1
|
Pereira DE, de Cássia de Araújo Bidô R, da Costa Alves M, Frazão Tavares de Melo MF, Dos Santos Costa AC, Gomes Dutra LM, de Morais MM, Gomes da Câmara CA, Viera VB, Alves AF, de Araujo WJ, Leite EL, Bruno de Oliveira CJ, Rufino Freitas JC, Barbosa Soares JK. Maternal supplementation with Dipteryx alata Vog. modulates fecal microbiota diversity, accelerates reflex ontogeny, and improves non-associative and spatial memory in the offspring of rats. Brain Res 2025; 1850:149383. [PMID: 39647597 DOI: 10.1016/j.brainres.2024.149383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/09/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Maternal diet plays a crucial role in offspring development, directly affecting neural development and gut microbiota composition. This study aimed to assess if baru almond and oil (Dipteryx alata Vog.) could modulate intestinal microbiota, brain fatty acid profile, and enhance memory in offspring of rats treated during early life stages. Three groups were formed: Control- received distilled water by gavage; Oil- received 2000 mg/kg of baru oil, and Almond - received 2000 mg/kg of baru almond. Somatic development and reflex ontogenesis were evaluated in offspring during the first 21 days. In adolescence and adulthood, memory was tested using Open Field Habituation, Object Recognition, and Morris Water Maze. Brain histology and fatty acid were measured, and fecal microbiota analysis was performed. Both almond and oil groups showed increased PUFAs in breast milk and brains, accelerated reflex ontogeny, improved somatic development and better performance in the memory tests in both life stages (p < 0.05). Supplementation enhanced fecal microbiota abundance associated with neuroprotective effects. The almond group showed a 29 % increase in Eubacterium, Candidates-Arthromitus, Collinsella, and Christensenellaceae-R-7. Both oil and almond groups had higher Blautia and Clostridia-UCG-014 compared to controls. The oil group had about 10 % more Ruminococcus, UCG-005, Acetatifactor, Negativibacillus, and Lachnospiraceae-ND3007 than the others. With the present data, we can observe the safety of baru consumption by pregnant and lactating rats and verify its effects on modulating the microbiota, inducing adequate development of the offspring's nervous system, contributing to anticipated reflex maturation and improving memory.
Collapse
Affiliation(s)
- Diego Elias Pereira
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Rita de Cássia de Araújo Bidô
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Maciel da Costa Alves
- Department of Biofísica and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Dos Santos Costa
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil; Department of Rural Technology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Larissa Maria Gomes Dutra
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil.
| | | | | | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and General Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Wydemberg José de Araujo
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Elma Lima Leite
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | - Celso José Bruno de Oliveira
- Laboratory for the Evaluation of Products of Animal Origin, Department of Animal Science, Federal University of Paraíba - Areia, PB, Brazil
| | | | - Juliana Késsia Barbosa Soares
- Program of Food Science and Technology, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande, Cuité, CG, Brazil
| |
Collapse
|
2
|
Huang L, Zhang T, Zhu Y, Lai X, Tao H, Xing Y, Li Z. Deciphering the Role of CD36 in Gestational Diabetes Mellitus: Linking Fatty Acid Metabolism and Inflammation in Disease Pathogenesis. J Inflamm Res 2025; 18:1575-1588. [PMID: 39925938 PMCID: PMC11806725 DOI: 10.2147/jir.s502314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications which exerts detrimental effects on mothers and children. Emerging evidence has pointed to the important role of the fatty acid transporter protein CD36 in the pathogenesis of GDM. As a heavily glycosylated transmembrane protein, CD36 is widely expressed in diverse cell types, including placental trophoblasts, monocytes/macrophages, adipocytes, and pancreatic cells et al. CD36 plays a key role in lipid metabolism and signal transduction in the pathophysiological mechanism of GDM. The modified expression and functionality of CD36 may contribute to inflammation and oxidative stress in maternal tissues, interfere with insulin signaling, and subsequently influence maternal insulin sensitivity and fetal growth, increasing the risk for GDM. This review provides an overview of the current knowledge regarding the expression and function of CD36 in various tissues throughout pregnancy and explores how CD36 dysregulation can activate inflammatory pathways, worsen insulin resistance, and disrupt lipid metabolism, thereby complicating the necessary metabolic adjustments during pregnancy. Furthermore, the review delves into emerging therapeutic approaches targeting CD36 signaling to alleviate the impacts of GDM. Understanding the involvement of CD36 in GDM could yield crucial insights into its mechanisms and potential interventions for enhancing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Li Huang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Tong Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanyuan Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Xueling Lai
