1
|
Tanaka A, Ogawa M, Zhou Y, Hendrickson RC, Miele MM, Li Z, Klimstra DS, Wang JY, Roehrl MHA. Proteomic basis for pancreatic acinar cell carcinoma and pancreatoblastoma as similar yet distinct entities. NPJ Precis Oncol 2024; 8:221. [PMID: 39363045 PMCID: PMC11449907 DOI: 10.1038/s41698-024-00708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Acinar cell carcinoma (ACC) and pancreatoblastoma (PBL) are rare pancreatic malignancies with acinar differentiation. Proteogenomic profiling of ACC and PBL revealed distinct protein expression patterns compared to pancreatic ductal adenocarcinoma (PDAC) and benign pancreas. ACC and PBL exhibited similarities, with enrichment in proteins related to RNA processing, chromosome organization, and the mitoribosome, while PDACs overexpressed proteins associated with actin-based processes, extracellular matrix, and immune-active stroma. Pathway activity differences in metabolic adaptation, epithelial-to-mesenchymal transition, and DNA repair were characterized between these diseases. PBL showed upregulation of Wnt-CTNNB1 and IGF2 pathways. Seventeen ACC-specific proteins suggested connections to metabolic diseases with mitochondrial dysfunction, while 34 PBL-specific proteins marked this pediatric cancer with an embryonic stem cell phenotype and alterations in chromosomal proteins and the cell cycle. This study provides novel insights into the proteomic landscapes of ACC and PBL, offering potential targets for diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yihua Zhou
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- ICU Department, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ronald C Hendrickson
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew M Miele
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Paige.AI, New York, NY, USA
| | | | - Michael H A Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Tong Z, Yin Z. Distribution, contribution and regulation of nestin + cells. J Adv Res 2024; 61:47-63. [PMID: 37648021 PMCID: PMC11258671 DOI: 10.1016/j.jare.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Nestin is an intermediate filament first reported in neuroepithelial stem cells. Nestin expression could be found in a variety of tissues throughout all systems of the body, especially during tissue development and tissue regeneration processes. AIM OF REVIEW This review aimed to summarize and discuss current studies on the distribution, contribution and regulation of nestin+ cells in different systems of the body, to discuss the feasibility ofusing nestin as a marker of multilineage stem/progenitor cells, and better understand the potential roles of nestin+ cells in tissue development, regeneration and pathological processes. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the potential of nestin as a marker of multilineage stem/progenitor cells, and as a key factor in tissue development and tissue regeneration. The article discussed the current findings, limitations, and potential clinical implications or applications of nestin+ cells. Additionally, it included the relationship of nestin+ cells to other cell populations. We propose potential future research directions to encourage further investigation in the field.
Collapse
Affiliation(s)
- Ziyang Tong
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
3
|
Singh VK, Sharma P, Vaksh UKS, Chandra R. Current approaches for the regeneration and reconstruction of ocular surface in dry eye. Front Med (Lausanne) 2022; 9:885780. [PMID: 36213677 PMCID: PMC9544815 DOI: 10.3389/fmed.2022.885780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Significant research revealed the preocular tear film composition and regulations that remain vital for maintaining Ocular surface functional integrity. Inflammation triggered by many factors is the hallmark of Ocular surface disorders or dry eyes syndrome (DES). The tear deficiencies may lead to ocular surface desiccation, corneal ulceration and/or perforation, higher rates of infectious disease, and the risk of severe visual impairment and blindness. Clinical management remains largely supportive, palliative, and frequent, lifelong use of different lubricating agents. However, few advancements such as punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts are of limited use. Cell-based therapies, tissue engineering, and regenerative medicine, have recently evolved as long-term cures for many diseases, including ophthalmic diseases. The present article focuses on the different regenerative medicine and reconstruction/bioengineered lacrimal gland formation strategies reported so far, along with their limiting factors and feasibility as an effective cure in future.
Collapse
Affiliation(s)
- Vimal Kishor Singh
- Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vimal Kishor Singh ; ;
| | - Pallavi Sharma
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India
| | - Uttkarsh Kumar Sharma Vaksh
- Tissue Engineering and Regenerative Medicine Research Lab, Department of Biomedical Engineering, Amity School of Engineering and Technology, Amity University, Gurgaon, Haryana, India
| | - Ramesh Chandra
- Institute of Nanomedical Sciences, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Kasal K, Güven S, Utine CA. Current methodology and cell sources for lacrimal gland tissue engineering. Exp Eye Res 2022; 221:109138. [DOI: 10.1016/j.exer.2022.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
5
|
Therapeutic Potential of Human Fetal Mesenchymal Stem Cells in Musculoskeletal Disorders: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031439. [PMID: 35163361 PMCID: PMC8835918 DOI: 10.3390/ijms23031439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 01/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for diverse diseases and injuries. The biological and clinical advantages of human fetal MSCs (hfMSCs) have recently been reported. In terms of promising therapeutic approaches for diverse diseases and injuries, hfMSCs have gained prominence as healing tools for clinical therapies. Therefore, this review assesses not the only biological advantages of hfMSCs for healing human diseases and regeneration, but also the research evidence for the engraftment and immunomodulation of hfMSCs based on their sources and biological components. Of particular clinical relevance, the present review also suggests the potential therapeutic feasibilities of hfMSCs for musculoskeletal disorders, including osteoporosis, osteoarthritis, and osteogenesis imperfecta.
Collapse
|
6
|
Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2020; 11:275. [PMID: 32641151 PMCID: PMC7346484 DOI: 10.1186/s13287-020-01793-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the most common chronic autoimmune disease in young patients and is characterized by the loss of pancreatic β cells; as a result, the body becomes insulin deficient and hyperglycemic. Administration or injection of exogenous insulin cannot mimic the endogenous insulin secreted by a healthy pancreas. Pancreas and islet transplantation have emerged as promising treatments for reconstructing the normal regulation of blood glucose in T1DM patients. However, a critical shortage of pancreases and islets derived from human organ donors, complications associated with transplantations, high cost, and limited procedural availability remain bottlenecks in the widespread application of these strategies. Attempts have been directed to accommodate the increasing population of patients with T1DM. Stem cell therapy holds great potential for curing patients with T1DM. With the advent of research on stem cell therapy for various diseases, breakthroughs in stem cell-based therapy for T1DM have been reported. However, many unsolved issues need to be addressed before stem cell therapy will be clinically feasible for diabetic patients. In this review, we discuss the current research advances in strategies to obtain insulin-producing cells (IPCs) from different precursor cells and in stem cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Shuai Chen
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kechen Du
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Cooper TT, Sherman SE, Bell GI, Ma J, Kuljanin M, Jose SE, Lajoie GA, Hess DA. Characterization of a Vimentin high /Nestin high proteome and tissue regenerative secretome generated by human pancreas-derived mesenchymal stromal cells. Stem Cells 2020; 38:666-682. [PMID: 31904137 DOI: 10.1002/stem.3143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Multipotent/mesenchymal stromal cells (MSCs) exist within a variety of postnatal tissues; however, global proteomic analyses comparing tissue-specific MSC are limited. Using human bone marrow (BM)-derived MSCs as a gold standard, we used label-free mass spectrometry and functional assays to characterize the proteome, secretome, and corresponding function of human pancreas-derived MSCs (Panc-MSCs) with a classical phenotype (CD90+/CD73+/CD105+/CD45-/CD31-). Both MSC subtypes expressed mesenchymal markers vimentin, α-SMA, and STRO-1; however, expression of nestin was increased in Panc-MSCs. Accordingly, these Vimentinhigh /Nestinhigh cells were isolated from fresh human pancreatic islet and non-islet tissues. Next, we identified expression of >60 CD markers shared between Panc-MSCs and BM-MSCs, including validated expression of CD14. An additional 19 CD markers were differentially expressed, including reduced pericyte-marker CD146 expression on Panc-MSCs. Panc-MSCs also showed reduced expression of proteins involved in lipid and retinoid metabolism. Accordingly, Panc-MSCs showed restricted responses to adipogenic stimuli in vitro, although both MSC types demonstrated trilineage differentiation. In contrast, Panc-MSCs demonstrated accelerated growth kinetics and competency to pro-neurogenic stimuli in vitro. The secretome of Panc-MSCs was highly enriched for proteins associated with vascular development, wound healing and chemotaxis. Similar to BM-MSCs, Panc-MSCs conditioned media augmented endothelial cell survival, proliferation, and tubule formation in vitro. Importantly, the secretome of both MSC types was capable of stimulating chemotactic infiltration of murine endothelial cells in vivo and reduced hyperglycemia in STZ-treated mice following intrapancreatic injection. Overall, this study provides foundational knowledge to develop Panc-MSCs as a unique MSC subtype with functional properties beneficial in regenerative medicine for diabetes and vascular disease.
