1
|
Gazerani P. The neuroplastic brain: current breakthroughs and emerging frontiers. Brain Res 2025; 1858:149643. [PMID: 40280532 DOI: 10.1016/j.brainres.2025.149643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Neuroplasticity, the brain's capacity to reorganize itself by forming new neural connections, is central to modern neuroscience. Once believed to occur only during early development, research now shows that plasticity continues throughout the lifespan, supporting learning, memory, and recovery from injury or disease. Substantial progress has been made in understanding the mechanisms underlying neuroplasticity and their therapeutic applications. This overview article examines synaptic plasticity, structural remodeling, neurogenesis, and functional reorganization, highlighting both adaptive (beneficial) and maladaptive (harmful) processes across different life stages. Recent strategies to harness neuroplasticity, ranging from pharmacological agents and lifestyle interventions to cutting-edge technologies like brain-computer interfaces (BCIs) and targeted neuromodulation are evaluated in light of current empirical evidence. Contradictory findings in the literature are addressed, and methodological limitations that hamper widespread clinical adoption are discussed. The ethical and societal implications of deploying novel neuroplasticity-based interventions, including issues of equitable access, data privacy, and the blurred line between treatment and enhancement, are then explored in a structured manner. By integrating mechanistic insights, empirical data, and ethical considerations, the aim is to provide a comprehensive and balanced perspective for researchers, clinicians, and policymakers working to optimize brain health across diverse populations.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Pilestredet 50, 0167 Oslo, Norway.
| |
Collapse
|
2
|
Ma ZF, Fu C, Lee YY. The Modulatory Role of Bioactive Compounds in Functional Foods on Inflammation and Metabolic Pathways in Chronic Diseases. Foods 2025; 14:821. [PMID: 40077524 PMCID: PMC11899172 DOI: 10.3390/foods14050821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic diseases are major contributors to global morbidity and mortality. More than 70% of deaths worldwide are caused by chronic diseases, including cardiovascular diseases (CVDs), obesity, type 2 diabetes, and cancer. These diseases are characterised by chronic low-grade inflammation and metabolic dysregulation. Incorporating functional foods into daily diet has been suggested as a complementary strategy to promote health and lower the risk of non-communicable diseases. Functional foods, known as foods that confer health benefits beyond basic nutrition, have been reported to exhibit preventive and therapeutic benefits such as anti-inflammatory properties for human health. Therefore, the aim of this state-of-the-art review will synthesise the findings from recent and high-quality studies that investigated the modulatory role of some commonly reported bioactive active compounds, such as polyphenols, omega-3 fatty acids, probiotics, and prebiotics, in inflammation and metabolic pathways.
Collapse
Affiliation(s)
- Zheng Feei Ma
- Centre for Public Health and Wellbeing, School of Health and Social Wellbeing, College of Health, Science and Society, University of the West of England, Bristol BS16 1QY, UK
| | - Caili Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 15200, Malaysia
| |
Collapse
|
3
|
Lavalle S, Scapaticci R, Masiello E, Salerno VM, Cuocolo R, Cannella R, Botteghi M, Orro A, Saggini R, Donati Zeppa S, Bartolacci A, Stocchi V, Piccoli G, Pegreffi F. Beyond the Surface: Nutritional Interventions Integrated with Diagnostic Imaging Tools to Target and Preserve Cartilage Integrity: A Narrative Review. Biomedicines 2025; 13:570. [PMID: 40149547 PMCID: PMC11940242 DOI: 10.3390/biomedicines13030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/29/2025] Open
Abstract
This narrative review provides an overview of the various diagnostic tools used to assess cartilage health, with a focus on early detection, nutrition intervention, and management of osteoarthritis. Early detection of cartilage damage is crucial for effective patient management. Traditional diagnostic tools like radiography and conventional magnetic resonance imaging (MRI) sequences are more suited to detecting late-stage structural changes. This paper highlights advanced imaging techniques, including sodium MRI, T2 mapping, T1ρ imaging, and delayed gadolinium-enhanced MRI of cartilage, which provide valuable biochemical information about cartilage composition, particularly the glycosaminoglycan content and its potential links to nutrition-related factors influencing cartilage health. Cartilage degradation is often linked with inflammation and measurable via markers like CRP and IL-6 which, although not specific to cartilage breakdown, offer insights into the inflammation affecting cartilage. In addition to imaging techniques, biochemical markers, such as collagen breakdown products and aggrecan fragments, which reflect metabolic changes in cartilage, are discussed. Emerging tools like optical coherence tomography and hybrid positron emission tomography-magnetic resonance imaging (PET-MRI) are also explored, offering high-resolution imaging and combined metabolic and structural insights, respectively. Finally, wearable technology and biosensors for real-time monitoring of osteoarthritis progression, as well as the role of artificial intelligence in enhancing diagnostic accuracy through pattern recognition in imaging data are addressed. While these advanced diagnostic tools hold great potential for early detection and monitoring of osteoarthritis, challenges remain in clinical translation, including validation in larger populations and integration into existing clinical workflows and personalized treatment strategies for cartilage-related diseases.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy; (S.L.); (V.M.S.); (F.P.)
| | - Rosa Scapaticci
- Institute for the Electromagnetic Sensing of the Environment, National Research Council of Italy, 80124 Naples, Italy;
| | - Edoardo Masiello
- Department of Radiology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Mario Salerno
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy; (S.L.); (V.M.S.); (F.P.)
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Matteo Botteghi
- Experimental Pathology Research Group, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
- Medical Physics Activities Coordination Centre, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Alessandro Orro
- Institute of Biomedical Technologies CNR, Via Fratelli Cervi, 93, 20054 Segrate, Italy;
| | - Raoul Saggini
- Faculty of Psychology, eCampus University, 22060 Novedrate, Italy;
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.B.); (G.P.)
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, 20132 Roma, Italy;
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.B.); (G.P.)
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, 20132 Roma, Italy;
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.B.); (G.P.)
| | - Francesco Pegreffi
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy; (S.L.); (V.M.S.); (F.P.)
- Recovery and Functional Rehabilitation Unit, Ospedale Umberto I, 94100 Enna, Italy
| |
Collapse
|
4
|
Hartwig S, Burron S, Richards T, Rankovic A, Ma DWL, Pearson W, Ellis J, Trevizan L, Seymour DJ, Shoveller AK. The effect of dietary camelina, flaxseed, and canola oil supplementation on skin fatty acid profile and immune and inflammatory responses in healthy adult horses. J Anim Sci 2025; 103:skaf025. [PMID: 39901745 PMCID: PMC11897893 DOI: 10.1093/jas/skaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/01/2025] [Indexed: 02/05/2025] Open
Abstract
Camelina sativa is an oilseed crop rich in α-linolenic acid (ALA), an n-3 fatty acid (FA), and is resistant to harsh climates and pests. Previously, supplementation with camelina oil (CAM) in horses had no adverse effects on basic health parameters and had comparable skin and coat parameters as both flaxseed oil (FLX) and canola oil (OLA). Further, the plasma FA profile of horses was reflective of their respective treatment oil. The objective of this study was to assess the effects of dietary CAM supplementation on skin FA profile, immune, and inflammatory responses as compared to 2 commonly used oils in the equine industry, OLA and FLX, in healthy adult horses. Twenty-four adult horses, from 2 separate herds, were enrolled in this experiment. The horses underwent a gradual 4-wk fat acclimation period to sunflower oil (approximately 0.28% ALA), then were supplemented with either CAM (approximately 34.9% ALA), OLA (approximately 12.0% ALA), or FLX (56.0% ALA) at an inclusion rate of 0.37 g/kg body weight (BW) per day for an additional 16 wk. Immune and inflammatory responses were assessed by measuring antibody concentrations across time after sensitization to keyhole limpet hemocyanin (KLH) at weeks 10 and 12, and a subsequent delayed-type hypersensitivity (DTH) challenge. Skin biopsy samples were collected at weeks 0, 8, and 16, and FA composition was determined using gas-chromatography. All data were analyzed as a repeated measures ANOVA using PROC GLIMMIX in SAS. Antibody and DTH responses to KLH did not differ among groups (P = 0.262 and 0.813, respectively), and no treatment by time effects were observed (P = 0.764 and P = 0.817, respectively). Most FA in the skin changed in composition across time, with the sum of n-3 FA increasing (P < 0.001) and the sum of n-6 FA and skin n-6:n-3 ratio decreasing over time (P < 0.001 and P < 0.001, respectively). Only dihomo-γ-linolenic acid (P = 0.025) and the sum of n-3 FA (P = 0.031) had treatment-by-week effects. At week 16, the composition of eicosapentaenoic acid in the skin was greater in FLX than OLA, but neither differed from CAM (P = 0.049). These results suggest that ALA supplementation may beneficially impact skin FA profile. However, due to the small differences in n-3 FA and n-6:n-3 ratio among CAM, FLX, and OLA, a comparable skin FA profile, immune, and inflammatory response was observed among treatments at a dose of 0.37 g oil/kg BW. Therefore, CAM may be a suitable alternative to FLX in equine diets for the delivery of ALA.
Collapse
Affiliation(s)
- Samantha Hartwig
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Taylor Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Alexandra Rankovic
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jennifer Ellis
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Luciano Trevizan
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Dave J Seymour
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
- Trouw Nutrition R&D, Boxmeer, the Netherlands
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
5
|
Low CE, Loke S, Chew NSM, Lee ARYB, Tay SH. Vitamin, antioxidant and micronutrient supplementation and the risk of developing incident autoimmune diseases: a systematic review and meta-analysis. Front Immunol 2024; 15:1453703. [PMID: 39717776 PMCID: PMC11663920 DOI: 10.3389/fimmu.2024.1453703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Background Autoimmune diseases pose significant health challenges worldwide and affect millions. In recent years, there has been growing interest in exploring preventive strategies through nutritional interventions using vitamins, antioxidants, and micronutrients to reduce the risk of developing autoimmune diseases. However, excessive supplementation has also been associated with toxicity. Objective We aim to assess how the intake of vitamins, antioxidants and micronutrients affect the risk of developing autoimmune diseases. Methods This PRISMA-adherent systematic review involved a systematic search of PubMed, Embase and Cochrane for controlled studies that evaluated the risk of incident autoimmune diseases after supplementation. Random effects meta-analyses were used for primary analysis. Results 18 studies were included. Overall meta-analyses observed that vitamin D did not influence the risk of autoimmune diseases (RR=0.99, 95%CI: 0.81-1.20). However, among the different vitamin D dosages, subgroup analysis demonstrated that those who were supplemented with 600-800IU/day may have a statistically significant reduction in risk (RR=0.55, 95%CI: 0.38; 0.82). Systematic review suggested that consumption of most vitamins, micronutrients and antioxidants may not have any effect on the risk of autoimmune diseases. Smoking, age, physical or outdoor activity and diet were significant confounding factors that affected the efficacy of such interventions. Conclusion We studied the effect of various vitamins, micronutrients and antioxidants on the risk of developing autoimmune diseases. Our study contributes to the evolving landscape of nutritional immunology, providing a foundation for future research to unravel more definite relationships with supplementation and the development of incident autoimmune diseases. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024504796.
