1
|
Choi H, Kwak MJ, Choi Y, Kang AN, Mun D, Eor JY, Park MR, Oh S, Kim Y. Extracellular vesicles of Limosilactobacillus fermentum SLAM216 ameliorate skin symptoms of atopic dermatitis by regulating gut microbiome on serotonin metabolism. Gut Microbes 2025; 17:2474256. [PMID: 40028723 PMCID: PMC11881872 DOI: 10.1080/19490976.2025.2474256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/31/2024] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent chronic inflammatory skin disorder. Its pathogenesis remains incompletely understood, resulting in considerable therapeutic challenges. Recent studies have highlighted the significance of the interaction between AD and gut microbiome. In this study, we investigated the effects of probiotic-derived extracellular vesicles on AD. Initially, we isolated and characterized extracellular vesicles from Limosilactobacillus fermentum SLAM 216 (LF216EV) and characterized their composition through multi-omics analysis. Gene ontology (GO) and pathway analysis classified LF216EV proteins into biological processes, molecular functions, and cellular components. Importantly, specific abundance in linoleic, oleic, palmitic, sebacic, and stearic acids indicating upregulated fatty acid metabolism were observed by metabolomic analysis. Furthermore, featured lipid profiling including AcylGlcADG and ceramide were observed in LF216EV. Importantly, in an atopic dermatitis-like cell model induced by TNFα/IFNγ, LF216EV significantly modulated the expression of immune regulatory genes (TSLP, TNFα, IL-6, IL-1β, and MDC), indicating its potential functionality in atopic dermatitis. LF216EV alleviated AD-like phenotypes, such as redness, scaling/dryness, and excoriation, induced by DNCB. Histopathological analysis revealed that LF216EV decreased epidermal thickness and mast cell infiltration in the dermis. Furthermore, LF216EV administration reduced mouse scratching and depression-related behaviors, with a faster onset than the classical treatment with dexamethasone. In the quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we observed a significant increase in the expression levels of htrb2c, sert, and tph-1, genes associated with serotonin, in the skin and gut of the LF216EV-treated group, along with a significant increase in the total serum serotonin levels. Gut microbiome analysis of the LF216EV-treated group revealed an altered gut microbiota profile. Correlation analysis revealed that the genera Limosilactobacillus and Desulfovibrio were associated with differences in the intestinal metabolites, including serotonin. Our findings demonstrate that LF216EV mitigates AD-like symptoms by promoting serotonin synthesis through the modulation of gut microbiota and metabolome composition.
Collapse
Affiliation(s)
- Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Youbin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| | - Mi Ri Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Cortés-Hernández LE, Eslami-S Z, Attina A, Batista S, Cayrefourcq L, Vialeret J, Di Vizio D, Hirtz C, Costa-Silva B, Alix-Panabières C. Proteomic profiling and functional analysis of extracellular vesicles from metastasis-competent circulating tumor cells in colon cancer. J Exp Clin Cancer Res 2025; 44:102. [PMID: 40119417 PMCID: PMC11929255 DOI: 10.1186/s13046-025-03360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/09/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are pivotal in cancer progression, and in vitro CTC models are crucial for understanding their biological mechanisms. This study focused on the characterization of extracellular vesicles (EVs) from CTC lines derived from a patient with metastatic colorectal cancer (mCRC) at different stages of progression who progressed despite therapy (thus mirroring the clonal evolution of cancer). METHODS AND RESULTS Morphological and size analyses revealed variations among EVs derived from different CTC lines. Compared with the Vesiclepedia database, proteomic profiling of these EVs revealed enrichment of proteins related to stemness, endosomal biogenesis, and mCRC prognosis. Integrin family proteins were significantly enriched in EVs from CTC lines derived after therapy failure. The role of these EVs in cancer progression was analyzed by assessing their in vivo distribution, particularly in the liver, lungs, kidneys, and bones. EVs accumulate significantly in the liver, followed by the lungs, kidneys and femurs. CONCLUSIONS This study is a pioneering effort in highlighting therapy progression-associated changes in EVs from mCRC patients via an in vitro CTC model. The results offer insights into the role of metastasis initiator CTC-derived EVs in cancer spread, suggesting their utility for studying cancer tissue distribution mechanisms. However, these findings must be confirmed and extended to patients with mCRC. This work underscores the potential of CTC-derived EVs as tools for understanding cancer dissemination.
Collapse
Affiliation(s)
- Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France.
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Aurore Attina
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Silvia Batista
- Systems Oncology Group, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Jérôme Vialeret
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Dolores Di Vizio
- Department of Urology, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christophe Hirtz
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France.
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| |
Collapse
|
3
|
Rodríguez-Candela Mateos M, Carpintero-Fernández P, Freijanes PS, Mosquera J, Nebril BA, Mayán MD. Insights into the role of connexins and specialized intercellular communication pathways in breast cancer: Mechanisms and applications. Biochim Biophys Acta Rev Cancer 2024; 1879:189173. [PMID: 39154967 DOI: 10.1016/j.bbcan.2024.189173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Gap junctions, membrane-based channels comprised of connexin proteins (Cxs), facilitate direct communication among neighbouring cells and between cells and the extracellular space through their hemichannels. The normal human breast expresses various Cxs family proteins, such as Cx43, Cx30, Cx32, Cx46, and Cx26, crucial for proper tissue development and function. These proteins play a significant role in breast cancer development, progression, and therapy response. In primary tumours, there is often a reduction and cytoplasmic mislocalization of Cx43 and Cx26, while metastatic lesions show an upregulation of these and other Cxs. Although existing research predominantly supports the tumour-suppressing role of Cxs in primary carcinomas through channel-dependent and independent functions, controversies persist regarding their involvement in the metastatic process. This review aims to provide an updated perspective on Cxs in human breast cancer, with a specific focus on intrinsic subtypes due to the heterogeneous nature of this disease. Additionally, the manuscript will explore the role of Cxs in immune interactions and novel forms of intercellular communication, such as tunneling nanotubes and extracellular vesicles, within the breast tumour context and tumour microenvironment. Recent findings suggest that Cxs hold potential as therapeutic targets for mitigating metastasis and drug resistance. Furthermore, they may serve as novel biomarkers for cancer prognosis, offering promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Marina Rodríguez-Candela Mateos
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernández
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain
| | - Paz Santiago Freijanes
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Anatomic Pathology Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Joaquin Mosquera
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - Benigno Acea Nebril
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; Surgery Department, Breast Unit, A Coruña University Hospital, SERGAS, A Coruña, Spain
| | - María D Mayán
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Xubias de Arriba, 84, 15006 A Coruña, Spain; CellCOM Research Group, Center for Research in Nanomaterials and Biomedicine (CINBIO), Universidade de Vigo, Edificio Olimpia Valencia, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS, Spain.
| |
Collapse
|
4
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
5
|
Jain V, Sakhuja P, Agarwal AK, Sirdeshmukh R, Siraj F, Gautam P. Lymph Node Metastasis in Gastrointestinal Carcinomas: A View from a Proteomics Perspective. Curr Oncol 2024; 31:4455-4475. [PMID: 39195316 PMCID: PMC11352871 DOI: 10.3390/curroncol31080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 08/29/2024] Open
Abstract
Lymph node metastasis (LNM) is one of the major prognostic factors in human gastrointestinal carcinomas (GICs). The lymph node-positive patients have poorer survival than node-negative patients. LNM is directly associated with the recurrence and poor survival of patients with GICs. The early detection of LNM in patients and designing effective therapies to suppress LNM may significantly impact the survival of these patients. The rapid progress made in proteomic technologies could be successfully applied to identify molecular targets for cancers at high-throughput levels. LC-MS/MS analysis enables the identification of proteins involved in LN metastasis, which can be utilized for diagnostic and therapeutic applications. This review summarizes the studies on LN metastasis in GICs using proteomic approaches to date.
Collapse
Affiliation(s)
- Vaishali Jain
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Puja Sakhuja
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Anil Kumar Agarwal
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi 110002, India
| | - Ravi Sirdeshmukh
- Faculty of Health Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Fouzia Siraj
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| | - Poonam Gautam
- Indian Council of Medical Research, National Institute of Pathology, New Delhi 110029, India
| |
Collapse
|
6
|
Hu Q, Wang Y, Wang C, Yan X. Comparative Proteome Profiling of Extracellular Vesicles from Three Growth Phases of Haematococcus pluvialis under High Light and Sodium Acetate Stresses. Int J Mol Sci 2024; 25:5421. [PMID: 38791459 PMCID: PMC11121785 DOI: 10.3390/ijms25105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles involved in intercellular communications that intrinsically possess many attributes as a modern drug delivery platform. Haematococcus pluvialis-derived EVs (HpEVs) can be potentially exploited as a high-value-added bioproduct during astaxanthin production. The encapsulation of HpEV cargo is a crucial key for the determination of their biological functions and therapeutic potentials. However, little is known about the composition of HpEVs, limiting insights into their biological properties and application characteristics. This study examined the protein composition of HpEVs from three growth phases of H. pluvialis grown under high light (350 µmol·m-2·s-1) and sodium acetate (45 mM) stresses. A total of 2038 proteins were identified, the majority of which were associated with biological processes including signal transduction, cell proliferation, cell metabolism, and the cell response to stress. Comparative analysis indicated that H. pluvialis cells sort variant proteins into HpEVs at different physiological states. It was revealed that HpEVs from the early growth stage of H. pluvialis contain more proteins associated with cellular functions involved in primary metabolite, cell division, and cellular energy metabolism, while HpEVs from the late growth stage of H. pluvialis were enriched in proteins involved in cell wall synthesis and secondary metabolism. This is the first study to report and compare the protein composition of HpEVs from different growth stages of H. pluvialis, providing important information on the development and production of functional microalgal-derived EVs.