Collapse
Affiliation(s)
- Tyler T Cooper
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Stephen E Sherman
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Gillian I Bell
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Jun Ma
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Miljan Kuljanin
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada.,Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - Shauna E Jose
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Don Rix Protein Identification Facility, Western University, London, Ontario, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
8
|
Zhou Y, Sun B, Li W, Zhou J, Gao F, Wang X, Cai M, Sun Z. Pancreatic Stellate Cells: A Rising Translational Physiology Star as a Potential Stem Cell Type for Beta Cell Neogenesis. Front Physiol 2019; 10:218. [PMID: 30930789 PMCID: PMC6424017 DOI: 10.3389/fphys.2019.00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The progressive decline and eventual loss of islet β-cell function underlies the pathophysiological mechanism of the development of both type 1 and type 2 diabetes mellitus. The recovery of functional β-cells is an important strategy for the prevention and treatment of diabetes. Based on similarities in developmental biology and anatomy, in vivo induction of differentiation of other types of pancreatic cells into β-cells is a promising avenue for future diabetes treatment. Pancreatic stellate cells (PSCs), which have attracted intense research interest due to their effects on tissue fibrosis over the last decade, express multiple stem cell markers and can differentiate into various cell types. In particular, PSCs can successfully differentiate into insulin- secreting cells in vitro and can contribute to tissue regeneration. In this article, we will brings together the main concepts of the translational physiology potential of PSCs that have emerged from work in the field and discuss possible ways to develop the future renewable source for clinical treatment of pancreatic diseases.
Collapse
Affiliation(s)
- Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wei Li
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Junming Zhou
- Department of Outpatient, Army Engineering University, Jingling Hospital, Nanjing University, Nanjing, China
| | - Feng Gao
- Graduate Innovation Platform of Southeast University, Nanjing, China
| | - Xiaohang Wang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Min Cai
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Srivastava A, Dadheech N, Vakani M, Gupta S. Pancreatic resident endocrine progenitors demonstrate high islet neogenic fidelity and committed homing towards diabetic mice pancreas. J Cell Physiol 2018; 234:8975-8987. [PMID: 30341903 DOI: 10.1002/jcp.27568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic progenitors have been explored for their profound characteristics and unique commitment to generate new functional islets in regenerative medicine. Pancreatic resident endocrine progenitors (PREPs) with mesenchymal stem cell (MSC) phenotype were purified from BALB/c mice pancreas and characterized. PREPs were differentiated into mature islet clusters in vitro by activin-A and swertisin and functionally characterized. A temporal gene and protein profiling was performed during differentiation. Furthermore, PREPs were labeled with green fluorescent protein (GFP) and transplanted intravenously into streptozotocin (STZ) diabetic mice while monitoring their homing and differentiation leading to amelioration in the diabetic condition. PREPs were positive for unique progenitor markers and transcription factors essential for endocrine pancreatic homeostasis along with having the multipotent MSC phenotype. These cells demonstrated high fidelity for islet neogenesis in minimum time (4 days) to generate mature functional islet clusters (shortest reported period for any isolated stem/progenitor). Furthermore, GFP-labeled PREPs transplanted in STZ diabetic mice migrated and localized within the injured pancreas without trapping in any other major organ and differentiated rapidly into insulin-producing cells without an external stimulus. A rapid decrease in fasting blood glucose levels toward normoglycemia along with significant increase in fasting serum insulin levels was observed, which ameliorated the diabetic condition. This study highlights the unique potential of PREPs to generate mature islets within the shortest period and their robust homing toward the damaged pancreas, which ameliorated the diabetic condition suggesting PREPs affinity toward their niche, which can be exploited and extended to other stem cell sources in diabetic therapeutics.
Collapse
Affiliation(s)
- Abhay Srivastava
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nidheesh Dadheech
- Dr. AM James Shapiro Laboratory, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Mitul Vakani
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Sarita Gupta
- Molecular Endocrinology and Stem Cell Research Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
10
|
Comparative analysis on the dynamic of lacrimal gland damage and regeneration after Interleukin-1α or duct ligation induced dry eye disease in mice. Exp Eye Res 2018; 172:66-77. [DOI: 10.1016/j.exer.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 11/15/2022]
|
11
|
Qiao YY, Chu P. Expression of nestin in embryonic tissues and its effects on clinicopathological characteristics of patients with placenta previa. J Cell Biochem 2017; 119:2061-2072. [PMID: 28833496 DOI: 10.1002/jcb.26368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/17/2017] [Indexed: 01/19/2023]
Abstract
In this study, we examined expression of nestin in the spinal cord, lung, kidney, stomach, colon, and intestine tissues at different stages of embryos in patients with placenta previa. Fetuses of 75 patients with placenta previa were assigned to case group and 80 fetuses from healthy pregnant women with normal placenta who voluntarily terminated pregnancy to control group. Clinical data of pregnant women were collected at the time of admission. Blood from elbow vein was collected to determine expression of serum nestin. Tissues from spinal cord, lung, kidney, stomach, colon, and intestine in 3-7 months fetuses of the two groups were extracted. Expression of nestin in tissues was detected by immunohistochemistry, Western blotting and RT-qPCR. The mRNA expression of nestin in the case group was increased. Nestin expression was correlated with the gestational age, age of foetus, and type of placenta previa in patients with placenta previa. Positive nestin expression was detected in the spinal cord, lung, kidney, stomach, intestine, and colon tissues in normal and placenta previa embryo at Stage I. The positive cell density and nestin expression decreased at Stage II, and further decreased at Stage III. The case group had higher nestin mRNA and protein levels throughout human fetal development. Findings of this study suggested that, nestin, as a specific marker of neural precursor cells, was expressed in various tissues of the embryo in patients with placenta previa and nestin expression was lower with increased maturation of the embryo.
Collapse
Affiliation(s)
- Yan-Yan Qiao
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Jining Medical University, Jining, China
| | - Ping Chu
- Department of Obstetrics and Gynecology, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
12
|
Martinez-Gamboa M, Cruz-Vega DE, Moreno-Cuevas J, Gonzalez-Garza MT. Induction of Nestin Early Expression as a Hallmark for Mesenchymal Stem Cells Expression of PDX-1 as a Pre-disposing Factor for Their Conversion into Insulin Producing Cells. Int J Stem Cells 2017; 10:76-82. [PMID: 28024317 PMCID: PMC5488779 DOI: 10.15283/ijsc16040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/18/2022] Open
Abstract
Diabetes constitutes a worldwide epidemic that affects all ethnic groups. Cell therapy is one of the best alternatives of treatment, by providing an effective way to regenerate insulin-producing cells lost during the course of the disease, but many issues remain to be solved. Several groups have been working in the development of a protocol capable of differentiating Mesenchymal Stem Cells (MSCs) into physiologically sound Insulin Producing Cells (IPCs). In order to obtain a simple, fast and direct method, we propose in this manuscript the induction of MSCs to express NESTIN in a short time period (2 h), proceeded by incubation in a low glucose induced medium (24 h) and lastly by incubation in a high glucose medium. Samples from cell cultures incubated in high glucose medium from 12 to 168 h were obtained to detect the expression of INSULIN-1, INSULIN -2, PDX-1 and GLUT-2 genes. Induced cells were exposed to a glucose challenge, in order to assess the production of insulin. This method allowed us to obtain cells expressing PDX-1, which resembles a progenitor insulin-producing cell.
