1
|
Kong J, Liu AA, Xu X, Tang B, Chen YY, Zhao W, Jia J, Yang LL, Li G, Pang DW. Making Cells as a "Nirvana Phoenix": Precise Coupling of Precursors Prior to ROS Bursts for Intracellular Synthesis of Quantum Dots. J Am Chem Soc 2025. [PMID: 40259718 DOI: 10.1021/jacs.5c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Rationally coupling natural biochemical reactions for live-cell synthesis of inorganic nanocrystals with fluorescence, such as quantum dots (QDs) especially near-infrared (NIR), holds significant potential for in situ labeling and bioimaging. However, the introduced exogenous reactants and intracellularly produced species, e.g., reactive oxygen species (ROS), often cause cell damage, decreasing the fluorescence of the QDs. Herein, we have found that cell-adaptable selenocystine ((Cys-Se)2) can be reduced to biocompatible low-valence Se precursors, which could be subsequently hijacked by timely added Ag-glutathione (AgSG) to be transformed into NIR Ag2Se QDs. Such a comprehensive control strategy can inhibit the production of cytotoxic Se species and ROS bursts, significantly increasing the cell viability from 4 to 80% and enhancing the fluorescence of intracellularly synthesized Ag2Se QDs by over 8.7 times. Notably, the proliferative and in vivo tumorigenic capacities of the cells with strong NIR fluorescence-emitting functions could be maintained, enabling long-term tracking of cell division and disease progression. This work has provided new insights into fully excavating the potential of cells for the synthesis of inorganic nanocrystals by designing biocompatible precursors and also opened a new window for conventional synthetic biology from organic to inorganic.
Collapse
Affiliation(s)
- Juan Kong
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Xia Xu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yan-Yan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Jianhong Jia
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Ling-Ling Yang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Gongyu Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, and Engineering Research Center of Thin Film Optoelectronics Technology (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Park SJ, Cerella C, Kang JM, Byun J, Kum D, Orlikova-Boyer B, Lorant A, Schnekenburger M, Al-Mourabit A, Christov C, Lee J, Han BW, Diederich M. Tetrahydrobenzimidazole TMQ0153 targets OPA1 and restores drug sensitivity in AML via ROS-induced mitochondrial metabolic reprogramming. J Exp Clin Cancer Res 2025; 44:114. [PMID: 40197337 PMCID: PMC11974110 DOI: 10.1186/s13046-025-03372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a highly aggressive cancer with a 5-year survival rate of less than 35%. It is characterized by significant drug resistance and abnormal energy metabolism. Mitochondrial dynamics and metabolism are crucial for AML cell survival. Mitochondrial fusion protein optic atrophy (OPA)1 is upregulated in AML patients with adverse mutations and correlates with poor prognosis. METHOD This study investigated targeting OPA1 with TMQ0153, a tetrahydrobenzimidazole derivative, to disrupt mitochondrial metabolism and dynamics as a novel therapeutic approach to overcome treatment resistance. Effects of TMQ0153 treatment on OPA1 and mitofusin (MFN)2 protein levels, mitochondrial morphology, and function in AML cells. In this study, we examined reactive oxygen species (ROS) production, oxidative phosphorylation (OXPHOS) inhibition, mitochondrial membrane potential (MMP) depolarization, and apoptosis. Additionally, metabolic profiling was conducted to analyze changes in metabolic pathways. RESULTS TMQ0153 treatment significantly reduced OPA1 and mitofusin (MFN)2 protein levels and disrupted the mitochondrial morphology and function in AML cells. This increases ROS production and inhibits OXPHOS, MMP depolarization, and caspase-dependent apoptosis. Metabolic reprogramming was observed, shifting from mitochondrial respiration to glycolysis and impaired respiratory chain activity. Profiling revealed reduced overall metabolism along with changes in the glutathione (GSH)/oxidized glutathione (GSSG) and NAD⁺/NADH redox ratios. TMQ0153 treatment reduces tumor volume and weight in MV4-11 xenografts in vivo. Combination therapies with TMQ0153 and other AML drugs significantly reduced the leukemic burden and prolonged survival in NOD scid gamma (NSG) mice xenografted with U937-luc and MOLM-14-luc cells. CONCLUSION TMQ0153 targets mitochondrial dynamics by inhibiting OPA1, inducing metabolic reprogramming, and triggering apoptosis in AML cells. It enhances the efficacy of existing AML therapies and provides a promising combination treatment approach that exploits mitochondrial vulnerability and metabolic reprogramming to improve treatment outcomes in AML.
Collapse
MESH Headings
- Humans
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/antagonists & inhibitors
- GTP Phosphohydrolases/genetics
- Reactive Oxygen Species/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Animals
- Mice
- Benzimidazoles/pharmacology
- Mitochondria/metabolism
- Mitochondria/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Apoptosis/drug effects
- Oxidative Phosphorylation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Membrane Potential, Mitochondrial/drug effects
- Metabolic Reprogramming
Collapse
Affiliation(s)
- Su Jung Park
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jin Mo Kang
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinyoung Byun
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - David Kum
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Luxembourg Centre for Systems Biomedicine, Bioinformatics Core, Roudeneck, 1, Boulevard du Jazz, Esch-sur-Alzette, L-4370, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
- Present address: Department of Cancer Research, Luxembourg Institute of Health (LIH), BAM Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Ali Al-Mourabit
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, Gif-Sur-Yvette, 91190, France
| | - Christo Christov
- Service d'Histologie, Faculté de Médicine, Université de Lorraine, and INSERM U1256 NGERE, 54000, Nancy, France
| | - Juyong Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Jiauddin M, Reddy K, Ravi HP, Ramachandran B. Druggable upregulated proteins in EWS-FLI-driven Ewing sarcoma as emerging new therapeutic targets. Am J Transl Res 2025; 17:1580-1603. [PMID: 40225989 PMCID: PMC11982847 DOI: 10.62347/ymeu1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/11/2025] [Indexed: 04/15/2025]
Abstract
Ewing sarcoma (ES) is a highly aggressive soft tissue tumor that primarily affects the long bones of children and young adults. It is distinguished by a characteristic chromosomal translocation between the Ewing sarcoma breakpoint region 1 (EWS) gene and the erythroblast transformation-specific (ETS) family of genes, most commonly resulting in the EWS-friend leukemia integration 1 (EWS-FLI1) fusion gene. This translocation is observed in approximately 80%-85% of ES cases. This fusion gene encodes a non-physiological chimeric fusion protein that plays a central role in tumorigenesis by interacting with numerous partner proteins. Several studies have demonstrated the tumorigenic potential of the EWS-FLI1 protein when transfected into non-cancer cell lines. However, targeting EWS-FLI1 directly remains a significant challenge, as no drug to date has been reported to bind to and inhibit its activity effectively. An alternative therapeutic strategy involves targeting key overexpressed protein complexes implicated in ES tumorigenesis, many of which may be downstream interacting partners of EWS-FLI1. This review explores emerging protein targets as potential therapeutic avenues in ES treatment.
Collapse
Affiliation(s)
- Moinuddin Jiauddin
- Department of Molecular Oncology, Cancer Institute (W.I.A) No. 38, Sardar Patel Road, Adyar, Chennai 600036, India
| | - Kirtana Reddy
- Department of Molecular Oncology, Cancer Institute (W.I.A) No. 38, Sardar Patel Road, Adyar, Chennai 600036, India
| | - Hashiya Preeya Ravi
- Department of Molecular Oncology, Cancer Institute (W.I.A) No. 38, Sardar Patel Road, Adyar, Chennai 600036, India
| | - Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (W.I.A) No. 38, Sardar Patel Road, Adyar, Chennai 600036, India
| |
Collapse
|
4
|
Hasan AA, Kalinina E, Zhdanov D, Volodina Y, Tatarskiy V. Re-Sensitization of Resistant Ovarian Cancer SKOV3/CDDP Cells to Cisplatin by Curcumin Pre-Treatment. Int J Mol Sci 2025; 26:799. [PMID: 39859517 PMCID: PMC11765683 DOI: 10.3390/ijms26020799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
A major challenging problem facing effective ovarian cancer therapy is cisplatin resistance. Re-sensitization of cisplatin-resistant ovarian cancer cells to cisplatin (CDDP) has become a critical issue. Curcumin (CUR), the most abundant dietary polyphenolic curcuminoids derived from turmeric (Curcuma longa), has achieved previously significant anti-cancer effects against human ovarian adenocarcinoma SKOV-3/CDDP cisplatin-resistant cells by inhibition the gene expression of the antioxidant enzymes (SOD1, SOD2, GPX1, CAT and HO1), transcription factor NFE2L2 and signaling pathway (PIK3CA/AKT1/MTOR). However, the detailed mechanisms of curcumin-mediated re-sensitization to cisplatin in SKOV-3/CDDP cells still need further exploration. Here, a suggested curcumin pre-treatment therapeutic strategy has been evaluated to effectively overcome cisplatin-resistant ovarian cancer SKOV-3/CDDP and to improve our understanding of the mechanisms behind cisplatin resistance. The findings of the present study suggest that the curcumin pre-treatment significantly exhibited cytotoxic effects and inhibited the proliferation of the SKOV-3/CDDP cell line compared to the simultaneous addition of drugs. Precisely, apoptosis induced by curcumin pre-treatment in SKOV-3/CDDP cells is mediated by mitochondrial apoptotic pathway (cleaved caspases 9, 3 and cleaved PARP) activation as well as by inhibition of thioredoxin reductase (TRXR1) and mTOR/STAT3 signaling pathway. This current study could deepen our understanding of the anticancer mechanism of CUR pre-treatment, which not only facilitates the re-sensitization of ovarian cancer cells to cisplatin but may lead to the development of targeted and effective therapeutics to eradicate SKOV-3/CDDP cancer cells.
Collapse
Affiliation(s)
- Aseel Ali Hasan
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
| | - Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
| | - Dmitry Zhdanov
- T.T. Berezov Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (E.K.); (D.Z.)
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Yulia Volodina
- Laboratory of Tumor Cell Death, Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115478 Moscow, Russia;
| | - Victor Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Science, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
5
|
Gonçalves FA, da Silva Bittencourt L, Barbosa S, Diel LF, Bernardi L, Matte C, Lamers ML. Energy Metabolic Profile in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma: A Preliminary Landscape of Warburg Effect in Oral Cancer. Mol Carcinog 2025; 64:126-137. [PMID: 39412414 DOI: 10.1002/mc.23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
We hypothesized that cell energy metabolic profiles correlate with normal, dysplastic, and tumor cell/tissue statuses and may be indicators of aggressiveness in oral squamous cell carcinoma (OSCC) cells. The energy-related proteins that were differentially expressed in human OSCC fragments (n = 3) and their adjacent epithelial tissue (TAE) were verified using mass spectrometry (MS). Immunohistochemistry for 4-hydroxynonenal (4-HNE) was performed to evaluate the oxidative stress patterns in OSCC (n = 10), epithelial dysplasia (n = 9), and normal epithelial (n = 4) biopsies. The metabolic energy profile of OSCC aggressiveness was investigated in human OSCC cell lines with different levels of epithelial-mesenchymal transition proteins. The genes associated with the proteins found by MS in this study were analyzed using survival analysis (OS), whereas the genes associated with a poorer prognosis were analyzed using context-specific expression, Gene Ontology (GO) and Cancer Hallmarks for function enrichment analysis. The rationale for all experimental approach was to investigate whether the variation in energy metabolism profile accompanies the different phenotypes (from epithelial to mesenchymal) during the epithelial-mesenchymal transition. All OSCC fragments exhibited an increase in glycolysis-related proteins and a decrease in mitochondrial activity compared to the TAE region (p < 0.05), probably due to the downregulation of pyruvate dehydrogenase and antioxidant proteins. Additionally, the OSCC cell lines with a mesenchymal profile (SCC4, SCC9, and SCC25) had a lower mitochondrial mass and membrane potential and generated lower levels of reactive oxygen and nitrogen species than the TAE region. When we analyzed 4-HNE, the reactive species levels were increased in the epithelial regions of OSCC and potentially malignant lesions. A decrease in the levels of 4-HNE/reactive species was observed in the connective tissue underlying the dysplastic regions and the OSCC invasion zone. Based on this scenario, aggressive OSCC is associated with high glycolytic and oxidative metabolism and low mitochondrial and antioxidant activities, which vary according to the differentiation level of the tumor cells and the stage of carcinogenesis.