Collapse
Affiliation(s)
- Qunju Hu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| | - Yuanyuan Wang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| | - Chaogang Wang
- Shenzhen Engineering Laboratory for Marine Algal Biological Development and Application, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Yan
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.H.); (Y.W.)
| |
Collapse
|
7
|
Bhandari K, Kong JS, Morris K, Xu C, Ding WQ. Protein Arginine Methylation Patterns in Plasma Small Extracellular Vesicles Are Altered in Patients with Early-Stage Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:654. [PMID: 38339405 PMCID: PMC10854811 DOI: 10.3390/cancers16030654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Small extracellular vesicles (sEVs) contain lipids, proteins and nucleic acids, which often resemble their cells of origin. Therefore, plasma sEVs are considered valuable resources for cancer biomarker development. However, previous efforts have been largely focused on the level of proteins and miRNAs in plasma sEVs, and the post-translational modifications of sEV proteins, such as arginine methylation, have not been explored. Protein arginine methylation, a relatively stable post-translational modification, is a newly described molecular feature of PDAC. The present study examined arginine methylation patterns in plasma sEVs derived from patients with early-stage PDAC (n = 23) and matched controls. By utilizing the arginine methylation-specific antibodies for western blotting, we found that protein arginine methylation patterns in plasma sEVs are altered in patients with early-stage PDAC. Specifically, we observed a reduction in the level of symmetric dimethyl arginine (SDMA) in plasma sEV proteins derived from patients with early- and late-stage PDAC. Importantly, immunoprecipitation followed by proteomics analysis identified a number of arginine-methylated proteins exclusively present in plasma sEVs derived from patients with early-stage PDAC. These results indicate that arginine methylation patterns in plasma sEVs are potential indicators of PDAC, a new concept meriting further investigation.
Collapse
Affiliation(s)
- Kritisha Bhandari
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.S.K.)
| | - Jeng Shi Kong
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.S.K.)
| | - Katherine Morris
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.B.); (J.S.K.)
| |
Collapse
|
8
|
Qi XH, Chen P, Wang YJ, Zhou ZP, Liu XC, Fang H, Wang CW, Liu J, Liu RY, Liu HK, Zhang ZX, Zhou JN. Increased cysteinyl-tRNA synthetase drives neuroinflammation in Alzheimer's disease. Transl Neurodegener 2024; 13:3. [PMID: 38191451 PMCID: PMC10773087 DOI: 10.1186/s40035-023-00394-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Microglia-mediated neuroinflammation in Alzheimer's disease (AD) is not only a response to pathophysiological events, but also plays a causative role in neurodegeneration. Cytoplasmic cysteinyl-tRNA synthetase (CARS) is considered to be a stimulant for immune responses to diseases; however, it remains unknown whether CARS is involved in the pathogenesis of AD. METHODS Postmortem human temporal cortical tissues at different Braak stages and AD patient-derived serum samples were used to investigate the changes of CARS levels in AD by immunocytochemical staining, real-time PCR, western blotting and ELISA. After that, C57BL/6J and APP/PS1 transgenic mice and BV-2 cell line were used to explore the role of CARS protein in memory and neuroinflammation, as well as the underlying mechanisms. Finally, the associations of morphological features among CARS protein, microglia and dense-core plaques were examined by immunocytochemical staining. RESULTS A positive correlation was found between aging and the intensity of CARS immunoreactivity in the temporal cortex. Both protein and mRNA levels of CARS were increased in the temporal cortex of AD patients. Immunocytochemical staining revealed increased CARS immunoreactivity in neurons of the temporal cortex in AD patients. Moreover, overexpression of CARS in hippocampal neurons induced and aggravated cognitive dysfunction in C57BL/6J and APP/PS1 mice, respectively, accompanied by activation of microglia and the TLR2/MyD88 signaling pathway as well as upregulation of proinflammatory cytokines. In vitro experiments showed that CARS treatment facilitated the production of proinflammatory cytokines and the activation of the TLR2/MyD88 signaling pathway of BV-2 cells. The accumulation of CARS protein occurred within dense-core Aβ plaques accompanied by recruitment of ameboid microglia. Significant upregulation of TLR2/MyD88 proteins was also observed in the temporal cortex of AD. CONCLUSIONS The findings suggest that the neuronal CARS drives neuroinflammation and induces memory deficits, which might be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xiu-Hong Qi
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Peng Chen
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yue-Ju Wang
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhe-Ping Zhou
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xue-Chun Liu
- Department of Neurology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, China
| | - Hui Fang
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Chen-Wei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ji Liu
- National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application, School of Information Science and Technology, and The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Rong-Yu Liu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Han-Kui Liu
- Key Laboratory of Diseases and Genomes, BGI-Genomics, BGI-Shenzhen, Shenzhen, 518000, China
| | - Zhen-Xin Zhang
- Department of Neurology and Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100007, China
| | - Jiang-Ning Zhou
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
9
|
Bukva M, Dobra G, Gyukity-Sebestyen E, Boroczky T, Korsos MM, Meckes DG, Horvath P, Buzas K, Harmati M. Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis. Cell Commun Signal 2023; 21:333. [PMID: 37986165 PMCID: PMC10658864 DOI: 10.1186/s12964-023-01344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential aspects have been investigated. In this meta-analysis, data regarding (i) the EV proteome and (ii) the invasion and proliferation capacity of the NCI-60 tumor cell lines (60 cell lines from nine different tumor types) were analyzed using machine learning methods. METHODS On the basis of the entire proteome or the proteins shared by all EV samples, 60 cell lines were classified into the nine tumor types using multiple logistic regression. Then, utilizing the Least Absolute Shrinkage and Selection Operator, we constructed a discriminative protein panel, upon which the samples were reclassified and pathway analyses were performed. These panels were validated using clinical data (n = 4,665) from Human Protein Atlas. RESULTS Classification models based on the entire proteome, shared proteins, and discriminative protein panel were able to distinguish the nine tumor types with 49.15%, 69.10%, and 91.68% accuracy, respectively. Invasion and proliferation capacity of the 60 cell lines were predicted with R2 = 0.68 and R2 = 0.62 (p < 0.0001). The results of the Reactome pathway analysis of the discriminative protein panel suggest that the molecular content of EVs might be indicative of tumor-specific biological processes. CONCLUSION Integrating in vitro EV proteomic data, cell physiological characteristics, and clinical data of various tumor types illuminates the diagnostic, prognostic, and therapeutic potential of EVs. Video Abstract.
Collapse
Affiliation(s)
- Matyas Bukva
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Doctoral School of Interdisciplinary Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Gabriella Dobra
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Doctoral School of Interdisciplinary Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Edina Gyukity-Sebestyen
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Timea Boroczky
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Doctoral School of Interdisciplinary Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Marietta Margareta Korsos
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Peter Horvath
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Krisztina Buzas
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Maria Harmati
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary.
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary.
| |
Collapse
|
10
|
E VIGNESHBALAJI, RAMESH DIVYA, SHAJU MANISHACHUNGAN, KUMAR AKSHARA, PANDEY SAMYAK, NAYAK RAKSHA, ALKA V, MUNJAL SRISHTI, SALIMI AMIR, PAI KSREEDHARARANGANATH, BAKKANNAVAR SHANKARM. Biological, pathological, and multifaceted therapeutic functions of exosomes to target cancer. Oncol Res 2023; 32:73-94. [PMID: 38188673 PMCID: PMC10767237 DOI: 10.32604/or.2023.030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/25/2023] [Indexed: 01/09/2024] Open
Abstract
Exosomes, small tiny vesicle contains a large number of intracellular particles that employ to cause various diseases and prevent several pathological events as well in the human body. It is considered a "double-edged sword", and depending on its biological source, the action of exosomes varies under physiological conditions. Also, the isolation and characterization of the exosomes should be performed accurately and the methodology also will vary depending on the exosome source. Moreover, the uptake of exosomes from the recipients' cells is a vital and initial step for all the physiological actions. There are different mechanisms present in the exosomes' cellular uptake to deliver their cargo to acceptor cells. Once the exosomal uptake takes place, it releases the intracellular particles that leads to activate the physiological response. Even though exosomes have lavish functions, there are some challenges associated with every step of their preparation to bring potential therapeutic efficacy. So, overcoming the pitfalls would give a desired quantity of exosomes with high purity.
Collapse
Affiliation(s)
- VIGNESH BALAJI E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - DIVYA RAMESH
- Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - MANISHA CHUNGAN SHAJU
- School of Health and Community Services, Durham College, Oshawa, Ontario, L1G2G5, Canada
| | - AKSHARA KUMAR
- Department of Pharmaceutical Regulatory Affairs and Management, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SAMYAK PANDEY
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - RAKSHA NAYAK
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - V. ALKA
- Department of Clinical Psychology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SRISHTI MUNJAL
- Department of Speech and Hearing, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - AMIR SALIMI
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - K. SREEDHARA RANGANATH PAI
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - SHANKAR M. BAKKANNAVAR
- Department of Forensic Medicine and Toxicology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
11
|
Bucci-Muñoz M, Gola AM, Rigalli JP, Ceballos MP, Ruiz ML. Extracellular Vesicles and Cancer Multidrug Resistance: Undesirable Intercellular Messengers? Life (Basel) 2023; 13:1633. [PMID: 37629489 PMCID: PMC10455762 DOI: 10.3390/life13081633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell-cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes. In this article, we review the scientific evidence addressing the regulation of ABC transporters by EV-mediated cell-cell communication. MDR transfer from drug-resistant to drug-sensitive cells has been identified in several tumor entities. This was attributed, in some cases, to the direct shuttle of transporter molecules or its coding mRNA between cells. Also, EV-mediated transport of regulatory proteins (e.g., transcription factors) and noncoding RNAs have been indicated to induce MDR. Conversely, the transfer of a drug-sensitive phenotype via EVs has also been reported. Additionally, interactions between non-tumor cells and the tumor cells with an impact on MDR are presented. Finally, we highlight uninvestigated aspects and possible approaches to exploiting this knowledge toward the identification of druggable processes and molecules and, ultimately, the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Bucci-Muñoz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Aldana Magalí Gola
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
| | - María Paula Ceballos
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - María Laura Ruiz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| |
Collapse
|
12
|
Baselga M, Iruzubieta P, Castiella T, Monzón M, Monleón E, Berga C, Schuhmacher AJ, Junquera C. Spheresomes are the main extracellular vesicles in low-grade gliomas. Sci Rep 2023; 13:11180. [PMID: 37430101 DOI: 10.1038/s41598-023-38084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Cancer progression and its impact on treatment response and prognosis is deeply regulated by tumour microenvironment (TME). Cancer cells are in constant communication and modulate TME through several mechanisms, including transfer of tumour-promoting cargos through extracellular vesicles (EVs) or oncogenic signal detection by primary cilia. Spheresomes are a specific EV that arise from rough endoplasmic reticulum-Golgi vesicles. They accumulate beneath cell membrane and are released to the extracellular medium through multivesicular spheres. This study describes spheresomes in low-grade gliomas using electron microscopy. We found that spheresomes are more frequent than exosomes in these tumours and can cross the blood-brain barrier. Moreover, the distinct biogenesis processes of these EVs result in unique cargo profiles, suggesting different functional roles. We also identified primary cilia in these tumours. These findings collectively contribute to our understanding of glioma progression and metastasis.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
| | - Pablo Iruzubieta
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Tomás Castiella
- Department of Pathological Anatomy, Legal Medicine, and Toxicology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Marta Monzón
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Eva Monleón
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain.