Collapse
Affiliation(s)
- Marisela Martinez-Gamboa
- Escuela De Ciencias De La Salud, Valle de las Palmas, Universidad Autónoma de Baja California, Tijuana, B.C, CP 22263, México.,Cell Therapy Group, Escuela Nacional De Medicina, Tecnológico de Monterrey, Monterrey, CP 64710, NL, México
| | - Delia Elba Cruz-Vega
- Cell Therapy Group, Escuela Nacional De Medicina, Tecnológico de Monterrey, Monterrey, CP 64710, NL, México
| | - Jorge Moreno-Cuevas
- Cell Therapy Group, Escuela Nacional De Medicina, Tecnológico de Monterrey, Monterrey, CP 64710, NL, México
| | | |
Collapse
|
13
|
Sakai Y, Hong SM, An S, Kim JY, Corbeil D, Karbanová J, Otani K, Fujikura K, Song KB, Kim SC, Akita M, Nanno Y, Toyama H, Fukumoto T, Ku Y, Hirose T, Itoh T, Zen Y. CD133 expression in well-differentiated pancreatic neuroendocrine tumors: a potential predictor of progressive clinical courses. Hum Pathol 2017; 61:148-157. [PMID: 27864124 DOI: 10.1016/j.humpath.2016.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 01/11/2023]
Abstract
The present study aimed to elucidate whether the stemness molecule, CD133, is expressed in well-differentiated pancreatic neuroendocrine tumors (PanNETs; World Health Organization grades 1 and 2) and establish its clinical relevance using 2 separate cohorts. In the first series (n = 178) in which tissue microarrays were available, immunohistochemistry revealed that CD133 was expressed in 14 cases (8%). CD133+ PanNETs had higher TNM stages (P < .01), more frequent lymphovascular invasion (P = .01), and higher recurrence rates (P = .01). In the second cohort (n = 56), the expression of CD133 and CK19 was examined in whole tissue sections. CD133 and CK19 were positive in 10 (18%) and 36 (64%) cases, respectively. CD133 expression correlated with higher pT scores (P < .01), the presence of microscopic venous infiltration (P = .03), and shorter disease-free periods (P < .01). When cases were divided into grade 1 and 2 neoplasms, patients with CD133+ PanNET continued to have shorter disease-free periods than did those with CD133- tumors in both groups (P < .01 and P = .02, respectively). Although CK19+ cases had shorter disease-free periods than did CK19- cases in the whole cohort (P = .02), this difference was less apparent in subanalyses of grade 1 and 2 cases. CD133 expression also appeared to be an independent predictive factor for tumor recurrence in a multivariate analysis (P = .018). The CD133 phenotype was identical between primary and metastatic foci in 17 of 18 cases from which tissues of metastatic deposits were available. In conclusion, the combination of CD133 phenotyping and World Health Organization grading may assist in stratifying patients in terms of the risk of progressive clinical courses.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Soyeon An
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Joo Young Kim
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Denis Corbeil
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Dresden 01307, Germany.
| | - Jana Karbanová
- Tissue Engineering Laboratories (BIOTEC), Technische Universität Dresden, Dresden 01307, Germany.
| | - Kyoko Otani
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Kohei Fujikura
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Ki-Byung Song
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Masayuki Akita
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Yoshihide Nanno
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Hirochika Toyama
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Takumi Fukumoto
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Yonson Ku
- Department of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Takanori Hirose
- Department of Pathology, Hyogo Cancer Center, Akashi 673-8558, Japan.
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Yoh Zen
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
14
|
Okere B, Lucaccioni L, Dominici M, Iughetti L. Cell therapies for pancreatic beta-cell replenishment. Ital J Pediatr 2016; 42:62. [PMID: 27400873 PMCID: PMC4940879 DOI: 10.1186/s13052-016-0273-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022] Open
Abstract
The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes.
Collapse
Affiliation(s)
- Bernard Okere
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy
| | - Laura Lucaccioni
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy.,Child Health, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy
| | - Lorenzo Iughetti
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy.
| |
Collapse
|
15
|
Dietrich J, Massie I, Roth M, Geerling G, Mertsch S, Schrader S. Development of Causative Treatment Strategies for Lacrimal Gland Insufficiency by Tissue Engineering and Cell Therapy. Part 1: Regeneration of Lacrimal Gland Tissue: Can We Stimulate Lacrimal Gland Renewal In Vivo? Curr Eye Res 2016; 41:1131-42. [DOI: 10.3109/02713683.2016.1148741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jana Dietrich
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Isobel Massie
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Mathias Roth
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Sonja Mertsch
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
| | - Stefan Schrader
- Labor für Experimentelle Ophthalmologie, University of Düsseldorf, Düsseldorf, Germany
- Augenklinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Tampaki EC, Nakopoulou L, Tampakis A, Kontzoglou K, Weber WP, Kouraklis G. Nestin involvement in tissue injury and cancer--a potential tumor marker? Cell Oncol (Dordr) 2014; 37:305-15. [PMID: 25164879 DOI: 10.1007/s13402-014-0193-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In eukaryotic cells, the cytoskeleton contains three major filamentous components: actin microfilaments, microtubules and intermediate filaments. Nestin represents one of the class VI intermediate filament proteins. Clinical and molecular analyses have revealed substantial information regarding the presence of Nestin in cells with progenitor or stem cell properties. During tissue injury Nestin is expressed in cells with progenitor cell-like properties. These cells may serve as a tissue reserve and, as such, may contribute to tissue repair. Based on currently available data, Nestin also appears to be implicated in two oncogenic processes. First, Nestin has been found to be expressed in cancer stem-like cells and poorly differentiated cancer cells and, as such, Nestin is thought to contribute to the aggressive behavior of these cells. Second, Nestin has been found to be involved in tumor angiogenesis through an interaction of cancer cells and blood vessel endothelial cells and, as such, Nestin is thought to facilitate tumor growth. CONCLUSIONS We conclude that Nestin may serve as a promising tumor marker and as a potential therapeutic target amenable to tumor suppression and angiogenesis inhibition.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece,
| | | | | | | | | | | |
Collapse
|
17
|
Bhonde RR, Sheshadri P, Sharma S, Kumar A. Making surrogate β-cells from mesenchymal stromal cells: perspectives and future endeavors. Int J Biochem Cell Biol 2013; 46:90-102. [PMID: 24275096 DOI: 10.1016/j.biocel.2013.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023]
Abstract
Generation of surrogate β-cells is the need of the day to compensate the short supply of islets for transplantation to diabetic patients requiring daily shots of insulin. Over the years several sources of stem cells have been claimed to cater to the need of insulin producing cells. These include human embryonic stem cells, induced pluripotent stem cells, human perinatal tissues such as amnion, placenta, umbilical cord and postnatal tissues involving adipose tissue, bone marrow, blood monocytes, cord blood, dental pulp, endometrium, liver, labia minora dermis-derived fibroblasts and pancreas. Despite the availability of such heterogonous sources, there is no substantial breakthrough in selecting and implementing an ideal source for generating large number of stable insulin producing cells. Although the progress in derivation of β-cell like cells from embryonic stem cells has taken a greater leap, their application is limited due to controversy surrounding the destruction of human embryo and immune rejection. Since multipotent mesenchymal stromal cells are free of ethical and immunological complications, they could provide unprecedented opportunity as starting material to derive insulin secreting cells. The main focus of this review is to discuss the merits and demerits of MSCs obtained from human peri- and post-natal tissue sources to yield abundant glucose responsive insulin producing cells as ideal candidates for prospective stem cell therapy to treat diabetes.