Collapse
Affiliation(s)
- Francisca Aurina Gonçalves
- Basic Research Center in Dentistry, School of Dentistry, Federal University of Rio Grande of Sul, Porto Alegre, Brazil
| | - Leonardo da Silva Bittencourt
- Basic Research Center in Dentistry, School of Dentistry, Federal University of Rio Grande of Sul, Porto Alegre, Brazil
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- State Department of Education of Rio Grande do Sul-State Professional School of Health, Clinical Hospital of Porto Alegre (EPS-HCPA), Porto Alegre, Brazil
| | - Silvia Barbosa
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Francisco Diel
- Basic Research Center in Dentistry, School of Dentistry, Federal University of Rio Grande of Sul, Porto Alegre, Brazil
| | - Lisiane Bernardi
- Basic Research Center in Dentistry, School of Dentistry, Federal University of Rio Grande of Sul, Porto Alegre, Brazil
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane Matte
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Basic Research Center in Dentistry, School of Dentistry, Federal University of Rio Grande of Sul, Porto Alegre, Brazil
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Murugesan B, Subramanian A, Bakthavachalam S, Rajendran K, Raju S, Gabriel S. Molecular insights of anticancer potential of usnic acid towards cervical cancer target proteins: An in silico validation for novel anti-cancer compound from lichens. J Biomol Struct Dyn 2024; 42:9475-9493. [PMID: 37697733 DOI: 10.1080/07391102.2023.2252076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/20/2023] [Indexed: 09/13/2023]
Abstract
Usnic acid is a marker compound produced from numerous lichens (symbiotic association of mycobiont and phycobiont) possessing higher bioavailability, potent and selective against cancer cells. Usnic acid is an underutilized and well-documented anti-cancer compound from lichens and its activity is not yet documented against cervical cancer. The main aim of the present research is to screen the anti-cancer potential of usnic acid against cervical cancer target proteins. The drug-likeness validation of usnic acid shows nil violations against all drug-likeness rules when compared with all three screened anti-cancer standard drugs and shows some violation in drug likeness prediction. Further, ADMET screening reveals usnic acids shows effective pharmacokinetic profiles with good bioactivity scores, essential for drug delivery and metabolism. DFT analysis of usnic acid reveals less energy gap (-0.1184), hardness (0.0592 eV), and high softness (16.8918 eV) scores against three anti-cancer drug DFT scores. Molecular docking study shows usnic acid possesses excellent binding affinity with all the nine screened cervical cancer target proteins with docking scores ranging from -6.9 to -9.1 kcal/mol. Three anti-cancer drugs showed docking scores with a range of -5.2 to -8.4 kcal/mol. Further, four top-scored complexes were taken for molecular dynamic simulation study reveal that usnic acid complexes (1KTZ-usnic acid and 2BIM-usnic acid) possess good simulation trajectories with cervical cancer target proteins than the selected anti-cancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Balasubramanian Murugesan
- Department of Biotechnology, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Anandhi Subramanian
- Department of Biotechnology, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Subha Bakthavachalam
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Kavitha Rajendran
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Sowndarya Raju
- Department of Biochemistry, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| | - Subha Gabriel
- Department of Biochemistry, Vivekanandha Arts and Science College for Women, Salem, Tamilnadu, India
| |
Collapse
|
7
|
Charoensuksira S, Meephansan J, Vanichvongvan R, Somparn P, Tangtanatakul P, Wongpiyabovorn J, Suchonwanit P. Comparative proteomic analysis of male and female androgenetic alopecia: elucidating gender-specific molecular patterns. Arch Dermatol Res 2024; 316:721. [PMID: 39460779 DOI: 10.1007/s00403-024-03453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
This study presents a comprehensive comparative proteomic analysis aimed at elucidating the molecular mechanisms underlying male androgenetic alopecia (AGA) and female AGA. Scalp samples from both male AGA and female AGA patients, along with their respective normal controls, were subjected to proteomic analysis, followed by bioinformatics investigations. Our findings revealed distinct proteomic profiles between male AGA and female AGA, with a total of 68 differentially expressed proteins identified in male AGA and 84 in female AGA. Among these, specific proteins were altered in male AGA and female AGA, highlighting the sex-specific molecular pathways involved in the pathogenesis of pattern hair loss. Protein-protein interaction network analyses further delineated the most impacted biological processes, including cytoskeleton organization, stress response, and metabolic pathways, with particular emphasis on the differing altered stress responses and metabolic states associated with hair loss between sexes. Our study not only uncovered the complex molecular landscape of male AGA and female AGA but also identified potential biomarkers and therapeutic targets, offering new insights into the sex-specific pathogenesis of pattern hair loss.
Collapse
Affiliation(s)
- Sasin Charoensuksira
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Raksanawan Vanichvongvan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattarin Tangtanatakul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jongkonnee Wongpiyabovorn
- Division of Immunology, Department of Microbiology, Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poonkiat Suchonwanit
- Division of Dermatology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
8
|
Qausain S, Basheeruddin M. Unraveling the Peroxidase Activity in Peroxiredoxins: A Comprehensive Review of Mechanisms, Functions, and Biological Significance. Cureus 2024; 16:e66117. [PMID: 39229430 PMCID: PMC11370188 DOI: 10.7759/cureus.66117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 09/05/2024] Open
Abstract
Peroxiredoxins (Prxs) are members of the antioxidant enzymes necessary for every living object in the three domains of life and play critical roles in controlling peroxide levels in cells. This comprehensive literature review aims to elucidate the peroxidase activity of Prxs, examining their roles and significance for organisms across various taxa. Ironically, the primary role of the Prxs is the peroxidase activity, which comprises the reduction of hydrogen peroxide and other organic hydroperoxides and decreases the risk of oxidative damage in the cells. The above enzymatic activity occurs through the reversible oxidation-reduction catalyzed by cysteine residues in the active site by forming sulfenic acid and reduction by intracellular reductants. Structurally and functionally, Prxs function as dimers or decamers and show different catalytic patterns according to their subfamilies or cellular compartments. Compared to the mechanisms of the other two subgroups of Prxs, including 2-Cys Prxs and atypical Prxs, the 1-Cys Prxs have monomer-dimer switch folding coupled with catalytic activity. In addition to their peroxidase activity, which is widely known, Prxs are becoming acknowledged to be involved in other signaling processes, including redox signaling and apoptosis. This aversion to oxidative stress and regulation by the cellular redox state places them at the heart of adaptive cellular responses to changes in the environment or manifestations of diseases. In conclusion, based on the data obtained and on furthering the knowledge of Prxs' structure and function, these enzymes may be classified as a diverse yet essential family of proteins that can effectively protect cells from the adverse effects of oxidative stress due to peroxidase activity. This indicates secondary interactions, summarized as peroxide detoxification or regulatory signaling, and identifies their applicability in multiple biological pathways. Such knowledge is valuable for enhancing the general comprehension of essential cellular functions and disclosing further therapeutic approaches to the diseases caused by the increased production of reactive oxygen species.
Collapse
Affiliation(s)
- Sana Qausain
- Biomedical Sciences, Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mohd Basheeruddin
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Zhao K, Zhao T, Yang R, Liu J, Hu M. Peroxiredoxin 2 as a potential prognostic biomarker associated with angiogenesis in cervical squamous cell cancer. Oncol Lett 2024; 28:328. [PMID: 38807674 PMCID: PMC11130749 DOI: 10.3892/ol.2024.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Peroxiredoxins (Prxs) are a ubiquitously expressed family of antioxidant enzymes that either facilitate or inhibit tumorigenesis, depending on the cancer type and Prx isoform. Prx2 is a typical Prx that has a dual role in tumorigenesis and tumor progression. However, the expression of Prx2 and its precise role in cervical cancer remains to be elucidated. Therefore, the present study aimed to investigate the expression of Prx2 and its association with the progression and prognosis of cervical squamous cell cancer (CSCC). In the present study, the clinicopathological data of 105 patients diagnosed with CSCC were collected from the medical record system at Jingzhou Central Hospital, Tongji Medical College of Huazhong University of Science and Technology (Jingzhou, China). Prx2 protein was also detected in 105 CSCC tissues and 40 adjacent peri-tumoral tissues by immunohistochemical staining. The relationships between Prx2 expression and clinicopathological features, vascular endothelial growth factor A (VEGF-A) expression and micro-vessel density (MVD) in CSCC were then analyzed. Progression-free survival (PFS) was also assessed using both univariate and multivariate analyses. The results of the present study demonstrated that the expression of Prx2 was upregulated in CSCC tissues compared with the adjacent peri-tumoral tissues (P<0.001). In addition, higher Prx2 expression was associated with greater depth of stromal invasion (P=0.023) and positive lymph vascular space invasion (P=0.044), while the Prx2 expression level was not associated with age, tumor size, histological grade, lymph node (LN) metastasis or International Federation of Gynecology and Obstetrics (FIGO) stage (all P>0.05). Furthermore, increased Prx2 expression was associated with high MVD (P=0.016), while expression of VEGF-A was not associated with Prx2 expression (P>0.05). Kaplan-Meier analysis showed that patients with high Prx2 expression (log-rank test, P=0.039), high MVD (log-rank test, P=0.015), a higher FIGO stage (log-rank test, P=0.021) and LN metastasis (log-rank test, P=0.022) had a shorter PFS time than patients with low Prx2 expression, low MVD, a lower FIGO stage and without LN metastasis, respectively. Cox proportional hazard regression analysis revealed that expression of Prx2 [hazard ratio (HR), 2.551; 95% confidence interval (CI), 1.056-6.162; P=0.037], MVD (HR, 2.436; CI, 1.034-5.735; P=0.042) and FIGO stage (HR, 1.543; CI, 1.027-2.319; P=0.037) were independent factors for PFS time. In conclusion, the results of the present study suggested that Prx2 could act as a potential biomarker for predicting CSCC progression and prognosis and could be a novel target for antiangiogenic therapy of CSCC.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Gynecological Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
| | - Tingkuan Zhao
- Department of Pathology, Jingzhou Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, Hubei 434020, P.R. China
| | - Runfeng Yang
- Department of Gynecological Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
| | - Jing Liu
- Department of Pathology, Jingzhou Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou, Hubei 434020, P.R. China
| | - Min Hu
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
10
|
De Bolòs A, Sureda-Gómez M, Carreras-Caballé M, Rodríguez ML, Clot G, Beà S, Giné E, Campo E, Balsas P, Amador V. SOX11/PRDX2 axis modulates redox homeostasis and chemoresistance in aggressive mantle cell lymphoma. Sci Rep 2024; 14:7863. [PMID: 38570586 PMCID: PMC10991377 DOI: 10.1038/s41598-024-58216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.