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain.
| | - Carmen Berga
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Alberto J Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018, Zaragoza, Spain
| | - Concepción Junquera
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
13
|
Irmer B, Efing J, Reitnauer LE, Angenendt A, Heinrichs S, Schubert A, Schulz M, Binder C, Tio J, Hansen U, Geyer C, Gerwing M, Bleckmann A, Menck K. Extracellular vesicle-associated tyrosine kinase-like orphan receptors ROR1 and ROR2 promote breast cancer progression. Cell Commun Signal 2023; 21:171. [PMID: 37430307 DOI: 10.1186/s12964-023-01186-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) harbor a plethora of different biomolecules, which they can transport across cells. In cancer, tumor-derived EVs thereby support the creation of a favorable tumor microenvironment. So far, EV uptake and cargo delivery into target cells have been regarded as the main mechanisms for the pro-tumoral function of EVs. To test this hypothesis, we investigated the fate of the oncogenic transmembrane Wnt tyrosine kinase-like orphan receptor 1 and 2 (ROR1, ROR2) delivered via distinct EV subpopulations to breast cancer cells and aimed to unravel their impact on tumor progression. METHODS EVs were isolated by differential ultracentrifugation from cell culture supernatant as well as plasma samples from healthy individuals (n = 27) and breast cancer patients (n = 41). EVs were thoroughly characterized by electron microscopy, nanoparticle tracking analysis, immunoblot, and flow cytometry. ROR transfer to target cells was observed using microscopy-based assays and biodistribution experiments were conducted in syngeneic mice. EV impact on cancer cell migration and invasion was tested in functional assays. RESULTS We observed that the supernatant of ROR-overexpressing cells was sufficient for transferring the receptors to ROR-negative cells. Analyzing the secretome of the ROR-overexpressing cells, we detected a high enrichment of ROR1/2 on large and small EVs, but not on large oncosomes. Interestingly, the majority of ROR-positive EVs remained attached to the target cell surface after 24 h of stimulation and was quickly removed by treatment with trypsin. Nonetheless, ROR-positive EVs increased migration and invasion of breast cancer cells, even after chemically inhibiting EV uptake, in dependence of RhoA downstream signaling. In vivo, ROR-depleted EVs tended to distribute less into organs prone for the formation of breast cancer metastases. ROR-positive EVs were also significantly elevated in the plasma of breast cancer patients and allowed to separate them from healthy controls. CONCLUSIONS The oncogenic Wnt receptors ROR1/2 are transferred via EVs to the surface of ROR-negative cancer cells, in which they induce an aggressive phenotype supporting tumor progression. Video Abstract.
Collapse
Affiliation(s)
- Barnabas Irmer
- University Hospital Münster, Dept. of Medicine A, Albert-Schweitzer-Campus 1 D3, 48149, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Janes Efing
- University Hospital Münster, Dept. of Medicine A, Albert-Schweitzer-Campus 1 D3, 48149, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Lea Elisabeth Reitnauer
- University Hospital Münster, Dept. of Medicine A, Albert-Schweitzer-Campus 1 D3, 48149, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Allegra Angenendt
- University Hospital Münster, Dept. of Medicine A, Albert-Schweitzer-Campus 1 D3, 48149, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Saskia Heinrichs
- University Hospital Münster, Dept. of Medicine A, Albert-Schweitzer-Campus 1 D3, 48149, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Antonia Schubert
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
- Dept. of Medical Oncology, University Hospital Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Schulz
- Dept. of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Binder
- Dept. of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Joke Tio
- Dept. of Obstetrics and Gynaecology, University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | | | - Mirjam Gerwing
- Clinic for Radiology, University of Münster, Münster, Germany
| | - Annalen Bleckmann
- University Hospital Münster, Dept. of Medicine A, Albert-Schweitzer-Campus 1 D3, 48149, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Kerstin Menck
- University Hospital Münster, Dept. of Medicine A, Albert-Schweitzer-Campus 1 D3, 48149, Münster, Germany.
- West German Cancer Center, University Hospital Münster, Münster, Germany.
| |
Collapse
|
14
|
Bartolomé RA, Casal JI. Proteomic profiling and network biology of colorectal cancer liver metastasis. Expert Rev Proteomics 2023; 20:357-370. [PMID: 37874121 DOI: 10.1080/14789450.2023.2275681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Tissue-based proteomic studies of colorectal cancer (CRC) metastasis have delivered fragmented results, with very few therapeutic targets and prognostic biomarkers moving beyond the discovery phase. This situation is likely due to the difficulties in obtaining and analyzing large numbers of patient-derived metastatic samples, the own heterogeneity of CRC, and technical limitations in proteomics discovery. As an alternative, metastatic CRC cell lines provide a flexible framework to investigate the underlying mechanisms and network biology of metastasis for target discovery. AREAS COVERED In this perspective, we comment on different in-depth proteomic studies of metastatic versus non-metastatic CRC cell lines. Identified metastasis-related proteins are introduced and discussed according to the spatial location in different cellular fractions, with special emphasis on membrane/adhesion proteins, secreted proteins, and nuclear factors, including miRNAs associated with liver metastasis. Moreover, we analyze the biological significance and potential therapeutic applications of the identified liver metastasis-related proteins. EXPERT OPINION The combination of protein discovery and functional analysis is the only way to accelerate the progress to clinical translation of the proteomic-derived findings in a relatively fast pace. Patient-derived organoids represent a promising alternative to patient tissues and cell lines, but further optimizations are still required for achieving solid and reproducible results.
Collapse
Affiliation(s)
- Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
15
|
Tutanov OS, Glass SE, Coffey RJ. Emerging connections between GPI-anchored proteins and their extracellular carriers in colorectal cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:195-217. [PMID: 37840781 PMCID: PMC10569057 DOI: 10.20517/evcna.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Although extracellular vesicles (EVs) were discovered over 40 years ago, there has been a resurgence of interest in secreted vesicles and their attendant cargo as novel modes of intracellular communication. In addition to vesicles, two amembranous nanoparticles, exomeres and supermeres, have been isolated and characterized recently. In this rapidly expanding field, it has been challenging to assign cargo and specific functions to a particular carrier. Refinement of isolation methods, well-controlled studies, and guidelines detailed by Minimal Information for Studies of Extracellular Vesicles (MISEV) are being employed to "bring order to chaos." In this review, we will briefly summarize three types of extracellular carriers - small EVs (sEVs), exomeres, and supermeres - in the context of colorectal cancer (CRC). We found that a number of GPI-anchored proteins (GPI-APs) are overexpressed in CRC, are enriched in exosomes (a distinct subset of sEVs), and can be detected in exomeres and supermeres. This affords the opportunity to elaborate on GPI-AP biogenesis, modifications, and trafficking using DPEP1, a GPI-AP upregulated in CRC, as a prime example. We have cataloged the GPI-anchored proteins secreted in CRC and will highlight features of select CRC-associated GPI-anchored proteins we have detected. Finally, we will discuss the remaining challenges and future opportunities in studying these secreted GPI-APs in CRC.
Collapse
Affiliation(s)
- Oleg S. Tutanov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Sarah E. Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
16
|
Van Dorpe S, Lippens L, Boiy R, Pinheiro C, Vergauwen G, Rappu P, Miinalainen I, Tummers P, Denys H, De Wever O, Hendrix A. Integrating automated liquid handling in the separation workflow of extracellular vesicles enhances specificity and reproducibility. J Nanobiotechnology 2023; 21:157. [PMID: 37208684 DOI: 10.1186/s12951-023-01917-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for numerous diseases. Major impediments of EV-based biomarker discovery include the specificity and reproducibility of EV sample preparation as well as intensive manual labor. We present an automated liquid handling workstation for the density-based separation of EV from human body fluids and compare its performance to manual handling by (in)experienced researchers. RESULTS Automated versus manual density-based separation of trackable recombinant extracellular vesicles (rEV) spiked in PBS significantly reduces variability in rEV recovery as quantified by fluorescent nanoparticle tracking analysis and ELISA. To validate automated density-based EV separation from complex body fluids, including blood plasma and urine, we assess reproducibility, recovery, and specificity by mass spectrometry-based proteomics and transmission electron microscopy. Method reproducibility is the highest in the automated procedure independent of the matrix used. While retaining (in urine) or enhancing (in plasma) EV recovery compared to manual liquid handling, automation significantly reduces the presence of body fluid specific abundant proteins in EV preparations, including apolipoproteins in plasma and Tamm-Horsfall protein in urine. CONCLUSIONS In conclusion, automated liquid handling ensures cost-effective EV separation from human body fluids with high reproducibility, specificity, and reduced hands-on time with the potential to enable larger-scale biomarker studies.