Collapse
Affiliation(s)
- Ramesh R Bhonde
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Preethi Sheshadri
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Shikha Sharma
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, GKVK Post, Alalsandra, Yelahanka, Bangalore 560065, India.
| |
Collapse
|
18
|
Leyva-Leyva M, Barrera L, López-Camarillo C, Arriaga-Pizano L, Orozco-Hoyuela G, Carrillo-Casas EM, Calderón-Pérez J, López-Díaz A, Hernandez-Aguilar F, González-Ramírez R, Kawa S, Chimal-Monroy J, Fuentes-Mera L. Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential. Stem Cells Dev 2013; 22:1275-1287. [PMID: 23211052 DOI: 10.1089/scd.2012.0359] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human fetal mesenchymal stem cells can be isolated from the amniotic membrane (AM-hMSCs) by enzymatic digestion. The biological properties of this cell population have been characterized; however, few studies have focused on the presence of stem cell subpopulations and their differentiation potential. The aim of the present study was to isolate homogeneous AM-hMSC subpopulations based on the coexpression of surface markers. In addition, we aimed to characterize stem cell subpopulations through the detection of typical stem cell markers and its differentiation potential. In this study, fluorescence-activated cell sorting (FACS) was used to positively select for the surface markers CD44, CD73, and CD105. Two subpopulations were isolated: CD44+ / CD73+ / CD105+ (CD105+), and CD44+ / CD73+ / CD105- (CD105-). To characterize the cell subpopulations, the expression of pluripotency-associated markers was analyzed by reverse transcriptase-polymerase chain reaction and immunofluorescence. Our results showed positive expression of SOX2, SOX3, PAX6, OCT3/4, and NANOG in the CD105+ and CD105(-) cell subpopulations. In contrast, we did not detect expression of SSEA4 or FOXD3 in either subpopulation. Immunophenotypes, such as mesenchymal and hematopoietic markers, were studied by FACS analyses. Our data revealed the expression of the CD49a, CD49d, CD29, integrin α9β1, CD44, CD73, and CD105 antigens in both subpopulations. In contrast, CD90, CD45, CD34, CD14, and HLA-DR expression was not detected. The ability of both subpopulations to differentiate into osteoblasts, adipocytes, and chondrocytes was evidenced using Alizarin red, Oil-Red, and Alcian blue staining, respectively. Furthermore, neuronal differentiation was demonstrated by the expression of GFAP and NEURO-D. Interestingly, we observed a dissimilar osteoblastic differentiation potential between the subpopulations. CD105- cells showed stronger expression of secreted protein acidic and rich in cysteine (SPARC) and osteonectin, which was associated with more effective calcium deposition, than CD105+ cells. In conclusion, we described a systematic method for the isolation of hMSCs that was highly reproducible and generated homogeneous cultures for osteoblast differentiation with an efficient capacity for mineralization.
Collapse
Affiliation(s)
- Margarita Leyva-Leyva
- Laboratorio de Biología Molecular e Histocompatibilidad, Dirección de Investigación Hospital General Dr. Manuel Gea González, México, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A Small Molecule Swertisin from Enicostemma littorale Differentiates NIH3T3 Cells into Islet-Like Clusters and Restores Normoglycemia upon Transplantation in Diabetic Balb/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:280392. [PMID: 23662125 PMCID: PMC3639639 DOI: 10.1155/2013/280392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/15/2013] [Accepted: 02/03/2013] [Indexed: 11/21/2022]
Abstract
Aim. Stem cell therapy is one of the upcoming therapies for the treatment of diabetes. Discovery of potent differentiating agents is a prerequisite for increasing islet mass. The present study is an attempt to screen the potential of novel small biomolecules for their differentiating property into pancreatic islet cells using NIH3T3, as representative of extra pancreatic stem cells/progenitors. Methods. To identify new agents that stimulate islet differentiation, we screened various compounds isolated from Enicostemma littorale using NIH3T3 cells and morphological changes were observed. Characterization was performed by semiquantitative RT-PCR, Q-PCR, immunocytochemistry, immunoblotting, and insulin secretion assay for functional response in newly generated islet-like cell clusters (ILCC). Reversal of hyperglycemia was monitored after transplanting ILCC in STZ-induced diabetic mice. Results. Among various compounds tested, swertisin, an isolated flavonoid, was the most effective in differentiating NIH3T3 into endocrine cells. Swertisin efficiently changed the morphology of NIH3T3 cells from fibroblastic to round aggregate cell cluster in huge numbers. Dithizone (DTZ) stain primarily confirmed differentiation and gene expression studies signified rapid onset of differentiation signaling cascade in swertisin-induced ILCC. Molecular imaging and immunoblotting further confirmed presence of islet specific proteins. Moreover, glucose induced insulin release (in vitro) and decreased fasting blood glucose (FBG) (in vivo) in transplanted diabetic BALB/c mice depicted functional maturity of ILCC. Insulin and glucagon expression in excised islet grafts illustrated survival and functional integrity. Conclusions. Rapid induction for islet differentiation by swertisin, a novel herbal biomolecule, provides low cost and readily available differentiating agent that can be translated as a therapeutic tool for effective treatment in diabetes.
Collapse
|
20
|
Dadheech N, Srivastava A, Belani M, Gupta S, Pal R, Bhonde RR, Srivastava AS, Gupta S. Basal expression of pluripotency-associated genes can contribute to stemness property and differentiation potential. Stem Cells Dev 2013; 22:1802-17. [PMID: 23343006 DOI: 10.1089/scd.2012.0261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pluripotency and stemness is believed to be associated with high Oct-3/4, Nanog, and Sox-2 (ONS) expression. Similar to embryonic stem cells (ESCs), high ONS expression eventually became the measure of pluripotency in any cell. The threshold expression of ONS genes that underscores pluripotency, stemness, and differentiation potential is still unclear. Therefore, we raised a question as to whether pluripotency and stemness is a function of basal ONS gene expression. To prove this, we carried out a comparative study between basal ONS expressing NIH3T3 cells with pluripotent mouse bone marrow mesenchymal stem cells (mBMSC) and mouse ESC. Our studies on cellular, molecular, and immunological biomarkers between NIH3T3 and mBMSC demonstrated stemness property of undifferentiated NIH3T3 cells that was similar to mBMSC and somewhat close to ESC as well. In vivo teratoma formation with all three germ layer derivatives strengthen the fact that these cells in spite of basal ONS gene expression can differentiate into cells of multiple lineages without any genetic modification. Conclusively, our novel findings suggested that the phenomenon of pluripotency which imparts ability for multilineage cell differentiation is not necessarily a function of high ONS gene expression.
Collapse
Affiliation(s)
- Nidheesh Dadheech
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Domínguez-Bendala J, Ricordi C. Present and future cell therapies for pancreatic beta cell replenishment. World J Gastroenterol 2012; 18:6876-84. [PMID: 23322984 PMCID: PMC3531670 DOI: 10.3748/wjg.v18.i47.6876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.
Collapse
|
22
|
Kim HS, Yoo SY, Kim KT, Park JT, Kim HJ, Kim JC. Expression of the stem cell markers CD133 and nestin in pancreatic ductal adenocarcinoma and clinical relevance. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2012; 5:754-761. [PMID: 23071857 PMCID: PMC3466976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/03/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND To evaluate the prognostic implication of cancer stem cell markers in pancreac ductal adenocarcinoma (PDAC), the expression of CD133 and nestin were investigated in a series of PDAC patients in relation to the survival rate. METHODS This series included 42 cases of PDAC patients and evaluated the stem cell markers CD133 and nestin expression detected by immunohistochemistry. The presence of immunopositive tumor cells considering intensity and area was evaluated and interpreted in comparison to the patients' clinicopathological and survival data. RESULTS Twenty eight cases (66.7%) showed high CD133 expression. The CD133 expression was mainly identified in the apical border of the tumor cell, but aberrant expression in the cytoplasmic or perinuclear location was also noted. High nestin expression in tumor cells were found in only 2 cases, but high nestin expression along perinuerial or stromal region was found in 15 cases (35.7%). There was no correlation between CD133, nestin expression and gemcitabine resistance. Statistically significant difference was found in patient survival in N stage (p=0.007), and CD133 expression (p= 0.014) in univariate analysis. Nestin expression wan not statistically significant, but it was helpful to identify the perineurial invasion. In Cox-regression hazard model stratified by age and sex for multivariable analysis, AJCC stage and CD133 were independent prognostic factors for overall survival. CONCLUSIONS CD133 expression is upregulated in PDAC that is related to poor prognosis, and treatment targeted the CD133 positive cancer/cancer stem cells might be a promising therapeutic strategy for this patients.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School Gwangju, South Korea.