Collapse
Affiliation(s)
- Chen Ee Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sean Loke
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicole Shi Min Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Sen Hee Tay
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Rheumatology and Allergy, Department of Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
6
|
Jan H, Ghayas S, Higazy D, Ahmad NM, Yaghmur A, Ciofu O. Antibacterial and anti-biofilm activities of antibiotic-free phosphatidylglycerol/docosahexaenoic acid lamellar and non-lamellar liquid crystalline nanoparticles. J Colloid Interface Sci 2024; 669:537-551. [PMID: 38729002 DOI: 10.1016/j.jcis.2024.04.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Infectious diseases, particularly those associated with biofilms, are challenging to treat due to an increased tolerance to commonly used antibiotics. This underscores the urgent need for innovative antimicrobial strategies. Here, we present an alternative simple-by-design approach focusing on the development of biocompatible and antibiotic-free nanocarriers from docosahexaenoic acid (DHA) that has the potential to combat microbial infections and phosphatidylglycerol (DOPG), which is attractive for use as a biocompatible prominent amphiphilic component of Gram-positive bacterial cell membranes. We assessed the anti-bacterial and anti-biofilm activities of these nanoformulations (hexosomes and vesicles) against S. aureus and S. epidermidis, which are the most common causes of infections on catheters and medical devices by different methods (including resazurin assay, time-kill assay, and confocal laser scanning microscopy on an in vitro catheter biofilm model). In a DHA-concentration-dependent manner, these nano-self-assemblies demonstrated strong anti-bacterial and anti-biofilm activities, particularly against S. aureus. A five-fold reduction of the planktonic and a four-fold reduction of biofilm populations of S. aureus were observed after treatment with hexosomes. The nanoparticles had a bacteriostatic effect against S. epidermidis planktonic cells but no anti-biofilm activity was detected. We discuss the findings in terms of nanoparticle-bacterial cell interactions, plausible alterations in the phospholipid membrane composition, and potential penetration of DHA into these membranes, leading to changes in their structural and biophysical properties. The implications for the future development of biocompatible nanocarriers for the delivery of DHA alone or in combination with other anti-bacterial agents are discussed, as novel treatment strategies of Gram-positive infections, including biofilm-associated infections.
Collapse
Affiliation(s)
- Habibullah Jan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sana Ghayas
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Doaa Higazy
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nasir Mahmood Ahmad
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
7
|
Burron S, Richards T, Krebs G, Trevizan L, Rankovic A, Hartwig S, Pearson W, Ma DWL, Shoveller AK. The balance of n-6 and n-3 fatty acids in canine, feline, and equine nutrition: exploring sources and the significance of alpha-linolenic acid. J Anim Sci 2024; 102:skae143. [PMID: 38776363 PMCID: PMC11161904 DOI: 10.1093/jas/skae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024] Open
Abstract
Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.
Collapse
Affiliation(s)
- Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Taylor Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Giovane Krebs
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Luciano Trevizan
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil
| | - Alexandra Rankovic
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Samantha Hartwig
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, CanadaN1G 2W1
| |
Collapse
|
8
|
Hong BV, Agus JK, Tang X, Zheng JJ, Romo EZ, Lei S, Zivkovic AM. Precision Nutrition and Cardiovascular Disease Risk Reduction: the Promise of High-Density Lipoproteins. Curr Atheroscler Rep 2023; 25:663-677. [PMID: 37702886 PMCID: PMC10564829 DOI: 10.1007/s11883-023-01148-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE OF REVIEW Emerging evidence supports the promise of precision nutritional approaches for cardiovascular disease (CVD) prevention. Here, we discuss current findings from precision nutrition trials and studies reporting substantial inter-individual variability in responses to diets and dietary components relevant to CVD outcomes. We highlight examples where early precision nutrition research already points to actionable intervention targets tailored to an individual's biology and lifestyle. Finally, we make the case for high-density lipoproteins (HDL) as a compelling next generation target for precision nutrition aimed at CVD prevention. HDL possesses complex structural features including diverse protein components, lipids, size distribution, extensive glycosylation, and interacts with the gut microbiome, all of which influence HDL's anti-inflammatory, antioxidant, and cholesterol efflux properties. Elucidating the nuances of HDL structure and function at an individual level may unlock personalized dietary and lifestyle strategies to optimize HDL-mediated atheroprotection and reduce CVD risk. RECENT FINDINGS Recent human studies have demonstrated that HDL particles are key players in the reduction of CVD risk. Our review highlights the role of HDL and the importance of personalized therapeutic approaches to improve their potential for reducing CVD risk. Factors such as diet, genetics, glycosylation, and gut microbiome interactions can modulate HDL structure and function at the individual level. We emphasize that fractionating HDL into size-based subclasses and measuring particle concentration are necessary to understand HDL biology and for developing the next generation of diagnostics and biomarkers. These discoveries underscore the need to move beyond a one-size-fits-all approach to HDL management. Precision nutrition strategies that account for personalized metabolic, genetic, and lifestyle data hold promise for optimizing HDL therapies and function to mitigate CVD risk more potently. While human studies show HDL play a key role in reducing CVD risk, recent findings indicate that factors such as diet, genetics, glycosylation, and gut microbes modulate HDL function at the individual level, underscoring the need for precision nutrition strategies that account for personalized variability to optimize HDL's potential for mitigating CVD risk.
Collapse
Affiliation(s)
- Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Eduardo Z Romo
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Susan Lei
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Li S, Jing M, Mohamed N, Rey-Dubois C, Zhao S, Aukema HM, House JD. The Effect of Increasing Concentrations of Omega-3 Fatty Acids from either Flaxseed Oil or Preformed Docosahexaenoic Acid on Fatty Acid Composition, Plasma Oxylipin, and Immune Response of Laying Hens. J Nutr 2023; 153:2105-2116. [PMID: 37187351 DOI: 10.1016/j.tjnut.2023.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND There is a lack of nutrition guidelines for the feeding of omega-3 polyunsaturated fatty acids (PUFA) to laying hens. Knowledge as to whether the type and concentrations of α-linolenic acid (ALA) and/or docosahexaenoic acid (DHA) in the diet can make a difference to the birds' immune responses when subjected to a lipopolysaccharide (LPS) challenge is limited. OBJECTIVES The study was designed to determine the potential nutritional and health benefits to laying hens when receiving dietary omega-3 PUFA from either ALA or DHA. METHODS A total of 80 Lohmann LSL-Classic (white egg layer, 20 wk old) were randomly assigned to 1 of 8 treatment diets (10 hens/treatment), provided 0.2%, 0.4%, 0.6%, or 0.8% of total dietary omega-3 PUFA, provided as either ALA-rich flaxseed oil or DHA-enriched algal biomass. After an 8-wk feeding period, the birds were challenged with Escherichia coli-derived LPS (8 mg/kg; i.v. injection), with terminal sample collection 4 h after challenge. Egg yolk, plasma, liver, and spleen samples were collected for subsequent analyses. RESULTS Increasing dietary omega-3 supplementation yielded predictable responses in egg yolk, plasma, and liver fatty acid concentrations. Dietary intake of ALA contributed mainly to ALA-derived oxylipins. Meanwhile, eicosapentaenoic acid- and DHA-derived oxylipins were primarily influenced by DHA dietary intake. LPS increased the concentrations of almost all the omega-6 PUFA-, ALA-, and DHA-derived oxylipins in plasma and decreased hepatic mRNA expression of COX-2 and 5-LOX (P < 0.001) involved in the biosynthesis of oxylipins. LPS also increased mRNA expression of proinflammatory cytokine IFN-γ and receptor TLR-4 (P < 0.001) in the spleen. CONCLUSIONS These results revealed that dietary intake of ALA and DHA had unique impacts on fatty acid deposition and their derived oxylipins and inflammatory responses under the administration of LPS in laying hens.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mingyan Jing
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neijat Mohamed
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cameron Rey-Dubois
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shusheng Zhao
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Research Centre, Winnipeg, Manitoba, Canada
| | - James D House
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Research Centre, Winnipeg, Manitoba, Canada; Richardson Centre for Food Technology and Research, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Zheng X, Wang H, Wu H. Association between diet quality scores and risk of overweight and obesity in children and adolescents. BMC Pediatr 2023; 23:169. [PMID: 37046233 PMCID: PMC10100112 DOI: 10.1186/s12887-023-03966-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND This study examined the associations of diet quality assessed by Healthy Eating Index 2015 (HEI-2015), Alternative Healthy Eating Index 2010 (AHEI-2010), Mediterranean Diet (MedDiet) and overweight/obesity in children and adolescents. METHODS This cross-sectional study used data of participants aged 2-19 years from National Health and Nutrition Examination Survey (NHANES) 2005-2018. The weighted logistic regression model was adopted to explore the association between diet quality scores and overweight, obesity in children and adolescents. Subgroup analysis was also performed based on sex. RESULTS A total of 9,724 participants were included in children group (2-11 years old), and 5,934 were adolescent group (12-19 years old). All participants were divided into based on the BMI-for-age: underweight and normal, overweight and obesity groups. After adjusting for age, race, poverty-income ratio, maternal smoking during pregnancy and total energy, HEI-2015 and MedDiet scores were related to the risk of overweight in children, and only MedDiet scores remained associated with a decreased risk of obesity in children. MedDiet scores were associated with a decreased risk of overweight, obesity in adolescents, respectively, after adjusting age, sex, race, poverty-income ratio, cotinine, total energy and physical activity. The similar results in male participants were also found. CONCLUSION Higher MedDiet scores were associated with lower the risk of overweight and obesity, respectively, particularly for male children and adolescents. The higher HEI-2015 scores were also related to the risk of overweight in children.