Collapse
Affiliation(s)
- Sofie Van Dorpe
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Lien Lippens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Robin Boiy
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Cláudio Pinheiro
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Glenn Vergauwen
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Pekka Rappu
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Philippe Tummers
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
17
|
Borodins O, Broghammer F, Seifert M, Cordes N. Meta-analysis of expression and the targeting of cell adhesion associated genes in nine cancer types - A one research lab re-evaluation. Comput Struct Biotechnol J 2023; 21:2824-2836. [PMID: 37206618 PMCID: PMC10189096 DOI: 10.1016/j.csbj.2023.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Cancer presents as a highly heterogeneous disease with partly overlapping and partly distinct (epi)genetic characteristics. These characteristics determine inherent and acquired resistance, which need to be overcome for improving patient survival. In line with the global efforts in identifying druggable resistance factors, extensive preclinical research of the Cordes lab and others designated the cancer adhesome as a critical and general therapy resistance mechanism with multiple druggable cancer targets. In our study, we addressed pancancer cell adhesion mechanisms by connecting the preclinical datasets generated in the Cordes lab with publicly available transcriptomic and patient survival data. We identified similarly changed differentially expressed genes (scDEGs) in nine cancers and their corresponding cell models relative to normal tissues. Those scDEGs interconnected with 212 molecular targets from Cordes lab datasets generated during two decades of research on adhesome and radiobiology. Intriguingly, integrative analysis of adhesion associated scDEGs, TCGA patient survival and protein-protein network reconstruction revealed a set of overexpressed genes adversely affecting overall cancer patient survival and specifically the survival in radiotherapy-treated cohorts. This pancancer gene set includes key integrins (e.g. ITGA6, ITGB1, ITGB4) and their interconnectors (e.g. SPP1, TGFBI), affirming their critical role in the cancer adhesion resistome. In summary, this meta-analysis demonstrates the importance of the adhesome in general, and integrins together with their interconnectors in particular, as potentially conserved determinants and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Olegs Borodins
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Felix Broghammer
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
18
|
Regulation of Adenine Nucleotide Metabolism by Adenylate Kinase Isozymes: Physiological Roles and Diseases. Int J Mol Sci 2023; 24:ijms24065561. [PMID: 36982634 PMCID: PMC10056885 DOI: 10.3390/ijms24065561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Adenylate kinase (AK) regulates adenine nucleotide metabolism and catalyzes the ATP + AMP ⇌ 2ADP reaction in a wide range of organisms and bacteria. AKs regulate adenine nucleotide ratios in different intracellular compartments and maintain the homeostasis of the intracellular nucleotide metabolism necessary for growth, differentiation, and motility. To date, nine isozymes have been identified and their functions have been analyzed. Moreover, the dynamics of the intracellular energy metabolism, diseases caused by AK mutations, the relationship with carcinogenesis, and circadian rhythms have recently been reported. This article summarizes the current knowledge regarding the physiological roles of AK isozymes in different diseases. In particular, this review focused on the symptoms caused by mutated AK isozymes in humans and phenotypic changes arising from altered gene expression in animal models. The future analysis of intracellular, extracellular, and intercellular energy metabolism with a focus on AK will aid in a wide range of new therapeutic approaches for various diseases, including cancer, lifestyle-related diseases, and aging.
Collapse
|
19
|
Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer 2023; 22:33. [PMID: 36797736 PMCID: PMC9933347 DOI: 10.1186/s12943-023-01741-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Current clinical tools for breast cancer (BC) diagnosis are insufficient but liquid biopsy of different bodily fluids has recently emerged as a minimally invasive strategy that provides a real-time snapshot of tumour biomarkers for early diagnosis, active surveillance of progression, and post-treatment recurrence. Extracellular vesicles (EVs) are nano-sized membranous structures 50-1000 nm in diameter that are released by cells into biological fluids. EVs contain proteins, nucleic acids, and lipids which play pivotal roles in tumourigenesis and metastasis through cell-to-cell communication. Proteins and miRNAs from small EVs (sEV), which range in size from 50-150 nm, are being investigated as a potential source for novel BC biomarkers using mass spectrometry-based proteomics and next-generation sequencing. This review covers recent developments in sEV isolation and single sEV analysis technologies and summarises the sEV protein and miRNA biomarkers identified for BC diagnosis, prognosis, and chemoresistance. The limitations of current sEV biomarker research are discussed along with future perspective applications.
Collapse
Affiliation(s)
- Yujin Lee
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Jie Ni
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Julia Beretov
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia ,grid.416398.10000 0004 0417 5393Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Valerie C. Wasinger
- grid.1005.40000 0004 4902 0432Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432School of Medical Science, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Peter Graham
- grid.1005.40000 0004 4902 0432St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.416398.10000 0004 0417 5393Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217 Australia
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia.
| |
Collapse
|
20
|
Kuhn M, Zhang Y, Favate J, Morita M, Blucher A, Das S, Liang S, Preet R, Parham LR, Williams KN, Molugu S, Armstrong RJ, Zhang W, Yang J, Hamilton KE, Dixon DA, Mills G, Morgan TK, Shah P, Andres SF. IMP1/IGF2BP1 in human colorectal cancer extracellular vesicles. Am J Physiol Gastrointest Liver Physiol 2022; 323:G571-G585. [PMID: 36194131 PMCID: PMC9678429 DOI: 10.1152/ajpgi.00121.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanoparticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding proteins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo. Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings suggest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colorectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.
Collapse
Affiliation(s)
- Madeline Kuhn
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Yang Zhang
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Mayu Morita
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Aurora Blucher
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Sukanya Das
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Shun Liang
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas
| | - Louis R Parham
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kathy N Williams
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sudheer Molugu
- Electron Microscopy Resource Lab, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Randall J Armstrong
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon
| | - Wei Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiegang Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas
| | - Gordon Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Terry K Morgan
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sarah F Andres
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
21
|
Adnani L, Spinelli C, Tawil N, Rak J. Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Semin Cancer Biol 2022; 87:196-213. [PMID: 36371024 DOI: 10.1016/j.semcancer.2022.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.
Collapse
Affiliation(s)
- Lata Adnani
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Cristiana Spinelli
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Nadim Tawil
- McGill University and Research Institute of the McGill University Health Centre, Canada
| | - Janusz Rak
- McGill University and Research Institute of the McGill University Health Centre, Canada; Department of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
22
|
Priya R, Jain V, Akhtar J, Saklani N, Sakhuja P, Agarwal AK, Polisetty RV, Sirdeshmukh R, Kar S, Gautam P. Proteomic profiling of cell line-derived extracellular vesicles to identify candidate circulatory markers for detection of gallbladder cancer. Front Oncol 2022; 12:1027914. [PMID: 36505879 PMCID: PMC9727277 DOI: 10.3389/fonc.2022.1027914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Gallbladder cancer (GBC) is the sixth most common gastrointestinal tract cancer with a very low overall survival and poor prognosis. Profiling of cancer-derived extracellular vesicles (EVs) is an emerging strategy for identification of candidate biomarkers for the detection and prognosis of the disease. The aim of the study was to analyse the protein content from GBC cell line- derived EVs with emphasis on proteins which could be used as candidate biomarkers for the detection of GBC. NOZ and OCUG-1 cell lines were cultured and EVs were isolated from conditioned media. LC-MS/MS analysis of total EV proteins led to the identification of a total of 268 proteins in both the cell lines. Of these, 110 proteins were identified with ≥2 unique peptides with ≥2 PSMs in at least two experimental and technical replicate runs. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database was used to perform bioinformatics analysis of 110 proteins which showed 'cell adhesion molecule binding', 'integrin binding', 'cadherin binding' among the top molecular functions and 'focal adhesion' to be among the top pathways associated with the EV proteins. A total of 42 proteins including haptoglobin (HP), pyruvate kinase (PKM), annexin A2 (ANXA2), thrombospondin 1 (THBS1), were reported to be differentially abundant in GBC tissue. Of these, 16 proteins were reported to be differentially abundant in plasma and plasma-derived EVs. We infer these proteins to be highly important to be considered as potential circulatory biomarkers for the detection of GBC. To check the validity of this hypothesis, one of the proteins, haptoglobin (HP) as a representative case, was analysed in plasma by quantitative Enzyme- linked immunosorbent assay (ELISA) and we observed its increased levels in GBC in comparison to controls (p value= 0.0063). Receiver operating characteristic (ROC) curve analysis for GBC vs controls showed an Area under the ROC Curve (AUC) of 0.8264 for HP with 22% sensitivity against 100% specificity. We propose that HP along with other candidate proteins may be further explored for their clinical application.
Collapse
Affiliation(s)
- Ratna Priya
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India
- Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Vaishali Jain
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India
- Department (NIL), Academy of Higher Education (MAHE), Manipal, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India
- Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Neeraj Saklani
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India
| | - Puja Sakhuja
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Anil Kumar Agarwal
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | | | - Ravi Sirdeshmukh
- Department (NIL), Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Sudeshna Kar
- Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, Indian Council of Medical Research (ICMR)- National Institute of Pathology, New Delhi, India
| |
Collapse
|
23
|
Lee YJ, Seo CW, Lee D, Choi D. Proteomics of Extracellular Vesicle in Glioblastoma. Brain Tumor Res Treat 2022; 10:207-214. [PMID: 36347634 PMCID: PMC9650117 DOI: 10.14791/btrt.2022.0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/22/2022] [Indexed: 04/25/2025] Open
Abstract
Glioblastoma multiforme (GBM), a high-grade astrocytic brain tumor, has highly aggressive and heterogeneous phenotypes with active cellular invasion, angiogenesis, and immune system modulation in the tumor microenvironment driven by complex oncogenic mutations. This abnormal disease progression could be attributed to extracellular vesicles (EVs) containing diverse bioactive molecules, including proteins, genetic materials, lipids, and metabolites. Importantly, GBM-related EVs have emerged as key mediators in cancer progression, acting as carriers for the transfer of oncogenic proteins such as epidermal growth factor receptor variant III (EGFRvIII) and genetic materials (DNA and RNA). Remarkably, recent progress in EV analysis has enabled its purification with high confidence by estimating the purity level of isolated EVs. Thus, mass spectrometry-based proteomic analysis could generate highly reliable vesicular proteomes. Glioblastoma EV proteome studies have revealed the specific increase in vesicular protein cargo due to their oncogenic transformation, and these EV proteins are closely associated with cancer invasion. Moreover, their proteomic data reflects the molecular alterations that occur in parental GBM and provides potent diagnostic information in a minimally invasive manner in liquid biopsy. Thus, proteomic analysis of GBM EVs could provide an increased understanding of their biological properties and activity in the GBM microenvironment, and provide significant implications for advanced approaches in the diagnosis of these intractable tumors.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chul Won Seo
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Donghyeong Lee
- Department of Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Dongsic Choi
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea.
