1
|
Adawaye C, Fokam J, Kamangu EN, Ngwese DTA, Susin F, Moussa AM, Hig-Zounet B, Mad-Toingué J, Tidjani A, Vaira D, Moutschen M. Performance characteristics of Allele-Specific PCR (ASPCR) in detecting drug resistance mutations among non-B HIV-1 Variants. J Virol Methods 2024; 323:114856. [PMID: 38000668 DOI: 10.1016/j.jviromet.2023.114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Allele-Specific Polymerase Chain Reaction (ASPCR) is an affordable point-mutation assay whose validation could improve the detection of HIV-1 drug resistance mutations (DRMs) in resource-limited settings (RLS). We assessed the performance of ASPCR onforty-four non-B HIV-1 plasma samples from patients who were ARV treated in failure in N'Djamena-Chad. Viral RNA was reverse-transcribed and amplified using LightCycler® FastStart DNA MasterPLUS SYBR Green I. Detection of six major DRMs (K70R, K103N, Y181C, M184V, T215F, T215Y) was evaluated on Roche LightCycler®480 automated system (with dilutions 0.01-100%). ASPCR-results were compared to Sanger-sequencing (gold-standard). Correlations of mutation curves were excellent (R2 >0.97); all DRMs were detected with desirable mutant/wild-type threshold differences (ΔCt≥9) except K70R(ΔCtK70R=6; ΔCtK103N=13; ΔCtM184V=9; ΔCtT215F=12; ΔCtT215Y=12; ΔCtY181C=9) and positive controls were below required thresholds. Also, ASPCR reproducibility on DRMs was assessed by using dilutions of intra-assay and inter-assay coefficient of variations respectively with a threshold of less than 50(i.e.<0.50 variation) which are;: K70R (0.02-0.28 vs. 0.12-0.37), K103N (0.08-0.42 vs. 0.12-0.37), Y181C (0.12-0.39 vs. 0.31-0.37), M184V (0.13-0.39 vs. 0.23-0.42), T215F (0.05-0.43 vs. 0.04-0.45) and T215Y (0.13-0.41 vs. 0.19-0.41). DRM detection-rate by ASPCR vs Sanger was respectively: M184V (63.6% vs. 38.6%); T215F (18.1% vs. 9.1%); T215Y (6.8% vs. 2.3%); K70R (4.5% vs. 2.3%). K103N (22.7% vs. 13.6%); Y181C (13.6% vs. 11.4%). Correlations of mutation curves were excellent (R2 >0.97); all DRMs were detected with desirable mutant/wild-type threshold differences (ΔCt≥9) except K70R(ΔCtK70R=6; ΔCtK103N=13; ΔCtM184V=9; ΔCtT215F=12; ΔCtT215Y=12; ΔCtY181C=9) and positive controls were below required thresholds. Also, ASPCR reproducibility on DRMs was assessed by using dilutions of intra-assay and inter-assay coefficient of variations respectively with a threshold of less than 50(i.e.<0.50 variation) which are;: K70R (0.02-0.28 vs. 0.12-0.37), K103N (0.08-0.42 vs. 0.12-0.37), Y181C (0.12-0.39 vs. 0.31-0.37), M184V (0.13-0.39 vs. 0.23-0.42), T215F (0.05-0.43 vs. 0.04-0.45) and T215Y (0.13-0.41 vs. 0.19-0.41). DRM detection-rate by ASPCR vs Sanger was respectively: M184V (63.6% vs. 38.6%); T215F (18.1% vs. 9.1%); T215Y (6.8% vs. 2.3%); K70R (4.5% vs. 2.3%). K103N (22.7% vs. 13.6%); Y181C (13.6% vs. 11.4%). ASPCR appears more efficient for detecting DRMs on diverse HIV-1 non-B circulating in RLS like Chad.
Collapse
Affiliation(s)
- Chatté Adawaye
- National Institute of Sciences and Techniques of Abeche (INSTA), Abeche, Chad; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium.
| | - Joseph Fokam
- Virology Laboratory, Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management, Yaoundé, Cameroon; Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, Cameroon; Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaounde, Cameroon; National HIV Drug Resistance Surveillance and Prevention Working Group (HIVDRWG), Ministry of Public Health, Yaounde, Cameroon.
| | - Erick Ntambwe Kamangu
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| | - Derrick Tambe Ayuk Ngwese
- Virology Laboratory, Chantal BIYA International Reference Centre for research on HIV/AIDS prevention and management, Yaoundé, Cameroon; Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaounde, Cameroon; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| | - Fabrice Susin
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| | - Ali Mahamat Moussa
- AIDS Reference Laboratory of Liege, CHU de Liege, Liege, Belgium; Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, Chad; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| | - BertinTchombou Hig-Zounet
- AIDS Reference Laboratory of Liege, CHU de Liege, Liege, Belgium; Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, Chad; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| | - Joseph Mad-Toingué
- AIDS Reference Laboratory of Liege, CHU de Liege, Liege, Belgium; Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, Chad; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| | - Abdelsalam Tidjani
- AIDS Reference Laboratory of Liege, CHU de Liege, Liege, Belgium; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| | - Dolores Vaira
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| | - Michel Moutschen
- Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo; National Reference General Hospital, N'Djamena, Chad; Infectious Diseases and Internal Medicine Service, University Hospital Center of Liège, Liège, Belgium
| |
Collapse
|
2
|
Iacovitti L. On the Road from Phenotypic Plasticity to Stem Cell Therapy. J Neurosci 2021; 41:5331-5337. [PMID: 33958488 PMCID: PMC8221603 DOI: 10.1523/jneurosci.0340-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
In 1981, I published a paper in the first issue of The Journal of Neuroscience with my postdoctoral mentor, Richard Bunge. At that time, the long-standing belief that each neuron expressed only one neurotransmitter, known as Dale's Principle (Dale, 1935), was being hotly debated following a report by French embryologist Nicole Le Douarin showing that neural crest cells destined for one transmitter phenotype could express characteristics of another if transplanted to alternate sites in the developing embryo (Le Douarin, 1980). In the Bunge laboratory, we were able to more directly test the question of phenotypic plasticity in the controlled environment of the tissue culture dish. Thus, in our paper, we grew autonomic catecholaminergic neurons in culture under conditions which promoted the acquisition of cholinergic traits and showed that cells did not abandon their inherited phenotype to adopt a new one but instead were capable of dual transmitter expression. In this Progressions article, I detail the path that led to these findings and how this study impacted the direction I followed for the next 40 years. This is my journey from phenotypic plasticity to the promise of a stem cell therapy.
Collapse
Affiliation(s)
- Lorraine Iacovitti
- Department of Neuroscience, Director, Jefferson Stem Cell and Regenerative Neuroscience Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
3
|
Neurospheres: a potential in vitro model for the study of central nervous system disorders. Mol Biol Rep 2021; 48:3649-3663. [PMID: 33765252 DOI: 10.1007/s11033-021-06301-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Neurogenesis was believed to end after the period of embryonic development. However, the possibility of obtaining an expressive number of cells with functional neuronal characteristics implied a great advance in experimental research. New techniques have emerged to demonstrate that the birth of new neurons continues to occur in the adult brain. Two main rich sources of these cells are the subventricular zone (SVZ) and the subgranular zone of the hippocampal dentate gyrus (SGZ) where adult neural stem cells (aNSCs) have the ability to proliferate and differentiate into mature cell lines. The cultivation of neurospheres is a method to isolate, maintain and expand neural stem cells (NSCs) and has been used extensively by several research groups to analyze the biological properties of NSCs and their potential use in injured brains from animal models. Throughout this review, we highlight the areas where this type of cell culture has been applied and the advantages and limitations of using this model in experimental studies for the neurological clinical scenario.
Collapse
|
4
|
TIF1 Proteins in Genome Stability and Cancer. Cancers (Basel) 2020; 12:cancers12082094. [PMID: 32731534 PMCID: PMC7463590 DOI: 10.3390/cancers12082094] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is a hallmark of cancer cells which results in excessive DNA damage. To counteract this, cells have evolved a tightly regulated DNA damage response (DDR) to rapidly sense DNA damage and promote its repair whilst halting cell cycle progression. The DDR functions predominantly within the context of chromatin and requires the action of chromatin-binding proteins to coordinate the appropriate response. TRIM24, TRIM28, TRIM33 and TRIM66 make up the transcriptional intermediary factor 1 (TIF1) family of chromatin-binding proteins, a subfamily of the large tripartite motif (TRIM) family of E3 ligases. All four TIF1 proteins are aberrantly expressed across numerous cancer types, and increasing evidence suggests that TIF1 family members can function to maintain genome stability by mediating chromatin-based responses to DNA damage. This review provides an overview of the TIF1 family in cancer, focusing on their roles in DNA repair, chromatin regulation and cell cycle regulation.