| | | | | | | | | | | |
Collapse
|
23
|
Protective effect of rat pancreatic progenitors cells expressing Pdx1 and nestin on islets survival and function in vitro and in vivo. J Physiol Biochem 2012; 68:603-10. [PMID: 22644623 DOI: 10.1007/s13105-012-0180-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/16/2012] [Indexed: 01/08/2023]
Abstract
To maintain islets survival and function is critical in successful pancreatic transplantation. Pancreatic progenitors cells (PPCs) with lineage potentials, giving rise to exocrine, endocrine, and duct cells, reside in developing and adult pancreas. As tissue-specific stem cells, they can produce pancreatic tissue-specific matrix factors to promote islets survival and function. The aim of our research was to investigate the protective effect of rat pancreatic-duodenal homeobox 1 (Pdx1)(+)/nestin(+) PPCs on islets. In vitro, co-culturing islets with Pdx1(+)/nestin(+) PPCs prolonged the former survival from 7 to 14 days. Furthermore, with high glucose (300.8 mg/dl) stimuli, the yield of insulin in co-cultures was significantly higher than that in control group (single islets group). In vivo, co-transplanting islets and Pdx1(+)/nestin(+) PPCs for 3 days, the blood glucose of diabetic rat was significantly decreased to normal level and sustained for 2 weeks. Without Pdx1(+)/nestin(+) PPCs in islets transplantation, hyperglycemia was reversed at day 7 and recovered at day 15. Pathology analysis showed that islets had remnants in co-transplantation at day 21, as complete graft rejection in alone islets transplantation. Our study showed that Pdx1(+)/nestin(+) PPCs displayed the ability of preserving islets viability and function in vitro and prolonging their survival in vivo.
Collapse
|
24
|
Localization of breast cancer resistance protein (Bcrp) in endocrine organs and inhibition of its transport activity by steroid hormones. Cell Tissue Res 2012; 349:551-63. [PMID: 22581381 PMCID: PMC3414710 DOI: 10.1007/s00441-012-1417-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/27/2012] [Indexed: 01/16/2023]
Abstract
Breast cancer resistance protein (BCRP) is known for its protective function against the toxic effects of exogenous compounds. In addition to this, a role in the transport of endogenous compounds has been described. Since BCRP in the plasma membrane was shown to be regulated by sex steroids, we investigated the presence and possible role of BCRP in steroid hormone-producing organs. Therefore, the presence and localization of Bcrp was investigated in endocrine organs of wild-type mice. Furthermore, the interaction of various steroid hormones with human BCRP activity was studied. Quantitative PCR revealed Bcrp mRNA in the pituitary and adrenal glands, pancreas, ovary, testis and adipose tissue. Immunohistochemistry revealed the presence of Bcrp in the cortex of the adrenal gland and in plasma membranes of adipocytes. In the pituitary gland, pancreas, ovary and testis, Bcrp was mainly located in the capillaries. The interaction between BCRP and 12 steroid hormones was studied using membrane vesicles of HEK293-BCRP cells. Estradiol, testosterone, progesterone and androstenedione inhibited BCRP-mediated uptake of 3H-estrone sulphate (E1S) most potently, with calculated inhibitory constant (Ki) values of 5.0 ± 0.2, 36 ± 14, 14.7 ± 1.3 and 217 ± 13 μM, respectively. BCRP function was attenuated non-competitively, which implies an allosteric inhibition of BCRP-mediated E1S transport by these steroids. In conclusion, localization of Bcrp in endocrine organs together with the efficient allosteric inhibition of the efflux pump by steroid hormones are suggestive for a role for BCRP in steroid hormone regulation.
Collapse
|
25
|
Domínguez-Bendala J, Lanzoni G, Inverardi L, Ricordi C. Concise review: mesenchymal stem cells for diabetes. Stem Cells Transl Med 2011. [PMID: 23197641 DOI: 10.5966/sctm.2011-0017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes.
Collapse
|
26
|
Danoviz ME, Bassaneze V, Nakamuta JS, dos Santos-Junior GR, Saint-Clair D, Bajgelman MC, Faé KC, Kalil J, Miyakawa AA, Krieger JE. Adipose Tissue–Derived Stem Cells from Humans and Mice Differ in Proliferative Capacity and Genome Stability in Long-Term Cultures. Stem Cells Dev 2011; 20:661-70. [DOI: 10.1089/scd.2010.0231] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Maria Elena Danoviz
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Vinícius Bassaneze
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Juliana Sanajotti Nakamuta
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Danilo Saint-Clair
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Márcio Chaim Bajgelman
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Kellen Cristhina Faé
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Ayumi Aurea Miyakawa
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
27
|
Karaoz E, Okçu A, Saglam O, Genc ZS, Ayhan S, Kasap M. Pancreatic islet derived stem cells can express co-stimulatory molecules of antigen-presenting cells. Transplant Proc 2011; 42:3663-70. [PMID: 21094836 DOI: 10.1016/j.transproceed.2010.07.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/26/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Antigen-presenting cells (APCs) are crucial intermediates in the generation of both innate and specific immune responses. It has long been understood that some APCs are resident in islets in situ as well as after isolation. Our aim was to investigate the presence of molecules involved in antigen presentation in rat pancreatic islet-derived stem cells (PI-SCs). METHODS We used immunocytochemistry and reverse transcription polymerization chain reaction to study immunophenotypic characteristics; pluripotent-related gene expressions; transcripts coding for antigen-presenting surface proteins CD40, CD80, CD86; and major histocompatibility complex class II in addition to genes with known antiapoptotic functions including mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2), tumor necrosis factor alpha-induced protein 3 (TNFAIP3) interacting protein 1 (TNIP1) and BCL3 of the PI-SCs. RESULTS Rat PI-SCs were negative for CD45 as demonstrated by flow cytometry and for CD31, CD34, and CD71 as demonstrated by immunocytochemistry. Therefore, there was no evidence of hematopoietic precursors in the cultures. OCT4, SOX2, and REX1 were expressed by rat PI-SCs. We determined the expression of genes for antigen-presenting surface proteins CD40 and CD80, and genes with known antiapoptotic functions including MAPKAPK2, TNIP1 and BCL3, besides the surface protein, CD80, by flow cytometry. CONCLUSION Expression of these genes by rat PI-SCs implied that they could be involved in the regulation of immunity in islets, highlighting the influence of protective role-playing antiapoptotic mechanisms on pancreatic islet cells. This study offers the potential to understand the molecular mechanisms of a devastating disease, type-1 diabetes mellitus.
Collapse
Affiliation(s)
- E Karaoz
- Center for Stem Cell and Gene Therapies Research and Practice, Institute of Health Sciences, Department of Stem Cell, Kocaeli University, Kocaeli, Turkey.
| | | | | | | | | | | |
Collapse
|
28
|
Merkwitz C, Pessa-Morikawa T, Lochhead P, Reinhard G, Sakurai M, Iivanainen A, Ricken AM. The CD34 surface antigen is restricted to glucagon-expressing cells in the early developing bovine pancreas. Histochem Cell Biol 2011; 135:59-71. [PMID: 21203769 DOI: 10.1007/s00418-010-0775-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2010] [Indexed: 01/09/2023]
Abstract
Controversy remains regarding the origin of the pancreatic endocrine cells. It is generally accepted that the majority of insulin-secreting cells derive from the endodermal epithelium of the gastrointestinal tract. The aim of this study was to determine the contribution made by a particular cluster of differentiation (CD)-positive cells to the development of the bovine endocrine pancreas. In bovine embryos and foetuses with crown to rump lengths (CRL) ranging from 1 to 47 cm, cells staining positively for CD34 and/or CD133 were always more numerous in the left lobe and body of pancreas than in the right lobe. In the early stages of pancreatic development (CRL <5 cm), CD34 and/or CD133-reactive cells were concentrated within the epithelial cell cords that form the primitive pancreas. In later developmental stages (CRL >5 cm), individual or groups of CD34 and/or CD133-reactive cells were present in newly formed acini, which bulged out from the duct system that had arisen from the cords. Some of the positively stained cells accumulated in focal areas associated with hyperplastic intra-acinar cells. These "acino-insula-like complexes" appeared to enlarge with age and develop into intralobular Islets of Langerhans. Most of the described CD34 and/or CD133-reactive cells displayed co-localisation with glucagon. A negligible number of these cells showed co-localisation with insulin. Glucagon-stained cells were distinct from insulin-stained cells and were more abundant in embryonic and early foetal pancreata. Our data demonstrate that CD34 and/or CD133-reactive cells contribute to the pancreatic alpha cell population during early foetal development in cattle.