| |
Collapse
|
24
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
25
|
Bi Y, Qiao X, Liu Q, Song S, Zhu K, Qiu X, Zhang X, Jia C, Wang H, Yang Z, Zhang Y, Ji G. Systemic proteomics and miRNA profile analysis of exosomes derived from human pluripotent stem cells. Stem Cell Res Ther 2022; 13:449. [PMID: 36064647 PMCID: PMC9444124 DOI: 10.1186/s13287-022-03142-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing studies have reported the therapeutic effect of mesenchymal stem cell (MSC)-derived exosomes by which protein and miRNA are clearly characterized. However, the proteomics and miRNA profiles of exosomes derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) remain unclear. METHODS In this study, we isolated exosomes from hESCs, hiPSCs, and human umbilical cord mesenchymal stem cells (hUC-MSCs) via classic ultracentrifugation and a 0.22-μm filter, followed by the conservative identification. Tandem mass tag labeling and label-free relative peptide quantification together defined their proteomics. High-throughput sequencing was performed to determine miRNA profiles. Then, we conducted a bioinformatics analysis to identify the dominant biological processes and pathways modulated by exosome cargos. Finally, the western blot and RT-qPCR were performed to detect the actual loads of proteins and miRNAs in three types of exosomes. RESULTS Based on our study, the cargos from three types of exosomes contribute to sophisticated biological processes. In comparison, hESC exosomes (hESC-Exos) were superior in regulating development, metabolism, and anti-aging, and hiPSC exosomes (hiPSC-Exos) had similar biological functions as hESC-Exos, whereas hUC-MSCs exosomes (hUC-MSC-Exos) contributed more to immune regulation. CONCLUSIONS The data presented in our study help define the protein and miRNA landscapes of three exosomes, predict their biological functions via systematic and comprehensive network analysis at the system level, and reveal their respective potential applications in different fields so as to optimize exosome selection in preclinical and clinical trials.
Collapse
Affiliation(s)
- Youkun Bi
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlong Qiao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Liu
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaole Song
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqi Zhu
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Qiu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xiang Zhang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ce Jia
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiwen Wang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiguang Yang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Zhang
- Sixth Department of Liver Disease, Dalian Public Health Clinical Center, Dalian Medical University, Dalian, 116023, China.
| | - Guangju Ji
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
26
|
Ali NB, Abdull Razis AF, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic Applications of Mammal and Plant-Derived Extracellular Vesicles: Latest Findings, Current Technologies, and Prospects. Molecules 2022; 27:3941. [PMID: 35745063 PMCID: PMC9228370 DOI: 10.3390/molecules27123941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.
Collapse
Affiliation(s)
- Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
| |
Collapse
|
27
|
Yuan HH, Zhang XC, Wei XL, Zhang WJ, Du XX, Huang P, Chen H, Bai L, Zhang HF, Han Y. LncRNA UCA1 mediates Cetuximab resistance in Colorectal Cancer via the MiR-495 and HGF/c-MET Pathways. J Cancer 2022; 13:253-267. [PMID: 34976187 PMCID: PMC8692674 DOI: 10.7150/jca.65687] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Cetuximab is one of the most widely used monoclonal antibodies to treat patients with RAS/BRAF wild-type metastatic colorectal cancer (mCRC). Unfortunately, cetuximab resistance often occurs during targeted therapy. However, the underlying epigenetic mechanisms remain unclear. Our previous study demonstrated that the exosomal transfer of urothelial carcinoma-associated 1 (UCA1) confers cetuximab resistance to CRC cells. The goal of this study was to elucidate the detailed role of UCA1 in cetuximab resistance in CRC and the underlying molecular mechanism. Methods:In vitro and in vivo functional studies were performed to assess the role of UCA1 in cetuximab resistance in CRC cell lines and xenograft models. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to examine UCA1 localization and expression. Bioinformatics analysis was performed to predict the potential mechanism of UCA1, which was further validated by the dual-luciferase reporter assay and the RNA immunoprecipitation (RIP) assay. Cells treated with indicators were subjected to Cell Counting Kit-8 (CCK-8) and western blotting to investigate the role of hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition (c-MET) signalling in UCA1-mediated cetuximab resistance. Results: We showed that UCA1 decreased CRC cell sensitivity to cetuximab by suppressing apoptosis. Mechanistic studies revealed that UCA1 promoted cetuximab resistance by competitively binding miR-495 to facilitate HGF and c-MET expression in CRC cells. Moreover, HGF was shown to attenuate the cetuximab-induced inhibition of cell proliferation by activating the HGF/c-MET pathway in CRC cells. Conclusion: We provide the first evidence of a UCA1-miR-495-HGF/c-MET regulatory network involved in cetuximab resistance in CRC. Therefore, UCA1 has potential as a predictor and therapeutic target for cetuximab resistance.
Collapse
Affiliation(s)
- Heng-Heng Yuan
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xin-Chen Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiao-Li Wei
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Wen-Jie Zhang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xiao-Xue Du
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Peng Huang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Hao Chen
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Lu Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Hong-Feng Zhang
- Department of Gastric Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| |
Collapse
|
28
|
Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics. Biosens Bioelectron 2021; 194:113589. [PMID: 34543824 DOI: 10.1016/j.bios.2021.113589] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/09/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have shown promising features as biomarkers for early cancer diagnoses. The outer layer of cancer cell-derived EVs consists of organotropic metastasis-induced membrane proteins and specifically enriched proteoglycans, and these molecular compositions determine EV surface charge. Although many efforts have been devoted to investigating the correlation between EV subsets obtained through density-, size-, and immunoaffinity-based captures and expressed membrane proteins, understanding the correlation between EV subsets obtained through surface charge-based capture and expressed membrane proteins is lacking. Here, we propose a methodology to profile membrane proteins of EV subsets obtained through surface charge-based capture. Nanowire-induced charge-based capture of EVs and in-situ profiling of EV membrane proteins are the two key methodology points. The oxide nanowires allowed EVs to be obtained through surface charge-based capture due to the diverse isoelectric points of the oxides and the large surface-to-volume ratios of the nanowire structures. And, with the ZnO nanowire device, whose use does not require any purification and concentration processes, we demonstrated the correlation between negatively-charged EV subsets and expressed membrane proteins derived from each cell. Furthermore, we determined that a colon cancer related membrane protein was overexpressed on negatively charged surface EVs derived from colon cancer cells.
Collapse
|
29
|
Choi H, Choi Y, Yim HY, Mirzaaghasi A, Yoo JK, Choi C. Biodistribution of Exosomes and Engineering Strategies for Targeted Delivery of Therapeutic Exosomes. Tissue Eng Regen Med 2021; 18:499-511. [PMID: 34260047 PMCID: PMC8325750 DOI: 10.1007/s13770-021-00361-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are cell-secreted nano-sized vesicles which deliver diverse biological molecules for intercellular communication. Due to their therapeutic potential, exosomes have been engineered in numerous ways for efficient delivery of active pharmaceutical ingredients to various target organs, tissues, and cells. In vivo administered exosomes are normally delivered to the liver, spleen, kidney, lung, and gastrointestinal tract and show rapid clearance from the blood circulation after systemic injection. The biodistribution and pharmacokinetics (PK) of exosomes can be modulated by engineering various factors such as cellular origin and membrane protein composition of exosomes. Recent advances accentuate the potential of targeted delivery of engineered exosomes even to the most challenging organs including the central nervous system. Major breakthroughs have been made related to various imaging techniques for monitoring in vivo biodistribution and PK of exosomes, as well as exosomal surface engineering technologies for inducing targetability. For inducing targeted delivery, therapeutic exosomes can be engineered to express various targeting moieties via direct modification methods such as chemically modifying exosomal surfaces with covalent/non-covalent bonds, or via indirect modification methods by genetically engineering exosome-producing cells. In this review, we describe the current knowledge of biodistribution and PK of exosomes, factors determining the targetability and organotropism of exosomes, and imaging technologies to monitor in vivo administered exosomes. In addition, we highlight recent advances in strategies for inducing targeted delivery of exosomes to specific organs and cells.
Collapse
Affiliation(s)
- Hojun Choi
- ILIAS Biologics Incorporated, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea
| | - Yoorim Choi
- ILIAS Biologics Incorporated, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea
| | - Hwa Young Yim
- ILIAS Biologics Incorporated, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea
| | - Amin Mirzaaghasi
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Kwang Yoo
- ILIAS Biologics Incorporated, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea.
| | - Chulhee Choi
- ILIAS Biologics Incorporated, 40-20, Techno 6-ro, Yuseong-gu, Daejeon, 34014, Republic of Korea.