Collapse
|
5
|
Goldthorpe J, Ali N, Calam R. Providing healthy diets for young children: the experience of parents in a UK inner city. Int J Qual Stud Health Well-being 2018; 13:1490623. [PMID: 29989497 PMCID: PMC6041821 DOI: 10.1080/17482631.2018.1490623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES There is a consistent body of evidence to demonstrate that obesity in very early childhood tends to continue into adolescence and through to adulthood. Parental practices in relation to food can have an effect on this trajectory, however existing studies reporting on interventions for treating obesity suggest there is a need to involve populations from demographically diverse backgrounds childhood obesity research. DESIGN/METHODS A qualitative study was carried out using semi-structured interviews with parents in a deprived inner city area. RESULTS Although parents had good intentions towards providing a health diet for their chidren, a number of barriers emerged. Findings were reported in relation to the following themes: information and education; barriers (having a child with special needs, children's food preferences and using food to promote desirable behaviour) and techniques (household rules & routines, setting limits and parameters, modelling and food preparation). CONCLUSION Parents and carers would benefit from targeted interventions based on improving techniques around food parenting practices, with a focus on equipping parents with the skills to overcome barriers encountered not only in early childhood, but as children progress to school age and through to adolescence.
Collapse
Affiliation(s)
- Joanna Goldthorpe
- Manchester Centre for Health Psychology, University of Manchester, Manchester, UK
| | - Nazneen Ali
- Manchester Centre for Health Psychology, University of Manchester, Manchester, UK
| | - Rachel Calam
- Division of Psychology and Mental Health, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Chung TH, Hsu SC, Wu SH, Hsiao JK, Lin CP, Yao M, Huang DM. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson's disease. NANOSCALE 2018; 10:2998-3007. [PMID: 29372743 DOI: 10.1039/c7nr06976f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons. With their migration capacity toward the sites of diseased DA neurons in the PD brain, mesenchymal stem cells (MSCs) have the potential to differentiate to DA neurons for the replacement of damaged neurons and to secrete neurotrophic factors for the protection and regeneration of diseased DA neurons; therefore MSCs show promise for the treatment of PD. In this study, for the first time, we demonstrate that dextran-coated iron oxide nanoparticles (Dex-IO NPs) can improve the therapeutic efficacy of human MSCs (hMSCs) in a mouse model of PD induced by a local injection of 6-hydroxydopamine (6-OHDA). In situ examinations not only show that Dex-IO NPs can improve the rescue effect of hMSCs on the loss of host DA neurons but also demonstrate that Dex-IO NPs can promote the migration capacity of hMSCs toward lesioned DA neurons and induce the differentiation of hMSCs to DA-like neurons at the diseased sites. We prove that in vitro Dex-IO NPs can enhance the migration of hMSCs toward 6-OHDA-damaged SH-SY5Y-derived DA-like cells, induce hMSCs to differentiate to DA-like neurons in the conditioned media derived from 6-OHDA-damaged SH-SY5Y-derived DA-like cells and promote the protection/regeneration effects of hMSCs on 6-OHDA-damaged SH-SY5Y-derived DA-like cells. We confirm the potential of MSCs for cell-based therapy for PD. Dex-IO NPs can be used as a tool to accelerate and optimize MSC therapeutics for PD applicable clinically.
Collapse
Affiliation(s)
- Tsai-Hua Chung
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Alvim FC, Lucareli PRG, Menegaldo LL. Predicting muscle forces during the propulsion phase of single leg triple hop test. Gait Posture 2018; 59:298-303. [PMID: 28734700 DOI: 10.1016/j.gaitpost.2017.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 02/02/2023]
Abstract
Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination.
Collapse
Affiliation(s)
- Felipe Costa Alvim
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Paulo Roberto Garcia Lucareli
- Department of Rehabilitation Science, Human Motion Analysis Laboratory, Universidade Nove de Julho, São Paulo, Brazil
| | | |
Collapse
|
8
|
Dhivya V, Balachandar V. Cell replacement therapy is the remedial solution for treating Parkinson's disease. Stem Cell Investig 2017; 4:59. [PMID: 28725655 DOI: 10.21037/sci.2017.06.08] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/25/2017] [Indexed: 01/14/2023]
Abstract
The selective degeneration of dopaminergic (DA) neurons in Parkinson's disease (PD) has made an idol target for cell replacement therapies and other emerging surgical treatments. Certainly, by transplantation method, the therapeutic regimens such as human fetal ventral midbrain (hfVM) cells, human embryonic stem cells (hESCs), human neural stem/precursor/ progenitor cells (hNSCs/hNPCs), human mesenchymal stem cells (hMSCs), human induced neural stem cells (hiNSCs), and human induced pluripotent stem cells (hiPSCs) have been used into DA deficient striatum. In recent decades, surgical methods such as deep brain stimulation (DBS) and gene therapies have been used with the aim of treating PD. Though the technology has improved and many treating options arise, the permanent source for curing PD has not been identified yet. In this review, we examine how stem cell therapies have made advancement as a therapeutic source for PD when compared with surgical treatments.
Collapse
Affiliation(s)
- Venkatesan Dhivya
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
9
|
Jain M, Armstrong RJE, Elneil S, Barker RA. Transplanted Human Neural Precursor Cells Migrate Widely but Show no Lesion-Specific Tropism in the 6-Hydroxydopamine Rat Model of Parkinson's Disease. Cell Transplant 2017; 15:579-93. [PMID: 17176610 DOI: 10.3727/000000006783981684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD), while primarily associated with degeneration of nigrostriatal dopamine neurons, is now increasingly recognized to have more widespread cell loss and so the most effective cell replacement therapy should target all these neuronal losses. Neural precursor cells might be ideal in this regard as in certain circumstances they have been shown to migrate widely following transplantation into the CNS. The aim of this study was to investigate whether transplanted human expanded neural precursor cells (hENPs) could migrate to sites of established or evolving pathology in the adult brain using the 6-hydroxydopamine (6-OHDA) rat model of PD. hENPs were grafted into the striatum prior to, at the same time as, or after the animals received a 6-OHDA lesion to the medial forebrain bundle. The presence of donor cells was then assessed in a distant site of cell loss (substantia nigra) or sites where cell death would not be expected (frontal cortex and globus pallidus). Donor cells were found distant from the site of implantation but the migration of these hENPs was not significantly greater in the 6-OHDA-lesioned brain and the cells did not specifically target the site of cell loss in the substantia nigra. The temporal relationship of grafting relative to the lesion, and therefore dopaminergic cell death, did not affect the migration of hENPs nor their differentiation. We conclude that while transplanted hENPs are capable of migration away from the site of implantation, they show no specific tropism for sites of ongoing or established nigral dopaminergic cell loss in this lesion model. Therefore, the use of such cells to replace the range of neurons lost in PD is likely to require a deeper understanding of the migratory cues in the damaged adult brain and some manipulation of these cells prior to transplantation.
Collapse
Affiliation(s)
- M Jain
- Cambridge University Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | | | | | |
Collapse
|
10
|
Borlongan CV, Yu G, Matsukawa N, Yasuhara T, Hara K, Xu L. Article Commentary: Cell Transplantation: Stem Cells in the Spotlight. Cell Transplant 2017; 14:519-526. [DOI: 10.3727/000000005783982774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Cesar V. Borlongan
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Guolong Yu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Noriyuki Matsukawa
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Takao Yasuhara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Koichi Hara
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| | - Lin Xu
- Neurology/Insttitute of Molecular Medicind & Genetics/School of Graduate Studies, Medical College of Georgia, Augusta, GA, USA
- Research/Affiliations Service Line, Augusta VAMC, Augusta, GA, USA
| |
Collapse
|
11
|
SanMartin A, Borlongan CV. Article Commentary: Cell Transplantation: Toward Cell Therapy. Cell Transplant 2017; 15:665-73. [PMID: 17176618 DOI: 10.3727/000000006783981666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Agneta SanMartin
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL 33612, USA.
| | | |
Collapse
|
12
|
Domínguez-Bendala J, Ricordi C. Article Commentary: Stem Cell Plasticity and Tissue Replacement. Cell Transplant 2017; 14:423-425. [DOI: 10.3727/000000005783982891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Shen Y, Huang J, Liu L, Xu X, Han C, Zhang G, Jiang H, Li J, Lin Z, Xiong N, Wang T. A Compendium of Preparation and Application of Stem Cells in Parkinson's Disease: Current Status and Future Prospects. Front Aging Neurosci 2016; 8:117. [PMID: 27303288 PMCID: PMC4885841 DOI: 10.3389/fnagi.2016.00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Parkinson's Disease (PD) is a progressively neurodegenerative disorder, implicitly characterized by a stepwise loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and explicitly marked by bradykinesia, rigidity, resting tremor and postural instability. Currently, therapeutic approaches available are mainly palliative strategies, including L-3,4-dihydroxy-phenylalanine (L-DOPA) replacement therapy, DA receptor agonist and deep brain stimulation (DBS) procedures. As the disease proceeds, however, the pharmacotherapeutic efficacy is inevitably worn off, worse still, implicated by side effects of motor response oscillations as well as L-DOPA induced dyskinesia (LID). Therefore, the frustrating status above has propeled the shift to cell replacement therapy (CRT), a promising restorative therapy intending to secure a long-lasting relief of patients' symptoms. By far, stem cell lines of multifarious origins have been established, which can be further categorized into embryonic stem cells (ESCs), neural stem cells (NSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). In this review, we intend to present a compendium of preparation and application of multifarious stem cells, especially in relation to PD research and therapy. In addition, the current status, potential challenges and future prospects for practical CRT in PD patients will be elaborated as well.