Collapse
Affiliation(s)
- Xiaoyun Zheng
- Department of Child Health, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Hongshan District, Wuhan, Hubei Province, 430070, People's Republic of China.
| | - Hong Wang
- Department of Child Health, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Hongshan District, Wuhan, Hubei Province, 430070, People's Republic of China
| | - Huiwen Wu
- Department of Child Health, Maternal and Child Health Hospital of Hubei Province, No.745 Wuluo Road, Hongshan District, Wuhan, Hubei Province, 430070, People's Republic of China
| |
Collapse
|
11
|
Richards TL, Burron S, Ma DWL, Pearson W, Trevizan L, Minikhiem D, Grant C, Patterson K, Shoveller AK. Effects of dietary camelina, flaxseed, and canola oil supplementation on inflammatory and oxidative markers, transepidermal water loss, and coat quality in healthy adult dogs. Front Vet Sci 2023; 10:1085890. [PMID: 36968475 PMCID: PMC10034026 DOI: 10.3389/fvets.2023.1085890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionCamelina oil contains a greater concentration of omega-3 (n-3) a-linolenic acid (C18:3n-3; ALA) than omega-6 (n-6) linoleic acid (C18:2n-6; LA), in comparison to alternative fat sources commonly used to formulate canine diets. Omega-3 FAs are frequently used to support canine skin and coat health claims and reduce inflammation and oxidative stress; however, there is a lack of research investigating camelina oil supplementation and its effects on these applications in dogs. The objective of this study was to evaluate the effects of camelina oil supplementation on coat quality, skin barrier function, and circulating inflammatory and oxidative marker concentrations.MethodsThirty healthy [17 females; 13 males; 7.2 ± 3.1 years old; 27.4 ± 14.0 kg body weight (BW)] privately-owned dogs of various breeds were used. After a 4-week wash-in period consuming sunflower oil (n6:n3 = 1:0) and a commercial kibble, dogs were blocked by age, breed, and size, and randomly assigned to one of three treatment oils: camelina (n6:n3 = 1:1.18), canola (n6:n3 = 1:0.59), flaxseed (n6:n3 = 1:4.19) (inclusion level: 8.2 g oil/100 g of total food intake) in a randomized complete block design. Transepidermal water loss (TEWL) was measured using a VapoMeter on the pinna, paw pad, and inner leg. Fasted blood samples were collected to measure serum inflammatory and oxidative marker concentrations using enzyme-linked immunosorbent assay (ELISA) kits and spectrophotometric assays. A 5-point-Likert scale was used to assess coat characteristics. All data were collected on weeks 0, 2, 4, 10, and 16 and analyzed using PROC GLIMMIX in SAS.ResultsNo significant changes occurred in TEWL, or inflammatory and oxidative marker concentrations among treatments, across weeks, or for treatment by week interactions. Softness, shine, softness uniformity, color intensity, and follicle density of the coat increased from baseline in all treatment groups (P < 0.05).DiscussionOutcomes did not differ (P > 0.05) among treatment groups over 16-weeks, indicating that camelina oil is comparable to existing plant-based canine oil supplements, flaxseed, and canola, at supporting skin and coat health and inflammation in dogs. Future research employing an immune or exercise challenge is warranted, as the dogs in this study were not subjected to either.
Collapse
Affiliation(s)
- Taylor L. Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - David W. L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Luciano Trevizan
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Caitlin Grant
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Keely Patterson
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Anna K. Shoveller
| |
Collapse
|
12
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
13
|
Muratore E, Leardini D, Baccelli F, Venturelli F, Cerasi S, Zanaroli A, Lanari M, Prete A, Masetti R, Zama D. The emerging role of nutritional support in the supportive care of pediatric patients undergoing hematopoietic stem cell transplantation. Front Nutr 2023; 10:1075778. [PMID: 36875838 PMCID: PMC9975569 DOI: 10.3389/fnut.2023.1075778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) represents a potentially curative strategy for many oncological, hematological, metabolic, and immunological diseases in children. The continuous effort in ameliorating supportive care represents one of the cornerstones in the improvement of outcome in these patients. Nowadays, more than ever nutritional support can be considered a key feature. Oral feeding in the early post-transplant period is severely impaired because of mucositis due to conditioning regimen, characterized by, mainly by vomiting, anorexia, and diarrhea. Gastrointestinal acute graft-versus-host-disease (GvHD), infections and associated treatments, and other medications, such as opioids and calcineurin inhibitors, have also been correlated with decreased oral intake. The consequent reduction in caloric intake combined with the catabolic effect of therapies and transplantation-related complications with consequent extended immobilization, results in a rapid deterioration of nutritional status, which is associated with decreased overall survival and higher complication rates during treatment. Thus, nutritional support during the early post-transplantation period becomes an essential and challenging issue for allo-HSCT recipients. In this context, the role of nutrition in the modulation of the intestinal flora is also emerging as a key player in the pathophysiology of the main complications of HSCT. The pediatric setting is characterized by less evidence, considering the challenge of addressing nutritional needs in this specific population, and many questions are still unanswered. Thus, we perform a narrative review regarding all aspects of nutritional support in pediatric allo-HSCT recipients, addressing the assessment of nutritional status, the relationship between nutritional status and clinical outcomes and the evaluation of the nutritional support, ranging from specific diets to artificial feeding.
Collapse
Affiliation(s)
- Edoardo Muratore
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Venturelli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Sara Cerasi
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Zanaroli
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marcello Lanari
- Pediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Daniele Zama
- Pediatric Emergency Unit, Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Manaig YJY, Mármol-Sánchez E, Castelló A, Esteve-Codina A, Sandrini S, Savoini G, Agazzi A, Sánchez A, Folch JM. Exon-intron split analysis reveals posttranscriptional regulatory signals induced by high and low n-6/n-3 polyunsaturated fatty acid ratio diets in piglets. J Anim Sci 2023; 101:skad271. [PMID: 37561402 PMCID: PMC10503648 DOI: 10.1093/jas/skad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFA), such as omega-6 (n-6) and omega-3 (n-3), play a vital role in nutrient metabolism, inflammatory response, and gene regulation. microRNAs (miRNA), which can potentially degrade targeted messenger RNAs (mRNA) and/or inhibit their translation, might play a relevant role in PUFA-related changes in gene expression. Although differential expression analyses can provide a comprehensive picture of gene expression variation, they are unable to disentangle when in the mRNA life cycle the regulation of expression is taking place, including any putative functional miRNA-driven repression. To capture this, we used an exon-intron split analysis (EISA) approach to account for posttranscriptional changes in response to extreme values of n-6/n-3 PUFA ratio. Longissimus dorsi muscle samples of male and female piglets from sows fed with n-6/n-3 PUFA ratio of 13:1 (SOY) or 4:1 (LIN), were analyzed in a bidirectional contrast (LIN vs. SOY, SOY vs. LIN). Our results allowed the identification of genes showing strong posttranscriptional downregulation signals putatively targeted by significantly upregulated miRNA. Moreover, we identified genes primarily involved in the regulation of lipid-related metabolism and immune response, which may be associated with the pro- and anti-inflammatory functions of the n-6 and n-3 PUFA, respectively. EISA allowed us to uncover regulatory networks complementing canonical differential expression analyses, thus providing a more comprehensive view of muscle metabolic changes in response to PUFA concentration.
Collapse
Affiliation(s)
- Yron Joseph Yabut Manaig
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi 26900, Italy
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 11418, Sweden
- Centre for Palaeogenetics, Stockholm 10691, Sweden
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Anna Esteve-Codina
- Functional Genomics, CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Silvia Sandrini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi 26900, Italy
| | - Giovanni Savoini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi 26900, Italy
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi 26900, Italy
| | - Armand Sánchez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| |
Collapse
|
15
|
Manaig YJY, Criado-Mesas L, Esteve-Codina A, Mármol-Sánchez E, Castelló A, Sánchez A, Folch JM. Identifying miRNA-mRNA regulatory networks on extreme n-6/n-3 polyunsaturated fatty acid ratio expression profiles in porcine skeletal muscle. PLoS One 2023; 18:e0283231. [PMID: 37141193 PMCID: PMC10159129 DOI: 10.1371/journal.pone.0283231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/06/2023] [Indexed: 05/05/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids with antagonistic inflammatory functions that play vital roles in metabolic health and immune response. Current commercial swine diets tend to over-supplement with n-6 PUFAs, which may increase the likelihood of developing inflammatory diseases and affect the overall well-being of the animals. However, it is still poorly understood how n-6/n-3 PUFA ratios affect the porcine transcriptome expression and how messenger RNAs (mRNAs) and microRNAs (miRNAs) might regulate biological processes related to PUFA metabolism. On account of this, we selected a total of 20 Iberian × Duroc crossbred pigs with extreme values for n-6/n-3 FA ratio (10 high vs 10 low), and longissimus dorsi muscle samples were used to identify differentially expressed mRNAs and miRNAs. The observed differentially expressed mRNAs were associated to biological pathways related to muscle growth and immunomodulation, while the differentially expressed microRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b and ssc-miR-7142-3p) were correlated to adipogenesis and immunity. Relevant miRNA-to-mRNA regulatory networks were also predicted (i.e., mir15b to ARRDC3; mir-7142-3p to METTL21C), and linked to lipolysis, obesity, myogenesis, and protein degradation. The n-6/n-3 PUFA ratio differences in pig skeletal muscle revealed genes, miRNAs and enriched pathways involved in lipid metabolism, cell proliferation and inflammation.
Collapse
Affiliation(s)
- Yron Joseph Yabut Manaig
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emilio Mármol-Sánchez
- Department of Molecular Biosciences, Science for Life Laboratory, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Armand Sánchez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Prihanto AA, Jatmiko YD, Nurdiani R, Miftachurrochmah A, Wakayama M. Freshwater Microalgae as Promising Food Sources: Nutritional and Functional Properties. Open Microbiol J 2022. [DOI: 10.2174/18742858-v16-e2206200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of researchers have predicted that the current food crisis is predicted to worsen in 2050. The prediction of this crisis is aligned with climate change causing increases in some basic foodstuff prices. Therefore, everyone should prepare to consume alternative foods at an early stage. Alternative foods have been widely developed, one of which involves microalgae. However, the type of microalgae produced by some countries on a large scale consists of only oceanic/seawater microalgae. This will have an impact on and hinder development in countries that do not have these resources. Therefore, it is necessary to explore the use of microalgae derived from freshwater. Unfortunately, freshwater microalgae are still rarely investigated for use as alternative foods. However, there is considerable potential to utilize freshwater microalgae, and these algae are very abundant and diverse. In terms of nutritional properties, compared to oceanic / seawater microalgae, freshwater microalgae contain nearly the same protein and amino acids, lipids and fatty acids, carbohydrates, and vitamins. There are even more species whose composition is similar to those currently consumed foods, such as beef, chicken, beans, eggs, and corn. In addition to dietary properties, freshwater microalgae also have functional properties, due to the presence of pigments, sterols, fatty acids, and polyphenols. Given the potential of freshwater microalgae, these aquatic resources need to be developed for potential use as future food resources.