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
30
|
Bahrami A, Moradi Binabaj M, A Ferns G. Exosomes: Emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed Pharmacother 2021; 141:111882. [PMID: 34218003 DOI: 10.1016/j.biopha.2021.111882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small cell derived membrane nano-vesicles that carry various components including lipids, proteins and nucleic acids. There is accumulating evidence that exosomes have a role in tumorigenesis, tumor invasiveness and metastasis. Furthermore, oncogene mutation may influence exosome release from tumor cells. Exosomes may induce colorectal cancer by altering signaling cascades such as the Wnt/β-catenin and KRAS pathways that are involved in cell proliferation, apoptosis, dissemination, angiogenesis, and drug resistance. The aim of this review was to overview recent findings evaluating the association between tumor cells-derived exosomes and their content in modulating signaling pathways in colorectal cancer.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
31
|
Chen Y, Xu Y, Zhong H, Yuan H, Liang F, Liu J, Tang W. Extracellular vesicles in Inter-Kingdom communication in gastrointestinal cancer. Am J Cancer Res 2021; 11:1087-1103. [PMID: 33948347 PMCID: PMC8085842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023] Open
Abstract
The production and secretion of extracellular vesicles (EVs) are common features of cells (including various normal cells, neoplastic cell lines as well as bacteria) that span all domains of life. Tumor-derived exosomes are enriched with kinds of tumorigenesis mediators which are derived from the cytoplasm of cancer cells and fully reflect the tumor conditions. Indeed, the major topics and challenges on current oncological research are the identification of tumorigenic and metastatic molecules in tumor-cell-derived exosomes as well as elucidating the pathways that guarantee these components to be included in exosomes. The bacterial EVs have also been implicated in the pathogenesis of gastrointestinal (GI) tumors and chronic inflammatory diseases; however, the possible function of outer membrane vesicles (OMVs) in tumorigenesis remains largely underestimated. We suggest that EVs from both eukaryotic cells and different microbes in GI tract act as regulators of intracellular and cross-species communication, thus particularly facilitate tumor cell survival and multi-drug resistance. Therefore, our review introduces comprehensive knowledge on the promising role of EVs (mainly exosomes and OMVs) production of GI cancer development and gut microbiome, as well as its roles in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yi Chen
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yansong Xu
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Huage Zhong
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Fangfang Liang
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Junjie Liu
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Ultrasound, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
32
|
Cho S, Kim SB, Lee Y, Song EC, Kim U, Kim HY, Suh JH, Goughnour PC, Kim Y, Yoon I, Shin NY, Kim D, Kim IK, Kang CY, Jang SY, Kim MH, Kim S. Endogenous TLR2 ligand embedded in the catalytic region of human cysteinyl-tRNA synthetase 1. J Immunother Cancer 2021; 8:jitc-2019-000277. [PMID: 32461342 PMCID: PMC7254149 DOI: 10.1136/jitc-2019-000277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background The generation of antigen-specific cytotoxic T lymphocyte (CTL) responses is required for successful cancer vaccine therapy. In this regard, ligands of Toll-like receptors (TLRs) have been suggested to activate adaptive immune responses by modulating the function of antigen-presenting cells (APCs). Despite their therapeutic potential, the development of TLR ligands for immunotherapy is often hampered due to rapid systemic toxicity. Regarding the safety concerns of currently available TLR ligands, finding a new TLR agonist with potent efficacy and safety is needed. Methods A unique structural domain (UNE-C1) was identified as a novel TLR2/6 in the catalytic region of human cysteinyl-tRNA synthetase 1 (CARS1) using comprehensive approaches, including RNA sequencing, the human embryonic kidney (HEK)-TLR Blue system, pull-down, and ELISA. The potency of its immunoadjuvant properties was analyzed by assessing antigen-specific antibody and CTL responses. In addition, the efficacy of tumor growth inhibition and the presence of the tumor-infiltrating leukocytes were evaluated using E.G7-OVA and TC-1 mouse models. The combined effect of UNE-C1 with an immune checkpoint inhibitor, anti-CTLA-4 antibody, was also evaluated in vivo. The safety of UNE-C1 immunization was determined by monitoring splenomegaly and cytokine production in the blood. Results Here, we report that CARS1 can be secreted from cancer cells to activate immune responses via specific interactions with TLR2/6 of APCs. A unique domain (UNE-C1) inserted into the catalytic region of CARS1 was determined to activate dendritic cells, leading to the stimulation of robust humoral and cellular immune responses in vivo. UNE-C1 also showed synergistic efficacy with cancer antigens and checkpoint inhibitors against different cancer models in vivo. Further, the safety assessment of UNE-C1 showed lower systemic cytokine levels than other known TLR agonists. Conclusions We identified the endogenous TLR2/6 activating domain from human cysteinyl-tRNA synthetase CARS1. This novel TLR2/6 ligand showed potent immune-stimulating activity with little toxicity. Thus, the UNE-C1 domain can be developed as an effective immunoadjuvant with checkpoint inhibitors or cancer antigens to boost antitumor immunity.
Collapse
Affiliation(s)
- Seongmin Cho
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sang Bum Kim
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Youngjin Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ee Chan Song
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Uijoo Kim
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyeong Yun Kim
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ji Hun Suh
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Peter C Goughnour
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea
| | - YounHa Kim
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea
| | - Ina Yoon
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea
| | - Na Young Shin
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Chang-Yuil Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, South Korea.,Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Song Yee Jang
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center and College of Pharmacy, Seoul National University, Suwon, South Korea .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
33
|
CD44 and Tumor-Derived Extracellular Vesicles (TEVs). Possible Gateway to Cancer Metastasis. Int J Mol Sci 2021; 22:ijms22031463. [PMID: 33540535 PMCID: PMC7867195 DOI: 10.3390/ijms22031463] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis, the final stage of tumor progression, is a complex process governed by the interplay of multiple types of cells and the tumor microenvironment. One of the aspects of this interplay involves the release of various factors by the tumor cells alone or by forcing other cells to do so. As a consequence of these actions, tumor cells are prepared in favorable conditions for their dissemination and spread to other sites/organs, which guarantees their escape from immunosurveillance and further progression. Tumor-derived extracellular vesicles (TEVs) represent a heterogeneous population of membrane-bound vesicles that are being actively released by different tumors. The array of proteins (i.e., receptors, cytokines, chemokines, etc.) and nucleic acids (i.e., mRNA, miR, etc.) that TEVs can transfer to other cells is often considered beneficial for the tumor’s survival and proliferation. One of the proteins that is associated with many different tumors as well as their TEVs is a cluster of differentiation 44 in its standard (CD44s) and variant (CD44v) form. This review covers the present information regarding the TEVs-mediated CD44s/CD44v transfer/interaction in the context of cancer metastasis. The content and the impact of the transferred cargo by this type of TEVs also are discussed with regards to tumor cell dissemination.
Collapse
|
34
|
Xue F, Chen Y, Wen Y, Abhange K, Zhang W, Cheng G, Quinn Z, Mao W, Wan Y. Isolation of extracellular vesicles with multivalent aptamers. Analyst 2021; 146:253-261. [PMID: 33107503 DOI: 10.1039/d0an01420f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are lipid-enclosed submicron-sized vesicles that are secreted by all eukaryotic cells. EVs can selectively encapsulate tissue-specific small molecules from parent cells and efficiently deliver them to recipient cells. As signal mediators of intercellular communication, the molecules packaged in EVs play critical roles in the pathophysiology of diseases. In relevant clinical translation, EV contents have been used for cancer diagnosis and treatment monitoring. To further promote EV-based cancer liquid biopsy toward large-scale clinical implementation, the efficient and specific isolation of pure tumor-derived EVs from body fluids is a prerequisite. However, the existing EV isolation methods are unable to address certain technical challenges, such as lengthy procedures, low throughput, low specificity, heavy protein contamination, etc., and thus, new approaches for EV isolation are required. Here, we report a multivalent, long single-stranded aptamer with repeated units for EV enrichment and retrieval. After short incubation of biotin-labeled multivalent aptamers (MAs) with the samples, EVs can be quickly secured by MAs, anchored onto streptavidin-coated microspheres, and further retrieved via digestion of the DNA aptamer. Approximately 45% of EVs can be isolated from the spiked samples in 40 min with a depletion of 84.7% of albumin contamination. In addition, 93.1% of the isolated EVs can be retrieved via DNase-mediated aptamer degradation in 10 min for downstream molecular analyses. Our findings suggest that MAs can efficiently and specifically isolate EVs derived from malignant lymphocytes, and this simple method could facilitate the EV-centered study of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Fei Xue
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Exosomes represent an important group of extracellular vesicles. They are formed in endosomal compartments and are actively secreted to extracellular spaces. Several membrane proteins, including integrins, are present on the surface of exosomes. As exosomal integrins are competent for binding to ligand, they can play important roles in directing the tissue distribution of exosomes. Integrin-directed exosomal trafficking in vivo is involved in regulating the remodeling of cell homing niches for metastatic cancers and migrating lymphocytes. This chapter describes the methods used to study integrin functions on exosomes including: isolation and biophysical characterization of exosomes, exosomal integrin-ligand binding assays, and in vivo competitive exosome homing assays.
Collapse
Affiliation(s)
- Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| |
Collapse
|
36
|
Charest A. Experimental and Biological Insights from Proteomic Analyses of Extracellular Vesicle Cargos in Normalcy and Disease. ADVANCED BIOSYSTEMS 2020; 4:e2000069. [PMID: 32815324 PMCID: PMC8091982 DOI: 10.1002/adbi.202000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) offer a vehicle for diagnostic and therapeutic utility. EVs carry bioactive cargo and an accrued interest in their characterization has emerged. Efforts at identifying EV-enriched protein or RNA led to a surprising realization that EVs are excessively heterogeneous in nature. This diversity is originally attributed to vesicle sizes but it is becoming evident that different classes of EVs vehiculate distinct molecular cargos. Therefore, one of the current challenges in EV research is their selective isolation in quantities sufficient for efficient downstream analyses. Many protocols have been developed; however, reproducibility between research groups can be difficult to reach and inter-studies analyses of data from different isolation protocols are unmanageable. Therefore, there is an unmet need to optimize and standardize methods and protocols for the isolation and purification of EVs. This review focuses on the diverse techniques and protocols used over the years to isolate and purify EVs with a special emphasis on their adequacy for proteomics applications. By combining recent advances in specific isolation methods that yield superior quality of EV preparations and mass spectrometry techniques, the field is now prepared for transformative advancements in establishing distinct categorization and cargo identification of subpopulations based on EV surface markers.