Collapse
Affiliation(s)
- Claudia Merkwitz
- Institute of Anatomy, University of Leipzig, Liebigstrasse 13, 04103, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Ersek A, Pixley JS, Goodrich AD, Porada CD, Almeida-Porada G, Thain DS, Zanjani ED. Persistent circulating human insulin in sheep transplanted in utero with human mesenchymal stem cells. Exp Hematol 2010; 38:311-20. [PMID: 20170708 PMCID: PMC2854135 DOI: 10.1016/j.exphem.2010.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 02/07/2010] [Accepted: 02/09/2010] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine if mesenchymal stem cells (MSC) derived from human fetal pancreatic tissue (pMSC) would engraft and differentiate in sheep pancreas following transplantation in utero. MATERIALS AND METHODS A three-step culture system was established for generating human fetal pMSC. Sheep fetuses were transplanted during the fetal transplant receptivity period with human pMSC and evaluated for in situ and functional engraftment in their pancreas, liver, and bone marrow. RESULTS Isolation and expansion of adherent cells from the human fetal pancreas yielded a cell population with morphologic and phenotypic characteristics similar to MSC derived from bone marrow. This putative stem cell population could undergo multilineage differentiation in vitro. Three to 27 months after fetal transplantation, the pancreatic engraftment frequency (chimeric index) was 79%, while functional engraftment was noted in 50% of transplanted sheep. Hepatic and marrow engraftment and expression was noted as well. CONCLUSION We have established a procedure for isolation of human fetal pMSC that display characteristics similar to bone marrow-derived MSC. In vivo results suggest the pMSC engraft, differentiate, and secrete human insulin from the sheep pancreas.
Collapse
Affiliation(s)
- Adel Ersek
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - John S. Pixley
- Division of Rheumatology/Immunology, Department of Internal Medicine, University of Nevada School of Medicine / VA Sierra Health Care System, Reno, Nevada 89502-2597, USA
| | - A. Daisy Goodrich
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - Christopher D. Porada
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - Graca Almeida-Porada
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - David S. Thain
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - Esmail D. Zanjani
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| |
Collapse
|
30
|
Karaoz E, Ayhan S, Gacar G, Aksoy A, Duruksu G, Okçu A, Demircan PÇ, Sariboyaci AE, Kaymaz F, Kasap M. Isolation and characterization of stem cells from pancreatic islet: pluripotency, differentiation potential and ultrastructural characteristics. Cytotherapy 2010; 12:288-302. [DOI: 10.3109/14653240903580296] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
|
32
|
Gorjup E, Danner S, Rotter N, Habermann J, Brassat U, Brummendorf TH, Wien S, Meyerhans A, Wollenberg B, Kruse C, von Briesen H. Glandular tissue from human pancreas and salivary gland yields similar stem cell populations. Eur J Cell Biol 2009; 88:409-21. [DOI: 10.1016/j.ejcb.2009.02.187] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/23/2009] [Accepted: 02/25/2009] [Indexed: 01/04/2023] Open
|
33
|
Tilgner K, Atkinson SP, Golebiewska A, Stojkovic M, Lako M, Armstrong L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells 2008; 26:3075-85. [PMID: 18802037 DOI: 10.1634/stemcells.2008-0289] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Of all the cell types that can be obtained from the differentiation of embryonic stem cells, primordial germ cells are arguably the most fascinating, as they represent the in vitro completion of the reproductive cycle of the organism from which the embryonic stem cell line was derived. It is also possible to obtain these cells from embryos at an appropriate stage of development, but this process yields only small numbers that are not applicable to investigations of their epigenetic architecture. A considerable body of data has been generated from the differentiation of mouse embryonic stem cells to this cell type, but despite the demonstration of their presence in human embryoid bodies, there has been little progress toward methods of producing human primordial germ cells in useful numbers. We present here a robust protocol to differentiate two human embryonic stem cell lines (H9 and hES-NCL1) that maximizes the numbers of primordial germ cells that may be obtained using a simple fluorescence-activated cell sorting strategy for their isolation. These primordial germ cells demonstrate high-level expression of the germ cell-specific VASA gene and show removal of parental imprints and chromatin modification changes that support their primordial germ cell identity.
Collapse
Affiliation(s)
- Katarzyna Tilgner
- North East Institute for Stem Cell Research, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Mimeault M, Batra SK. Recent progress on normal and malignant pancreatic stem/progenitor cell research: therapeutic implications for the treatment of type 1 or 2 diabetes mellitus and aggressive pancreatic cancer. Gut 2008; 57:1456-68. [PMID: 18791122 PMCID: PMC2836486 DOI: 10.1136/gut.2008.150052] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent progress on pancreatic stem/progenitor cell research has revealed that the putative multipotent pancreatic stem/progenitor cells and/or more committed beta cell precursors may persist in the pancreatic gland in adult life. The presence of immature pancreatic cells with stem cell-like properties offers the possibility of stimulating their in vivo expansion and differentiation or to use their ex vivo expanded progenies for beta cell replacement-based therapies for type 1 or 2 diabetes mellitus in humans. In addition, the transplantation of either insulin-producing beta cells derived from embryonic, fetal and other tissue-resident adult stem/progenitor cells or genetically modified adult stem/progenitor cells may also constitute alternative promising therapies for treating diabetic patients. The genetic and/or epigenetic alterations in putative pancreatic adult stem/progenitor cells and/or their early progenies may, however, contribute to their acquisition of a dysfunctional behaviour as well as their malignant transformation into pancreatic cancer stem/progenitor cells. More particularly, the activation of distinct tumorigenic signalling cascades, including the hedgehog, epidermal growth factor-epidermal growth factor receptor (EGF-EGFR) system, wingless ligand (Wnt)/beta-catenin and/or stromal cell-derived factor-1 (SDF-1)-CXC chemokine receptor 4 (CXCR4) pathways may play a major role in the sustained growth, survival, metastasis and/or drug resistance of pancreatic cancer stem/progenitor cells and their further differentiated progenies. The combination of drugs that target the oncogenic elements in pancreatic cancer stem/progenitor cells and their microenvironment, with the conventional chemotherapeutic regimens, could represent promising therapeutic strategies. These novel targeted therapies should lead to the development of more effective treatments of locally advanced and metastatic pancreatic cancers, which remain incurable with current therapies.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, USA
- Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, USA
| | - S K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, USA
- Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
35
|
Li L, Li F, Qi H, Feng G, Yuan K, Deng H, Zhou H. Coexpression of Pdx1 and Betacellulin in Mesenchymal Stem Cells Could Promote the Differentiation of Nestin-Positive Epithelium-like Progenitors and Pancreatic Islet-like Spheroids. Stem Cells Dev 2008; 17:815-23. [PMID: 18439098 DOI: 10.1089/scd.2008.0060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lisha Li
- College of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Furong Li
- Clinical Medical Research Center, the 2nd Clinic Medicine College (Shenzhen People’s Hospital), Jinan University, Shenzhen, People’s Republic of China
| | - Hui Qi
- Clinical Medical Research Center, the 2nd Clinic Medicine College (Shenzhen People’s Hospital), Jinan University, Shenzhen, People’s Republic of China
| | - Gao Feng
- Clinical Medical Research Center, the 2nd Clinic Medicine College (Shenzhen People’s Hospital), Jinan University, Shenzhen, People’s Republic of China
| | - Kehu Yuan
- College of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Hongkui Deng
- College of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Hanxin Zhou
- Clinical Medical Research Center, the 2nd Clinic Medicine College (Shenzhen People’s Hospital), Jinan University, Shenzhen, People’s Republic of China
| |
Collapse
|
36
|
Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. Pancreas 2008; 37:75-84. [PMID: 18580448 DOI: 10.1097/mpa.0b013e31815fcb1e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. METHODS Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. RESULTS Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. CONCLUSIONS Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.