Collapse
Affiliation(s)
- Anna De Bolòs
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Marta Sureda-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Eva Giné
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Basic Clinical Practice, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Patricia Balsas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Virginia Amador
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
11
|
Mu R, Chang M, Feng C, Cui Y, Li T, Liu C, Wang Y, Guo X. Analysis of the Expression of PRDX6 in Patients with Hepatocellular Carcinoma and its Effect on the Phenotype of Hepatocellular Carcinoma Cells. Curr Genomics 2024; 25:2-11. [PMID: 38544826 PMCID: PMC10964084 DOI: 10.2174/0113892029273682240111052317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 08/25/2024] Open
Abstract
Objectives This research aimed to study the expression of PRDX6 mRNA in hepatocellular carcinoma (HCC) and its effect on the prognosis of HCC. Moreover, the effect of PRDX6 gene knockdown on the proliferation, migration, and invasion of HepG2 cells mediated by lentivirus was also examined. This study offers a theoretical and experimental basis for further research on the mechanism of PRDX6 in liver cancer and new methods for clinical diagnosis and treatment. Methods RNA sequence data of 369 HCC patients were screened through the TCGA database, and the expression and clinical characteristics of PRDX6 mRNA were analyzed based on high-throughput RNA sequencing data. HepG2 cells were divided into WT, sh-NC and sh-PRDX6 groups. Real-time PCR and Western blot were used to detect the expression levels of the PRDX6 gene and protein, respectively. CCK8 method was used to detect the proliferation activity of HepG2 cells, scratch healing test was used to detect the migration ability, Transwell chamber was used to detect the invasion ability, and Western blot was used to detect the expression levels of PI3K/Akt/mTOR signaling pathway and Notch signaling pathway-related proteins. Results The expression of PRDX6 was significantly correlated with the gender, race, clinical stage, histological grade, and survival time of HCC patients (P < 0.05). Compared with that in WT and sh-NC groups, the expression level of PRDX6 protein in HCC patients was significantly lower (P < 0.01), the proliferation activity of HCC cells was significantly decreased (P < 0.05), and the migration and invasion ability was significantly decreased (P < 0.05) in the sh-PRDX6 group. The expression levels of PI3K, p-Akt, p-mTOR, Notch1, and Hes1 proteins in the sh-PRDX6 group were significantly lower than those in WT and sh-NC groups (P < 0.05). Conclusion The expression of PRDX6 may be closely related to the prognosis of HCC. Lentivirus-mediated PRDX6 knockdown can inhibit the proliferation, migration and invasion of HCC cells, which may be related to its regulating the PI3K/Akt/mTOR and Notch1 signaling pathways. PRDX6 is expected to be a new target for the diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Runhong Mu
- Basic Medicine College of Beihua University, Jilin, 132000, P.R. China
| | - Mingzhu Chang
- Basic Medicine College of Beihua University, Jilin, 132000, P.R. China
| | - Chuanbo Feng
- School of Pharmacy, Beihua University, Jilin, 132000, P.R. China
| | - Yunhe Cui
- Basic Medicine College of Beihua University, Jilin, 132000, P.R. China
| | - Tingyu Li
- Basic Medicine College of Beihua University, Jilin, 132000, P.R. China
| | - Chang Liu
- School of Pharmacy, Beihua University, Jilin, 132000, P.R. China
| | - Yilin Wang
- Zhuhai Integrated Traditional Chinese and Western Medicine Hospital, Zhuhai, 519000, China
- Zhuhai Hospital Affiliated to Southern Medical University, Zhuhai, 519000, China
| | - Xiao Guo
- School of Pharmacy, Beihua University, Jilin, 132000, P.R. China
| |
Collapse
|
12
|
Gervasi F, Pojero F. Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines 2024; 12:502. [PMID: 38540115 PMCID: PMC10968586 DOI: 10.3390/biomedicines12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The fact that the Mediterranean diet could represent a source of natural compounds with cancer-preventive and therapeutic activity has been the object of great interest, especially with regard to the mechanisms of action of polyphenols found in olive oil and olive leaves. Secoiridoid oleuropein (OLE) and its derivative hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) have demonstrated anti-proliferative properties against a variety of tumors and hematological malignancies both in vivo and in vitro, with measurable effects on cellular redox status, metabolism, and transcriptional activity. With this review, we aim to summarize the most up-to-date information on the potential use of OLE and HT for cancer treatment, making important considerations about OLE and HT bioavailability, OLE- and HT-mediated effects on drug metabolism, and OLE and HT dual activity as both pro- and antioxidants, likely hampering their use in clinical routine. Also, we focus on the details available on the effects of nutritionally relevant concentrations of OLE and HT on cell viability, redox homeostasis, and inflammation in order to evaluate if both compounds could be considered cancer-preventive agents or new potential chemotherapy drugs whenever their only source is represented by diet.
Collapse
Affiliation(s)
- Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
13
|
Zhan X, Li J, Zeng R, Lei L, Feng A, Yang Z. MiR-92a-2-5p suppresses esophageal squamous cell carcinoma cell proliferation and invasion by targeting PRDX2. Exp Cell Res 2024; 435:113925. [PMID: 38211680 DOI: 10.1016/j.yexcr.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/09/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
MicroRNAs (miRNAs) can function as negative regulators of gene expression by binding to the 3'-untranslated region (3'-UTR) of target genes. The aberrant expression of miRNAs in neoplasm is extensively associated with tumorigenesis and cancer progression, including esophageal squamous cell carcinoma (ESCC). Our previous investigation has identified the oncogenic roles of Peroxiredoxin2 (PRDX2) in ESCC progression; however, its upstream regulatory mechanism remains to be elucidated. By merging the prediction results from miRWalk2.0 and miRNA differential expression analysis results based on The Cancer Genome Atlas Esophageal Carcinoma (TCGA-ESCA) database, eight miRNA candidates were predicted to be the potential regulatory miRNAs of PRDX2, followed by further identification of miR-92a-2-5p as the putative miRNA of PRDX2. Subsequent functional studies demonstrated that miR-92a-2-5p can suppress ESCC cell proliferation and migration, as well as tumor growth in subcutaneous tumor xenograft models, which might be mediated by the suppression of AKT/mTOR and Wnt3a/β-catenin signaling pathways upon miR-92a-2-5p mimic transfection condition. These data revealed the tumor suppressive functions of miR-92a-2-5p in ESCC by targeting PRDX2.
Collapse
Affiliation(s)
- Xiang Zhan
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Jixian Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Renya Zeng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Lingli Lei
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China.
| | - Alei Feng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, 250021, Jinan, Shandong, China; Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, Shandong, China.
| |
Collapse
|
14
|
Shukla A, Khan MGM, Cayarga AA, Namvarpour M, Chowdhury MMH, Levesque D, Lucier JF, Boisvert FM, Ramanathan S, Ilangumaran S. The Tumor Suppressor SOCS1 Diminishes Tolerance to Oxidative Stress in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:292. [PMID: 38254783 PMCID: PMC10814246 DOI: 10.3390/cancers16020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
SOCS1 is a tumor suppressor in hepatocellular carcinoma (HCC). Recently, we showed that a loss of SOCS1 in hepatocytes promotes NRF2 activation. Here, we investigated how SOCS1 expression in HCC cells affected oxidative stress response and modulated the cellular proteome. Murine Hepa1-6 cells expressing SOCS1 (Hepa-SOCS1) or control vector (Hepa-Vector) were treated with cisplatin or tert-butyl hydroperoxide (t-BHP). The induction of NRF2 and its target genes, oxidative stress, lipid peroxidation, cell survival and cellular proteome profiles were evaluated. NRF2 induction was significantly reduced in Hepa-SOCS1 cells. The gene and protein expression of NRF2 targets were differentially induced in Hepa-Vector cells but markedly suppressed in Hepa-SOCS1 cells. Hepa-SOCS1 cells displayed an increased induction of reactive oxygen species but reduced lipid peroxidation. Nonetheless, Hepa-SOCS1 cells treated with cisplatin or t-BHP showed reduced survival. GCLC, poorly induced in Hepa-SOCS1 cells, showed a strong positive correlation with NFE2L2 and an inverse correlation with SOCS1 in the TCGA-LIHC transcriptomic data. A proteomic analysis of Hepa-Vector and Hepa-SOCS1 cells revealed that SOCS1 differentially modulated many proteins involved in diverse molecular pathways, including mitochondrial ROS generation and ROS detoxification, through peroxiredoxin and thioredoxin systems. Our findings indicate that maintaining sensitivity to oxidative stress is an important tumor suppression mechanism of SOCS1 in HCC.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Md Gulam Musawwir Khan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mozhdeh Namvarpour
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mohammad Mobarak H. Chowdhury
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Jean-François Lucier
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
15
|
Guan X, Ruan Y, Che X, Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Radic Biol Med 2024; 210:120-129. [PMID: 37977211 DOI: 10.1016/j.freeradbiomed.2023.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Tumour cells often display an active metabolic profile, leading to the intracellular accumulation of reactive oxygen species. As a member of the peroxidase family, peroxiredoxin 1 (PRDX1) functions generally in protecting against cell damage caused by H2O2. Additionally, PRDX1 plays a role as a molecular chaperone in various malignant tumours, exhibiting either tumour-promoting or tumour-suppressing effects. Currently, PRDX1-targeting drugs have demonstrated in vitro anticancer effects, indicating the potential of PRDX1 as a molecular target. Here we discussed the diverse functions of PRDX1 in tumour biology and provided a comprehensive analysis of the therapeutic potential of targeting PRDX1 signalling across various types of cancer.