Collapse
|
37
|
Wang S, Zhang Z, Gao Q. Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:552-564. [PMID: 33510943 PMCID: PMC7810909 DOI: 10.1016/j.omtn.2020.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022]
Abstract
Cancer cell-derived extracellular vesicles (EVs) have been reported to promote the progression of colorectal cancer (CRC), although the regulatory mechanism remains uncharacterized. In this study, we investigated the role of microRNA-25 (miR-25)/sirtuin 6 (SIRT6) in the contribution of EVs derived from CRC cells to progression of CRC. In a co-culture system with EVs from HCT116 and NCM460 cells, the viability, migratory, and invasive properties of SW480 and SW620 cells were evaluated by cell counting kit-8 (CCK-8) and Transwell assays. Luciferase, chromatin immunoprecipitation (ChIP), and RNA immunoprecipitation (RIP) assays were conducted to verify the interaction among miR-25, SIRT6, lin-28 homologB (Lin28b), and neuropilin-1 (NRP-1). It was established that HCT116 cell-derived EVs promoted the malignant properties of SW480 cells and SW620 cells by delivering miR-25. SIRT6 was targeted by miR-25, whereas SIRT6 inhibited NRP-1 through downregulation of Lin28b. The tumor-bearing nude mouse experiments substantiated that HCT116 cell-derived EVs transferred miR-25 to facilitate tumor formation and metastasis by inhibiting SIRT6. In summary, our study clarifies the involvement of miR-25-targeted SIRT6 inhibition and SIRT6-mediated inhibition of the Lin28b/NRP-1 axis in CRC cell-derived EVs to CRC progression and metastasis.
Collapse
Affiliation(s)
- Shanchao Wang
- Department of Anorectal, Linyi People's Hospital, Linyi 276003, Shandong Province, P.R. China
| | - Zeyan Zhang
- Department of Anorectal, Linyi People's Hospital, Linyi 276003, Shandong Province, P.R. China
| | - Qianfu Gao
- Department of Anorectal, Linyi People's Hospital, Linyi 276003, Shandong Province, P.R. China
| |
Collapse
|
38
|
Song Y, Kim Y, Ha S, Sheller-Miller S, Yoo J, Choi C, Park CH. The emerging role of exosomes as novel therapeutics: Biology, technologies, clinical applications, and the next. Am J Reprod Immunol 2020; 85:e13329. [PMID: 32846024 PMCID: PMC7900947 DOI: 10.1111/aji.13329] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
The extracellular vesicles (EVs) research area has grown rapidly because of their pivotal roles in intercellular communications and maintaining homeostasis of individual organism. As a subtype of EVs, exosomes are made via unique biogenesis pathway and exhibit disparate functional and phenotypic characteristics. Functionally, exosomes transfer biological messages from donor cell to recipient cell, which makes exosomes as a novel therapeutic platform delivering therapeutic materials to the target tissue/cell. Currently, both academia and industry try to develop exosome platform‐based therapeutics for disease management, some of which are already in clinical trials. In this review, we will discuss focusing on therapeutic values of exosomes, recent advances in therapeutic exosome platform development, and late development of exosome therapeutics in diverse therapeutic areas.
Collapse
Affiliation(s)
| | | | - Sunhyung Ha
- ILIAS Biologics Inc, Daejeon, Republic of Korea
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Chulhee Choi
- ILIAS Biologics Inc, Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | | |
Collapse
|
39
|
Dinh NTH, Lee J, Lee J, Kim SS, Go G, Bae S, Jun YI, Yoon YJ, Roh TY, Gho YS. Indoor dust extracellular vesicles promote cancer lung metastasis by inducing tumour necrosis factor-α. J Extracell Vesicles 2020; 9:1766821. [PMID: 32595916 PMCID: PMC7301719 DOI: 10.1080/20013078.2020.1766821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023] Open
Abstract
Indoor pollutants are important problems to public health. Among indoor pollutants, indoor dust contains extracellular vesicles (EVs), which are associated with pulmonary inflammation. However, it has not been reported whether indoor dust EVs affect the cancer lung metastasis. In this study, we isolated indoor dust EVs and investigated their roles in cancer lung metastasis. Upon intranasal administration, indoor dust EVs enhanced mouse melanoma lung metastasis in a dose-dependent manner in mice. Pre-treatment or co-treatment of indoor dust EVs significantly promoted melanoma lung metastasis, whereas post-treatment of the EVs did not. In addition, the lung lysates from indoor dust EV-treated mice significantly increased tumour cell migration in vitro. We observed that tumour necrosis factor-α played important roles in indoor dust EV-mediated promotion of tumour cell migration in vitro and cancer lung metastasis in vivo. Furthermore, Pseudomonas EVs, the main components of indoor dust EVs, and indoor dust EVs showed comparable effects in promoting tumour cell migration in vitro and cancer lung metastasis in vivo. Taken together, our results suggest that indoor dust EVs, at least partly contributed by Pseudomonas EVs, are potential promoting agents of cancer lung metastasis.
Collapse
Affiliation(s)
- Nhung Thi Hong Dinh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jaewook Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jaemin Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sang Soo Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gyeongyun Go
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Seoyoon Bae
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ye In Jun
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yae Jin Yoon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
40
|
The GABARAP Co-Secretome Identified by APEX2-GABARAP Proximity Labelling of Extracellular Vesicles. Cells 2020; 9:cells9061468. [PMID: 32560054 PMCID: PMC7349886 DOI: 10.3390/cells9061468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023] Open
Abstract
The autophagy-related ATG8 protein GABARAP has not only been shown to be involved in the cellular self-degradation process called autophagy but also fulfils functions in intracellular trafficking processes such as receptor transport to the plasma membrane. Notably, available mass spectrometry data suggest that GABARAP is also secreted into extracellular vesicles (EVs). Here, we confirm this finding by the immunoblotting of EVs isolated from cell culture supernatants and human blood serum using specific anti-GABARAP antibodies. To investigate the mechanism by which GABARAP is secreted, we applied proximity labelling, a method for studying the direct environment of a protein of interest in a confined cellular compartment. By expressing an engineered peroxidase (APEX2)-tagged variant of GABARAP—which, like endogenous GABARAP, was present in EVs prepared from HEK293 cells—we demonstrate the applicability of APEX2-based proximity labelling to EVs. The biotinylated protein pool which contains the APEX2-GABARAP co-secretome contained not only known GABARAP interaction partners but also proteins that were found in APEX2-GABARAP’s proximity inside of autophagosomes in an independent study. All in all, we not only introduce a versatile tool for co-secretome analysis in general but also uncover the first details about autophagy-based pathways as possible biogenesis mechanisms of GABARAP-containing EVs.
Collapse
|
41
|
Jiang P, Zhang S, Cheng C, Gao S, Tang M, Lu L, Yang G, Chai R. The Roles of Exosomes in Visual and Auditory Systems. Front Bioeng Biotechnol 2020; 8:525. [PMID: 32582658 PMCID: PMC7283584 DOI: 10.3389/fbioe.2020.00525] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are nanoscale membrane-enclosed vesicles 30-150 nm in diameter that are originated from a number of type cells by the endocytic pathway and consist of proteins, lipids, RNA, and DNA. Although, exosomes were initially considered to be cellular waste, they have gradually been recognized to join in cell-cell communication and cell signal transmission. In addition, exosomal contents can be applied as biomarkers for clinical judgment and exosomes can as potential carriers in a novel drug delivery system. Unfortunately, purification methods of exosomes remain an obstacle. We described some common purification methods and highlight Morpho Menelaus (M. Menelaus) butterfly wings can be developed as efficient methods for exosome isolation. Furthermore, the current research on exosomes mainly focused on their roles in cancer, while related studies on exosomes in the visual and auditory systems are limited. Here we reviewed the biogenesis and contents of exosomes. And more importantly, we summarized the roles of exosomes and provided prospective for exosome research in the visual and auditory systems.
Collapse
Affiliation(s)
- Pei Jiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Song Gao
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Cardiovascular Science, Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Guang Yang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Science and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Choi D, Go G, Kim DK, Lee J, Park SM, Di Vizio D, Gho YS. Quantitative proteomic analysis of trypsin-treated extracellular vesicles to identify the real-vesicular proteins. J Extracell Vesicles 2020; 9:1757209. [PMID: 32489530 PMCID: PMC7241501 DOI: 10.1080/20013078.2020.1757209] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/23/2020] [Accepted: 04/10/2020] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles surrounded by a lipid bilayer and released into the extracellular milieu by most of cells. Although various EV isolation methods have been established, most of the current methods isolate EVs with contaminated non-vesicular proteins. By applying the label-free quantitative proteomic analyses of human colon cancer cell SW480-derived EVs, we identified trypsin-sensitive and trypsin-resistant vesicular proteins. Further systems biology and protein-protein interaction network analyses based on their cellular localization, we classified the trypsin-sensitive and trypsin-resistant vesicular proteins into two subgroups: 363 candidate real-vesicular proteins and 151 contaminated non-vesicular proteins. Moreover, the protein interaction network analyses showed that candidate real-vesicular proteins are mainly derived from plasma membrane (46.8%), cytosol (36.6%), cytoskeleton (8.0%) and extracellular region (2.5%). On the other hand, most of the contaminated non-vesicular proteins derived from nucleus, Golgi apparatus, endoplasmic reticulum and mitochondria. In addition, ribosomal protein complexes and T-complex proteins were classified as the contaminated non-vesicular proteins. Taken together, our trypsin-digested proteomic approach on EVs is an important advance to identify the real-vesicular proteins that could help to understand EV biogenesis and protein cargo-sorting mechanism during EV release, to identify more reliable EV diagnostic marker proteins, and to decode pathophysiological roles of EVs.
Collapse
Affiliation(s)
- Dongsic Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Canada
| | - Gyeongyun Go
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jaewook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Republic of Korea
| | - Dolores Di Vizio
- Department of Surgery, Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
43
|
Similarities in the General Chemical Composition of Colon Cancer Cells and Their Microvesicles Investigated by Spectroscopic Methods-Potential Clinical Relevance. Int J Mol Sci 2020; 21:ijms21051826. [PMID: 32155840 PMCID: PMC7084448 DOI: 10.3390/ijms21051826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
Colon cancer constitutes 33% of all cancer cases in humans and the majority of patients with metastatic colon cancer still have poor prognosis. An important role in cancer development is the communication between cancer and normal cells. This may occur, among others, through extracellular vesicles (including microvesicles) (MVs), which are being released by both types of cells. MVs may regulate a diverse range of biological processes and are considered as useful cancer biomarkers. Herein, we show that similarity in the general chemical composition between colon cancer cells and their corresponding tumor-derived microvesicles (TMVs) does exist. These results have been confirmed by spectroscopic methods for four colon cancer cell lines: HCT116, LoVo, SW480, and SW620 differing in their aggressiveness/metastatic potential. Our results show that Raman and Fourier Transform InfraRed (FTIR) analysis of the cell lines and their corresponding TMVs did not differ significantly in the characterization of their chemical composition. However, hierarchical cluster analysis of the data obtained by both of the methods revealed that only Raman spectroscopy provides results that are in line with the molecular classification of colon cancer, thus having potential clinical relevance.