Collapse
|
17
|
Omega-3 fatty acids in the treatment of spinal cord injury: untapped potential for therapeutic intervention? Mol Biol Rep 2022; 49:10797-10809. [PMID: 35851435 DOI: 10.1007/s11033-022-07762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
18
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
19
|
Shahidi S, Mahmoodi MS, Komaki A, Sadeghian R. The comparison of omega-3 and flaxseed oil on serum lipids and lipoproteins in hyperlipidemic male rats. Heliyon 2022; 8:e09662. [PMID: 35721684 PMCID: PMC9204734 DOI: 10.1016/j.heliyon.2022.e09662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Hyperlipidemia affects a significant number of patients despite treatment with cholesterol-lowering drugs. Due to the low efficacy of synthetic drugs, there is a need for new agents with low side effects. Therefore, the effects of flaxseeds oil and animal omega-3 on the hyperlipidemic rats were investigated. Forty male Wistar rats were assigned to four groups (n = 10): 1) control group that was fed with a standard diet (pallets). 2) high-fat diet (HFD) control group that was fed with high-fat food for 42 days, 3) Omega-3 group that received HFD for 21 days, followed by HFD + omega-3 capsule (600 mg/kg; 21 days/gavage), and 4) flaxseed oil group that received HFD for 21 days, followed by HFD + flaxseed oil (10 ml/kg; 21 days/gavage). Blood samples were collected three times and at the stages one to third of the experiment from the rats' tail. The results showed that high levels of fat significantly increased cholesterol, triglyceride (TG), and low-density lipoprotein (LDL) in the flaxseed, HFD control, and omega-3 groups in the second stages of the experiment. Inverse, omega-3 or flaxseed oil supplementation decreased cholesterol, TG, and LDL levels and increased high-density lipoprotein (HDL) level in comparison with the HFD control group in the third stages of the experiment. There was no significant difference in the studied parameters between the flaxseed- and omega-3-treated groups. It can be concluded that flaxseed oil similar to omega-3 is effective in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Corresponding author.
| |
Collapse
|
20
|
Manaig YJY, Sandrini S, Panseri S, Tedeschi G, Folch JM, Sánchez A, Savoini G, Agazzi A. Low n-6/n-3 Gestation and Lactation Diets Influence Early Performance, Muscle and Adipose Polyunsaturated Fatty Acid Content and Deposition, and Relative Abundance of Proteins in Suckling Piglets. Molecules 2022; 27:2925. [PMID: 35566276 PMCID: PMC9103047 DOI: 10.3390/molecules27092925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Elevated omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) ratios in swine diets can potentially impose a higher risk of inflammatory and metabolic diseases in swine. A low ratio between the two omega PUFAs has beneficial effects on sows' and piglets' production performance and immunity status. At present, there are few studies on how sow nutrition directly affects the protein and fat deposition in suckling piglets. Two groups of sows were fed diets with high or low n-6/n-3 polyunsaturated ratios of 13:1 (SOY) and 4:1 (LIN), respectively, during gestation and lactation. Longissimus dorsi muscle and adipose tissue from newborn piglets, nourished only with sow's milk, were subjected to fatty acid profiling by gas chromatography-mass spectrometry (GC-MS) and to proteomics assays based on nano-liquid chromatography coupled to high-resolution tandem mass spectrometry (nLC-HRMS). Fatty acid profiles on both muscle and adipose tissues resembled the magnitude of the differences between fatty acid across diets. Proteomic analysis revealed overabundance of 4 muscle and 11 adipose tissue proteins in SOY compared to LIN in both piglet tissues. The detected overabundance of haptoglobin, an acute-phase protein, and the stimulation of protein-coding genes and proteins related to the innate immune response and acute inflammatory response could be associated with the pro-inflammatory role of n-6 PUFAs.
Collapse
Affiliation(s)
- Yron Joseph Yabut Manaig
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (J.M.F.); (A.S.)
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193 Bellaterra, Barcelona, Spain
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy; (S.S.); (S.P.); (G.S.); (A.A.)
| | - Silvia Sandrini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy; (S.S.); (S.P.); (G.S.); (A.A.)
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy; (S.S.); (S.P.); (G.S.); (A.A.)
| | - Gabriella Tedeschi
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20122 Milano, Italy;
| | - Josep M. Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (J.M.F.); (A.S.)
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193 Bellaterra, Barcelona, Spain
| | - Armand Sánchez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; (J.M.F.); (A.S.)
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193 Bellaterra, Barcelona, Spain
| | - Giovanni Savoini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy; (S.S.); (S.P.); (G.S.); (A.A.)
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900 Lodi, Italy; (S.S.); (S.P.); (G.S.); (A.A.)
| |
Collapse
|
21
|
Mohammadi S, Lotfi K, Mirzaei S, Asadi A, Akhlaghi M, Saneei P. Adherence to Mediterranean Diet and Its Association with Metabolic Health Status in Overweight and Obese Adolescents. Int J Clin Pract 2022; 2022:9925267. [PMID: 36043034 PMCID: PMC9377836 DOI: 10.1155/2022/9925267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/17/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Obesity is becoming more prevalent around the world and greatly contributes to chronic disease progression. Previous studies have investigated individual food groups in relation to metabolic health status of adolescents, mainly in Western countries. Limited data are available on the association between dietary patterns and metabolic health in Middle East nations, where childhood overweight/obesity is increasing drastically. Therefore, we investigated the relationship between the Mediterranean diet and metabolic health status among Iranian adolescents. METHODS This cross-sectional study was conducted on 203 overweight/obese adolescents. Dietary intakes were evaluated by a validated food frequency questionnaire. Anthropometric parameters and blood pressure were measured. Fasting blood samples were obtained to determine circulating insulin, glucose, and lipid profile. Two different methods were applied to classify participants as metabolically healthy obese (MHO) or unhealthy obese (MUO): International Diabetes Federation (IDF) criteria and IDF along with insulin resistance (HOMA-IR) criteria. RESULTS A total of 79 (38.9%) and 67 (33.0%) adolescents were, respectively, categorized as MUO, based on IDF and IDF/HOMA definitions. Considering IDF criteria, higher adherence to the Mediterranean diet was related to lower odds of being MUO, both in the crude (OR: 0.17; 95%CI: 0.08-0.37) and fully adjusted model (OR: 0.33; 95% CI: 0.13-0.84). Excluding each component from the score made the association insignificant, except for two components of meat and dairy products. Based on the IDF/HOMA-IR criteria, there was no significant association between Mediterranean diet score and MUO, after considering all potential confounders (OR: 0.47; 95% CI: 0.17-1.30). CONCLUSIONS We found an inverse association between the Mediterranean diet and odds of MUO among Iranian adolescents, based on IDF criteria. No significant relation was found when MUO was defined based on HOMA-IR/IDF criteria. Further prospective cohort studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Sobhan Mohammadi
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keyhan Lotfi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Mirzaei
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Asadi
- Department of Exercise Physiology, School of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Masoumeh Akhlaghi
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvane Saneei
- Department of Community, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Menon D, Lewis EJH, Perkins BA, Bril V. Omega-3 Nutrition Therapy for the Treatment of Diabetic Sensorimotor Polyneuropathy. Curr Diabetes Rev 2022; 18:e010921196028. [PMID: 34488588 DOI: 10.2174/1573399817666210901121111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Despite advances in clinical and translational research, an effective therapeutic option for diabetic sensorimotor polyneuropathy (DSP) has remained elusive. The pathomechanisms of DSP are diverse, and along with hyperglycemia, the roles of inflammatory mediators and lipotoxicity in the development of microangiopathy have been well elucidated. Omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential fatty acids with a vital role in a number of physiological processes, including neural health, membrane structure integrity, anti-inflammatory processes, and lipid metabolism. Identification of n-3 PUFA derived specialised proresolving mediators (SPM), namely resolvins, neuroprotectin, and maresins which also favour nerve regeneration, have positioned n-3 PUFA as potential treatment options in DSP. Studies in n-3 PUFA treated animal models of DSP showed positive nerve benefits in functional, electrophysiological, and pathological indices. Clinical trials in humans are limited, but recent proof-of-concept evidence suggests n-3 PUFA has a positive effect on small nerve fibre regeneration with an increase in the small nerve fiber measure of corneal nerve fibre length (CNFL). Further randomized control trials with a longer duration of treatment, higher n-3 PUFA doses, and more rigorous neuropathy measures are needed to provide a definitive understanding of the benefits of n-3 PUFA supplementation in DSP.
Collapse
Affiliation(s)
- Deepak Menon
- Ellen and Martin Prosserman Centre for Neuromuscular Disorders. Division of Neurology, University Health Network, University of Toronto, Toronto, Canada
| | - Evan J H Lewis
- Lunenfeld-Tanenbaum Research Institute, Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Bruce A Perkins
- Lunenfeld-Tanenbaum Research Institute, Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Canada
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Disorders. Division of Neurology, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Vega OM, Cepeda C. Converging evidence in support of omega-3 polyunsaturated fatty acids as a potential therapy for Huntington's disease symptoms. Rev Neurosci 2021; 32:871-886. [PMID: 33818039 PMCID: PMC10017201 DOI: 10.1515/revneuro-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Huntington's disease (HD) is a genetic, inexorably fatal neurodegenerative disease. Patient average survivability is up to 20 years after the onset of symptoms. Those who suffer from the disease manifest motor, cognitive, and psychiatric impairments. There is indirect evidence suggesting that omega-3 polyunsaturated fatty acids (ω-3 PUFA) could have alleviating effects on most of HD symptoms. These include beneficial effects against cachexia and weight loss, decrease of cognitive impairment over time, and improvement of psychiatric symptoms such as depression and irritability. Furthermore, there is a positive correlation between consumption of ω-3 PUFAs in diets and prevalence of HD, as well as direct effects on the disease via release of serotonin. Unfortunately, to date, very few studies have examined the effects of ω-3 PUFAs in HD, both on the symptoms and on disease progression. This paper reviews evidence in the literature suggesting that ω-3 PUFAs can be used in neurodegenerative disorders. This information can be extrapolated to support further research of ω-3 PUFAs and their potential use for HD treatment.
Collapse
Affiliation(s)
- Owen M Vega
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Application potential of modulation of cyclooxygenase-2 activity: a cognitive approach. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Cognitive functions of the brain depend largely on the condition of the cell membranes and the proportion of fatty acids. It is known and accepted that arachidonic acid (AA) is one of the main ω-6 fatty acids (phospholipids) in brain cells. Metabolism of that fatty acid depends on the functionality and presence of cyclooxygenase (COX). COX is a primary enzyme in the cycle of transformation of AA to prostanoids, which may mediate response of immune cells, contributing to brain function and cognition. Two COX isoforms (COX-1 and COX-2), as well as a splice variant (COX-3), have been detected in the brain. Findings released in the last decade showed that COX-2 may play an important role in cognition. There are many preclinical and clinical reports showing its engagement in Alzheimer disease, spatial learning, and plasticity. This manuscript focuses on summarizing the above-mentioned discoveries.
Collapse
|
25
|
Zeb L, Teng X, Shafiq M, Wang S, Xiu Z, Su Z. Three-liquid-phase salting-out extraction of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-rich oils from Euphausia superba. Eng Life Sci 2021; 21:666-682. [PMID: 34690637 PMCID: PMC8518559 DOI: 10.1002/elsc.202000098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/20/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022] Open
Abstract
The TLPSOES parameters were optimized by response surface methodology using Box-Behnken design, which were 16.5% w/w of ammonium citrate, 17.5% w/w of ethanol, and 46% w/w of n-hexane at 70 min of stirring time. Under optimized conditions the extraction efficiency attained was 90.91 ± 0.97% of EPA, 90.02 ± 1.04% of DHA, and 91.85 ± 1.11% of KO in the top n-hexane phase. The highest extraction efficiency of proteins and flavonoids, i.e. 88.34 ± 1.35% and 79.67 ± 1.13%, was recorded in the solid interface and ethanol phase, respectively. The KO extracted by TLPSOES system consisted of lowest fluoride level compared to the conventional method and whole wet krill biomass. The TLPSOES is a potential candidate for nutraceutical industry of KO extraction from wet krill biomass.