Collapse
Affiliation(s)
- Xin Guan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyin Ruan
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Che
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
17
|
Geng B, Liu W, Wang J, Zhang W, Li Z, Zhang N, Hou W, Zhao E, Li X, You B. The categorizations of vasculogenic mimicry in clear cell renal cell carcinoma unveil inherent connections with clinical and immune features. Front Pharmacol 2023; 14:1333507. [PMID: 38178861 PMCID: PMC10765515 DOI: 10.3389/fphar.2023.1333507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) stands as the prevailing variant kidney cancer in humans. Unfortunately, patients with disseminated RCC at diagnosis often have a diminished prognosis. Rapid tumor growth necessitates efficient blood supply for oxygen and nutrients, involving the circulation of blood from vessels to tumor tissues, facilitating tumor cell entry into the extracellular matrix. Vasculogenic mimicry (VM) significantly contributes to tumor growth and metastasis. Within this investigation, we identified vasculogenic mimicry-related genes (VMRGs) by analyzing data from 607 cases of kidney renal clear cell carcinoma (KIRC) in The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). These findings offer insights into ccRCC progression and metastasis. Method: We identified VMRGs-related subtypes using consistent clustering methods. The signature of the VMRGs was created using univariate Cox regression and LASSO Cox regression analyses. To evaluate differences in immune cell infiltration, we employed ssGSEA. Afterwards, we created an innovative risk assessment model, known as the VM index, along with a nomogram to forecast the prognosis of ccRCC. Additionally, we verified the expression of an important gene related to VM, peroxiredoxin 2 (PRDX2), in tissue samples. Furthermore, we assessed the sensitivity to drugs in various groups by utilizing the pRRophetic R package. Results: Significant predictors of survival rates in both high- and low-risk groups of KIRC patients were identified as VMRGs. The independent prognostic factors for RCC were confirmed by both univariate and multivariate Cox regression analyses, validating VMRG risk signatures. Differences were observed in drug sensitivity, immune checkpoint expression, and responses to immune therapy between patients classified into high- and low-VMRG-risk groups. Our nomograms consistently demonstrated precise predictive capabilities. Finally, we experimentally verified PRDX2 expression levels and their impact on prognosis. Conclusion: The signature predicts patient prognosis and therapy response, laying the groundwork for future clinical strategies in treating ccRCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bosen You
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Yu G, Song X, Chen Q, Zhou Y. Silencing of peroxiredoxin III inhibits formaldehyde-induced oxidative damage of bone marrow cells in BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2836-2844. [PMID: 37584494 DOI: 10.1002/tox.23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Formaldehyde (FA) is associated with the occurrence of leukemia, and oxidative stress is considered to be a major reason. As an endogenous biomarker of oxidative stress, few studies focus on the relationship between peroxiredoxin III (PrxIII) and FA toxicity. Our previous research observed high expression of PrxIII occurred in the process of apoptosis of bone marrow cells (BMCs) induced by FA, however the exact mechanism is unclear. Therefore, this paper aimed to explore the possible association between FA toxicity and PrxIII gene. METHODS We first, used a Cell Counting Kit-8 (CCK-8) to detect the viability of BMCs after they were exposed to different doses of FA (50, 100, 200 μmol/L) for different exposure time (12, 24, 48 h), then chose 24 h as an exposure time to detect the expression of PrxIII for exposing different doses of FA by Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Based on our preliminary experimental results, we chose 100 μmol/L FA as an exposure dose to expose for 24 h, and used a small interfering RNA (siRNA) to silenced PrxIII to examine the cell viability by CCK-8, reactive oxygen species (ROS) level by DCFH-DA, apoptosis by Annexin V/PI double staining and cell cycle by flow cytometry (FCM) so as to explore the possible regulatory effect of PrxIII silencing on FA-induced bone marrow toxicity. RESULTS High expression of PrxIII occurred in the process of FA-induced oxidative stress. Silencing of PrxIII prevented FA from inducing oxidative stress, thus increasing cell viability, decreasing ROS level, rescuing G0 -G1 and G2 -M arrest, and reducing cell apoptosis. CONCLUSION PrxIII silencing might be a potential target for alleviating FA-induced oxidative damage.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Xiangfu Song
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Qiang Chen
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Yutong Zhou
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
19
|
Jayathirtha M, Jayaweera T, Whitham D, Sullivan I, Petre BA, Darie CC, Neagu AN. Two-Dimensional-PAGE Coupled with nLC-MS/MS-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in MCF7 Breast Cancer Cells Transfected for JTB Protein Silencing. Molecules 2023; 28:7501. [PMID: 38005222 PMCID: PMC10673289 DOI: 10.3390/molecules28227501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The identification of new cancer-associated genes/proteins, the characterization of their expression variation, the interactomics-based assessment of differentially expressed genes/proteins (DEGs/DEPs), and understanding the tumorigenic pathways and biological processes involved in BC genesis and progression are necessary and possible by the rapid and recent advances in bioinformatics and molecular profiling strategies. Taking into account the opinion of other authors, as well as based on our own team's in vitro studies, we suggest that the human jumping translocation breakpoint (hJTB) protein might be considered as a tumor biomarker for BC and should be studied as a target for BC therapy. In this study, we identify DEPs, carcinogenic pathways, and biological processes associated with JTB silencing, using 2D-PAGE coupled with nano-liquid chromatography tandem mass spectrometry (nLC-MS/MS) proteomics applied to a MCF7 breast cancer cell line, for complementing and completing our previous results based on SDS-PAGE, as well as in-solution proteomics of MCF7 cells transfected for JTB downregulation. The functions of significant DEPs are analyzed using GSEA and KEGG analyses. Almost all DEPs exert pro-tumorigenic effects in the JTBlow condition, sustaining the tumor suppressive function of JTB. Thus, the identified DEPs are involved in several signaling and metabolic pathways that play pro-tumorigenic roles: EMT, ERK/MAPK, PI3K/AKT, Wnt/β-catenin, mTOR, C-MYC, NF-κB, IFN-γ and IFN-α responses, UPR, and glycolysis/gluconeogenesis. These pathways sustain cancer cell growth, adhesion, survival, proliferation, invasion, metastasis, resistance to apoptosis, tight junctions and cytoskeleton reorganization, the maintenance of stemness, metabolic reprogramming, survival in a hostile environment, and sustain a poor clinical outcome. In conclusion, JTB silencing might increase the neoplastic phenotype and behavior of the MCF7 BC cell line. The data is available via ProteomeXchange with the identifier PXD046265.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Isabelle Sullivan
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd, No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine–TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (I.S.); (C.C.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd. No. 22, 700505 Iasi, Romania
| |
Collapse
|
20
|
Kim YS, Kim D, Park J, Chung YJ. Single-cell RNA sequencing of a poorly metastatic melanoma cell line and its subclones with high lung and brain metastasis potential reveals gene expression signature of metastasis with prognostic implication. Exp Dermatol 2023; 32:1774-1784. [PMID: 37534569 DOI: 10.1111/exd.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The molecular mechanisms underlying melanoma metastasis remain poorly understood. In this study, we aimed to delineate the mechanisms underlying gene expression alterations during metastatic potential acquisition and characterize the metastatic subclones within primary cell lines. We performed single-cell RNA sequencing of a poorly metastatic melanoma cell line (WM239A) and its subclones with high metastatic potential to the lung (113/6-4L) and the brain (131/4-5B1 and 131/4-5B2). Unsupervised clustering of 8173 melanoma cells identified three distinct clusters according to cell type ('Primary', 'Lung' and 'Brain' clusters) with differential expression of MITF and AXL pathways and putative cancer and cell cycle drivers, with the lung cluster expressing intermediate but distinct gene profiles between primary and brain clusters. Principal component (PC) analysis revealed that PC2 (the second PC), which was positively associated with MITF expression and negatively with AXL pathways, primarily segregated cell types, in addition to PC1 of the cell cycle pathway. Pseudotime trajectory and RNA velocity analyses suggested the existence of cellular subsets with metastatic potential in the Primary cluster and an association between PC2 signature alteration and metastasis potential acquisition. Analysis of The Cancer Genome Atlas melanoma samples by clustering into PC2-high and -low clusters by quartiles of PC2 signature expression revealed that the PC2-high cluster was an independent significant factor for poor prognosis (p-value = 0.003) with distinct genomic and transcriptomic characteristics, compared to the PC2-low cluster. In conclusion, we identified signatures of melanoma metastasis with prognostic significance and putative pro-metastatic subclones within a primary cell line.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dokyeong Kim
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseong Park
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, IRCGP, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
21
|
Sebastian S, Hoffmann MK, Howard D, Young C, Washington J, Unterweger H, Alexiou C, Turnbull T, D’Andrea R, Hoffmann P, Kempson I. Kinetic Effects of Transferrin-Conjugated Gold Nanoparticles on the Antioxidant Glutathione-Thioredoxin Pathway. Antioxidants (Basel) 2023; 12:1617. [PMID: 37627612 PMCID: PMC10451790 DOI: 10.3390/antiox12081617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Nanoparticle-based therapeutics are being clinically translated for treating cancer. Even when thought to be biocompatible, nanoparticles are being increasingly identified as altering cell regulation and homeostasis. Antioxidant pathways are important for maintaining cell redox homeostasis and play important roles by maintaining ROS levels within tolerable ranges. Here, we sought to understand how a model of a relatively inert nanoparticle without any therapeutic agent itself could antagonize a cancer cell lines' antioxidant mechanism. A label-free protein expression approach was used to assess the glutathione-thioredoxin antioxidative pathway in a prostate cancer cell line (PC-3) after exposure to gold nanoparticles conjugated with a targeting moiety (transferrin). The impact of the nanoparticles was also corroborated through morphological analysis with TEM and classification of pro-apoptotic cells by way of the sub-G0/G1 population via the cell cycle and annexin V apoptosis assay. After a two-hour exposure to nanoparticles, major proteins associated with the glutathione-thioredoxin antioxidant pathway were downregulated. However, this response was acute, and in terms of protein expression, cells quickly recovered within 24 h once nanoparticle exposure ceased. The impact on PRDX-family proteins appears as the most influential factor in how these nanoparticles induced an oxidative stress response in the PC-3 cells. An apparent adaptive response was observed if exposure to nanoparticles continued. Acute exposure was observed to have a detrimental effect on cell viability compared to continuously exposed cells. Nanoparticle effects on cell regulation likely provide a compounding therapeutic advantage under some circumstances, in addition to the action of any cytotoxic agents; however, any therapeutic advantage offered by nanoparticles themselves with regard to vulnerabilities specific to the glutathione-thioredoxin antioxidative pathway is highly temporal.
Collapse
Affiliation(s)
- Sonia Sebastian
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
| | - Manuela Klingler Hoffmann
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Douglas Howard
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| | - Clifford Young
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Jenni Washington
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.U.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (H.U.); (C.A.)
| | - Tyron Turnbull
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| | - Richard D’Andrea
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia;
| | - Peter Hoffmann
- Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (M.K.H.); (C.Y.); (P.H.)
- Mass Spectrometry & Proteomics Group, Clinical Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (S.S.); (D.H.); (T.T.)
| |
Collapse
|
22
|
Tabaei S, Haghshenas MR, Ariafar A, Gilany K, Stensballe A, Farjadian S, Ghaderi A. Comparative proteomics analysis in different stages of urothelial bladder cancer for identification of potential biomarkers: highlighted role for antioxidant activity. Clin Proteomics 2023; 20:28. [PMID: 37501157 PMCID: PMC10373361 DOI: 10.1186/s12014-023-09419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) has a high recurrence rate and muscle-invasive bladder cancer (MIBC) has unfavorable outcomes in urothelial bladder cancer (UBC) patients. Complex UBC-related protein biomarkers for outcome prediction may provide a more efficient management approach with an improved clinical outcome. The aim of this study is to recognize tumor-associated proteins, which are differentially expressed in different stages of UBC patients compared non-cancerous tissues. METHODS The proteome of tissue samples of 42 UBC patients (NMIBC n = 25 and MIBC n = 17) was subjected to two-dimensional electrophoresis (2-DE) combined with Liquid chromatography-mass spectrometry (LC-MS) system to identify differentially expressed proteins. The intensity of protein spots was quantified and compared with Prodigy SameSpots software. Functional, pathway, and interaction analyses of identified proteins were performed using geneontology (GO), PANTHER, Reactome, Gene MANIA, and STRING databases. RESULTS Twelve proteins identified by LC-MS showed differential expression (over 1.5-fold, p < 0.05) by LC-MS, including 9 up-regulated in NMIBC and 3 up-regulated in MIBC patients. Proteins involved in the detoxification of reactive oxygen species and cellular responses to oxidative stress showed the most significant changes in UBC patients. Additionally, the most potential functions related to these detected proteins were associated with peroxidase, oxidoreductase, and antioxidant activity. CONCLUSION We identified several alterations in protein expression involved in canonical pathways which were correlated with the clinical outcomes suggested might be useful as promising biomarkers for early detection, monitoring, and prognosis of UBC.
Collapse
Affiliation(s)
- Samira Tabaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ariafar
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Gistrup, 9260, Denmark
- Clinical Cancer Research Center, Aalborg University hospital, Gistrup, 9260, Denmark
| | - Shirin Farjadian
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Bovari-Biri J, Abdelwahab EMM, Garai K, Pongracz JE. Prdx5 in the Regulation of Tuberous Sclerosis Complex Mutation-Induced Signaling Mechanisms. Cells 2023; 12:1713. [PMID: 37443747 PMCID: PMC10340296 DOI: 10.3390/cells12131713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: Tuberous sclerosis complex (TSC) mutations directly affect mTORC activity and, as a result, protein synthesis. In several cancer types, TSC mutation is part of the driver mutation panel. TSC mutations have been associated with mitochondrial dysfunction, tolerance to reactive oxygen species due to increased thioredoxin reductase (TrxR) enzyme activity, tolerance to endoplasmic reticulum (ER) stress, and apoptosis. The FDA-approved drug rapamycin is frequently used in clinical applications to inhibit protein synthesis in cancers. Recently, TrxR inhibitor auranofin has also been involved in clinical trials to investigate the anticancer efficacy of the combination treatment with rapamycin. We aimed to investigate the molecular background of the efficacy of such drug combinations in treating neoplasia modulated by TSC mutations. (2) Methods: TSC2 mutant and TSC2 wild-type (WT) cell lines were exposed to rapamycin and auranofin in either mono- or combination treatment. Mitochondrial membrane potential, TrxR enzyme activity, stress protein array, mRNA and protein levels were investigated via cell proliferation assay, electron microscopy, etc. (3) Results: Auranofin and rapamycin normalized mitochondrial membrane potential and reduced proliferation capacity of TSC2 mutant cells. Database analysis identified peroxiredoxin 5 (Prdx5) as the joint target of auranofin and rapamycin. The auranofin and the combination of the two drugs reduced Prdx5 levels. The combination treatment increased the expression of heat shock protein 70, a cellular ER stress marker. (4) Conclusions: After extensive analyses, Prdx5 was identified as a shared target of the two drugs. The decreased Prdx5 protein level and the inhibition of both TrxR and mTOR by rapamycin and auranofin in the combination treatment made ER stress-induced cell death possible in TSC2 mutant cells.
