3 in the Context of a Large Religious Gathering Event in Touba, Senegal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16912. [PMID: 36554793 PMCID: PMC9779395 DOI: 10.3390/ijerph192416912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Dengue virus (DENV) was detected in Senegal in 1979 for the first time. Since 2017, unprecedented frequent outbreaks of DENV were noticed yearly. In this context, epidemiological and molecular evolution data are paramount to decipher the virus diffusion route. In the current study, we focused on a dengue outbreak which occurred in Senegal in 2018 in the context of a large religious gathering with 263 confirmed DENV cases out of 832 collected samples, including 25 life-threatening cases and 2 deaths. It was characterized by a co-circulation of dengue serotypes 1 and 3. Phylogenetic analysis based on the E gene revealed that the main detected serotype in Touba was DENV-3 and belonged to Genotype III. Bayesian phylogeographic analysis was performed and suggested one viral introduction around 2017.07 (95% HPD = 2016.61-2017.57) followed by cryptic circulation before the identification of the first case on 1 October 2018. DENV-3 strains are phylogenetically related, with strong phylogenetic links between strains retrieved from Burkina Faso and other West African countries. These phylogenetic data substantiate epidemiological data of the origin of DENV-3 and its spread between African countries and subsequent diffusion after religious mass events. The study also highlighted the usefulness of a mobile laboratory during the outbreak response, allowing rapid diagnosis and resulting in improved patient management.
Collapse
Affiliation(s)
- Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Cheikh Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Aboubacry Gaye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Ndongo Dia
- Respiratory Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Marie Henriette Dior Ndione
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Amary Fall
- Respiratory Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mamadou Diop
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Fatoumata Diene Sarr
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Boly Diop
- Ministry of Health, Dakar 16504, Senegal
| | - Cheikh Tidiane Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Gamou Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | | | - Ousmane Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Amadou Alpha Sall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| |
Collapse
|