Collapse
Affiliation(s)
- Liaqat Zeb
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Xin‐Nan Teng
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Muhammad Shafiq
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Shu‐Chang Wang
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Zhi‐Long Xiu
- School of BioengineeringDalian University of TechnologyDalianP. R. China
| | - Zhi‐Guo Su
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
26
|
Daidj NBB, Lamri-Senhadji M. Hepatoprotective and Anti-Obesity Properties of Sardine By-Product Oil in Rats Fed a High-Fat Diet. Prev Nutr Food Sci 2021; 26:285-295. [PMID: 34737989 PMCID: PMC8531423 DOI: 10.3746/pnf.2021.26.3.285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Excess lipid intake can trigger liver lipid accumulation and oxidative responses, which can lead to metabolic disturbances and contribute to hepatic steatosis and obesity and increase the risk of cardiovascular disease. Production of fish oil rich in omega-3 is a good opportunity for valorizing fish by-products in the therapeutic field. In this study, we explored the effects of oil from Sardina pilchardus by-products on cardiometabolic and oxidative disorders caused by toxic effects of excess lipids in obese rats. Three groups of obese rats received either 20% sardine by-product oil (SBy-Ob-HS; experimental group), 20% fillet oil (SF-Ob-HS; positive control group), or a high-fat diet (Ob-HS). Normal weight rats received a standard diet (normal). There was a significant decrease in serum total cholesterol (TC), triacylglycerols (TG), and insulin concentrations in the SBy-Ob-HS group compared with the SF-Ob-HS group. Compared with the Ob-HS group, TC and TG, glycemia, glycosylated hemoglobin, and insulinemia were decreased in the SBy-Ob-HS (more notably) and SF-Ob-HS groups. Furthermore, hepatic lipids, low density lipoprotein-cholesterol (C), the non-esterified cholesterol/phos-pholipids ratio, serum transaminases activities and lipid peroxidation were lower and serum high density lipoproteins-C were higher in the SBy-Ob-HS and SF-Ob-HS groups compared with the Ob-HS group. Serum isoprostane concentrations were reduced in the SBy-Ob-HS (more notably) and SF-Ob-HS groups compared with the Ob-HS and normal groups. The activities of antioxidant enzymes in tissues were enhanced, particularly in the by-product oil group. The oil extracted from by-products demonstrate anti-obesity properties (hypolipemiant, hepatoprotective, antiatherogenic, antidiabetic, and antioxidant) that may be beneficial for the management of obesity and its complications, such as hepatic steatosis.
Collapse
Affiliation(s)
- Nabila Boukhari Benahmed Daidj
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Nature and Life Sciences, Oran 31100, Algeria.,Higher School of Biological Sciences of Oran (ESSBO), University Oran 1 Ahmed Ben Bella, Oran 31100, Algeria
| | - Myriem Lamri-Senhadji
- Laboratory of Clinical and Metabolic Nutrition, Faculty of Nature and Life Sciences, Oran 31100, Algeria
| |
Collapse
|
27
|
Powell N, Chaudhary S, Zaidi A. It Is Time for an Oil Change: Polyunsaturated Fatty Acids and Human Health. MISSOURI MEDICINE 2021; 118:426-430. [PMID: 34658434 PMCID: PMC8504507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) such as docosahexaneoic acid (DHA) and eicosapentaneoic acid (EPA), play a critical role in a variety of neuronal functions, including facilitating neuronal growth and differentiation, increasing the density of the neuritic network, modulating cell membrane fluidity, regulating intracellular signaling and gene expression, and exhibiting antioxidant characteristics. Dietary DHA is selectively enriched and actively retained in the central nervous system, mainly in synaptic membranes, dendrites, and photoreceptors. In this review, we highlight the myriad roles of PUFAs in brain function and human health. Diets rich in DHA are inversely proportional to cognitive decline and incidence of neurodegenerative disorders. Conversely, diets deficient in DHA impair the proper development of brain and the visual system in children and increase risk of brain disorders in the elderly. Finally, DHA and EPA have been shown to reduce inflammation and may prove to be beneficial in reducing the severity of the SARS-COVID infection.
Collapse
Affiliation(s)
- Natalie Powell
- Medical student at Kansas City University College of Osteopathic Medicine (KCU-COM)
| | | | - Asma Zaidi
- Vice Chair of Basic Sciences and Professor of Biochemistry at KCU-COM, Kansas City Campus, Kansas City, Missouri
| |
Collapse
|
28
|
Ali A, Lim J, Kim EH, Lee JH, Seong S, Kim W. Anti-Inflammatory Effects of Heat-Processed Artemisia capillaris Thunberg by Regulating I κB α/NF- κB Complex and 15-PGDH in Mouse Macrophage Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5320314. [PMID: 34194517 PMCID: PMC8203361 DOI: 10.1155/2021/5320314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/26/2021] [Indexed: 11/18/2022]
Abstract
Growing evidence suggests that dietary nutrients in herbs and plants are beneficial in improving inflammatory disorders. Artemisia capillaris Thunberg (AC) is a traditional herbal medicine widely used in East Asia to treat pain, hepatotoxicity, and inflammatory disorders. Heat processing is a unique pharmaceutical method used in traditional herbal medicine to enhance the pharmacological effects and safety of medicinal plants. This study demonstrates the anti-inflammatory effects of heat-processed AC (HPAC) in lipopolysaccharide- (LPS-) treated mouse macrophage cells. HPAC reduced LPS-induced inflammatory mediators such as IL-6, IL-1β, TNF-α, NO, and PGE2 in RAW 264.7 cells. Interestingly, 15-PGDH appears to play a pivotal role rather than COX-2 and mPGES-1 when HPAC regulated PGE2 levels. Meanwhile, HPAC showed anti-inflammatory effects by blocking IκBα phosphorylation and NF-κB nuclear translocalization. Also, we found that HO-1 upregulation was mediated by the mitogen-activated protein kinase (MAPK) pathways in HPAC-treated RAW 264.7 cells. And, in RAW 264.7 cells challenged with LPS, HPAC restored HO-1 expression, leading to NF-κB inhibition. Through further experiments using specific MAPK inhibitors, we found that, in response to LPS, the phosphorylated IκBα and activated NF-κB were attenuated by p38 MAPK/HO-1 pathway. Therefore, HPAC targeting both the IκBα/NF-κB complex and 15-PGDH may be considered as a potential novel anti-inflammatory agent derived from a natural source.
Collapse
Affiliation(s)
- Akhtar Ali
- Cnh Center for Cancer Research, Gangnam-gu, Seoul 06154, Republic of Korea
| | - Junsik Lim
- Division of Pharmacology, College of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea
| | - En Hyung Kim
- Department of Dermatology, Bundang Jesaeng General Hospital, Seongnam, Gyeonggi 13590, Republic of Korea
| | - Jong-Hyun Lee
- Department of Natural Medicine, College of Pharmacy, Dongduk Women's University, Seongbuk-gu, Seoul 02748, Republic of Korea
| | - Shin Seong
- Soram Korean Medicine Hospital, Gangnam-gu, Seoul 06154, Republic of Korea
| | - Wonnam Kim
- Cnh Center for Cancer Research, Gangnam-gu, Seoul 06154, Republic of Korea
| |
Collapse
|
29
|
Leite-Lima F, Bastos VC, Vitório JG, Duarte-Andrade FF, Pereira TDSF, Martins-Chaves RR, Cruz AF, de Lacerda JCT, Lebron YAR, Moreira VR, Santos LVDS, Lange LC, de Macedo AN, Diniz MG, Gomes CC, de Castro WH, Canuto GAB, Gomez RS. Unveiling metabolic changes in marsupialized odontogenic keratocyst: A pilot study. Oral Dis 2021; 28:2219-2229. [PMID: 33978981 DOI: 10.1111/odi.13913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE We aimed to assess which metabolic pathways would be implicated in the phenotypic changes of the epithelial lining of odontogenic keratocyst after marsupialization, comparing pre- and post-marsupialized lesions with adjacent oral mucosa. MATERIALS AND METHODS Eighteen formalin-fixed and paraffin-embedded tissues from six subjects were divided into three paired groups: odontogenic keratocyst pre- (n = 6) and post-marsupialization (n = 6), and adjacent oral mucosa (n = 6). The metabolic pathways found in these groups were obtained by high-performance liquid chromatography-mass spectrometry-based untargeted metabolomics performed. RESULTS Through putative metabolite annotation followed by pathway enrichment and predictive analysis with automated algorithms (Mummichog and Gene Set Enrichment Analysis), we found differences in many cellular processes that may be involved in inflammation, oxidative stress response, keratinocyte-basal membrane attachment, differentiation, and proliferation functions, all relevant to odontogenic keratocyst pathobiology and the phenotype acquired after marsupialization. CONCLUSION Our study was able to identify several metabolic pathways potentially involved in the metaplastic changes induced by marsupialization of odontogenic keratocysts. An improved comprehension of this process could pave the way for the development of targeted therapies.
Collapse
Affiliation(s)
- Flávia Leite-Lima
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Victor Coutinho Bastos
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Aline Fernanda Cruz
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Júlio César Tanos de Lacerda
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Victor Rezende Moreira
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucilaine Valéria de Souza Santos
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Liséte Celina Lange
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriana Nori de Macedo
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina Gonçalves Diniz
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Wagner Henriques de Castro
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
30
|
Choi JE, Borkowski K, Newman JW, Park Y. N-3 PUFA improved post-menopausal depression induced by maternal separation and chronic mild stress through serotonergic pathway in rats-effect associated with lipid mediators. J Nutr Biochem 2021; 91:108599. [PMID: 33548474 DOI: 10.1016/j.jnutbio.2021.108599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
Early life maternal separation (MS) increases the vulnerability to depression in rats with chronic mild stress (CMS). N-3 polyunsaturated fatty acids (PUFA) improved depressive behaviors in rats with acute stress; however, their effects on rats with MS+CMS were not apparent. The purpose of the present study was to investigate the hypothesis that lifetime n-3 PUFA supplementation improves post-menopausal depression through the serotonergic and glutamatergic pathways while modulating n-3 PUFA-derived metabolites. Female rats were fed diets of either 0% n-3 PUFA during lifetime or 1% energy n-3 PUFA during pre-weaning, post-weaning, or lifetime periods. Rats were allocated to non-MS or MS groups and underwent CMS after ovariectomy. N-3 PUFA increased brain n-3 PUFA-derived endocannabinoid/oxylipin levels, and reversed depressive behaviors. N-3 PUFA decreased blood levels of adrenocorticotropic hormone and corticosterone, and brain expressions of corticotropin-releasing factor and miRNA-218, which increased the expression of the glucocorticoid receptor. N-3 PUFA decreased the expression of tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and prostaglandin E2, while increased the expression of miRNA-155. N-3 PUFA also increased brainstem serotonin levels and hippocampal expression of the serotonin-1A receptor, cAMP response element-binding protein (CREB), phospho-CREB, and brain-derived neurotrophic factor. However, n-3 PUFA did not affect brain expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtype 1, N-methyl-D-aspartate receptor subtype 2B, or miRNA-132. Moreover, n-3 PUFA exposure during lifetime caused greater effects than pre- and post-weaning periods. The present study suggested that n-3 PUFA improved depressive behaviors through serotonergic pathway while modulating the metabolites of n-3 PUFA in post-menopausal depressed rats with chronic stress.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | - Kamil Borkowski
- UC Davis Genome Center, University of California - Davis, Davis, California 95616, USA
| | - John W Newman
- UC Davis Genome Center, University of California - Davis, Davis, California 95616, USA; Department of Nutrition, University of California - Davis, Davis, California 95616, USA; Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, California, USA
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea.