Collapse
Affiliation(s)
| | | | | | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 2. Rokus Str, H-7624 Pecs, Hungary
| |
Collapse
|
24
|
Yang B, Li Q, Zhang M, Lin S, Shen X, Du Z. Molecular cloning and functional characterization of peroxiredoxin 4 (prx 4) in freshwater crayfish, Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108781. [PMID: 37127188 DOI: 10.1016/j.fsi.2023.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Peroxiredoxin (Prx), which is a newly discovered member of the antioxidant protein family, performs important biological functions in intracellular signal transduction. In the present study, a peroxiredoxin 4 gene was cloned from crayfish for the first time and named Pc-prx 4. According to the amino acid sequence signature, Pc-Prx 4 was identified as the typical 2-Cys Prx molecule, which possessed two conserved cysteines (Cys98 and Cys219). Time-course expression patterns post V. harveyi infection revealed that Pc-prx 4 was likely related to crayfish innate immune defense responses. In particular, the highest fold upregulation of the Pc-prx 4 mRNA transcript reached approximately 170 post V. harveyi infection in the crayfish hepatopancreas. The results of the mixed functional oxidase assay showed that rPc-Prx 4△ could resist the damaging effect of reactive oxygen species generated from the thiol/Fe3+/O2- reaction system to some extent. In addition, the results of the RNAi assay revealed that the crayfish survival rate was obviously increased post injection of V. harveyi when Pc-prx 4 was knocked down. Further study revealed that both hemolymph melanization and PO activity were strengthened to different degrees in the RNAi assay. Therefore, we speculated that the increase in the crayfish survival rate was likely due to the increase in hemolymph melanization. The obviously reinforced hemolymph melanization was directly caused by the upregulation of hemolymph PO activity, which was induced by the knockdown of Pc-prx 4. However, further studies are still indispensable for illuminating the molecular mechanism of Pc-prx 4 in the crayfish innate immune defense system.
Collapse
Affiliation(s)
- Bingbing Yang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Qianqian Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Mingda Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Sihan Lin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Xiuli Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Zhiqiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China.
| |
Collapse
|
25
|
Li J, Zheng M, Xu Y, Yang X, Kang J. Target proteins profiling of irreversible kinase inhibitor pelitinib and discovery of degradation of PRDX4 by label free chemoproteomics. J Pharm Biomed Anal 2023; 230:115398. [PMID: 37084663 DOI: 10.1016/j.jpba.2023.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Cell-based methods for profiling the kinase inhibitor selectivity are badly needed, especially for the irreversible kinase inhibitors. Here we reported a chemoproteomics approach for profiling the target proteins of irreversible kinase inhibitor with label free quantitative proteomics by using iodoacetamide alkyne as a chemical probe. In total 41 proteins were identified in high confidence (fold change 3.5, p value < 0.05) including PRDX4, STAT3, E2 conjugating enzymes UBE2L3, UBE2K, UBE2N, UBE2V1 and UBE2Z as well as E3 ligase TRIM 25. We validated the interaction between pelitinib and PRDX4 with a cell-based assay, and discovered that pelitinib can induce the degradation of PRDX4. The discovery was confirmed by biochemical assay, cellular thermal shift assay and miRNA knockdown experiment. Our data suggested that pelitinib can be a covalent molecular glue inducing the degradation of PRDX4. In addition, our work demonstrated that identification of the interactions between ligand and ubiquitylation associated proteins by chemoproteomics profiling can be used as a new strategy for identifying molecular glue degraders.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Mengmeng Zheng
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Yao Xu
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Xin Yang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Jingwu Kang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China.
| |
Collapse
|
26
|
Inchakalody VP, Hydrose SP, Krishnankutty R, Merhi M, Therachiyil L, Sasidharan Nair V, Elashi AA, Khan AQ, Taleb S, Raza A, Yoosuf ZSKM, Fernandes Q, Al-Zaidan L, Mestiri S, Taib N, Bedhiafi T, Moustafa D, Assami L, Maalej KM, Elkord E, Uddin S, Al Homsi U, Dermime S. The molecular mechanisms of apoptosis accompanied with the epigenetic regulation of the NY-ESO-1 antigen in non-small lung cancer cells treated with decitabine (5-aza-CdR). Eur J Pharmacol 2023; 945:175612. [PMID: 36822455 DOI: 10.1016/j.ejphar.2023.175612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Dysregulated epigenetic modifications are common in lung cancer but have been reversed using demethylating agent like 5-Aza-CdR. 5-Aza-CdR induces/upregulates the NY-ESO-1 antigen in lung cancer. Therefore, we investigated the molecular mechanisms accompanied with the epigenetic regulation of NY-ESO-1 in 5-Aza-CdR-treated NCI-H1975 cell line. We showed significant induction of the NY-ESO-1 protein (**p < 0.0097) using Cellular ELISA. Bisulfite-sequencing demonstrated 45.6% demethylation efficiency at the NY-ESO-1 gene promoter region and RT-qPCR analysis confirmed the significant induction of NY-ESO-1 at mRNA level (128-fold increase, *p < 0.050). We then investigated the mechanism by which 5-Aza-CdR inhibits cell proliferation in the NCI-H1975 cell line. Upregulation of the death receptors TRAIL (2.04-fold *p < 0.011) and FAS (2.1-fold *p < 0.011) indicate activation of the extrinsic apoptotic pathway. The upregulation of Voltage-dependent anion-selective channel protein 1 (1.9-fold), Major vault protein (1.8-fold), Bax (1.16-fold), and Cytochrome C (1.39-fold) indicate the activation of the intrinsic pathway. We also observed the differential expression of protein Complement C3 (3.3-fold), Destrin (-5.1-fold), Vimentin (-1.7-fold), Peroxiredoxin 4 (-1.6-fold), Fascin (-1.8-fold), Heme oxygenase-2 (-0.67-fold**p < 0.0055), Hsp27 (-0.57-fold**p < 0.004), and Hsp70 (-0.39-fold **p < 0.001), indicating reduced cell growth, cell migration, and metastasis. The upregulation of 40S ribosomal protein S9 (3-fold), 40S ribosomal protein S15 (4.2-fold), 40S ribosomal protein S18 (2.5-fold), and 60S ribosomal protein L22 (4.4-fold) implied the induction of translation machinery. These results reiterate the decisive role of 5-Aza-CdR in lung cancer treatment since it induces the epigenetic regulation of NY-ESO-1 antigen, inhibits cell proliferation, increases apoptosis, and decreases invasiveness.
Collapse
Affiliation(s)
- Varghese P Inchakalody
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shereena P Hydrose
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; College of Pharmacy, Qatar University, Doha, Qatar
| | - Varun Sasidharan Nair
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Germany
| | - Asma A Elashi
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sara Taleb
- Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Zeenath Safira K M Yoosuf
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Karama Makni Maalej
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute and Dermatology Institute, Academic Health System, Doha, Qatar
| | - Ussama Al Homsi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; Translational Cancer Research Facility, Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
27
|
Bardelčíková A, Šoltys J, Mojžiš J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants (Basel) 2023; 12:antiox12040901. [PMID: 37107276 PMCID: PMC10135609 DOI: 10.3390/antiox12040901] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer-related deaths worldwide. The pathogenesis of CRC is a complex multistep process. Among other factors, inflammation and oxidative stress (OS) have been reported to be involved in the initiation and development of CRC. Although OS plays a vital part in the life of all organisms, its long-term effects on the human body may be involved in the development of different chronic diseases, including cancer diseases. Chronic OS can lead to the oxidation of biomolecules (nucleic acids, lipids and proteins) or the activation of inflammatory signaling pathways, resulting in the activation of several transcription factors or the dysregulation of gene and protein expression followed by tumor initiation or cancer cell survival. In addition, it is well known that chronic intestinal diseases such as inflammatory bowel disease (IBD) are associated with an increased risk of cancer, and a link between OS and IBD initiation and progression has been reported. This review focuses on the role of oxidative stress as a causative agent of inflammation in colorectal cancer.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| | - Jindřich Šoltys
- Institute of Parasitology, Slovak Academy of Science, Hlinkova 3, 040 01 Košice, Slovakia
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
28
|
Lee MK, Zhang X, Kim HJ, Hwang YS. Peroxiredoxin 5 is involved in cancer cell invasion and tumor growth of oral squamous cell carcinoma. Oral Dis 2023; 29:423-435. [PMID: 33969595 DOI: 10.1111/odi.13910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Peroxiredoxins (Prxs) are antioxidant enzymes that can coordinate cell signal transduction via reactive species scavenging or by acting as redox sensors. The mechanism by which Prxs promote cancer invasion and progression is not yet fully understood. This study aims to elucidate the precise mechanism through which Prx type 5 (Prx5) promotes cancer invasion and tumor growth. MATERIALS AND METHODS We analyzed the Prx5 expression in oral squamous cell carcinoma (OSCC) by using microarray analysis for gene expression profiling. To identify Prx5 function in cancer, lentiviral short hairpin RNA was used for Prx5 depletion, and invasion assay and mouse xenograft were performed. RESULTS In microarray data obtained from OSCC patients, Prx5 showed higher expression at the tumor margin (TM) compared to the tumor center (TC) of the collective invasion. The depletion of Prx5 in OSCC cells (Prx5dep ) led to decreased invasion activity. In orthotopic xenograft models, Prx5dep cells harbored delimited tumorigenicity compared to wild-type cells as well as the suppression of lymph node metastasis. Prx5dep cells showed growth retardation and increased cellular reactive oxygen species (ROS) levels. The growth retardation of Prx5dep cells resulted in G1 phase arrest. CONCLUSIONS This study provides evidence that Prx5 removes excess ROS, especially in the TM, contributing to cancer invasion and tumor progression.
Collapse
Affiliation(s)
- Min Kyeong Lee
- Department of Dental Hygiene, College of Health Science, Eulji University, Republic of Korea
| | - Xianglan Zhang
- Department of Pathology, Yanbian University Hospital, Yanji, China.,Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyung Jun Kim
- Department of Oral Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Republic of Korea
| |
Collapse
|
29
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
30
|
Rua RM, Nogales F, Carreras O, Ojeda ML. Selenium, selenoproteins and cancer of the thyroid. J Trace Elem Med Biol 2023; 76:127115. [PMID: 36481604 DOI: 10.1016/j.jtemb.2022.127115] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Selenium is an essential mineral element with important biological functions for the whole body through incorporation into selenoproteins. This element is highly concentrated in the thyroid gland. Selenoproteins provide antioxidant protection for this tissue against the oxidative stress caused by free radicals and contribute, via iodothyronine deiodinases, to the metabolism of thyroid hormones. It is known that oxidative stress plays a major role in carcinogenesis and that in recent decades there has been an increase in the incidence of thyroid cancer. The anti-carcinogenic action of selenium, although not fully understood, is mainly attributable to selenoproteins antioxidant properties, and to the ability to modulate cell proliferation (cell cycle and apoptosis), energy metabolism, and cellular immune response, significantly altered during tumorigenesis. Researchers have suggested that different forms of selenium supplementation may be beneficial in the prevention and treatment of thyroid cancer; however, the studies have several methodological limitations. This review is a summary of the current knowledge on how selenium and selenoproteins related to thyroid cancer.
Collapse
Affiliation(s)
- Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal.