Collapse
Affiliation(s)
- Yan Shen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Ling Liu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Xiaoyun Xu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Chao Han
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Guoxin Zhang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Haiyang Jiang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Jie Li
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean Hospital Belmont, MA, USA
| | - Nian Xiong
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| | - Tao Wang
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
14
|
Glavaski-Joksimovic A, Bohn MC. Mesenchymal stem cells and neuroregeneration in Parkinson's disease. Exp Neurol 2013; 247:25-38. [DOI: 10.1016/j.expneurol.2013.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
|
15
|
BMP and TGF-β pathway mediators are critical upstream regulators of Wnt signaling during midbrain dopamine differentiation in human pluripotent stem cells. Dev Biol 2013; 376:62-73. [PMID: 23352789 DOI: 10.1016/j.ydbio.2013.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 01/21/2023]
Abstract
Although many laboratories currently use small molecule inhibitors of the BMP (Dorsomorphin/DM) and TGF-β (SB431542/SB) signaling pathways in protocols to generate midbrain dopamine (mDA) neurons from hES and hiPS cells, until now, these substances have not been thought to play a role in the mDA differentiation process. We report here that the transient inhibition of constitutive BMP (pSMADs 1, 5, 8) signaling, either alone or in combination with TGF-β inhibition (pSMADs 2, 3), is critically important in the upstream regulation of Wnt1-Lmx1a signaling in mDA progenitors. We postulate that the mechanism via which DM or DM/SB mediates these effects involves the up-regulation in SMAD-interacting protein 1 (SIP1), which results in greater repression of the Wnt antagonist, secreted frizzled related protein 1 (Sfrp1) in stem cells. Accordingly, knockdown of SIP1 reverses the inductive effects of DM/SB on mDA differentiation while Sfrp1 knockdown/inhibition mimics DM/SB. The rise in Wnt1-Lmx1a levels in SMAD-inhibited cultures is, however, accompanied by a reciprocal down-regulation in SHH-Foxa2 levels leading to the generation of few TH+ neurons that co-express Foxa2. If however, exogenous SHH/FGF8 is added along with SMAD inhibitors, equilibrium in these two important pathways is achieved such that authentic (Lmx1a+Foxa2+TH+) mDA neuron differentiation is promoted while alternate cell fates are suppressed in stem cell cultures. These data indicate that activators/inhibitors of BMP and TGF-β signaling play a critical upstream regulatory role in the mDA differentiation process in human pluripotent stem cells.
Collapse
|
16
|
Loewenbrück K, Storch A. Stem cell-based therapies in Parkinson's disease: future hope or current treatment option? J Neurol 2012; 258:S346-53. [PMID: 21437664 DOI: 10.1007/s00415-011-5974-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is one of the most frequent neurodegenerative diseases and represents a major therapeutic challenge because of the so far missing therapeutic means to influence the ongoing loss of dopaminergic innervation to the striatum. Cell replacement has raised hope to offer the first restorative treatment option. Clinical trials have provided "proof of principle" that transplantation of dopamine-producing neurons into the striatum of PD patients can achieve symptomatic relief given that the striatum is sufficiently re-innervated. Various cell sources have been tested, including fetal ventral midbrain tissue, embryonic stem cells, fetal and adult neural stem cells and, after a ground-breaking discovery, induced pluripotent stem cells. Although embryonic and induced pluripotent stem cells have emerged as the most promising candidates to overcome most of the obstacles to clinical successful cell replacement, each cell source has its unique drawbacks. This review does not only provide a comprehensive overview of the different cellular candidates, including their assets and drawbacks, but also of the various additional issues that need to be addressed in order to convert cellular replacement therapies from an experimental to a clinically relevant therapeutic alternative.
Collapse
Affiliation(s)
- Kai Loewenbrück
- Department of Neurology, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | |
Collapse
|
17
|
Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats. PLoS One 2011; 6:e21744. [PMID: 21738784 PMCID: PMC3128087 DOI: 10.1371/journal.pone.0021744] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/06/2011] [Indexed: 12/23/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) have great potential as a cell replacement therapy for spinal cord injury. However, poor control over transplant cell differentiation and survival remain major obstacles. In this study, we asked whether dibutyryl cyclic-AMP (dbcAMP), which was shown to induce up to 85% in vitro differentiation of NSPCs into neurons would enhance survival of transplanted NSPCs through prolonged exposure either in vitro or in vivo through the controlled release of dbcAMP encapsulated within poly(lactic-co-glycolic acid) (PLGA) microspheres and embedded within chitosan guidance channels. NSPCs, seeded in fibrin scaffolds within the channels, differentiated in vitro to betaIII-tubulin positive neurons by immunostaining and mRNA expression, in response to dbcAMP released from PLGA microspheres. After transplantation in spinal cord injured rats, the survival and differentiation of NSPCs was evaluated. Untreated NSPCs, NSPCs transplanted with dbcAMP-releasing microspheres, and NSPCs pre-differentiated with dbcAMP for 4 days in vitro were transplanted after rat spinal cord transection and assessed 2 and 6 weeks later. Interestingly, NSPC survival was highest in the dbcAMP pre-treated group, having approximately 80% survival at both time points, which is remarkable given that stem cell transplantation often results in less than 1% survival at similar times. Importantly, dbcAMP pre-treatment also resulted in the greatest number of in vivo NSPCs differentiated into neurons (37±4%), followed by dbcAMP-microsphere treated NSPCs (27±14%) and untreated NSPCs (15±7%). The reverse trend was observed for NSPC-derived oligodendrocytes and astrocytes, with these populations being highest in untreated NSPCs. This combination strategy of stem cell-loaded chitosan channels implanted in a fully transected spinal cord resulted in extensive axonal regeneration into the injury site, with improved functional recovery after 6 weeks in animals implanted with pre-differentiated stem cells in chitosan channels.
Collapse
|
18
|
Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC. Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson's disease. J Neurosci Res 2011; 88:2669-81. [PMID: 20544825 DOI: 10.1002/jnr.22435] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of nigrostriatal dopaminergic (DA) neurons. The therapeutic potential of glial cell line-derived neurotrophic factor (GDNF), the most potent neurotrophic factor for DA neurons, has been demonstrated in many experimental models of PD. However, chronic delivery of GDNF to DA neurons in the brain remains an unmet challenge. Here, we report the effects of GDNF-releasing Notch-induced human bone marrow-derived mesenchymal stem cells (MSC) grafted into striatum of the 6-hydroxydopamine (6-OHDA) progressively lesioned rat model of PD. Human MSC, obtained from bone marrow aspirates of young, healthy adult volunteers, were transiently transfected with the intracellular domain of the Notch1 gene (NICD) to generate SB623 cells. SB623 cells expressing GDNF and/or humanized Renilla green fluorescent protein (hrGFP) following lentiviral transduction or nontransduced cells were stereotaxically placed into rat striatum 1 week after a unilateral partial 6-OHDA striatal lesion. At 4 weeks, rats that had received GDNF-transduced SB623 cells had significantly decreased amphetamine-induced rotation compared with control rats, although this effect was not observed in rats that received GFP-transduced or nontransduced SB623 cells. At 5 weeks, rejuvenated tyrosine hydroxylase-immunoreactive (TH-IR) fibers that appeared to be host DA axons were observed in and around grafts. This effect was more prominent in rats that received GDNF-secreting cells and was not observed in controls. These observations suggest that human bone-marrow derived MSC, genetically modified to secrete GDNF, hold potential as an allogeneic or autologous stem cell therapy for PD.
Collapse
Affiliation(s)
- Aleksandra Glavaski-Joksimovic
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA
| | | | | | | | | | | |
Collapse
|
19
|
Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L. Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 2010; 19:1017-23. [PMID: 19824823 DOI: 10.1089/scd.2009.0319] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell replacement therapy could be an important treatment strategy for Parkinson's disease (PD), which is caused by the degeneration of dopamine neurons in the midbrain (mDA). The success of this approach greatly relies on the discovery of an abundant source of cells capable of mDAergic function in the brain. With the paucity of available human fetal tissue, efforts have increasingly focused on renewable stem cells. Human induced pluripotent stem (hiPS) cells offer great promise in this regard. If hiPS cells can be differentiated into authentic mDA neuron, hiPS could provide a potential autologous source of transplant tissue when generated from PD patients, a clear advantage over human embryonic stem (hES) cells. Here, we report that mDA neurons can be derived from a commercially available hiPS cell line, IMR90 clone 4, using a modified hES differentiation protocol established in our lab. These cells express all the markers (Lmx1a, Aldh1a1, TH, TrkB), follow the same mDA lineage pathway as H9 hES cells, and have similar expression levels of DA and DOPAC. Moreover, when hiPS mDA progenitor cells are transplanted into 6-OHDA-lesioned PD rats, they survive long term and many develop into bona fide mDA neurons. Despite their differentiation and integration into the brain, many Nestin+ tumor-like cells remain at the site of the graft. Our data suggest that as with hES cells, selecting the appropriate population of mDA lineage cells and eliminating actively dividing hiPS cells before transplantation will be critical for the future success of hiPS cell replacement therapy in PD patients.