| |
Collapse
|
31
|
Kannan N, Rao AS, Nair A. Microbial production of omega-3 fatty acids: an overview. J Appl Microbiol 2021; 131:2114-2130. [PMID: 33570824 DOI: 10.1111/jam.15034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022]
Abstract
The essence of appropriate nutritional intake on a regular basis has a great impact in maintaining fundamental physiological functions and the body metabolism. Considering how pivotal maintaining a nourishing fat diet is to human health, Omega-3 fatty acids have gained a lot of attention in recent times. Omega-3 fatty acids (n-3 FAs) such as eicosapentaenoic acid (EPA) and DHA are considered as essential fatty acids (EFAs) offering enormous nutritional benefits: from playing a major role in the prevention and treatment of a number of human diseases, such as cardiovascular disorders and neurological disorders, to having anti-inflammatory properties, to providing joint support, etc. Hence, their incorporation into our daily diet is of great importance. Also, both EPA and DHA have been shown to be therapeutically significant in treating several infectious diseases. EFAs were initially thought to be marine in origin, produced by fishes. Consequentially, this led to the increase in the industrial extraction of fish oils for meeting the commercial need for of n-3-rich dietary supplements. Although fish oil supplementation met almost all of the dietary demand for EFAs, they did come with a fair share of drawbacks such as undesirable odour and flavour, heavy metal contamination, extinction of fish species, etc. Oleaginous micro-organisms are a promising alternative for the production of a more sustainable, consistent and quality production of n-3 FAs. Thus, the entire review focuses on understanding the eco-friendlier production of n-3 FAs by micro-organisms.
Collapse
Affiliation(s)
- Nivetha Kannan
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| | - A S Rao
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| | - A Nair
- School of basic and applied sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
32
|
Ghosh S, Das S, Mukherjee J, Abdullah S, Mondal R, Sultana S, Sehgal A, Behl T. Enumerating the role of properdin in the pathogenesis of IgA nephropathy and its possible therapies. Int Immunopharmacol 2021; 93:107429. [PMID: 33571820 DOI: 10.1016/j.intimp.2021.107429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) has become the most prevalent form of glomerulonephritis affecting almost 1.3% of the total population worldwide. It is an autoimmune disorder where the host autoantibody forms an immune complex with the defective galactose-deficient IgA1 and gets deposited at the mesangium and endocapillary region of glomeruli. IgA has the capability to activate alternative and lectin complement cascades which even aggravates the condition. Properdin is directly associated with IgAN by activating and stabilising the alternative complement pathway at the mesangium, thereby causing progressive renal damage. OBJECTIVE The present review mainly focuses on correlating the influence of properdin in activating the complement cascade at glomeruli which is the major cause of disease exacerbation. Secondly, we have described the probable therapies and new targets that are under trials to check their efficacy in IgAN. METHODS An in-depth research was carried out from different peer-reviewed articles till December 2020 from several renowned databases like PubMed, Frontier, and MEDLINE, and the information was analysed and written in a simplified manner. RESULTS Co-deposition of properdin is observed along with IgA and C3 in 75%-100% of the patients. It is not yet fully understood whether properdin inhibition can attenuate IgAN, as many conflicting reports have revealed worsening of IgAN after impeding properdin. CONCLUSION With no specific cure still available, the treatment strategies are of great concern to find a better target to restrict the disease progression. More research and clinical trials are required to find out a prominent target to combat IgAN.
Collapse
Affiliation(s)
- Srijit Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Srijita Das
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Joy Mukherjee
- Bengal School of Technology, Sugandha, Hooghly 712102, West Bengal, India
| | - Salik Abdullah
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Rupsa Mondal
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Shirin Sultana
- Guru Nanak Institute of Pharmaceutical Science and Technology, Panihati, Kolkata 700114, West Bengal, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India.
| |
Collapse
|
33
|
Zeb L, Shafiq M, Chi ZY, Xiu ZL. Separation of microalgal docosahexaenoic acid-rich oils using a microwave-assisted three-phase partitioning system. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Santos HO, Price JC, Bueno AA. Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers-An Overview. Nutrients 2020; 12:E3159. [PMID: 33081119 PMCID: PMC7602731 DOI: 10.3390/nu12103159] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases remain a global challenge, and lipid-associated biomarkers can predict cardiovascular events. Extensive research on cardiovascular benefits of omega-3 polyunsaturated fatty acids (n3-PUFAs) is geared towards fish oil supplementation and fish-rich diets. Nevertheless, vegetarianism and veganism are becoming more popular across all segments of society, due to reasons as varied as personal, ethical and religious values, individual preferences and environment-related principles, amongst others. Due to the essentiality of PUFAs, plant sources of n3-PUFAs warrant further consideration. In this review, we have critically appraised the efficacy of plant-derived n3-PUFAs from foodstuffs and supplements upon lipid profile and selected cardiometabolic markers. Walnuts and flaxseed are the most common plant sources of n3-PUFAs, mainly alpha-linolenic acid (ALA), and feature the strongest scientific rationale for applicability into clinical practice. Furthermore, walnuts and flaxseed are sources of fibre, potassium, magnesium, and non-essential substances, including polyphenols and sterols, which in conjunction are known to ameliorate cardiovascular metabolism. ALA levels in rapeseed and soybean oils are only slight when compared to flaxseed oil. Spirulina and Chlorella, biomasses of cyanobacteria and green algae, are important sources of n3-PUFAs; however, their benefits upon cardiometabolic markers are plausibly driven by their antioxidant potential combined with their n3-PUFA content. In humans, ALA is not sufficiently bioconverted into eicosapentaenoic and docosahexaenoic acids. However, evidence suggests that plant sources of ALA are associated with favourable cardiometabolic status. ALA supplementation, or increased consumption of ALA-rich foodstuffs, combined with reduced omega-6 (n6) PUFAs intake, could improve the n3/n6 ratio and improve cardiometabolic and lipid profile.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | - James C. Price
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| | - Allain A. Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, UK; (J.C.P.); (A.A.B.)
| |
Collapse
|
35
|
Szabó Z, Marosvölgyi T, Szabó É, Bai P, Figler M, Verzár Z. The Potential Beneficial Effect of EPA and DHA Supplementation Managing Cytokine Storm in Coronavirus Disease. Front Physiol 2020; 11:752. [PMID: 32636763 PMCID: PMC7318894 DOI: 10.3389/fphys.2020.00752] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zoltán Szabó
- Faculty of Health Sciences, Institute of Nutritional Sciences and Dietetics, University of Pecs, Pecs, Hungary
| | - Tamás Marosvölgyi
- Medical School, Institute of Bioanalysis, University of Pecs, Pecs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Pecs, Hungary
| | - Péter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Mária Figler
- Faculty of Health Sciences, Institute of Nutritional Sciences and Dietetics, University of Pecs, Pecs, Hungary.,2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, Pecs, Hungary
| | - Zsófia Verzár
- Faculty of Health Sciences, Institute of Nutritional Sciences and Dietetics, University of Pecs, Pecs, Hungary
| |
Collapse
|
36
|
Fine Modulation of the Catalytic Properties of Rhizomucor miehei Lipase Driven by Different Immobilization Strategies for the Selective Hydrolysis of Fish Oil. Molecules 2020; 25:molecules25030545. [PMID: 32012738 PMCID: PMC7037125 DOI: 10.3390/molecules25030545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022] Open
Abstract
Functional properties of each enzyme strictly depend on immobilization protocol used for linking enzyme and carrier. Different strategies were applied to prepare the immobilized derivatives of Rhizomucor miehei lipase (RML) and chemically aminated RML (NH2-RML). Both RML and NH2-RML forms were covalently immobilized on glyoxyl sepharose (Gx-RML and Gx-NH2-RML), glyoxyl sepharose dithiothreitol (Gx-DTT-RML and Gx-DTT-NH2-RML), activated sepharose with cyanogen bromide (CNBr-RML and CNBr-NH2-RML) and heterofunctional epoxy support partially modified with iminodiacetic acid (epoxy-IDA-RML and epoxy-IDA-NH2-RML). Immobilization varied from 11% up to 88% yields producing specific activities ranging from 0.5 up to 1.9 UI/mg. Great improvement in thermal stability for Gx-DTT-NH2-RML and epoxy-IDA-NH2-RML derivatives was obtained by retaining 49% and 37% of their initial activities at 70 °C, respectively. The regioselectivity of each derivative was also examined in hydrolysis of fish oil at three different conditions. All the derivatives were selective between cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. The highest selectivity (32.9 folds) was observed for epoxy-IDA-NH2-RML derivative in the hydrolysis reaction performed at pH 5 and 4 °C. Recyclability study showed good capability of the immobilized biocatalysts to be used repeatedly, retaining 50-91% of their initial activities after five cycles of the reaction.
Collapse
|
37
|
Pingali U, Nutalapati C, Illendulla VS. Evaluation of the Effect of Fish Oil Alone and in Combination with a Proprietary Chromium Complex on Endothelial Dysfunction, Systemic Inflammation and Lipid Profile in Type 2 Diabetes Mellitus - A Randomized, Double-Blind, Placebo-Controlled Clinical Study. Diabetes Metab Syndr Obes 2020; 13:31-42. [PMID: 32021349 PMCID: PMC6954851 DOI: 10.2147/dmso.s220046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE This study was conducted to evaluate the effectiveness of fish oil alone and with an adjunct, a proprietary chromium complex (PCC), on cardiovascular parameters - endothelial dysfunction, lipid profile, systemic inflammation and glycosylated hemoglobin - in a 12-week randomized, double-blind, placebo-controlled clinical study in type 2 diabetes mellitus subjects. PATIENTS AND METHODS In this randomized, double-blind, parallel group study, 59 subjects in three groups completed the study: Group A, fish oil 2000 mg; Group B, fish oil 2000 mg + PCC 10 mg (200 µg of Cr3+); and Group C, fish oil 2000 mg + PCC 20 mg (400 µg of Cr3+) daily for 12 weeks (2000 mg of fish oil contained 600 mg of eicosapentaenoic acid [EPA] and 400 mg of docosahexaenoic acid [DHA], the omega-3 fatty acids). Endothelial function, by estimating reflection index (RI), biomarkers of oxidative stress (nitric oxide [NO], malondialdehyde [MDA], glutathione [GSH]) and inflammatory biomarkers (high-sensitivity C-reactive protein [hsCRP], intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1], endothelin-1) were evaluated at baseline, and 4 and 12 weeks. Lipid profile, platelet aggregation and glycosylated hemoglobin [HbA1c) were tested at baseline and 12 weeks. Any reported adverse drug reactions were recorded. Statistical analysis was performed using GraphPad Prism 8. RESULTS The present study shows that fish oil by itself, at a dose of 2000 mg (600 mg of EPA + 400 mg of DHA) per day, led to significant, but only modest, improvement in cardiovascular parameters (RI from -2.38±0.75 to -3.92±0.60, MDA from 3.77±0.16 to 3.74±0.16 nM/mL, NO from 30.60±3.18 to 32.12±3.40 µM/L, GSH from 568.93±5.91 to 583.95±6.53 µM/L; p≤0.0001), including triglyceride levels. However, when PCC was added to fish oil, especially at the 20 mg dose, there were highly significant improvements in all the parameters tested (RI from -2.04±0.79 to -8.73±1.36, MDA from 3.67±0.39 to 2.89±0.34 nM/mL, NO from 28.98±2.93 to 40.01±2.53 µM/L, GSH from 553.82±8.18 to 677.99±10.19 µM/L; p≤0.0001), including the lipid profile. It is noteworthy that the triglycerides were decreased significantly by addition of 20 mg of PCC although the dose of fish oil was only 2 g/day and the baseline triglyceride levels were only about 200 mg/dL. Fish oil alone did not significantly decrease the HbA1c, whereas the addition of 20 mg of PCC did. CONCLUSION Addition of PCC, especially at 20 mg dose, significantly improves the efficacy of fish oil in addressing cardiovascular risk factors compared to fish oil given alone.