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| |
Collapse
|
31
|
Peroxiredoxins and Hypoxia-Inducible Factor-1α in Duodenal Tissue: Emerging Factors in the Pathophysiology of Pediatric Celiac Disease Patients. Curr Issues Mol Biol 2023; 45:1779-1793. [PMID: 36826059 PMCID: PMC9954839 DOI: 10.3390/cimb45020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy. Peroxiredoxins (PRDXs) are powerful antioxidant enzymes having an important role in significant cellular pathways including cell survival, apoptosis, and inflammation. This study aimed at investigating the expression levels of all PRDX isoforms (1-6) and their possible relationships with a transcription factor, HIF-1α, in the small intestinal tissue samples of pediatric CD patients. The study groups consisted of first-diagnosed CD patients (n = 7) and non-CD patients with functional gastrointestinal tract disorders as the controls (n = 7). The PRDXs and HIF-1α expression levels were determined by using real-time PCR and Western blotting in duodenal biopsy samples. It was observed that the mRNA and protein expression levels of PRDX 5 were significantly higher in the CD patients, whereas the PRDX 1, -2, and -4 expressions were decreased in each case compared to the control group. No significant differences were detected in the PRDX 3 and PRDX 6 expressions. The expression of HIF-1α was also significantly elevated in CD patients. These findings indicate, for the first time, that PRDXs, particularly PRDX 5, may play a significant role in the pathogenesis of CD. Furthermore, our results suggest that HIF-1α may upregulate PRDX-5 transcription in the duodenal tissue of CD.
Collapse
|
32
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
33
|
Agborbesong E, Zhou JX, Li LX, Harris PC, Calvet JP, Li X. Prdx5 regulates DNA damage response through autophagy-dependent Sirt2-p53 axis. Hum Mol Genet 2023; 32:567-579. [PMID: 36067023 PMCID: PMC9896474 DOI: 10.1093/hmg/ddac218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) is an important signaling-transduction network that promotes the repair of DNA lesions which can induce and/or support diseases. However, the mechanisms involved in its regulation are not fully understood. Recent studies suggest that the peroxiredoxin 5 (Prdx5) enzyme, which detoxifies reactive oxygen species, is associated to genomic instability and signal transduction. Its role in the regulation of DDR, however, is not well characterized. In this study, we demonstrate a role of Prdx5 in the regulation of the DDR signaling pathway. Knockdown of Prdx5 resulted in DNA damage manifested by the induction of phosphorylated histone H2AX (γ-H2AX) and p53-binding protein 1 (53BP1). We show that Prdx5 regulates DDR through (1) polo-like kinase 1 (Plk1) mediated phosphorylation of ataxia telangiectasia mutated (ATM) kinase to further trigger downstream mediators Chek1 and Chek2; (2) the increase of the acetylation of p53 at lysine 382, stabilizing p53 in the nucleus and enhancing transcription and (3) the induction of autophagy, which regulates the recycling of molecules involved in DDR. We identified Sirt2 as a novel deacetylase of p53 at lysine 382, and Sirt2 regulated the acetylation status of p53 at lysine 382 in a Prdx5-dependent manner. Furthermore, we found that exogenous expression of Prdx5 decreased DNA damage and the activation of ATM in Pkd1 mutant renal epithelial cells, suggesting that Prdx5 may play a protective role from DNA damage in cystic renal epithelial cells. This study identified a novel mechanism of Prdx5 in the regulation of DDR through the ATM/p53/Sirt2 signaling cascade.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Julie X Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Linda X Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
34
|
Chakraborty A, Halder B, Mondal S, Barrett A, Zhi W, Csanyi G, Sabbatini ME. NADPH oxidase 1 in chronic pancreatitis-activated pancreatic stellate cells facilitates the progression of pancreatic cancer. Am J Cancer Res 2023; 13:118-142. [PMID: 36777508 PMCID: PMC9906081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/12/2022] [Indexed: 02/14/2023] Open
Abstract
Patients suffering from chronic pancreatitis (CP) have a higher risk of pancreatic ductal adenocarcinoma (PDAC) compared to the general population. For instance, the presence of an activated pancreatic stellate cell (PaSC)-rich stroma in CP has facilitated the progression of non-invasive pancreatic intraepithelial neoplasia (PanIN) lesions to invasive PDAC. We have previously found that in a mouse model of CP, NADPH oxidase 1 (Nox1) in activated PaSCs forms fibrotic tissue and up-regulates both matrix metalloproteinase (MMP) 9 and the transcription factor Twist1. Yet, the role and mechanism of Nox1 in activated PaSCs from mice with CP (CP-activated PaSCs) in the progression of PDAC is unknown. For that, we tested the ability of Nox1 in CP-activated PaSCs to facilitate the growth of pancreatic cancer cells, and the mechanisms involved in these effects by identifying proteins in the secretome of CP-activated PaSCs whose production were Nox1-dependent. We found that, in vitro, Nox1 evoked a pro-invasive and cancer-promoting phenotype in CP-activated PaSCs via Twist1/MMP-9 expression, causing changes in the extracellular matrix composition. In vivo, Nox1 in CP-activated PaSCs facilitated tumor growth and stromal expansion. Using mass spectrometry, we identified proteins protecting from endoplasmic reticulum, oxidative and metabolic stresses in the secretome of CP-activated PaSCs whose production was Nox1-dependent, including peroxiredoxins (Prdx1 and Prdx4), and thioredoxin reductase 1. In conclusion, inhibiting the Nox1 signaling in activated PaSCs from patients with CP at early stages can reduce the reorganization of extracellular matrix, and the protection of neoplastic cells from cellular stresses, ameliorating the progression of PDAC.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Souravi Mondal
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Amanda Barrett
- Department of Surgical Pathology, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Gabor Csanyi
- Department of Pharmacology and Toxicology, and Vascular Biology Center, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| |
Collapse
|
35
|
NEK6 Regulates Redox Balance and DNA Damage Response in DU-145 Prostate Cancer Cells. Cells 2023; 12:cells12020256. [PMID: 36672191 PMCID: PMC9856815 DOI: 10.3390/cells12020256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
NEK6 is a central kinase in developing castration-resistant prostate cancer (CRPC). However, the pathways regulated by NEK6 in CRPC are still unclear. Cancer cells have high reactive oxygen species (ROS) levels and easily adapt to this circumstance and avoid cell death by increasing antioxidant defenses. We knocked out the NEK6 gene and evaluated the redox state and DNA damage response in DU-145 cells. The knockout of NEK6 decreases the clonogenic capacity, proliferation, cell viability, and mitochondrial activity. Targeting the NEK6 gene increases the level of intracellular ROS; decreases the expression of antioxidant defenses (SOD1, SOD2, and PRDX3); increases JNK phosphorylation, a stress-responsive kinase; and increases DNA damage markers (p-ATM and γH2AX). The exogenous overexpression of NEK6 also increases the expression of these same antioxidant defenses and decreases γH2AX. The depletion of NEK6 also induces cell death by apoptosis and reduces the antiapoptotic Bcl-2 protein. NEK6-lacking cells have more sensitivity to cisplatin. Additionally, NEK6 regulates the nuclear localization of NF-κB2, suggesting NEK6 may regulate NF-κB2 activity. Therefore, NEK6 alters the redox balance, regulates the expression of antioxidant proteins and DNA damage, and its absence induces the death of DU-145 cells. NEK6 inhibition may be a new strategy for CRPC therapy.
Collapse
|
36
|
Poplawski P, Alseekh S, Jankowska U, Skupien-Rabian B, Iwanicka-Nowicka R, Kossowska H, Fogtman A, Rybicka B, Bogusławska J, Adamiok-Ostrowska A, Hanusek K, Hanusek J, Koblowska M, Fernie AR, Piekiełko-Witkowska A. Coordinated reprogramming of renal cancer transcriptome, metabolome and secretome associates with immune tumor infiltration. Cancer Cell Int 2023; 23:2. [PMID: 36604669 PMCID: PMC9814214 DOI: 10.1186/s12935-022-02845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. The molecules (proteins, metabolites) secreted by tumors affect their extracellular milieu to support cancer progression. If secreted in amounts detectable in plasma, these molecules can also serve as useful, minimal invasive biomarkers. The knowledge of ccRCC tumor microenvironment is fragmentary. In particular, the links between ccRCC transcriptome and the composition of extracellular milieu are weakly understood. In this study, we hypothesized that ccRCC transcriptome is reprogrammed to support alterations in tumor microenvironment. Therefore, we comprehensively analyzed ccRCC extracellular proteomes and metabolomes as well as transcriptomes of ccRCC cells to find molecules contributing to renal tumor microenvironment. METHODS Proteomic and metabolomics analysis of conditioned media isolated from normal kidney cells as well as five ccRCC cell lines was performed using mass spectrometry, with the following ELISA validation. Transcriptomic analysis was done using microarray analysis and validated using real-time PCR. Independent transcriptomic and proteomic datasets of ccRCC tumors were used for the analysis of gene and protein expression as well as the level of the immune infiltration. RESULTS Renal cancer secretome contained 85 proteins detectable in human plasma, consistently altered in all five tested ccRCC cell lines. The top upregulated extracellular proteins included SPARC, STC2, SERPINE1, TGFBI, while downregulated included transferrin and DPP7. The most affected extracellular metabolites were increased 4-hydroxy-proline, succinic acid, cysteine, lactic acid and downregulated glutamine. These changes were associated with altered expression of genes encoding the secreted proteins (SPARC, SERPINE1, STC2, DPP7), membrane transporters (SLC16A4, SLC6A20, ABCA12), and genes involved in protein trafficking and secretion (KIF20A, ANXA3, MIA2, PCSK5, SLC9A3R1, SYTL3, and WNTA7). Analogous expression changes were found in ccRCC tumors. The expression of SPARC predicted the infiltration of ccRCC tumors with endothelial cells. Analysis of the expression of the 85 secretome genes in > 12,000 tumors revealed that SPARC is a PanCancer indicator of cancer-associated fibroblasts' infiltration. CONCLUSIONS Transcriptomic reprogramming of ccRCC supports the changes in an extracellular milieu which are associated with immune infiltration. The proteins identified in our study represent valuable cancer biomarkers detectable in plasma.
Collapse
Affiliation(s)
- Piotr Poplawski
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Saleh Alseekh
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Urszula Jankowska
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Bozena Skupien-Rabian
- grid.5522.00000 0001 2162 9631Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Roksana Iwanicka-Nowicka
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Helena Kossowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Anna Fogtman
- grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Joanna Bogusławska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Karolina Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Jan Hanusek
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Marta Koblowska
- grid.12847.380000 0004 1937 1290Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland ,grid.413454.30000 0001 1958 0162Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XMax-Planck Institute of Molecular Plant Physiology, Golm, 14476 Potsdam, Germany ,grid.510916.a0000 0004 9334 5103Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- grid.414852.e0000 0001 2205 7719Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
37
|
Phosphatase of Regenerating Liver-1 (PRL-1)-Overexpressing Placenta-Derived Mesenchymal Stem Cells Enhance Antioxidant Effects via Peroxiredoxin 3 in TAA-Injured Rat Livers. Antioxidants (Basel) 2022; 12:antiox12010046. [PMID: 36670907 PMCID: PMC9855122 DOI: 10.3390/antiox12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
DNA damage repair is induced by several factors and is critical for cell survival, and many cellular DNA damage repair mechanisms are closely linked. Antioxidant enzymes that control cytokine-induced peroxide levels, such as peroxiredoxins (Prxs) and catalase (CAT), are involved in DNA repair systems. We previously demonstrated that placenta-derived mesenchymal stem cells (PD-MSCs) that overexpress PRL-1 (PRL-1(+)) promote liver regeneration via antioxidant effects in TAA-injured livers. However, the efficacy of these cells in regeneration and the role of Prxs in their DNA repair system have not been reported. Therefore, our objective was to analyze the Prx-based DNA repair mechanism in naïve or PRL-1(+)-transplanted TAA-injured rat livers. Apoptotic cell numbers were significantly decreased in the PRL-1(+) transplantation group versus the nontransplantation (NTx) group (p < 0.05). The expression of antioxidant markers was significantly increased in PRL-1(+) cells compared to NTx cells (p < 0.05). MitoSOX and Prx3 demonstrated a significant negative correlation coefficient (R2 = −0.8123). Furthermore, DNA damage marker levels were significantly decreased in PRL-1(+) cells compared to NTx cells (p < 0.05). In conclusion, increased Prx3 levels in PRL-1(+) cells result in an effective antioxidant effect in TAA-injured liver disease, and Prx3 is also involved in repairing damaged DNA.