Collapse
Affiliation(s)
- Jingli Cai
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University , Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
20
|
Yang M, Wei X, Li J, Heine LA, Rosenwasser R, Iacovitti L. Changes in Host Blood Factors and Brain Glia Accompanying the Functional Recovery after Systemic Administration of Bone Marrow Stem Cells in Ischemic Stroke Rats. Cell Transplant 2010; 19:1073-84. [DOI: 10.3727/096368910x503415] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study, we examined the effects of systemic administration of rat or human bone marrow stromal stem cells (MSC) at early and later times following middle cerebral artery occlusion (MCAO) on blood cytokines/growth factors, brain glia, and motor behavior in rats. Rats were tail vein injected with rat (r) and human (h) MSCs at 1 or 7 days post-MCAO. In some rats ( N = 4) MSCs isolated from transgenic GFP rats were used to track the migration of cells peripherally and centrally at 2.5 and 28 days. Motor behavior was assessed using the modified Neurological Severity Score/climbing test at various time points before and after MCAO and transplantation. Prior to sacrifice at 1, 7, or 28 days post-MCAO, blood serum was collected for cytokine array analysis. Brains were analyzed for markers of activated microglia (CD11) and reactive astrocytes (GFAP). Administration of either allogeneic (rMSCs) or xenogeneic (hMSCs) stem cells produced a significant recovery of motor behavior after MCAO, with cells delivered at 1 day having greater effect than those at 7 days. Correlated with recovery was an amplification in activated microglia, reactive astrocytes, and new blood vessels in the infarct region, resulting in greater preservation in brain integrity. Concomitantly, expression of blood cytokines/chemokines (IL-13, MMP2, MIP) and growth factors/receptors (VEGF, neuropilin, EPOR, TROY, NGFR, RAGE) were modified following MSC administration. Because only rare GFP-labeled MSCs were observed in the brain, these effects did not depend on the central incorporation of stem cells. The early systemic administration of allogeneic or xenogeneic MSCs soon after experimental stroke produces a structural/functional recovery in the brain which is correlated with an increase in activated brain glia and changes in circulating cytokines and growth factors. Stem cells therefore induce an important neuroprotective and/or regenerative response in the host organism.
Collapse
Affiliation(s)
- Ming Yang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaotao Wei
- Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jing Li
- Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lynn A. Heine
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Rosenwasser
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lorraine Iacovitti
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Risks and Mechanisms of Oncological Disease Following Stem Cell Transplantation. Stem Cell Rev Rep 2010; 6:411-24. [DOI: 10.1007/s12015-010-9134-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Fricker-Gates RA, Gates MA. Stem cell-derived dopamine neurons for brain repair in Parkinson’s disease. Regen Med 2010; 5:267-78. [DOI: 10.2217/rme.10.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One of the prospects for a curative treatment for Parkinson’s disease is to replace the lost dopaminergic neurons. Preclinical and clinical trials have demonstrated that dissected fetal dopaminergic neurons have the potential to markedly improve motor function in animal models and Parkinson’s disease patients. However, this source of cells will never be sufficient to use as a widespread therapy. Over the last 20 years, scientists have been searching for other reliable sources of midbrain dopamine neurons, and stem cells appear to be strong candidates. This article reviews the potential of different types of stem cells, from embryonic to adult to induced pluripotent stem cells, to see how well the cells can be differentiated into fully functional dopamine neurons, which cells might be the best candidates and how much more research is required before stem cell technology might be translated to a clinical therapy for Parkinson’s disease.
Collapse
|
23
|
Donaldson AE, Cai J, Yang M, Iacovitti L. Human amniotic fluid stem cells do not differentiate into dopamine neurons in vitro or after transplantation in vivo. Stem Cells Dev 2009; 18:1003-12. [PMID: 19049321 DOI: 10.1089/scd.2008.0300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although embryonic stem (ES) cells can generate dopamine (DA) neurons that are potentially useful as a cell replacement therapy in Parkinson's disease (PD), associated ethical and practical concerns remain major stumbling blocks to their eventual use in humans. In this study, we examined human amniotic fluid stem (hAFS) cells derived from routine amniocenteses for their potential to give rise to DA neurons in vitro and following transplantation into the 6-hydroxydopamine-lesioned rat brain. We show that undifferentiated hAFS cells constitutively expressed mRNAs and proteins typical of stem cells but also cell derivatives of all three germ layers, including neural progenitors/neurons (nestin, beta-tubulin III, neurofilament). Additionally, these cells expressed mRNAs of an immature DA phenotype (Lmx1a, Pitx-3, Nurr1, Aldh1a1) but not the corresponding proteins. Importantly, treatment with DA differentiation factors using a variety of protocols did not further promote the development of fully differentiated DA neurons from hAFS cells. Thus, Lmx1a, Aldh1a1, AADC, TH, and DAT proteins were not detected in hAFS cells in culture or after transplantation into the PD rat brain. Moreover, by 3 weeks after implantation, there were no surviving AFS cells in the graft, likely as a result of an acute immunorejection response, as evidenced by the abundant presence of CD11+ macrophage/microglia and reactive GFAP+ astrocytes in the host brain. Taken together, these results suggest that further studies will be needed to improve differentiation procedures in culture and to prolong cell survival in vivo if hAFS cells are to be useful as replacement cells in PD.
Collapse
Affiliation(s)
- Angela E Donaldson
- Department of Neurology, Farber Institute for the Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
24
|
Maciaczyk J, Singec I, Maciaczyk D, Klein A, Nikkhah G. Restricted Spontaneous In Vitro Differentiation and Region-Specific Migration of Long-Term Expanded Fetal Human Neural Precursor Cells After Transplantation Into the Adult Rat Brain. Stem Cells Dev 2009; 18:1043-58. [DOI: 10.1089/scd.2008.0346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jaroslaw Maciaczyk
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
- Department of General Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| | - Ilyas Singec
- Burnham Institute for Medical Research, Stem Cell and Regeneration Program, La Jolla, California
| | - Donata Maciaczyk
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| | - Alexander Klein
- The Brain Research Group, School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Guido Nikkhah
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Wijeyekoon R, Barker RA. Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:688-702. [DOI: 10.1016/j.bbadis.2008.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/12/2008] [Accepted: 10/13/2008] [Indexed: 12/21/2022]
|
26
|
Glavaski-Joksimovic A, Virag T, Chang QA, West NC, Mangatu TA, McGrogan MP, Dugich-Djordjevic M, Bohn MC. Reversal of Dopaminergic Degeneration in a Parkinsonian Rat following Micrografting of Human Bone Marrow-Derived Neural Progenitors. Cell Transplant 2009; 18:801-14. [DOI: 10.3727/096368909x470801] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the selective loss of dopaminergic (DA) neurons in the midbrain. Various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD. Stem cells also secrete growth factors and therefore also may have therapeutic effects in promoting the health of diseased DA neurons in the PD brain. To address this possibility in an experimental model of PD, bone marrow-derived neuroprogenitor-like cells were generated from bone marrow procured from healthy human adult volunteers and their potential to elicit recovery of damaged DA axons was studied in a partial lesion rat model of PD. Following collection of bone marrow, mesenchymal stem cells (MSC) were isolated and then genetically modified to create SB623 cells by transient transfection with the intracellular domain of the Notch1 gene (NICD), a modification that upregulates expression of certain neuroprogenitor markers. Ten deposits of 0.5 μl of SB623 cell suspension adjusted from 6,000 to 21,000 cells/μl in PBS or PBS alone were stereotaxically placed in the striatum 1 week after the nigrostriatal projection had been partially lesioned in adult F344 rats by injection of 6-hydroxydopamine (6-OHDA) into the striatum. At 3 weeks, a small number of grafted SB623 cells survived in the lesioned striatum as visualized by expression of the human specific nuclear matrix protein (hNuMA). In rats that received SB623 cells, but not in control rats, dense tyrosine hydroxylase immunoreactive (TH-ir) fibers were observed around the grafts. These fibers appeared to be rejuvenated host DA axons because no TH-ir in soma of surviving SB623 cells or coexpression of TH and hNuMA-ir were observed. In addition, dense serotonin immunoreactive (5-HT-ir) fibers were observed around grafted SB623 cells and these fibers also appeared to be of the host origin. Also, in some SB623 grafted rats that were sacrificed within 2 h of dl-amphetamine injection, hot spots of c-Fos-positive nuclei that coincided with rejuvenated dense TH fibers around the grafted SB623 cells were observed, suggesting increased availability of DA in these locations. Our observations suggest that NICD-transfected MSC hold potential as a readily available autologous or allogenic cellular therapy for ameliorating the degeneration of DA and 5-HT neurons in PD patients.
Collapse
Affiliation(s)
- Aleksandra Glavaski-Joksimovic
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tamas Virag
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qin A. Chang
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Neva C. West
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas A. Mangatu
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Martha C. Bohn
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
27
|
Park DH, Eve DJ, Musso J, Klasko SK, Cruz E, Borlongan CV, Sanberg PR. Inflammation and Stem Cell Migration to the Injured Brain in Higher Organisms. Stem Cells Dev 2009; 18:693-702. [DOI: 10.1089/scd.2009.0008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Dong-Hyuk Park
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
- Department of Neurosurgery, Korea University Medical Center, Korea University, Seoul, Korea
| | - David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - James Musso
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | | | - Eduardo Cruz
- Cryopraxis, CellPraxis, BioRio, Pólo de Biotecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, Florida
| |
Collapse
|
28
|
Jordan PM, Ojeda LD, Thonhoff JR, Gao J, Boehning D, Yu Y, Wu P. Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res 2009; 87:318-32. [PMID: 18803285 DOI: 10.1002/jnr.21856] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neural stem cells (NSCs) have some specified properties but are generally uncommitted and so can change their fate after exposure to environmental cues. It is unclear to what extent this NSC plasticity can be modulated by extrinsic cues and what are the molecular mechanisms underlying neuronal fate determination. Basic fibroblast growth factor (bFGF) is a well-known mitogen for proliferating NSCs. However, its role in guiding stem cells for neuronal subtype specification is undefined. Here we report that in-vitro-expanded human fetal forebrain-derived NSCs can generate cholinergic neurons with spinal motor neuron properties when treated with bFGF within a specific time window. bFGF induces NSCs to express the motor neuron marker Hb9, which is blocked by specific FGF receptor inhibitors and bFGF neutralizing antibodies. This development of spinal motor neuron properties is independent of selective proliferation or survival and does not require high levels of MAPK activation. Thus our study indicates that bFGF can play an important role in modulating plasticity and neuronal fate of human NSCs and presumably has implications for exploring the full potential of brain NSCs for clinical applications, particularly in spinal motor neuron regeneration.