Collapse
Affiliation(s)
- Usharani Pingali
- Department of Clinical Pharmacology & Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, 500082, India
- Correspondence: Usharani Pingali Department of Clinical Pharmacology & Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad500082, Telangana, IndiaTel +91 9849574143 Email
| | - Chandrasekhar Nutalapati
- Department of Clinical Pharmacology & Therapeutics, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, 500082, India
| | | |
Collapse
|
38
|
Abstract
A wide variety of plant species provide edible seeds. Seeds are the dominant source of human calories and protein. The most important and popular seed food sources are cereals, followed by legumes and nuts. Their nutritional content of fiber, protein, and monounsaturated/polyunsaturated fats make them extremely nutritious. They are important additions to our daily food consumption. When consumed as part of a healthy diet, seeds can help reduce blood sugar, cholesterol, and blood pressure.
Collapse
|
39
|
Maciejewska D, Palma J, Dec K, Skonieczna-Żydecka K, Gutowska I, Szczuko M, Jakubczyk K, Stachowska E. Is the Fatty Acids Profile in Blood a Good Predictor of Liver Changes? Correlation of Fatty Acids Profile with Fatty Acids Content in the Liver. Diagnostics (Basel) 2019; 9:E197. [PMID: 31752380 PMCID: PMC6963765 DOI: 10.3390/diagnostics9040197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Existing data show a correlation between the profile of fatty acids, liver, and blood. Therefore, the aim of our study was to investigate the correlation between the fatty acids profile in blood pallets and the liver. METHODS The experiment was performed on 60 eight-week-old male Sprague-Dawley rats. The study group (n = 30, 5 groups, 6 rats each) received a cholesterol diet; the control group (n = 30, 5 groups, 6 rats each) received standard food for laboratory rats. The rats from both the study and control groups were sacrificed after 2, 4, 8, 12, and 16 weeks of dietary exposure. The fatty acids profile was measured using gas chromatography (GC). RESULTS In both the control and study group, the highest correlations were observed in palmitoleic acid (RHO = 0.68), heptadecanoic acid (RHO = 0.65), vaccenic acid (RHO = 0.72), eicosapentaenoic acid (RHO = 0.68), docosapentaenoic acid (RHO = 0.77), and docosahexaenoic (RHO = 0.77). Among liver indexes, the highest correlations were desaturase-18 (0.61). CONCLUSIONS Fatty acids profile is a sensitive marker of the development of potentially pathological changes in the liver. The potential markers of fatty liver are: oleic acid, vaccenic acid, EPA, DHA, docosapentaenoic acid, and desaturase index (SCD-18 index).
Collapse
Affiliation(s)
- Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Joanna Palma
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (J.P.); (K.D.); (K.S.-Ż.); (M.S.); (K.J.); (E.S.)
| |
Collapse
|
40
|
Microwave-assisted three-liquid-phase salting-out extraction of docosahexaenoic acid (DHA)-rich oil from cultivation broths of Schizochytrium limacinium SR21. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Biandolino F, Parlapiano I, Denti G, Fanelli G, Prato E. Can Different Body Tissues of Two Sea Cucumbers Supply a Fair Amount of Omega 3 for Health Benefit? JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1652217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Stamenkovic A, Ganguly R, Aliani M, Ravandi A, Pierce GN. Overcoming the Bitter Taste of Oils Enriched in Fatty Acids to Obtain Their Effects on the Heart in Health and Disease. Nutrients 2019; 11:E1179. [PMID: 31137794 PMCID: PMC6566568 DOI: 10.3390/nu11051179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 01/18/2023] Open
Abstract
Fatty acids come in a variety of structures and, because of this, create a variety of functions for these lipids. Some fatty acids have a role to play in energy metabolism, some help in lipid storage, cell structure, the physical state of the lipid, and even in food stability. Fatty acid metabolism plays a particularly important role in meeting the energy demands of the heart. It is the primary source of myocardial energy in control conditions. Its role changes dramatically in disease states in the heart, but the pathologic role these fatty acids play depends upon the type of cardiovascular disease and the type of fatty acid. However, no matter how good a food is for one's health, its taste will ultimately become a deciding factor in its influence on human health. No food will provide health benefits if it is not ingested. This review discusses the taste characteristics of culinary oils that contain fatty acids and how these fatty acids affect the performance of the heart during healthy and diseased conditions. The contrasting contributions that different fatty acid molecules have in either promoting cardiac pathologies or protecting the heart from cardiovascular disease is also highlighted in this article.
Collapse
Affiliation(s)
- Aleksandra Stamenkovic
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Riya Ganguly
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Michel Aliani
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
- Department of Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
- Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, St Boniface Hospital, Winnipeg, MB R2H2A6, Canada.
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0W3, Canada.
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, University of Manitoba, Winnipeg, MB R2H2A6, Canada.
| |
Collapse
|
43
|
D'Abrosca B, Ciaramella V, Graziani V, Papaccio F, Della Corte CM, Potenza N, Fiorentino A, Ciardiello F, Morgillo F. Urtica dioica L. inhibits proliferation and enhances cisplatin cytotoxicity in NSCLC cells via Endoplasmic Reticulum-stress mediated apoptosis. Sci Rep 2019; 9:4986. [PMID: 30899059 PMCID: PMC6428841 DOI: 10.1038/s41598-019-41372-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the ineffectiveness of the current therapies seriously limits the survival rate of NSCLC patients. In the search for new antitumor agents, nature has played a pivotal role providing a variety of molecules, which are likely to exert selective anti-tumour properties. Herein, we investigated the antiproliferative potential of Urtica dioica L. extract (UD) against NSCLC cell models with low sensitivity to cisplatin, a cytotoxic agent largely employed to cure NSCLCs. UD inhibited cell proliferation in the selected cells, while no toxic effects were observed in normal lung cells. Furthermore, the co-treatment of UD and cisplatin notably sensitised NSCLC cells to cisplatin. Mechanistically, we discovered that UD-promoted endoplasmic reticulum (ER) stress via activation of the growth arrest and DNA damage-inducible gene 153 (GADD153) triggering apoptosis. We also performed an extensive NMR analysis of UD, identifying rutin and oxylipins as the main secondary metabolites present in the mixture. Additionally, we discovered that an oxylipins' enriched fraction contributes to the antiproliferative activity of the plant extract. In the future, this study may provide new chemical scaffolds for the design of anti-cancer agents that target NSCLCs with low sensitivity to cisplatinum.
Collapse
Affiliation(s)
- Brigida D'Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche -DiSTABiF, Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100, Caserta, Italy.
| | - Vincenza Ciaramella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131, Napoli, Italy
| | - Vittoria Graziani
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche -DiSTABiF, Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100, Caserta, Italy
| | - Federica Papaccio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131, Napoli, Italy
| | - Carminia Maria Della Corte
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131, Napoli, Italy
| | - Nicoletta Potenza
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche -DiSTABiF, Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100, Caserta, Italy
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche -DiSTABiF, Università degli Studi della Campania "Luigi Vanvitelli", via Vivaldi 43, I-81100, Caserta, Italy
| | - Fortunato Ciardiello
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131, Napoli, Italy
| | - Floriana Morgillo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli" - Via Pansini, 5, 80131, Napoli, Italy
| |
Collapse
|
44
|
Abstract
The treatment of psychiatric disorders remains a significant challenge in part due to imprecise diagnostic criteria and incomplete understanding of the molecular pathology involved. Current diagnostic and pharmacological treatment guidelines use a uniform approach to address each disorder even though psychiatric clinical presentation and prognosis within a disorder are known to be heterogeneous. Limited therapeutic success highlights the need for a precision medicine approach in psychiatry, termed precision psychiatry. To practice precision psychiatry, it is essential to research and develop multiple omics-based biomarkers that consider environmental factors and careful phenotype determination. Metabolomics, which lies at the endpoint of the "omics cascade," allows for detection of alterations in systems-level metabolites within biological pathways, thereby providing insights into the mechanisms that underlie various physiological conditions and pathologies. The eicosanoids, a family of metabolites derived from oxygenated polyunsaturated fatty acids, play a key role in inflammatory mechanisms and have been implicated in psychiatric disorders such as anorexia nervosa and depression. This review (1) provides background on the current clinical challenges of psychiatric disorders, (2) gives an overview of metabolomics application as a tool to develop improved biomarkers for precision psychiatry, and (3) summarizes current knowledge on metabolomics and lipidomic findings in common psychiatric disorders, with a focus on eicosanoids. Metabolomics is a promising tool for precision psychiatry. This research has great potential for both discovering biomarkers and elucidating molecular mechanisms underlying psychiatric disorders.