Collapse
|
38
|
Wanvimonsuk S, Jaree P, Kawai T, Somboonwiwat K. Prx4 acts as DAMP in shrimp, enhancing bacterial resistance via the toll pathway and prophenoloxidase activation. iScience 2022; 26:105793. [PMID: 36619979 PMCID: PMC9813724 DOI: 10.1016/j.isci.2022.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peroxiredoxin (Prx), an antioxidant enzyme family, has been identified as immune modulating damage-associated molecular patterns (DAMPs) in mammals but not in shrimp. Acute non-lethal heat shock (NLHS) that enhances shrimp Penaeus vannamei resistance to Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VPAHPND). Among the five P. vannamei Prxs (LvPrx) isoforms, LvPrx4, the most abundant in unchallenged shrimp hemocytes that was upregulated in hemocytes following NLHS treatment, is of great interest. The escalation of the LvPrx4 monomer in hemolymph of NLHS treated shrimp indicates that it probably acts as DAMP. This study revealed that pre-challenge with rLvPrx4 could prolong VPAHPND-infected shrimp survival, increase prophenoloxidase (proPO) activity and promote Toll pathway-related genes expression mediated by Toll-like receptor (TLR) 1 and 2. The presented findings elucidated the molecular mechanism of LvPrx4 monomer as DAMP in NLHS-induced VPAHPND resistance by inducing the TLR1/2 signaling pathway and the proPO activating system.
Collapse
Affiliation(s)
- Supitcha Wanvimonsuk
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author
| |
Collapse
|
39
|
Jayathirtha M, Whitham D, Alwine S, Donnelly M, Neagu AN, Darie CC. Investigating the Function of Human Jumping Translocation Breakpoint Protein (hJTB) and Its Interacting Partners through In-Solution Proteomics of MCF7 Cells. Molecules 2022; 27:8301. [PMID: 36500393 PMCID: PMC9740069 DOI: 10.3390/molecules27238301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Human jumping translocation breakpoint (hJTB) gene is located on chromosome 1q21 and is involved in unbalanced translocation in many types of cancer. JTB protein is ubiquitously present in normal cells but it is found to be overexpressed or downregulated in various types of cancer cells, where this protein and its isoforms promote mitochondrial dysfunction, resistance to apoptosis, genomic instability, proliferation, invasion and metastasis. Hence, JTB could be a tumor biomarker for different types of cancer, such as breast cancer (BC), and could be used as a drug target for therapy. However, the functions of the protein or the pathways through which it increases cell proliferation and invasiveness of cancer cells are not well-known. Therefore, we aim to investigate the functions of JTB by using in-solution digestion-based cellular proteomics of control and upregulated and downregulated JTB protein in MCF7 breast cancer cell line, taking account that in-solution digestion-based proteomics experiments are complementary to the initial in-gel based ones. Proteomics analysis allows investigation of protein dysregulation patterns that indicate the function of the protein and its interacting partners, as well as the pathways and biological processes through which it functions. We concluded that JTB dysregulation increases the epithelial-mesenchymal transition (EMT) potential and cell proliferation, harnessing cytoskeleton organization, apical junctional complex, metabolic reprogramming, and cellular proteostasis. Deregulated JTB expression was found to be associated with several proteins involved in mitochondrial organization and function, oxidative stress (OS), apoptosis, and interferon alpha and gamma signaling. Consistent and complementary to our previous results emerged by using in-gel based proteomics of transfected MCF7 cells, JTB-related proteins that are overexpressed in this experiment suggest the development of a more aggressive phenotype and behavior for this luminal type A non-invasive/poor-invasive human BC cell line that does not usually migrate or invade compared with the highly metastatic MDA-MB-231 cells. This more aggressive phenotype of MCF7 cells related to JTB dysregulation and detected by both in-gel and in-solution proteomics could be promoted by synergistic upregulation of EMT, Mitotic spindle and Fatty acid metabolism pathways. However, in both JTB dysregulated conditions, several downregulated JTB-interacting proteins predominantly sustain antitumor activities, attenuating some of the aggressive phenotypical and behavioral traits promoted by the overexpressed JTB-related partners.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Mary Donnelly
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “AlexandruIoanCuza” University of Iasi, Carol I bvd. No. 20A, 700505 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
40
|
Oxidative Stress Correlates with More Aggressive Features in Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14235857. [PMID: 36497339 PMCID: PMC9737385 DOI: 10.3390/cancers14235857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress (OS) can have an impact in the pathogenesis and in the progression of thyroid cancer. We investigated the levels of reactive oxygen species (ROS) in 50 malignant and benign thyroid lesions and 41 normal tissues, and correlated them with the thyroid differentiation score-TDS and the clinico-pathologic features. NOX4 expression, GPx activity and the genetic pattern of tumors were evaluated. In malignant and benign lesions, ROS generation and NOX4 protein expression were higher than in normal tissues. Follicular (FTCs) and anaplastic/poorly differentiated cancers had increased OS relative to papillary tumors (PTCs). Moreover, OS in FTCs was higher than in follicular adenomas. Mutated PTCs showed increased OS compared with non-mutated PTCs. In malignant tumors, OS was inversely correlated with TDS, and directly correlated with tumor stage and ATA risk. GPx activity was increased in tumors compared with normal tissues, and inversely correlated to OS. In conclusion, our data indicate that thyroid tumors are exposed to higher OS compared with normal tissues, while showing a compensative increased GPx activity. OS correlates with tumor aggressiveness and mutations in the MEK-ERK pathway in PTC. The inverse correlation between OS and TDS suggests that ROS may repress genes involved in thyroid differentiation.
Collapse
|
41
|
Kılıç N, Boyacıoğlu Ö, Saltoğlu GT, Bulduk EB, Kurt G, Korkusuz P. Thioredoxin System and miR-21, miR-23a/b and let-7a as Potential Biomarkers for Brain Tumor Progression: Preliminary Case Data. World Neurosurg 2022; 167:e1299-e1309. [PMID: 36096386 DOI: 10.1016/j.wneu.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The thioredoxin system and microRNAs (miRNAs) are potential targets for both cancer progression and treatment. However, the role of miRNAs and their relation with the expression profile of thioredoxin system in brain tumor progression remains unclear. METHODS In this study, we aimed to determine the expression profiles of redox components Trx-1, TrxR-1 and PRDX-1, and oncogenic miR-21, miR-23a/b and let-7a and oncosuppressor miR-125 in different brain tumor tissues and their association with increasing tumor grade. We studied Trx-1, TrxR-1, and PRDX-1 messenger RNA expression levels by quantitative real-time polymerase chain reaction and protein levels by Western blot and miR-23a, miR-23b, miR-125a, miR-21, and let-7a miRNA expression levels by quantitative real-time polymerase chain reaction in 16 glioma, 15 meningioma, 5 metastatic, and 2 benign tumor samples. We also examined Trx-1, TrxR-1, and PRDX-1 protein levels in serum samples of 36 patients with brain tumor and 37 healthy volunteers by enzyme-linked immunosorbent assay. RESULTS We found that Trx-1, TrxR-1, and PRDX-1 presented high messenger RNA expression but low protein expression in low-grade brain tumor tissues, whereas they showed higher protein expression in sera of patients with low-grade brain tumors. miR-23b, miR-21, miR-23a, and let-7a were highly expressed in low-grade brain tumor tissues and positively correlated with the increase in thioredoxin system activity. CONCLUSIONS Our findings showed that Trx-1, TrxR-1, miR-21, miR-23a/b, and let-7a might be used for brain tumor diagnosis in the clinic. Further prospective studies including molecular pathway analyses are required to validate the miRNA/Trx system regulatory axis in brain tumor progression.
Collapse
Affiliation(s)
- Nedret Kılıç
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Gölbaşı, Ankara, Turkey.
| | - Özge Boyacıoğlu
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Gölbaşı, Ankara, Turkey; Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| | - Gamze Turna Saltoğlu
- Department of Biochemistry, Faculty of Medicine, Kırşehir Ahi Evran University, Bağbaşı, Kırşehir, Turkey
| | - Erkut Baha Bulduk
- Department of Neurosurgery, Faculty of Medicine, Atılım University, Gölbaşı, Ankara, Turkey
| | - Gökhan Kurt
- Department of Neurosurgery, Faculty of Medicine, Gazi University, Beşevler, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, Turkey
| |
Collapse
|
42
|
The Development and Clinical Applications of Oral Arsenic Trioxide for Acute Promyelocytic Leukaemia and Other Diseases. Pharmaceutics 2022; 14:pharmaceutics14091945. [PMID: 36145693 PMCID: PMC9504237 DOI: 10.3390/pharmaceutics14091945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Appreciation of the properties of arsenic trioxide (ATO) has redefined the treatment landscape for acute promyelocytic leukaemia (APL) and offers promise as a treatment for numerous other diseases. The benefits of ATO in patients with APL is related to its ability to counteract the effects of PML::RARA, an oncoprotein that is invariably detected in the blood or bone marrow of affected individuals. The PML::RARA oncoprotein is degraded specifically by binding to ATO. Thus ATO, in combination with all-trans retinoic acid, has become the curative treatment for ATO. The multiple mechanisms of action of ATO has also paved the way for application in various condition encompassing autoimmune or inflammatory disorders, solid organ tumours, lymphomas and other subtypes of AML. The development of oral formulation of ATO (oral ATO) has reduced costs of treatment and improved treatment convenience allowing widespread applicability. In this review, we discuss the mechanisms of action of ATO, the development of oral ATO, and the applications of oral ATO in APL and other diseases.
Collapse
|
43
|
OTSUKA N, ISHIMARU K, MURAKAMI M, GOTO M, HIRATA A, SAKAI H. The immunohistochemical detection of peroxiredoxin 1 and 2 in canine spontaneous vascular endothelial tumors. J Vet Med Sci 2022; 84:914-923. [PMID: 35584951 PMCID: PMC9353087 DOI: 10.1292/jvms.22-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxiredoxin (PRDX) is an antioxidant enzyme family with six isoforms (PRDX1-6). The main function of PRDXs is to decrease cellular oxidative stress by reducing reactive oxygen species, such as hydrogen peroxide, to H2O. Recently, it has been reported that PRDXs are overexpressed in various malignant tumors in humans, and are involved in the development, proliferation, and metastasis of tumors. However, studies on the expression of PRDXs in tumors of animals are limited. Therefore, in the present study, we immunohistochemically investigated the expression of PRDX1 and 2 in spontaneous canine hemangiosarcoma (HSA) and hemangioma (HA), as well as in selected normal tissue and granulation tissue, including newly formed blood vessels. Although there were some exceptions, immunolocalization of PRDX1 and 2 in normal canine tissues was similar to those in humans, rats, or mice. In granulation tissue, angiogenic endothelial cells were strongly positive for PRDX1 and 2, whereas quiescent endothelial cells in mature vessels were negative. Both PRDX1 and 2 were significantly highly expressed in HSA compared to HA. There were no significant differences in the expression of PRDX1 and 2 among the subtypes and primary sites of HSA. These results suggest that PRDX1 and 2 may be involved in the angiogenic phenotypes of endothelial cells in granulation tissue as well as in the behavior in the malignant endothelial tumors.