Collapse
Affiliation(s)
- Paivi M Jordan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-0620, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Cai J, Donaldson A, Yang M, German MS, Enikolopov G, Iacovitti L. The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson's disease model. Stem Cells 2009; 27:220-9. [PMID: 18832589 DOI: 10.1634/stemcells.2008-0734] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have provided important insight into the homeoprotein LIM homeobox transcription factor 1alpha (Lmx1a) and its role in the commitment of cells to a midbrain dopamine (mDA) fate in the developing mouse. We show here that Lmx1a also plays a pivotal role in the mDA differentiation of human embryonic stem (hES) cells. Thus, as indicated by small interfering RNA experiments, the transient early expression of Lmx1a is necessary for the coordinated expression of all other dopamine (DA)-specific phenotypic traits as hES cells move from multipotent human neural progenitor cells (hNPs) to more restricted precursor cells in vitro. Moreover, only Lmx1a-specified hNPs have the potential to differentiate into bona fide mDA neurons after transplantation into the 6-hydroxydopamine-treated rat striatum. In contrast, cortical human neuronal precursor cells (HNPCs) and mouse subventricular zone cells do not express Lmx1a or become mDA neurons even when placed in an environment that fosters their DA differentiation in vitro or in vivo. These findings suggest that Lmx1a may be critical to the development of mDA neurons from hES cells and that, along with other key early DA markers (i.e., Aldh1a1), may prove to be extremely useful for the selection of appropriately staged and suitably mDA-specified hES cells for cell replacement in Parkinson's disease.
Collapse
Affiliation(s)
- Jingli Cai
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
30
|
Maciaczyk J, Singec I, Maciaczyk D, Nikkhah G. Combined use of BDNF, ascorbic acid, low oxygen, and prolonged differentiation time generates tyrosine hydroxylase-expressing neurons after long-term in vitro expansion of human fetal midbrain precursor cells. Exp Neurol 2008; 213:354-62. [DOI: 10.1016/j.expneurol.2008.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/11/2008] [Accepted: 06/17/2008] [Indexed: 02/05/2023]
|
31
|
Lane EL, Handley OJ, Rosser AE, Dunnett SB. Potential cellular and regenerative approaches for the treatment of Parkinson's disease. Neuropsychiatr Dis Treat 2008; 4:835-45. [PMID: 19183776 PMCID: PMC2626922 DOI: 10.2147/ndt.s2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Parkinson's disease is most commonly treated with a range of pharmacotherapeutics, with the more recent introduction of surgical techniques including deep-brain stimulation. These have limited capabilities to improve symptoms of the disease in more advanced stages, thus new therapeutic strategies including the use of viral vectors and stem cells are in development. Providing a continuous supply of dopamine to the striatum in an attempt to improve the treatment of motor symptoms using enzymes in the dopamine synthesis and machinery is one approach. Alternatively, there are tools which may serve to both protect and encourage outgrowth of surviving neurons using growth factors or to directly replace lost innervation by transplantation of primary tissue or stem cell-derived dopaminergic neurons. We summarize some of the potential therapeutic approaches and also consider the recent EU directives on practical aspects of handling viral vectors, cells and tissues, and in the running of clinical trials in Europe which impact on their development.
Collapse
Affiliation(s)
- Emma L Lane
- Brain Repair Group, School of Biosciences, Cardiff University, CF10 3US, UK
| | | | | | | |
Collapse
|
32
|
Greenfield JP, Ayuso-Sacido A, Schwartz TH, Pannullo S, Souweidane M, Stieg PE, Boockvar JA. Use of human neural tissue for the generation of progenitors. Neurosurgery 2008; 62:21-37; discussion 27-30. [PMID: 18300889 DOI: 10.1227/01.neu.0000311059.87873.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence suggests that a better understanding of normal human brain stem cells and tumor stem cells (TSCs) will have profound implications for treating central nervous system disease during the next decade. Neurosurgeons routinely resect excess surgical tissue containing either normal brain stem cells or TSCs. These cells are immediately available for expansion and use in basic biological assays, animal implantation, and comparative analysis studies. Although normal stem cells have much slower kinetics of expansion than TSCs, they are easily expandable and can be frozen for future use in stem cell banks. This nearly limitless resource holds promise for understanding the basic biology of normal brain stem cells and TSCs, which will likely direct the next major shift in therapeutics for brain tumors, brain and spinal cord injury, and neurodegenerative disease. This report reviews the progress that has been made in harvesting and expanding both normal and tumor-derived stem cells and emphasizes the integral role neurosurgeons will play in moving the neural stem cell field forward.
Collapse
Affiliation(s)
- Jeffrey P Greenfield
- Laboratory for Translational Stem Cell Research, Weill Cornell Brain Tumor Center, Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Stem cells, although difficult to define, hold great promise as tools for understanding development and as therapeutic agents. However, as with any new field, uncritical enthusiasm can outstrip reality. In this review, we have listed nine common myths that we believe affect our approach to evaluating stem cells for therapy. We suggest that careful consideration needs to be given to each of these issues when evaluating a particular cell for its use in therapy. Data need to be collected and reported for failed as well as successful experiments and a rigorous scientific approach taken to evaluate the undeniable promise of stem cell biology.
Collapse
Affiliation(s)
- Tim Magnus
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
| | - Ying Liu
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
| | - Graham C Parker
- Children's Research Center of Michigan, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of MichiganDetroit, MI 48201, USA
| | - Mahendra S Rao
- Stem Cell Section, Laboratory of Neurosciences, National Institute on Aging, NIH333 Cassell Drive, Room 406A, Baltimore, MD 21224, USA
- Corporate Research Laboratories, Invitrogen Corporation1620 Faraday Avenue, Carlsbad, CA 92008, USA
- Author for correspondence ()
| |
Collapse
|
34
|
Mukhida K, Baghbaderani BA, Hong M, Lewington M, Phillips T, McLeod M, Sen A, Behie LA, Mendez I. Survival, differentiation, and migration of bioreactor-expanded human neural precursor cells in a model of Parkinson disease in rats. Neurosurg Focus 2008; 24:E8. [DOI: 10.3171/foc/2008/24/3-4/e7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Object
Fetal tissue transplantation for Parkinson disease (PD) has demonstrated promising results in experimental and clinical studies. However, the widespread clinical application of this therapeutic approach is limited by a lack of fetal tissue. Human neural precursor cells (HNPCs) are attractive candidates for transplantation because of their long-term proliferation activity. Furthermore, these cells can be reproducibly expanded in a standardized fashion in suspension bioreactors. In this study the authors sought to determine whether the survival, differentiation, and migration of HNPCs after transplantation depended on the region of precursor cell origin, intracerebral site of transplantation, and duration of their expansion.
Methods
Human neural precursor cells were isolated from the telencephalon, brainstem, ventral mesencephalon, and spinal cord of human fetuses 8–10 weeks of gestational age, and their differentiation potential characterized in vitro. After expansion in suspension bioreactors, the HNPCs were transplanted into the striatum and substantia nigra of parkinsonian rats. Histological analyses were performed 7 weeks posttransplantation.
Results
The HNPCs isolated from various regions of the neuraxis demonstrated diverse propensities to differentiate into astrocytes and neurons and could all successfully expand under standardized conditions in suspension bioreactors. At 7 weeks posttransplantation, survival and migration were significantly greater for HNPCs obtained from the more rostral brain regions. The HNPCs differentiated predominantly into astrocytes after transplantation into the striatum or substantia nigra regions, and thus no behavioral improvement was observed.
Conclusions
Understanding the regional differences in HNPC properties is prerequisite to their application for PD cell restoration strategies.