Collapse
Affiliation(s)
- Pei-An Betty Shih
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
45
|
Ostadrahimi A, Salehi-Pourmehr H, Mohammad-Alizadeh-Charandabi S, Heidarabady S, Farshbaf-Khalili A. The effect of perinatal fish oil supplementation on neurodevelopment and growth of infants: a randomized controlled trial. Eur J Nutr 2018; 57:2387-2397. [PMID: 28752418 DOI: 10.1007/s00394-017-1512-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Long-chain polyunsaturated fatty acids, the most abundant fatty acids in the brain, are essential for the growth and development of the brain and the retina. OBJECTIVE To evaluate the effect of fish oil supplementation on the development (primary outcome) and growth of 4- and 6-month-old infants. METHODS In this triple-blind randomized controlled trial, 150 pregnant women aged 18-35 years, who were referred to healthcare centres of Tabriz-Iran, were randomly allocated into two groups. One group of women consumed fish oil supplementation (containing 120 mg docosahexaenoic acid and 180 mg eicosapentaenoic acid) daily, while the other consumed a placebo from the 20th week of pregnancy till 30 days after childbirth in a parallel design by a computer-generated block randomization scheme. The neurodevelopment of infants was the primary outcome; it was assessed using the ages and stages questionnaire (ASQ) at 4- and a-6 months of age. The growth of these infants was measured using weight, length and head circumference. The participants, the caregivers, and those assessing the outcomes were blind to the group assignment. RESULTS Only one woman in the placebo group discontinued the intervention because of persistent severe nausea. All 75 neonates aged 4- and a-6 months in the fish oil supplementation group, along with 73 and 71 neonates aged 4 and 6 months, respectively in the placebo group, were followed and analysed. Although the mean scores of neurodevelopment at the end of 4 and 6 months were higher in the supplemented group than in the placebo group in each ASQ domain, a statistically significant difference was observed only in the communication domain at the 4th month (adjusted mean difference 2.63; 95% confidence interval 0.36-4.89). There was no significant difference in weight, length, or head circumference between the two groups of infants aged 4 and 6 months (P ≥ 0.05). CONCLUSION Based on the results, perinatal fish oil supplementation is beneficial for the communication domain of neurodevelopment of 4-month-old infants. The study results relating to the supplementation effect on other domains are inconclusive. There ought to be further studies with up-to-date lipidomic analysis to find biochemical correlate compared to an intervention and developmental finding.
Collapse
Affiliation(s)
- Alireza Ostadrahimi
- Nutrition Research Centre, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hanieh Salehi-Pourmehr
- Faculty of Nursing and Midwifery, Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Sakineh Mohammad-Alizadeh-Charandabi
- Social Determinants of Health Research Center, Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Seifollah Heidarabady
- Department of Pediatrics, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Tabriz Health Services Management Research Center, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
46
|
Kain V, Halade GV. Immune responsive resolvin D1 programs peritoneal macrophages and cardiac fibroblast phenotypes in diversified metabolic microenvironment. J Cell Physiol 2018; 234:3910-3920. [PMID: 30191990 DOI: 10.1002/jcp.27165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Bioactive lipid mediators derived from n-3 and n-6 fatty acids are known to modulate leukocytes. Metabolic transformation of essential fatty acids to endogenous bioactive molecules plays a major role in human health. Here we tested the potential of substrates; linoleic acid (LA) and docosahexaenoic acid (DHA) and their bioactive products; resolvin D1 (RvD1) and 12- S-hydroxyeicosatetraenoic acids (HETE) to modulate macrophage plasticity and cardiac fibroblast phenotype in presence or absence of lipid metabolizing enzyme 12/15-lipoxygenase (LOX). Peritoneal macrophages and cardiac fibroblasts were isolated from wild-type (C57BL/6J) and 12/15LOX -/- mice and treated with DHA, LA, 12(S)-HETE, and RvD1 for 4, 8, 12, and 24 hr. LA, DHA, 12(S)-HETE, and RvD1 elicited mRNA expression of proinflammatory markers; tumor necrosis factor-α ( Tnf-α), interleukin 6 ( IL-6), chemokine (C-C motif) ligand 2 (Ccl2), and IL-1β in wild type (WT) and in 12/15LOX -/- macrophages at early time point (4 hr). Bioactive immunoresolvent RvD1 lowered the levels of Tnf-α, IL-6, and IL-1β at 24 hr time point. Both DHA and RvD1 stimulated the proresolving markers such as arginase 1 ( Arg-1), chitinase-like protein 3 ( Ym-1), and mannose receptor C-type 1 in WT macrophage. RvD1 induced proresolving phenotype Arg-1 expression in both WT 12/15LOX -/- macrophages even in presence of 12(S)-HETE. RvD1 peaked 5LOX expression in both WT and 12/15LOX -/- at 24 hr time point compared with DHA. RvD1 diminished cyclooxygenase-2 but upregulated 5LOX expression in fibroblast compared with DHA. In summary, the feed-forward enzymatic interaction with fatty acids substrates and direct mediators (RvD1 and 12(S)-HETE) are responsive in determining macrophages phenotype and cardiac fibroblast plasticity. Particularly, macrophages and fibroblast phenotypes are responsive to milieu and RvD1 governs the milieu-dependent chemokine signaling in presence or absence of 12/15LOX enzyme to resolve inflammation.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
47
|
Ehr IJ, Persia ME, Bobeck EA. Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed. Poult Sci 2018; 96:1791-1799. [PMID: 28108729 DOI: 10.3382/ps/pew462] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/06/2016] [Indexed: 01/27/2023] Open
Abstract
When laying hen diets are enriched with omega-3 polyunsaturated fatty acids to generate value-added eggs for human consumption markets, concentrations of alpha-linolenic (ALA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) in the yolk can reach 250 mg/50 g whole egg. Flaxseed, a rich source of ALA, is commonly used for omega-3 enrichment; however, the impact of dietary flaxseed source (extracted oil vs. milled seed) on fatty acid transfer to egg yolk in laying hens is unknown. Therefore, transfer of ALA, EPA, and DHA into egg yolk from extracted flaxseed oil or milled flaxseed was evaluated in Hy-Line W-36 laying hens over an 8-week feeding period (25 to 33 wk old). Hens (n = 132) were randomly housed with 3 birds/cage (4 replicates/treatment) for each of the 11 treatment groups. Diets were isocaloric and consisted of a control diet, 5 flaxseed oil diets (0.5, 1.0, 2.0, 3.0, or 5.0% flaxseed oil), and 5 milled flaxseed diets (calculated flaxseed oil concentration from milled flaxseed 0.5, 1.0, 2.0, 3.0, 5.0%). Increasing dietary concentrations of flaxseed oil and milled flaxseed resulted in increased ALA, EPA, and DHA concentration in egg yolk, and fatty acid deposition from flaxseed oil was 2 times greater compared to milled flaxseed when fed at the same dietary inclusions (P < 0.01). Egg yolk EPA and DHA concentrations were not different due to oil or milled source (P = 0.21); however, increasing dietary inclusion rates of flaxseed oil from either source increased yolk EPA and DHA (P < 0.01). Hens fed either flaxseed oil or milled flaxseed resulted in reduced BW change as dietary concentrations increased (P = 0.02). Feed efficiency increased as flaxseed oil increased in concentration, while feeding milled flaxseed decreased feed efficiency (P = 0.01). Analysis of the nitrogen corrected apparent metabolizable energy of flaxseed oil resulted in 7,488 kcal/kg on an as-fed basis. Dietary flaxseed oil improved feed efficiency and increased ALA deposition into yolk compared to a milled source, demonstrating flaxseed oil to be a viable alternative for ALA egg enrichment.
Collapse
Affiliation(s)
- I J Ehr
- Department of Animal Science, Iowa State University, Ames 50011
| | - M E Persia
- Department of Animal and Poultry Science, Virginia Tech, Blacksburg 24061
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
48
|
Huang S, Baurhoo B, Mustafa A. Effects of extruded flaxseed on layer performance, nutrient retention and yolk fatty acid composition. Br Poult Sci 2018; 59:463-469. [PMID: 29764188 DOI: 10.1080/00071668.2018.1476676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
1. This study was conducted to determine the effects of feeding an extruded flaxseed (EF) on layer performance, apparent total tract nutrient retention (ATTR) and egg yolk fatty acid concentrations. 2. Seventy-two White Leghorn laying hens (58-week-old; three per cage) were randomly allotted to one of four dietary treatments: 0%, 7.5%, 15.0% and 22.5% of EF-supplemented diets for 8 weeks. 3. Supplementation with EF had no effect on feed intake, egg production, feed conversion ratio and egg weight. Egg components (yolk, albumen and shell percentages) were similar among treatments, except that shell percentage was greater for layers fed 22.5% EF than those fed 7.5% and 15% EF. The ATTR of dry matter and organic matter were highest for 0% and 7.5% EF, intermediate for 15% EF and lowest for 22.5% EF. Similar reductions on ATTR of crude protein and nitrogen-corrected apparent metabolisable energy were observed for layers fed 22.5% EF relative to those fed 0% or 7.5% EF. 4. Feeding EF at 7.5%, 15.0% and 22.5% of the diet markedly increased (by 92%, 198% and 271%, respectively) egg yolk concentrations of n-3 polyunsaturated fatty acid (PUFA) and reduced saturated fatty acid and n-6 PUFA concentrations. 5. It was concluded that omega-3 labelled eggs (300 mg/60 g of egg) may be produced with low (7.5% of diet) levels of dietary EF without compromising egg production parameters. However, feeding moderate to high levels of EF (i.e. 15% and 22.5% EF) may reduce total tract nutrient and energy utilisation.
Collapse
Affiliation(s)
- S Huang
- a Department of Animal Science , McGill University , Ste-Ann-de-Bellevue , Canada
| | - B Baurhoo
- a Department of Animal Science , McGill University , Ste-Ann-de-Bellevue , Canada.,b Bélisle Solution Nutrition Inc ., St-Mathias sur Richelieu , Canada
| | - A Mustafa
- a Department of Animal Science , McGill University , Ste-Ann-de-Bellevue , Canada
| |
Collapse
|
49
|
SANTOS OV, CORREA NCF, CARVALHO JUNIOR R, COSTA CEFD, MORAES JDFC, LANNES SCDS. Quality parameters and thermogravimetric and oxidative profile of Muruci oil ( Byrsonima crassifolia L.) obtained by supercritical CO2. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/1678-457x.30616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Mendonça AM, Cayer LGJ, Pauls SD, Winter T, Leng S, Taylor CG, Zahradka P, Aukema HM. Distinct effects of dietary ALA, EPA and DHA on rat adipose oxylipins vary by depot location and sex. Prostaglandins Leukot Essent Fatty Acids 2018; 129:13-24. [PMID: 29482766 DOI: 10.1016/j.plefa.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Dietary EPA and DHA given together alter oxylipins in adipose tissue. To compare the separate effects of individual dietary n-3 PUFA on oxylipins in different adipose depots (gonadal, mesenteric, perirenal, subcutaneous) in males and females, rats were provided diets containing higher levels of α-linolenic acid (ALA), EPA or DHA. Each n-3 PUFA enhanced its respective oxylipins the most, while effects on other n-3 oxylipins varied. For example: in perirenal and subcutaneous depots, more DHA oxylipins were higher with dietary ALA than with EPA; dietary EPA uniquely decreased 14-hydroxy-docosahexaenoic acid, in contrast to increasing many other DHA oxylipins. The n-3 PUFAs also reduced oxylipins from n-6 PUFAs in order of effectiveness: DHA > EPA > ALA. Diet by sex interactions in all depots except the perirenal depot resulted in higher oxylipins in males given DHA, and higher oxylipins in females given the other diets. Diet and sex effects on oxylipins did not necessarily reflect effects on either their tissue phospholipid or neutral lipid PUFA precursors. These varying diet and sex effects on oxylipins in the different adipose sites indicate that they may have distinct effects on adipose function.
Collapse
Affiliation(s)
- Anne M Mendonça
- School of Medicine, Federal University of Uberlândia, Brazil; Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Lucien G J Cayer
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Samantha D Pauls
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|