Collapse
|
37
|
Abstract
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro, MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro. On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, PR China
| | | |
Collapse
|
38
|
Hoogduijn MJ, Crop MJ, Peeters AMA, Van Osch GJVM, Balk AHMM, Ijzermans JNM, Weimar W, Baan CC. Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities. Stem Cells Dev 2007; 16:597-604. [PMID: 17784833 DOI: 10.1089/scd.2006.0110] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have important tissue repair functions and show potent immunosuppressive capacities in vitro. Although usually isolated from the bone marrow, MSCs have been identified in other tissues, including the skin and liver. In the present study, we isolated and characterized MSCs from human heart, spleen, and perirenal adipose tissue. MSCs from these different tissue sites were similar to those derived from bone marrow in that they expressed comparable levels of the cell-surface markers CD90, CD105, CD166, and HLA class I, were negative for CD34, CD45, HLA class II, CD80, and CD86 expression, and were capable of osteogenic and adipogenic differentiation. Like bone marrow-derived MSCs, MSCs from these different tissue sources inhibited the proliferation of alloactivated peripheral blood mononuclear cells (PBMCs), giving 85%, 79%, 79%, and 81% inhibition, respectively. Also in line with bone marrow-derived MSCs they inhibited proliferative responses of PBMCs to phytohemagglutinin, a nonspecific stimulator of lymphocyte proliferation, and reduced-memory T lymphocyte responses to tetanus toxoid. The results of this study demonstrate that MSCs from various tissues have similar immunophenotypes, in vitro immunosuppressive properties, and differentiation potential.
Collapse
Affiliation(s)
- M J Hoogduijn
- Department of Internal Medicine, Transplantation Laboratory, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Davani B, Ikonomou L, Raaka BM, Geras-Raaka E, Morton RA, Marcus-Samuels B, Gershengorn MC. Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells 2007; 25:3215-22. [PMID: 17901402 DOI: 10.1634/stemcells.2007-0323] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Islet transplantation offers improved glucose homeostasis in diabetic patients, but transplantation of islets is limited by the supply of donor pancreases. Undifferentiated precursors hold promise for cell therapy because they can expand before differentiation to produce a large supply of functional insulin-producing cells. Previously, we described proliferative populations of human islet-derived precursor cells (hIPCs) from adult islets. To show the differentiation potential of hIPCs, which do not express insulin mRNA after at least 1,000-fold expansion, we generated epithelial cell clusters (ECCs) during 4 days of differentiation in vitro. After transplantation into mice, 22 of 35 ECC preparations differentiated and matured into functional cells that secreted human C-peptide in response to glucose. Transcripts for insulin, glucagon, and somatostatin in recovered ECC grafts increased with time in vivo, reaching levels approximately 1% of those in adult islets. We show that hIPCs are mesenchymal stromal cells (MSCs) that adhere to plastic, express CD73, CD90, and CD105, and can differentiate in vitro into adipocytes, chondrocytes, and osteocytes. Moreover, we find a minor population of CD105(+)/CD73(+)/CD90(+) cells in adult human islets (prior to incubation in vitro) that express insulin mRNA at low levels. We conclude that hIPCs are a specific type of pancreas-derived MSC that are capable of differentiating into hormone-expressing cells. Their ability to mature into functional insulin-secreting cells in vivo identifies them as an important adult precursor or stem cell population that could offer a virtually unlimited supply of human islet-like cells for replacement therapy in type 1 diabetes. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Behrous Davani
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Mimeault M, Hauke R, Batra SK. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 2007; 82:252-64. [PMID: 17671448 DOI: 10.1038/sj.clpt.6100301] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basic and clinical research accomplished during the last few years on embryonic, fetal, amniotic, umbilical cord blood, and adult stem cells has constituted a revolution in regenerative medicine and cancer therapies by providing the possibility of generating multiple therapeutically useful cell types. These new cells could be used for treating numerous genetic and degenerative disorders. Among them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson's and Alzheimer's diseases, arthritis, and muscular, skin, lung, eye, and digestive disorders as well as aggressive and recurrent cancers could be successfully treated by stem cell-based therapies. This review focuses on the recent advancements in adult stem cell biology in normal and pathological conditions. We describe how these results have improved our understanding on critical and unique functions of these rare sub-populations of multipotent and undifferentiated cells with an unlimited self-renewal capacity and high plasticity. Finally, we discuss some major advances to translate the experimental models on ex vivo and in vivo expanded and/or differentiated stem cells into clinical applications for the development of novel cellular therapies aimed at repairing genetically altered or damaged tissues/organs in humans. A particular emphasis is made on the therapeutic potential of different tissue-resident adult stem cell types and their in vivo modulation for treating and curing specific pathological disorders.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | |
Collapse
|
41
|
Gallo R, Gambelli F, Gava B, Sasdelli F, Tellone V, Masini M, Marchetti P, Dotta F, Sorrentino V. Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets. Cell Death Differ 2007; 14:1860-71. [PMID: 17612586 DOI: 10.1038/sj.cdd.4402199] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cellular models and culture conditions for in vitro expansion of insulin-producing cells represent a key element to develop cell therapy for diabetes. Initial evidence that human beta-cells could be expanded after undergoing a reversible epithelial-mesenchymal transition has been recently negated by genetic lineage tracing studies in mice. Here, we report that culturing human pancreatic islets in the presence of serum resulted in the emergence of a population of nestin-positive cells. These proliferating cells were mainly C-peptide negative, although in the first week in culture, proliferating cells, insulin promoter factor-1 (Ipf-1) positive, were observed. Later passages of islet-derived cells were Ipf-1 negative and displayed a mesenchymal phenotype. These human pancreatic islet-derived mesenchymal (hPIDM) cells were expanded up to 10(14) cells and were able to differentiate toward adipocytes, osteocytes and chondrocytes, similarly to mesenchymal stem/precursor cells. Interestingly, however, under serum-free conditions, hPIDM cells lost the mesenchymal phenotype, formed islet-like clusters (ILCs) and were able to produce and secrete insulin. These data suggest that, although these cells are likely to result from preexisting mesenchymal cells rather than beta-cells, hPIDM cells represent a valuable model for further developments toward future replacement therapy in diabetes.
Collapse
Affiliation(s)
- R Gallo
- Diabetes Unit, Department of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin HT, Kao CL, Lee KH, Chang YL, Chiou SH, Tsai FT, Tsai TH, Sheu DC, Ho LLT, Ku HH. Enhancement of insulin-producing cell differentiation from embryonic stem cells using pax4-nucleofection method. World J Gastroenterol 2007; 13:1672-9. [PMID: 17461469 PMCID: PMC4146945 DOI: 10.3748/wjg.v13.i11.1672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To enhance the differentiation of insulin producing cell (IPC) ability from embryonic stem (ES) cells in vitro.
METHODS: Four-day embryoid body (EB)-formatted ES cells were dissociated as single cells for the followed plasmid DNA delivery. The use of Nucleofector™electroporator (Amaxa biosystems, Germany) in combination with medium-contained G418 provided a high efficiency of gene delivery for advanced selection. Neucleofected cells were plated on the top of fibronectin-coated Petri dishes. Addition of Ly294002 and raised the glucose in medium at 24 h before examination. The differentiation status of these cells was monitored by semi-quantitative PCR (SQ-PCR) detection of the expression of relative genes, such as oct-4, sox-17, foxa2, mixl1, pdx-1, insulin 1, glucagons and somatostatin. The percentage of IPC population on d 18 of the experiment was investigated by immunohistochemistry (IHC), and the content/secretion of insulin was estimated by ELISA assay. The mice with severe combined immunodeficiency disease (SCID) pretreated with streptozotocin (STZ) were used to eliminate plasma glucose restoration after pax4+ ES implantation.
RESULTS: A high efficiency of gene delivery was demonstrated when neucleofection was used in the present study; approximately 70% cells showed DsRed expression 2 d after neucleofection. By selection of medium-contained G418, the percentage of DsRed expressing cells kept high till the end of study. The pancreatic differentiation seemed to be accelerated by pax4 nucleofection. When compared to the group of cells with mock control, foxa2, mixl1, pdx1, higher insulin and somatostatin levels were detected by SQ-PCR 4 d after nucleofection in the group of pax4 expressing plasmid delivery. Approximately 55% of neucleofected cells showed insulin expression 18 d after neucleofection, and only 18% of cells showed insulin expression in mock control. The disturbance was shown by nucleofected pax4 RNAi vector; only 8% of cells expressed insulin 18 d after nucleofection. A higher IPC population was also detected in the insulin content by ELISA assay, and the glucose dependency was demonstrated in insulin secretion level. In the animal model, improvement of average plasma glucose concentration was observed in the group of pax-4 expressed ES of SCID mice pretreated with STZ, but no significant difference was observed in the group of STZ-pretreated SCID mice who were transplanted ES with mock plasmid.