Collapse
Affiliation(s)
- Karim Mukhida
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Behnam A. Baghbaderani
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Murray Hong
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Matthew Lewington
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Timothy Phillips
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Marcus McLeod
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Arindom Sen
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Leo A. Behie
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Ivar Mendez
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| |
Collapse
|
35
|
Bjugstad KB, Teng YD, Redmond DE, Elsworth JD, Roth RH, Cornelius SK, Snyder EY, Sladek JR. Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson's disease. Exp Neurol 2008; 211:362-9. [PMID: 18394605 DOI: 10.1016/j.expneurol.2008.01.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 12/18/2007] [Accepted: 01/16/2008] [Indexed: 12/21/2022]
Abstract
Although evidence of damage-directed neural stem cell (NSC) migration has been well-documented in the rodent, to our knowledge it has never been confirmed or quantified using human NSC (hNSC) in an adult non-human primate modeling a human neurodegenerative disease state. In this report, we attempt to provide that confirmation, potentially advancing basic stem cell concepts toward clinical relevance. hNSCs were implanted into the caudate nucleus (bilaterally) and substantia nigra (unilaterally) of 7, adult St. Kitts African green monkeys (Chlorocebus sabaeus) with previous exposure to systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that disrupts the dopaminergic nigrostriatal pathway. A detailed quantitative analysis of hNSC migration patterns at two time points (4 and 7 months) following transplantation was performed. Density contour mapping of hNSCs along the dorsal-ventral and medial-lateral axes of the brain suggested that >80% of hNSCs migrated from the point of implantation to and along the impaired nigrostriatal pathway. Although 2/3 of hNSCs were transplanted within the caudate, <1% of 3x10(6) total injected donor cells were identified at this site. The migrating hNSC did not appear to be pursuing a neuronal lineage. In the striatum and nigrostriatal pathway, but not in the substantia nigra, some hNSCs were found to have taken a glial lineage. The property of neural stem cells to align themselves along a neural pathway rendered dysfunctional by a given disease is potentially a valuable clinical tool.
Collapse
Affiliation(s)
- Kimberly B Bjugstad
- Department of Pediatrics, Program in Neuroscience, University of Colorado Health Sciences Center, Denver, CO 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
From bench to bed: the potential of stem cells for the treatment of Parkinson's disease. Cell Tissue Res 2007; 331:323-36. [PMID: 18034267 DOI: 10.1007/s00441-007-0541-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 10/23/2007] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the most common movement disorder. The neuropathology is characterized by the loss of dopamine neurons in the substantia nigra pars compacta. Transplants of fetal/embryonic midbrain tissue have exhibited some beneficial clinical effects in open-label trials. Neural grafting has, however, not become a standard treatment for several reasons. First, the supply of donor cells is limited, and therefore, surgery is accompanied by difficult logistics. Second, the extent of beneficial effects has varied in a partly unpredictable manner. Third, some patients have exhibited graft-related side effects in the form of involuntary movements. Fourth, in two major double-blind placebo-controlled trials, there was no effect of the transplants on the primary endpoints. Nevertheless, neural transplantation continues to receive a great deal of interest, and now, attention is shifting to the idea of using stem cells as starting donor material. In the context of stem cell therapy for PD, stem cells can be divided into three categories: neural stem cells, embryonic stem cells, and other tissue-specific types of stem cells, e.g., bone marrow stem cells. Each type of stem cell is associated with advantages and disadvantages. In this article, we review recent advances of stem cell research of direct relevance to clinical application in PD and highlight the pros and cons of the different sources of cells. We draw special attention to some key problems that face the translation of stem cell technology into the clinical arena.
Collapse
|
37
|
Hovakimyan M, Haas SJP, Schmitt O, Gerber B, Wree A, Andressen C. Mesencephalic human neural progenitor cells transplanted into the neonatal hemiparkinsonian rat striatum differentiate into neurons and improve motor behaviour. J Anat 2007; 209:721-32. [PMID: 17118060 PMCID: PMC2049002 DOI: 10.1111/j.1469-7580.2006.00654.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neural stem cell transplantation is a promising strategy for the treatment of neurodegenerative diseases. To evaluate the differentiation potential of human neural progenitor cells (hNPCs) as a prerequisite for clinical trials, we intracerebrally transplanted in vitro expanded fetal mesencephalic hNPCs into hemiparkinsonian rats. On postnatal day one (P1), 17 animals underwent a unilateral intraventricular 6-hydroxydopamine injection into the right lateral ventricle. At P3, animals (n = 10) received about 100,000 hNPCs (1 microL) in the right striatum. Five weeks after birth, animals underwent behaviour tests prior to fixation, followed by immunohistochemistry on brain slices for human nuclei, glial fibrillary acidic protein, S100beta, neuronal nuclei antigen, neuron-specific enolase and tyrosine hydroxylase. Compared with the apomorphine-induced rotations in the lesioned-only group (7.4 +/- 0.5 min(-1)), lesioned and successfully transplanted animals (0.3 +/- 0.1 min(-1)) showed a significant therapeutic improvement. Additionally, in the cylinder test, the lesioned-only animals preferred to use the ipsilateral forepaw. Conversely, the lesioned and transplanted animals showed no significant side bias similar to untreated control animals. Transplanted human nuclei-immunoreactive cells were found to survive and migrate up to 2000 microm into the host parenchyma, many containing the pan-neuronal markers neuronal nuclei antigen and neuron-specific enolase. In the striatum, tyrosine hydroxylase-immunoreactive somata were also found, indicating a dopaminergic differentiation capacity of transplanted hNPCs in vivo. However, the relative number of tyrosine hydroxylase-immunoreactive neurons in vivo seemed to be lower than in corresponding in vitro differentiation. To minimize donor tissue necessary for transplantation, further investigations will aim to enhance dopaminergic differentiation of transplanted cells in vivo.
Collapse
Affiliation(s)
- Marine Hovakimyan
- Institute of Anatomy, Medical Faculty, University of Rostock, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Romano G, Macaluso M, Lucchetti C, Iacovitti L. Transcription and epigenetic profile of the promoter, first exon and first intron of the human tyrosine hydroxylase gene. J Cell Physiol 2007; 211:431-8. [PMID: 17195153 PMCID: PMC1976183 DOI: 10.1002/jcp.20949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transcriptional and chromatin profile of the promoter, first exon and first intron of the human TH gene were analyzed in human neuroblastoma BE(2)-C-16 and human renal carcinoma 293FT cell lines. The latter is a cell culture system that is not permissive for TH gene expression, whereas the former has a 50% cell fraction that tests positive for TH. The engineering of a 6.3 kb recombinant human TH promoter revealed the presence of repressors of transcription between positions (-6,244/-194). The addition of a 1.2 kb fragment of the first intron of the human TH gene (+730/+1,653) enhanced transcriptional activity of the recombinant promoter. However, both constructs were not specific for TH-positive BE(2)-C-16 cells. Chromatin immunoprecipitation (Chip) analysis was carried out on BE(2)-C-16 and 293FT cells to probe sequences of promoter, first exon and first intron of the human TH gene from position (-448/+1,204). The presence of nucleosomes was observed approximately from position (-20/+473) in both cell lines. Chip analysis was then conducted to determine the acetylation of various lysine residues of H3 and H4 in both cell lines. All analyzed lysine residues of H3 and H4 were acetylated in BE(2)-C-16 cells, whereas 293FT cells tested positive for acetylation only in the external lysine residues of the histone tail. Our data are compatible with an active TH gene expression in a 50% cell fraction of BE(2)-C-16 cells. Further analysis of epigenetic programming might lead to the identification of the factors that determine TH gene expression specifically in dopaminergic neurons.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Neurosurgery, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
39
|
Master Z, McLeod M, Mendez I. Benefits, risks and ethical considerations in translation of stem cell research to clinical applications in Parkinson's disease. JOURNAL OF MEDICAL ETHICS 2007; 33:169-73. [PMID: 17329391 PMCID: PMC2598267 DOI: 10.1136/jme.2005.013169] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stem cells are likely to be used as an alternate source of biological material for neural transplantation to treat Parkinson's disease in the not too distant future. Among the several ethical criteria that must be fulfilled before proceeding with clinical research, a favourable benefit to risk ratio must be obtained. The potential benefits to the participant and to society are evaluated relative to the risks in an attempt to offer the participants a reasonable choice. Through examination of preclinical studies transplanting stem cells in animals and the transplantation of fetal tissue in patients with Parkinson's disease, a current set of potential benefits and risks for neural transplantation of stem cells in clinical research of Parkinson's disease are derived. The potential benefits to research participants undergoing stem cell transplantation are relief of parkinsonian symptoms and decreasing doses of parkinsonian drugs. Transplantation of stem cells as a treatment for Parkinson's disease may benefit society by providing knowledge that can be used to help determine better treatments in the future. The risks to research participants undergoing stem cell transplantation include tumour formation, inappropriate stem cell migration, immune rejection of transplanted stem cells, haemorrhage during neurosurgery and postoperative infection. Although some of these risks are general to neurosurgical transplantation and may not be reduced for participants, the potential risk of tumour formation and inappropriate stem cell migration must be minimised before obtaining a favourable potential benefit to risk calculus and to provide participants with a reasonable choice before they enroll in clinical studies.