Collapse
|
44
|
RNA cargos in extracellular vesicles derived from blood serum in pancreas associated conditions. Sci Rep 2020; 10:2800. [PMID: 32071328 PMCID: PMC7028741 DOI: 10.1038/s41598-020-59523-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles which are released from healthy and tumor cells into blood circulation. Unique biomolecular cargos such as RNA and protein are loaded in these vesicles. These molecules may have biological functions such as signaling, cell communications and have the potential to be analyzed as biomarkers. In this initial study, we describe the analysis of exosomes in the serum of healthy subjects, intraductal papillary mucosal neoplasms and pancreatic ductal adenocarcinoma including the characterization of their RNA cargos by next generation sequencing (EXO-NGS). Results indicate the presence of a wide variety of RNAs including mRNA, miRNA, lincRNA, tRNA and piRNA in these vesicles. Based on the differential mRNA expression observed upon EXO-NGS analysis, we independently evaluated two protein coding genes, matrix metalloproteinase-8 (MMP-8) and transcription factor T-Box 3 (TBX3) by qRT-PCR for selective expression in the serum samples. Results indicate a variable expression pattern of these genes across serum samples between different study groups. Further, qRT-PCR analysis with the same serum exosomes processed for EXO-NGS, we observed two long non-coding RNAs, malat-1 and CRNDE to be variably expressed. Overall, our observations emphasize the potential value of different exosome components in distinguishing between healthy, premalignant and malignant conditions related to the pancreas.
Collapse
|
45
|
Wang M, Su Z, Amoah Barnie P. Crosstalk among colon cancer-derived exosomes, fibroblast-derived exosomes, and macrophage phenotypes in colon cancer metastasis. Int Immunopharmacol 2020; 81:106298. [PMID: 32058925 DOI: 10.1016/j.intimp.2020.106298] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
Cellular crosstalk is an important mechanism in the pathogenesis of inflammatory disorders and cancers. One significant means by which cells communicate with each other is through the release of exosomes. Exosomes are extracellular vesicles formed by the outward budding of plasma membranes, which are then released from cells into the extracellular space. Many studies have suggested that microvesicles released by colon cancer cells initiate crosstalk and modulate the fibroblast activities and macrophage phenotypes. Interestingly, crosstalk among colon cancer cells, macrophages and cancer-associated fibroblasts maximizes the mechanical composition of the stromal extracellular matrix (ECM). Exosomes contribute to cancer cell migration and invasion, which are critical for colon cancer progression to metastasis. The majority of the studies on colorectal cancers (CRCs) have focused on developing exosomal biomarkers for the early detection and prediction of CRC prognosis. This study highlights the crosstalk among colon cancer-derived exosomes, macrophage phenotypes and fibroblasts during colon cancer metastasis.
Collapse
Affiliation(s)
- Meiyun Wang
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, PR China.
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| | - Prince Amoah Barnie
- International Genome Center, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China; Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
46
|
Christou N, Meyer J, Popeskou S, David V, Toso C, Buchs N, Liot E, Robert J, Ris F, Mathonnet M. Circulating Tumour Cells, Circulating Tumour DNA and Circulating Tumour miRNA in Blood Assays in the Different Steps of Colorectal Cancer Management, a Review of the Evidence in 2019. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5953036. [PMID: 31930130 PMCID: PMC6942724 DOI: 10.1155/2019/5953036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022]
Abstract
Despite many advances in the diagnosis and treatment of colorectal cancer (CRC), its incidence and mortality rates continue to make an impact worldwide and in some countries rates are mounting. Over the past decade, liquid biopsies have been the object of fundamental and clinical research with regard to the different steps of CRC patient care such as screening, diagnosis, prognosis, follow-up, and therapeutic response. They are attractive because they are considered to encompass both the cellular and molecular heterogeneity of tumours. They are easily accessible and can be applied to large-scale settings despite the cost. However, liquid biopsies face drawbacks in detection regardless of whether we are testing for circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), or miRNA. This review highlights the different advantages and disadvantages of each type of blood-based biopsy and underlines which specific one may be the most useful and informative for each step of CRC patient care.
Collapse
Affiliation(s)
- Niki Christou
- Endocrine, General and Digestive Surgery Department, CHU de Limoges, Limoges Cedex 87042, France
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Jeremy Meyer
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Sotirios Popeskou
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Valentin David
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| | - Christian Toso
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Nicolas Buchs
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Emilie Liot
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Joan Robert
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Frederic Ris
- Department of Visceral Surgery, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland
| | - Muriel Mathonnet
- Endocrine, General and Digestive Surgery Department, CHU de Limoges, Limoges Cedex 87042, France
- Laboratoire EA3842 Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques «CAPTuR», Faculté de médecine, 2 Rue du Docteur Marcland, 87025 Limoges, France
| |
Collapse
|
47
|
Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019; 17:5. [PMID: 31686989 PMCID: PMC6820930 DOI: 10.1186/s12953-019-0154-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- HuiSu Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
48
|
Rikkert LG, van der Pol E, van Leeuwen TG, Nieuwland R, Coumans FAW. Centrifugation affects the purity of liquid biopsy-based tumor biomarkers. Cytometry A 2019; 93:1207-1212. [PMID: 30551256 PMCID: PMC6590195 DOI: 10.1002/cyto.a.23641] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023]
Abstract
Biomarkers in the blood of cancer patients include circulating tumor cells (CTCs), tumor-educated platelets (TEPs), tumor-derived extracellular vesicles (tdEVs), EV-associated miRNA (EV-miRNA), and circulating cell-free DNA (ccfDNA). Because the size and density of biomarkers differ, blood is centrifuged to isolate or concentrate the biomarker of interest. Here, we applied a model to estimate the effect of centrifugation on the purity of a biomarker according to published protocols. The model is based on the Stokes equation and was validated using polystyrene beads in buffer and plasma. Next, the model was applied to predict the biomarker behavior during centrifugation. The result was expressed as the recovery of CTCs, TEPs, tdEVs in three size ranges (1-8, 0.2-1, and 0.05-0.2 μm), EV-miRNA, and ccfDNA. Bead recovery was predicted with errors <18%. Most notable cofounders are the 22% contamination of 1-8 μm tdEVs for TEPs and the 8-82% contamination of <1 μm tdEVs for ccfDNA. A Stokes model can predict biomarker behavior in blood. None of the evaluated protocols produces a pure biomarker. Thus, care should be taken in the interpretation of obtained results, as, for example, results from TEPs may originate from co-isolated large tdEVs and ccfDNA may originate from DNA enclosed in <1 μm tdEVs. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Linda G Rikkert
- Medical Cell BioPhysics, University of Twente, Enschede, the Netherlands.,Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Clinical Chemistry, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands
| | - Edwin van der Pol
- Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, the Netherlands
| | - Ton G van Leeuwen
- Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Clinical Chemistry, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands
| | - Frank A W Coumans
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Clinical Chemistry, Amsterdam, the Netherlands.,Amsterdam UMC, University of Amsterdam, Vesicle Observation Center, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Peulen O, Rademaker G, Anania S, Turtoi A, Bellahcène A, Castronovo V. Ferlin Overview: From Membrane to Cancer Biology. Cells 2019; 8:cells8090954. [PMID: 31443490 PMCID: PMC6770723 DOI: 10.3390/cells8090954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In mammal myocytes, endothelial cells and inner ear cells, ferlins are proteins involved in membrane processes such as fusion, recycling, endo- and exocytosis. They harbour several C2 domains allowing their interaction with phospholipids. The expression of several Ferlin genes was described as altered in several tumoural tissues. Intriguingly, beyond a simple alteration, myoferlin, otoferlin and Fer1L4 expressions were negatively correlated with patient survival in some cancer types. Therefore, it can be assumed that membrane biology is of extreme importance for cell survival and signalling, making Ferlin proteins core machinery indispensable for cancer cell adaptation to hostile environments. The evidences suggest that myoferlin, when overexpressed, enhances cancer cell proliferation, migration and metabolism by affecting various aspects of membrane biology. Targeting myoferlin using pharmacological compounds, gene transfer technology, or interfering RNA is now considered as an emerging therapeutic strategy.
Collapse
Affiliation(s)
- Olivier Peulen
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium.
| | - Gilles Rademaker
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Sandy Anania
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, 34000 Montpellier, France
- Institut du Cancer de Montpeiller, 34000 Montpellier, France
- Université de Montpellier, 34000 Montpellier, France
| | - Akeila Bellahcène
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, Giga Cancer, University of Liège, B4000 Liège, Belgium
| |
Collapse
|
50
|
da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P, Tajara EH. Cellular Interactions in the Tumor Microenvironment: The Role of Secretome. J Cancer 2019; 10:4574-4587. [PMID: 31528221 PMCID: PMC6746126 DOI: 10.7150/jca.21780] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Over the past years, it has become evident that cancer initiation and progression depends on several components of the tumor microenvironment, including inflammatory and immune cells, fibroblasts, endothelial cells, adipocytes, and extracellular matrix. These components of the tumor microenvironment and the neoplastic cells interact with each other providing pro and antitumor signals. The tumor-stroma communication occurs directly between cells or via a variety of molecules secreted, such as growth factors, cytokines, chemokines and microRNAs. This secretome, which derives not only from tumor cells but also from cancer-associated stromal cells, is an important source of key regulators of the tumorigenic process. Their screening and characterization could provide useful biomarkers to improve cancer diagnosis, prognosis, and monitoring of treatment responses.
Collapse
Affiliation(s)
- Bianca Rodrigues da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Célia Domingos
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Algarve Biomedical Center, Gambelas, Faro, Portugal
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| |
Collapse
|