CONCLUSION: Enhancement of IPC differentiation from EB-dissociated ES cells can be revealed by simply using pax4 expressing plasmid delivery. Not only more IPCs but also pancreatic differentiation-related genes can be detected by SQ-PCR. Expression of relative genes, such as foxa 2, mixl 1, pdx-1, insulin 1 and somatostatin after nucleofection, suggests that pax4 accelerates the whole differentiation progress. The higher insulin production with glucose dependent modulation suggests that pax4 expression can drive more mature IPCs. Although further determination of the entire mechanism is required, the potential of pax-4-nucleofected cells in medical treatment is promising.
Collapse
Affiliation(s)
- Han-Tso Lin
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Teague WJ, Rowan-Hull AM, Johnson PRV. Pancreatic alpha-cell differentiation by mesenchyme-to-epithelial transition: implications for cell-based therapies in children. J Pediatr Surg 2007; 42:153-9. [PMID: 17208557 DOI: 10.1016/j.jpedsurg.2006.09.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Stem cell-derived tissue may provide a curative treatment for children with type 1 diabetes. Using an avian model, we have previously shown that foregut mesenchyme is able to differentiate into insulin-positive beta-cell islets (B islets). Successful clinical islet transplantation, however, is reliant on graft tissue containing both insulin- and glucagon-secreting cells. Therefore, in this study, we assessed the ability of foregut mesenchyme to differentiate into glucagon-positive alpha-cell islets (A islets). METHODS Chimeric recombinants (n = 14) were constructed using chick pancreatic epithelium combined with quail stomach mesenchyme from day 4 avian embryos and then cultured in 3 dimensions for 7 days. Cryosectioned recombinants were analyzed using immunocytochemistry against glucagon, insulin, and the quail-specific nucleolar antigen. The A islets and B islets were determined to be of solely epithelial, solely mesenchymal, or mixed origin according to the coexpression of the quail-specific nucleolar antigen. RESULTS Forty-eight A islets and 34 B islets were analyzed. Eighty-five percent of the A islets were solely derived from the epithelium, but, notably, 5% were solely derived from the mesenchyme and 10% were of mixed origin. A-islet differentiation from foregut mesenchyme was reduced as compared with B islets (P = .03). CONCLUSION We demonstrate that foregut mesenchyme is able to differentiate into both alpha and beta cells, albeit with quantitative differences. These findings may have important implications for the derivation of islet tissue from mesenchymal stem cells to cure juvenile-onset diabetes.
Collapse
Affiliation(s)
- Warwick J Teague
- Pediatric Surgical Research Laboratory, Nuffield Department of Surgery, University of Oxford, OX3 9DU Oxford, United Kingdom
| | | | | |
Collapse
|
44
|
Lin HT, Chiou SH, Kao CL, Shyr YM, Hsu CJ, Tarng YW, Ho LLT, Kwok CF, Ku HH. Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting. World J Gastroenterol 2006; 12:4529-35. [PMID: 16874866 PMCID: PMC4125641 DOI: 10.3748/wjg.v12.i28.4529] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To isolate putative pancreatic stem cells (PSCs) from human adult tissues of pancreas duct using serum-free, conditioned medium. The characterization of surface phenotype of these PSCs was analyzed by flow cytometry. The potential for pancreatic lineage and the capability of β-cell differentiation in these PSCs were evaluated as well.
METHODS: By using serum-free medium supplemented with essential growth factors, we attempted to isolate the putative PSCs which has been reported to express nestin and pdx-1. The Matrigel™ was employed to evaluate the differential capacity of isolated cells. Dithizone staining, insulin content/secretion measurement, and immunohistochemistry staining were used to monitor the differentiation. Fluorescence activated cell sorting (FACS) was used to detect the phenotypic markers of putative PSCs.
RESULTS: A monolayer of spindle-like cells was cultivated. The putative PSCs expressed pdx-1 and nestin. They were also able to differentiate into insulin-, glucagon-, and somatostatin-positive cells. The spectrum of phenotypic markers in PSCs was investigated; a similarity was revealed when using human bone marrow-derived stem cells as the comparative experiment, such as CD29, CD44, CD49, CD50, CD51, CD62E, PDGFR-α, CD73 (SH2), CD81, CD105(SH3).
CONCLUSION: In this study, we successfully isolated PSCs from adult human pancreatic duct by using serum-free medium. These PSCs not only expressed nestin and pdx-1 but also exhibited markers attributable to mesenchymal stem cells. Although work is needed to elucidate the role of these cells, the application of these PSCs might be therapeutic strategies for diabetes mellitus.
Collapse
Affiliation(s)
- Han-Tso Lin
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, 11217, Taiwan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baharvand H, Jafary H, Massumi M, Ashtiani SK. Generation of insulin-secreting cells from human embryonic stem cells. Dev Growth Differ 2006; 48:323-32. [PMID: 16759282 DOI: 10.1111/j.1440-169x.2006.00867.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A growth factor-mediated selection method was used to obtained insulin-secreting cells from human embryonic stem cells (hESC; Royan H1). Our resultant cells were positive for dithizone, a zinc-chelating agent known to selectively stain pancreatic beta cells and immunoreactive for antibodies against insulin, glucagon, and C-peptide. Semi-quantitative reverse transcription-polymerase chain reaction detected expression of proinsulin, insulin and other pancreatic beta-cell-related genes, such as Nkx6.1, Is11, Glut2, Pax4, and prohormone convertase2 (PC2). Moreover, glucagon, somatostatin, K(ATP)-channel genes KIR6.2 and SUR1, islet amyloid polypeptide (IAPP), PC1/3, and glucokinase (GCK) were expressed in the differentiating hESC in a developmental stage-dependent manner. Also, the addition of glucose to the culture medium triggered insulin release from differentiated cells, but transmission electron microscopy of the differentiated cells did not show typical beta-cell granules, even though secretary granules were detected. The results showed that hESC have the ability to transcribe and process insulin, but further improvements of the current method are required to generate a sufficient source of true beta cells for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Hossein Baharvand
- Department of Stem Cells, Royan Institute, PO Box 19395-4644, Tehran, Iran.
| | | | | | | |
Collapse
|
46
|
Abstract
The need for a reliable source of functional beta cells has led to many new investigations in an effort to drive the differentiation of embryonic stem cells, of putative stem cells, or of pancreatic progenitor cells to form new beta cells. There appears to be a plasticity of pancreatic cells in vitro that may be exploited to generate the necessary beta cells. Major questions still remain: whether there are true pancreatic stem cells, what are the pancreatic progenitor cells after birth, and whether expanded beta cells themselves could serve as the source.
Collapse
Affiliation(s)
- Akari Inada
- Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | | | | |
Collapse
|
47
|
Hayman MW, Christie VB, Keating TS, Przyborski SA. Following the Differentiation of Human Pluripotent Stem Cells by Proteomic Identification of Biomarkers. Stem Cells Dev 2006; 15:221-31. [PMID: 16646668 DOI: 10.1089/scd.2006.15.221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Following the differentiation of cultured stem cells is often reliant on the expression of genes and proteins that provide information on the developmental status of the cell or culture system. There are few molecules, however, that show definitive expression exclusively in a specific cell type. Moreover, the reliance on a small number of molecules that are not entirely accurate biomarkers of particular tissues can lead to misinterpretation in the characterization of the direction of cell differentiation. Here we describe the use of technology that examines the mass spectrum of proteins expressed in cultured cells as a means to identify the developmental status of stem cells and their derivatives in vitro. This approach is rapid and reproducible and it examines the expression of several different biomarkers simultaneously, providing a profile of protein expression that more accurately corresponds to a particular type of cell differentiation.
Collapse
Affiliation(s)
- M W Hayman
- School of Biological and Biomedical Science, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | |
Collapse
|