Collapse
Affiliation(s)
- Zubin Master
- W. Maurice Young Centre for Applied Ethics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2.
| | | | | |
Collapse
|
40
|
Yasuhara T, Matsukawa N, Hara K, Yu G, Xu L, Maki M, Kim SU, Borlongan CV. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease. J Neurosci 2006; 26:12497-511. [PMID: 17135412 PMCID: PMC6674904 DOI: 10.1523/jneurosci.3719-06.2006] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neural stem cells (NSCs) possess high potencies of self-renewal and neuronal differentiation. We explored here whether transplantation of human NSCs cloned by v-myc gene transfer, HB1.F3 cells, is a feasible therapeutic option for Parkinson's disease. In vivo, green fluorescent protein-labeled HB1.F3 cells (200,000 viable cells in 3 microl of PBS) when stereotaxically transplanted (same-day lesion-transplant paradigm) into the 6-hydroxydopamine-lesioned striatum of rats significantly ameliorated parkinsonian behavioral symptoms compared with controls (vehicle, single bolus, or continuous minipump infusion of trophic factor, or killed cell grafts). Such graft-derived functional effects were accompanied by preservation of tyrosine hydroxylase (TH) immunoreactivity along the nigrostriatal pathway. Grafted HB1.F3 cells survived in the lesioned brain with some labeled with neuronal marker mitogen-activated protein 2 and decorated with synaptophysin-positive terminals. Furthermore, endogenous neurogenesis was activated in the subventricular zone of transplanted rats. To further explore the neuroprotective mechanisms underlying HB1.F3 cell transplantation, we performed cell culture studies and found that a modest number of HB1.F3 cells were TH and dopamine and cAMP-regulated phosphoprotein 32 positive, although most cells were nestin positive, suggesting a mixed population of mature and immature cells. Administration of the HB1.F3 supernatant to human derived dopaminergic SH-SY5Y cells and fetal rat ventral mesencephalic dopaminergic neurons protected against 6-hydroxydopamine neurotoxicity by suppressing apoptosis through Bcl-2 upregulation, which was blocked by anti-stem cell factor antibody alone, the phosphatidylinositol 3-kinase/Akt inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one] alone, or a combination of both. These results suggest that HB1.F3 cell transplantation exerts neuroprotective effects against dopaminergic depletion in vitro and in vivo because of trophic factor secretion and neuronal differentiation.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Noriyuki Matsukawa
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Koichi Hara
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Guolong Yu
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Lin Xu
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Mina Maki
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
| | - Seung U. Kim
- Disease Research Center, Ajou University School of Medicine, Suwon 443-721, Korea
- Division of Neurology, University of British Columbia Hospital, Vancouver, British Columbia, Canada V5Z 1M9, and
| | - Cesario V. Borlongan
- Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912
- Research and Affiliations Service Line, Augusta Veterans Affairs Medical Center, Augusta, Georgia 30904
| |
Collapse
|
41
|
Abstract
This commentary documents the increased number of stem cell-related research reports recently published in the cell transplantation field in the journal Cell Transplantation. The journal covers a wide range of issues in cell-based therapy and regenerative medicine and is attracting clinical and preclinical articles from around the world. It thereby complements and extends the basic coverage of stem cell physiology reported in Stem Cells and Development. Sections in Cell Transplantation cover neuroscience, diabetes, hepatocytes, bone, muscle, cartilage, skin, vessels, and other tissues, as well as tissue engineering that employs novel methods with stem cells. Clearly, the continued use of biomedical engineering will depend heavily on stem cells, and these two journals are well positioned to provide comprehensive coverage of these developments.
Collapse
Affiliation(s)
- Agneta Sanmartin
- Department of Neurosurgery, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | | | | |
Collapse
|
42
|
Iacovitti L, Donaldson AE, Marshall CE, Suon S, Yang M. A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: Studies in vitro and in vivo. Brain Res 2006; 1127:19-25. [PMID: 17123482 PMCID: PMC1941771 DOI: 10.1016/j.brainres.2006.10.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/29/2006] [Accepted: 10/07/2006] [Indexed: 11/19/2022]
Abstract
Our ability to use human embryonic stem (hES) cells in cell replacement therapy for Parkinson's disease depends on the discovery of ways to simply and reliably differentiate a dopaminergic (DA) phenotype in these cells. Although several protocols exist for the differentiation of DA traits in hES, they involve the prolonged use of complex media with undefined components, cell conditioned media and/or co-culture with various cells, usually of animal origin. In this study, several well-characterized (H9, BG01) and several new uncharacterized (HUES7, HUES8) hES cell lines were studied for their capacity to differentiate into DA neurons in culture using a novel rapid protocol which uses only chemically-defined human-derived media additives and substrata. Within 3 weeks, cells from all 4 cell lines progressed from the undifferentiated state to beta-tubulin III positive cells expressing DA markers in vitro. Moreover, transplantation of these cells into the striata of 6-hydroxydopamine-treated rats at the neuronal progenitor stage resulted in the appearance of differentiated DA traits in vivo 2-3 weeks later.
Collapse
Affiliation(s)
- Lorraine Iacovitti
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, Suite 462-Jefferson Hospital for Neuroscience, 900 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
43
|
Christophersen NS, Meijer X, Jørgensen JR, Englund U, Grønborg M, Seiger A, Brundin P, Wahlberg LU. Induction of dopaminergic neurons from growth factor expanded neural stem/progenitor cell cultures derived from human first trimester forebrain. Brain Res Bull 2006; 70:457-66. [PMID: 17027782 DOI: 10.1016/j.brainresbull.2006.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/26/2006] [Accepted: 07/03/2006] [Indexed: 01/22/2023]
Abstract
Multipotent stem/progenitor cells derived from human first trimester forebrain can be expanded as free-floating aggregates, so called neurospheres. These cells can differentiate into neurons, astrocytes and oligodendrocytes. In vitro differentiation protocols normally yield gamma-aminobutyric acid-immunoreactive neurons, whereas only few tyrosine hydroxylase (TH) expressing neurons are found. The present report describes conditions under which 4-10% of the cells in the culture become TH immunoreactive (ir) neurons within 24h. Factors including acidic fibroblast growth factor (aFGF) in combination with agents that increase intracellular cyclic AMP and activate protein kinase C, in addition to a substrate that promotes neuronal differentiation appear critical for efficient TH induction. The cells remain THir after trypsinization and replating, even when their subsequent culturing takes place in the absence of inducing factors. Consistent with a dopaminergic phenotype, mRNAs encoding aromatic acid decarboxylase, but not dopamine-beta-hydroxylase were detected by quantitative real time RT-PCR. Ten weeks after the cells had been grafted into the striatum of adult rats with unilateral nigrostriatal lesions, only very few of the surviving human neurons expressed TH. Our data suggest that a significant proportion of expandable human neural progenitors can differentiate into TH-expressing cells in vitro and that they could be useful for drug and gene discovery. Additional experiments, however, are required to improve the survival and phenotypic stability of these cells before they can be considered useful for cell replacement therapy in Parkinson's disease.
Collapse
|
44
|
Suon S, Yang M, Iacovitti L. Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson's disease. Brain Res 2006; 1106:46-51. [PMID: 16828720 PMCID: PMC1949017 DOI: 10.1016/j.brainres.2006.05.109] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 12/01/2022]
Abstract
Adult human bone marrow stromal cells (hMSCs) grown in suspension culture gave rise to spheres of neural progenitor (NP) cells, capable of expressing both dopaminergic (DA) and GABAergic (GABA) traits. After transplantation into the Parkinsonian rat, human NPs and neurons were present at 2 weeks. Although no DA neurons appeared to survive transplantation, there were abundant GABA neurons present in the graft. By 4 weeks, however, all cells had died. Finding ways to prolong survival and promote the appropriate neurotransmitter phenotype is essential if hMSCs are to be clinically useful.
Collapse
Affiliation(s)
- Sokreine Suon
- Department of Molecular Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, JHN 462, Philadelphia, PA 19107, USA
| | - Ming Yang
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, JHN 462, Philadelphia, PA 19107, USA
| | - Lorraine Iacovitti
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University, 900 Walnut Street, JHN 462, Philadelphia, PA 19107, USA.