Collapse
Affiliation(s)
- Narumi OTSUKA
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kairi ISHIMARU
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Mami MURAKAMI
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Minami GOTO
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Akihiro HIRATA
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroki SAKAI
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
44
|
Wang L, Hensley CR, Howell ME, Ning S. Bioinformatics-Driven Identification of p62 as A Crucial Oncogene in Liver Cancer. Front Oncol 2022; 12:923009. [PMID: 35814476 PMCID: PMC9263135 DOI: 10.3389/fonc.2022.923009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is the major form of liver cancer that is the fourth most common cause of cancer death worldwide. It has been reported that the multifunctional protein p62 (also known as SQSTM1) plays a cancer-promoting role in LIHC, but the detailed mechanisms underlying p62 interaction with LIHC remains unclear. To gain a comprehensive understanding of p62 interaction with LIHC in clinical settings, we performed bioinformatic analyses using various online algorithms derived from high throughput profiling. Our results indicate that p62 expression is significantly upregulated, partially due to its promoter demethylation, rather than p62 gene mutation, in LIHC. Mutation of TP53, CTNNB1, or ALB significantly correlates with, and mutation of AXIN1 reversely correlates with, the p62 expression level. Its upregulation occurs as early as liver cirrhosis, and go through all stages of the carcinogenesis. HCV infection makes a significant contribution to p62 upregulation in LIHC. We further identified p62-associated molecular signatures in LIHC, including many genes that are involved in antioxidant stress and metabolism, such as SRX1 and TXNRD1. Regarding to the clinical outcome, p62 expression level reversely correlates with the survival of LIHC patients (p<0.01). Importantly, we experimentally validated that p62 depletion in liver cancer cell lines downregulates the expression of SRX1 and TXNRD1 at both transcriptional and translational levels, and reduces cell proliferation. As the potential mechanisms underlying the tumor-promoting role of p62, we show that p62 upregulation is remarkably associated with reprogramming of pathways mediated by p53, Wnt/β-catenin, and Keap1-NRF2, which are crucial for oncogenesis in many contexts. Our findings provide a comprehensive insight into the interaction between p62 and LIHC, offering valuable information for understanding of LIHC pathogenesis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- *Correspondence: Ling Wang,
| | - Culton R. Hensley
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Mary E. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
45
|
High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15060711. [PMID: 35745630 PMCID: PMC9231292 DOI: 10.3390/ph15060711] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the idea that Vitamin C (Vit-C) could be utilized as a form of anti-cancer therapy has generated many contradictory arguments. Recent insights into the physiological characteristics of Vit-C, its pharmacokinetics, and results from preclinical reports, however, suggest that high-dose Vit-C could be effectively utilized in the management of various tumor types. Studies have shown that the pharmacological action of Vit-C can attack various processes that cancerous cells use for their growth and development. Here, we discuss the anti-cancer functions of Vit-C, but also the potential for the use of Vit-C as an epigenetic regulator and immunotherapy enhancer. We also provide a short overview of the current state of systems for scavenging reactive oxygen species (ROS), especially in the context of their influencing high-dose Vit-C toxicity for the inhibition of cancer growth. Even though the mechanisms of Vit-C action are promising, they need to be supported with robust randomized and controlled clinical trials. Moreover, upcoming studies should focus on how to define the most suitable cancer patient populations for high-dose Vit-C treatments and develop effective strategies that combine Vit-C with various concurrent cancer treatment regimens.
Collapse
|
46
|
Wu M, Deng C, Lo TH, Chan KY, Li X, Wong CM. Peroxiredoxin, Senescence, and Cancer. Cells 2022; 11:cells11111772. [PMID: 35681467 PMCID: PMC9179887 DOI: 10.3390/cells11111772] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
Peroxiredoxins are multifunctional enzymes that play a key role in protecting cells from stresses and maintaining the homeostasis of many cellular processes. Peroxiredoxins were firstly identified as antioxidant enzymes that can be found in all living organisms. Later studies demonstrated that peroxiredoxins also act as redox signaling regulators, chaperones, and proinflammatory factors and play important roles in oxidative defense, redox signaling, protein folding, cycle cell progression, DNA integrity, inflammation, and carcinogenesis. The versatility of peroxiredoxins is mainly based on their unique active center cysteine with a wide range of redox states and the ability to switch between low- and high-molecular-weight species for regulating their peroxidase and chaperone activities. Understanding the molecular mechanisms of peroxiredoxin in these processes will allow the development of new approaches to enhance longevity and to treat various cancers. In this article, we briefly review the history of peroxiredoxins, summarize recent advances in our understanding of peroxiredoxins in aging- and cancer-related biological processes, and discuss the future perspectives of using peroxiredoxins in disease diagnostics and treatments.
Collapse
|
47
|
Jovanović M, Podolski-Renić A, Krasavin M, Pešić M. The Role of the Thioredoxin Detoxification System in Cancer Progression and Resistance. Front Mol Biosci 2022; 9:883297. [PMID: 35664671 PMCID: PMC9161637 DOI: 10.3389/fmolb.2022.883297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intracellular redox homeostasis is a dynamic balancing system between the levels of free radical species and antioxidant enzymes and small molecules at the core of cellular defense mechanisms. The thioredoxin (Trx) system is an important detoxification system regulating the redox milieu. This system is one of the key regulators of cells’ proliferative potential as well, through the reduction of key proteins. Increased oxidative stress characterizes highly proliferative, metabolically hyperactive cancer cells, which are forced to mobilize antioxidant enzymes to balance the increase in free radical concentration and prevent irreversible damage and cell death. Components of the Trx system are involved in high-rate proliferation and activation of pro-survival mechanisms in cancer cells, particularly those facing increased oxidative stress. This review addresses the importance of the targetable redox-regulating Trx system in tumor progression, as well as in detoxification and protection of cancer cells from oxidative stress and drug-induced cytotoxicity. It also discusses the cancer cells’ counteracting mechanisms to the Trx system inhibition and presents several inhibitors of the Trx system as prospective candidates for cytostatics’ adjuvants. This manuscript further emphasizes the importance of developing novel multitarget therapies encompassing the Trx system inhibition to overcome cancer treatment limitations.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mikhail Krasavin
- Organic Chemistry Division, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milica Pešić, , orcid.org/0000-0002-9045-8239
| |
Collapse
|
48
|
Molendijk J, Kolka CM, Cairns H, Brosda S, Mohamed A, Shah AK, Brown I, Hodson MP, Hennessy T, Liu G, Stoll T, Richards RS, Gartside M, Patel K, Clemons NJ, Phillips WA, Barbour A, Westerhuis JA, Hill MM. Elevation of fatty acid desaturase 2 in esophageal adenocarcinoma increases polyunsaturated lipids and may exacerbate bile acid-induced DNA damage. Clin Transl Med 2022; 12:e810. [PMID: 35560527 PMCID: PMC9099135 DOI: 10.1002/ctm2.810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/04/2022] Open
Abstract
Background The risk of esophageal adenocarcinoma (EAC) is associated with gastro‐esophageal reflux disease (GERD) and obesity. Lipid metabolism‐targeted therapies decrease the risk of progressing from Barrett's esophagus (BE) to EAC, but the precise lipid metabolic changes and their roles in genotoxicity during EAC development are yet to be established. Methods Esophageal biopsies from the normal epithelium (NE), BE, and EAC, were analyzed using concurrent lipidomics and proteomics (n = 30) followed by orthogonal validation on independent samples using RNAseq transcriptomics (n = 22) and immunohistochemistry (IHC, n = 80). The EAC cell line FLO‐1 was treated with FADS2 selective inhibitor SC26196, and/or bile acid cocktail, followed by immunofluorescence staining for γH2AX. Results Metabolism‐focused Reactome analysis of the proteomics data revealed enrichment of fatty acid metabolism, ketone body metabolism, and biosynthesis of specialized pro‐resolving mediators in EAC pathogenesis. Lipidomics revealed progressive alterations (NE‐BE‐EAC) in glycerophospholipid synthesis with decreasing triglycerides and increasing phosphatidylcholine and phosphatidylethanolamine, and sphingolipid synthesis with decreasing dihydroceramide and increasing ceramides. Furthermore, a progressive increase in lipids with C20 fatty acids and polyunsaturated lipids with ≥4 double bonds were also observed. Integration with transcriptome data identified candidate enzymes for IHC validation: Δ4‐Desaturase, Sphingolipid 1 (DEGS1) which desaturates dihydroceramide to ceramide, and Δ5 and Δ6‐Desaturases (fatty acid desaturases, FADS1 and FADS2), responsible for polyunsaturation. All three enzymes showed significant increases from BE through dysplasia to EAC, but transcript levels of DEGS1 were decreased suggesting post‐translational regulation. Finally, the FADS2 selective inhibitor SC26196 significantly reduced polyunsaturated lipids with three and four double bonds and reduced bile acid‐induced DNA double‐strand breaks in FLO‐1 cells in vitro. Conclusions Integrated multiomics revealed sphingolipid and phospholipid metabolism rewiring during EAC development. FADS2 inhibition and reduction of the high polyunsaturated lipids effectively protected EAC cells from bile acid‐induced DNA damage in vitro, potentially through reduced lipid peroxidation.
Collapse
Affiliation(s)
- Jeffrey Molendijk
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Cathryn M Kolka
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Henry Cairns
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Sandra Brosda
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
| | - Ahmed Mohamed
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Alok K Shah
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | | | - Mark P Hodson
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Thomas Hennessy
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Agilent Technologies, Mulgrave, Australia
| | - Guanghao Liu
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Thomas Stoll
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Renee S Richards
- Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Michael Gartside
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
| | - Kalpana Patel
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Andrew Barbour
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia
| | - Johan A Westerhuis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Australia.,Precision and Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
49
|
Chatterjee S, Sil PC. ROS-Influenced Regulatory Cross-Talk With Wnt Signaling Pathway During Perinatal Development. Front Mol Biosci 2022; 9:889719. [PMID: 35517861 PMCID: PMC9061994 DOI: 10.3389/fmolb.2022.889719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Over a century ago, it was found that a rapid burst of oxygen is needed and produced by the sea urchin oocyte to activate fertilization and block polyspermy. Since then, scientific research has taken strides to establish that Reactive Oxygen Species (ROS), besides being toxic effectors of cellular damage and death, also act as molecular messengers in important developmental signaling cascades, thereby modulating them. Wnt signaling pathway is one such developmental pathway, which has significant effects on growth, proliferation, and differentiation of cells at the earliest embryonic stages of an organism, apart from being significant role-players in the instances of cellular transformation and cancer when this tightly-regulated system encounters aberrations. In this review, we discuss more about the Wnt and ROS signaling pathways, how they function, what roles they play overall in animals, and mostly about how these two major signaling systems cross paths and interplay in mediating major cellular signals and executing the predestined changes during the perinatal condition, in a systematic manner.
Collapse
Affiliation(s)
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
50
|
Gupta DN, Rani R, Kokane AD, Ghosh DK, Tomar S, Sharma AK. Characterization of a cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis and its potential role in protection from oxidative damage and wound healing. Int J Biol Macromol 2022; 209:1088-1099. [PMID: 35452700 DOI: 10.1016/j.ijbiomac.2022.04.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
In present work, the recombinant cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis (CsPrx) was purified and characterized. The peroxidase activity was examined with different substrates using DTT, a non-physiological electron donor. The conformational studies, in oxidized and reduced states, were performed using circular dichroism (CD) and fluorescence measurement. The CD analysis showed higher α-helical content for reduced state of the protein. The thermal stability studies of CsPrx by Differential Scanning Calorimetry (DSC) showed that oxidized state is more stable as compared to the reduced state of CsPrx. In vitro studies showed that the CsPrx provides a protective shield against ROS and free radicals that participate in the degradation of plasmid DNA. The pre-treatment of 10 μM CsPrx provide almost 100% protection against peroxide-mediated cell killing in the Vero cells. CsPrx showed significant cell proliferation and wound healing properties. The superior morphology of viable cells and wound closure was found at 20 μM CsPrx treated for 12 h. The results demonstrated that CsPrx is a multifaceted protein with a significant role in cell proliferation, wound healing and protection against hydrogen peroxide-induced cellular damage. This could be the first report of a plant peroxiredoxin being characterized for biomedical applications.
Collapse
Affiliation(s)
- Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Amol D Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India.
| |
Collapse
|