| |
Collapse
|
45
|
Jin H, Romano G, Marshall C, Donaldson AE, Suon S, Iacovitti L. Tyrosine hydroxylase gene regulation in human neuronal progenitor cells does not depend on Nurr1 as in the murine and rat systems. J Cell Physiol 2006; 207:49-57. [PMID: 16252282 PMCID: PMC1949423 DOI: 10.1002/jcp.20534] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A previous study on the human tyrosine hydroxylase (TH) promoter revealed remarkable differences in the mechanism of TH gene regulation between the human and murine models. Indeed, a low degree of homology was observed in the sequence of TH promoters among human, mouse, and rat systems. Only five short conserved regions (CRs) could be identified among the three species. A human TH minimal promoter was engineered and assembled into a self-inactivating lentiviral vector system. This human TH minimal promoter contained the five CRs plus the first -194 bp from the transcription start of the human TH promoter and the first 35 bp of the untranslated messenger RNA leader of the human TH gene. A significant degree of specificity for this human TH minimal promoter was observed only for human neuronal progenitor cells (hNPCs), but not for TH-positive differentiated mouse primary striatal and substantia nigra cells, indicating a significant difference in TH gene regulation between the human and mouse systems. Not only is the degree of homology between the human and mouse promoters in the range of only 46%, but also those few elements that share a high degree of homology display totally different functions in human and mouse brain-derived cells. In the rodent system, NR4A2 (Nurr1) is required for the transactivation of TH minimal promoters. Intriguingly, neither the dimeric nor the heterodimeric binding sites for Nurr1 are present in the 13 kb DNA sequence that contains the human TH promoter. Instead, the CRs termed one and four of the human TH promoter encode only for a half palindromic binding site sequence for Nurr1, which failed to bind Nurr1 in an in vitro electrophoretic mobility shift assay (EMSA). Additionally, of the three monomeric NGFI-B response element (NBRE) core sites (AGGTCA) and two NBRE-related sites present in the human TH promoter, only one core and two NBRE-related sites formed protein binding complexes. Interestingly, there was no increase of protein binding complex formation upon TH induction and in no case could antibodies supershift Nurr1 from the complex. These findings, taken together, demonstrate that NBRE-related binding sites for Nurr1 do not play a direct role in mediating an interaction between Nurr1 and the human TH promoter. Likewise, immunohistochemical and Western blot analysis have also confirmed that both endogenous and exogenous Nurr1 expression does not positively correlate with TH gene expression in hNPCs, in contrast to the mouse model. In addition, real-time PCR analysis revealed that the downregulation of human Nurr1 gene expression mediated by silencing RNA molecules did not affect human TH gene expression in differentiated hNPCs. A better understanding of human TH gene regulation may have important implications both for the development of novel therapeutic approaches and the study of the pathogenesis of a variety of neurological illnesses, including Parkinson's disease, bipolar disorder, and schizophrenia.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cells, Cultured
- Conserved Sequence/genetics
- DNA/genetics
- DNA/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Enzymologic/genetics
- Humans
- Mice
- Neurons/cytology
- Neurons/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Nuclear Receptor Subfamily 4, Group A, Member 2
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Small Interfering/genetics
- Rats
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Steroid/genetics
- Recombinant Fusion Proteins/metabolism
- Response Elements/genetics
- Stem Cells/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transfection
- Tyrosine 3-Monooxygenase/genetics
- Tyrosine 3-Monooxygenase/metabolism
Collapse
Affiliation(s)
- Hao Jin
- The Farber Institute for the Neurosciences, Department of Neurology, Thomas Jefferson University, Jefferson Hospital for the Neurosciences, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
46
|
Donaldson AE, Marshall CE, Yang M, Suon S, Iacovitti L. Purified mouse dopamine neurons thrive and function after transplantation into brain but require novel glial factors for survival in culture. Mol Cell Neurosci 2005; 30:108-17. [PMID: 16024255 PMCID: PMC1949425 DOI: 10.1016/j.mcn.2005.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/25/2005] [Accepted: 06/14/2005] [Indexed: 11/17/2022] Open
Abstract
Cell replacement therapy in Parkinson's disease depends on a reliable source of purified dopamine (DA) neurons (PDN) and the identification of factors relevant to their survival. Our goal was to genetically tag and purify by flow cytometry embryonic midbrain DA neurons from a transgenic mouse line carrying 11 kb of human tyrosine hydroxylase promoter driving expression of the enhanced green fluorescent protein (GFP) for studies in vivo and in vitro. A 99% purification of GFP(+) cells was achieved. When transplanted into 6-hydroxydopamine-treated rat striatum, PDN survived, became well-integrated and produced recovery from amphetamine-induced motor behaviors. However, when grown in culture, PDN died within days of plating. No known growth factors prevented PDN death as did incubation with novel factors in glia/glial-conditioned media. We conclude that GFP-tagged DA neurons can be purified to homogeneity and can survive and function when grown with glial factors in vitro or after transplantation in vivo.
Collapse
Affiliation(s)
- A E Donaldson
- Farber Institute for Neurosciences, Thomas Jefferson University Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
47
|
Romano G, Suon S, Jin H, Donaldson AE, Iacovitti L. Characterization of five evolutionary conserved regions of the human tyrosine hydroxylase (TH) promoter: implications for the engineering of a human TH minimal promoter assembled in a self-inactivating lentiviral vector system. J Cell Physiol 2005; 204:666-77. [PMID: 15744773 PMCID: PMC1949424 DOI: 10.1002/jcp.20319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A DNA fragment of about 13 kb containing the human tyrosine hydroxylase (TH) promoter was previously isolated from a genomic DNA library and sequenced. The 11 kb from the transcription start of the human TH promoter was successively joined to the green fluorescent protein (GFP) to generate a transgenic mouse model. High levels of GFP expression could be observed in TH-positive cells of the Substantia nigra of embryonic and adult mice. Intriguingly, the sequence of the human TH promoter showed a low degree of homology with the mouse and rat TH promoters. In fact, comparative analysis of the sequences of human, rat, and mouse TH promoters revealed only five small regions of high homology. These five evolutionarily conserved regions were numbered in numeric progression from the 5' end of human TH promoter. In the present study, a panel of minimal human TH promoters was generated to analyze the transcriptional activity and specificity of gene expression conferred by the five conserved regions (CRs). The series of constructs was termed 250 bp and contained the first -194 bp of the human TH promoter immediately upstream of the transcription start, the first 35 bp the human TH messenger RNA leader, plus one or more of the five CRs. All the constructs were assembled in a self-inactivating form of the latest series of lentiviral vector system based on the human immunodeficiency virus type 1 (HIV-1). Lentiviral-mediated gene transfer was highly efficient for the in vitro transduction of human neuronal progenitor cells (hNPCs). Since a subset of hNPCs express TH following in vitro treatment with a mixture of differentiating agents, it was possible to assess specificity of expression for all the minimal human TH promoters. Overall, the successive addition of the five conserved regions produced a greater degree of specificity in induced TH-positive hNPCs, in particular after the addition of CRI (-8,917, -8,876). However, the human TH minimal promoters did not show any specificity for TH-positive differentiated mouse primary striatal and S. nigra cells, indicating a difference of TH gene regulation between the human and mouse systems. The human TH minimal promoters may provide the opportunity for the selection of TH-positive human embryonic and adult stem cells for brain transplantation experiments in animal models for Parkinson's disease.
Collapse
Affiliation(s)
- Gaetano Romano
- Department of Neurosurgery, The Farber Institute for the Neurosciences, Thomas Jefferson University, Jefferson Hospital for the Neurosciences, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
48
|
Sánchez-Pernaute R, Studer L, Ferrari D, Perrier A, Lee H, Viñuela A, Isacson O. Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 2005; 23:914-22. [PMID: 15941857 PMCID: PMC2654596 DOI: 10.1634/stemcells.2004-0172] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dopamine (DA) neurons can be derived from human and primate embryonic stem (ES) cells in vitro. An ES cell-based replacement therapy for patients with Parkinson's disease requires that in vitro-generated neurons maintain their phenotype in vivo. Other critical issues relate to their proliferative capacity and risk of tumor formation, and the capability of migration and integration in the adult mammalian brain. Neural induction was achieved by coculture of primate parthenogenetic ES cells (Cyno-1) with stromal cells, followed by sequential exposure to midbrain patterning and differentiation factors to favor DA phenotypic specification. Differentiated ES cells were treated with mitomycin C and transplanted into adult immunosuppressed rodents and into a primate (allograft) with out immunosuppression. A small percentage of DA neurons survived in both rodent and primate hosts for the entire term of the study (4 and 7 months, respectively). Other neuronal and glial populations derived from Cyno-1 ES cells showed, in vivo, phenotypic characteristics and growth and migration patterns similar to fetal primate transplants, and a majority of cells (>80%) expressed the forebrain transcription factor brain factor 1. No teratoma formation was observed. In this study, we demonstrate long-term survival of DA neurons obtained in vitro from primate ES cells. Optimization of differentiation, cell selection, and cell transfer is required for functional studies of ES-derived DA neurons for future therapeutic applications.
Collapse
Affiliation(s)
- Rosario Sánchez-Pernaute
- McLean Hospital/Harvard University Udall Parkinson's Disease Research Center of Excellence and Neuroregeneration Laboratories, McLean Hospital, 115 Mill St., Belmont, Massachusetts 02478, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Suon S, Jin H, Donaldson AE, Caterson EJ, Tuan RS, Deschennes G, Marshall C, Iacovitti L. Transient differentiation of adult human bone marrow cells into neuron-like cells in culture: development of morphological and biochemical traits is mediated by different molecular mechanisms. Stem Cells Dev 2005; 13:625-35. [PMID: 15684830 PMCID: PMC1976185 DOI: 10.1089/scd.2004.13.625] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies on rodent bone marrow stromal cells (MSCs) have revealed a capacity, for at least a portion of cells, to express neuron-like traits after differentiation in culture. Little, however, is known about the ability of human MSCs in this regard. We show here that incubation with certain differentiation cocktails, particularly those that include reagents that increase cellular cAMP levels, produces a rapid (1-4 h) and transient (24-48 h) transformation of nearly all hMSCs into neuron-like cells displaying a complex network of processes using phase or scanning electron microscopic optics. In addition, differentiated human (h) MSCs express increased quantities of neuron-[beta-tubulin III, neurofilament (NF), neuronal-specific enolase (NSE)] and glial- [glial fibrillary acidic protein (GFAP)] specific proteins and mRNAs, which are also expressed in low levels in undifferentiated MSCs. In contrast, the mesenchymal marker, fibronectin, which is highly expressed in the undifferentiated state, is reduced following differentiation. These biochemical changes, but not the acquisition of a neuron-like appearance, are partially inhibited by incubation of hMSCs with protein (cycloheximide) and mRNA (actinomycin D) synthesis inhibitors with differentiating reagents. Only incubation with 100 ng/ml colchicine, which disrupts the microtubular cytoskeleton, prevents the conversion of hMSCs into neuron- like cells. These results demonstrate that hMSCs acquire the morphological appearance and the biochemical makeup typical of neurons by independently regulated mechanisms.
Collapse
Affiliation(s)
- Sokreine Suon
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|