- Shenzhen Guangming Maternal & Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Jiang Y, Zhou X, He Z, Wei L, Zhu S, Zhang H, Zhang J, Chen Y, Du Y, Ding W, Wang S, Wang Z, Feng L. DHA Improves neurodevelopmental abnormalities in offspring of gestational diabetes mellitus patients via the PPAR-γ/FATP4 pathway. Biochem Pharmacol 2025; 232:116726. [PMID: 39716642 DOI: 10.1016/j.bcp.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Offspring of women with gestational diabetes mellitus (GDM) face an increased risk of long-term neurodevelopmental abnormalities. This study explores the altered expression of key placental fatty acid transport proteins-FATP2, FATP4, FATP6, FABP4, and FAT/CD36-in GDM patients, and the potential of docosahexaenoic acid (DHA) to mitigate neurodevelopmental risks in offspring by enhancing their expression through activation of peroxisome proliferator-activated receptor γ (PPAR-γ). Our findings demonstrate that placental FATP4 expression is reduced in GDM patients. In HTR8/SVneo cells, PPAR-γ activation upregulated the expression of FATP4, FAT/CD36, and FABP4, while PPAR-γ inhibition only reduced FAT/CD36 expression. DHA treatment led to increased expression of FATP4, FATP/CD36 and FABP4, which was partially reversed by PPAR-γ inhibition. Consistent results were observed in an insulin-resistant cell model. Supplementing GDM mice with exogenous DHA restored placental FATP4 expression and improved offspring social behavior and cognitive function. These results suggest that DHA supplementation during pregnancy could reduce the adverse effects of GDM on placental FATP4 expression and support better neurodevelopmental outcomes in offspring by promoting essential fatty acid transport through the PPAR-γ/FATP4 pathway. This study highlights the therapeutic potential of DHA in improving fetal outcomes in GDM pregnancies.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenzhen He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lijie Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shenglan Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huiting Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jingyi Zhang
- Department of Obstetrics and Gynecology Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuting Chen
- Department of Obstetrics and Gynecology Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanyuan Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zizhuo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Gao C, Luo L, Fan Y, Guo L, Guo L, Tao L, Tao F, Xu DX, Gibson RA, Makrides M, Wang H, Huang Y. Gestational PFAS exposure and newborn size: The modifying effect of cord blood fatty acids. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100476. [PMID: 39228809 PMCID: PMC11369372 DOI: 10.1016/j.ese.2024.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can disrupt lipid metabolism, and changes in cord blood fatty acid composition have been observed in small newborns. Emerging evidence suggests that exposure to PFASs during pregnancy is linked to decreased newborn size, although the evidence is not consistent. The modifying effect of fatty acids on the associations of gestational PFAS exposure with newborn size is still unknown. Here we show that the nutritional status of the fetus, as indicated by the level of fatty acids in the cord blood, mitigates the adverse effects of gestational PFAS exposure on the size of the newborn. Our study confirms the adverse developmental effects of PFASs and identifies emerging short-chain PFASs as the primary drivers of reduced newborn size, despite their lower exposure burden compared to legacy PFASs. Additionally, we find the protective role of cord blood fatty acids, suggesting potential strategies for mitigating the detrimental effects of emerging environmental exposures on human health. Our findings provide new evidence of the potential toxicity of emerging PFASs and call for further toxicity evaluations of these pollutants for regulatory purposes. Future studies should consider the complex interaction between exposure and nutrition within the human body, particularly during the first thousand days of life, to promote lifelong health.
Collapse
Affiliation(s)
- Chang Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230031, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230031, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230031, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
| | - Lin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230031, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230031, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230031, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
| | - Yijun Fan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liyan Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230031, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230031, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230031, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
| | - Lijuan Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230031, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230031, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230031, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230031, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230031, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230031, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
| | - Fangbiao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
- Department of Maternal & Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230031, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230031, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230031, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230031, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
| | - Robert A. Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, North Adelaide, 5000, South Australia, Australia
| | - Maria Makrides
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, North Adelaide, 5000, South Australia, Australia
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230031, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230031, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230031, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230031, China
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230031, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230031, China
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230031, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Clinical Research Center, Suzhou Hospital of Anhui Medical University, Suzhou, 234099, China
| |
Collapse
|
5
|
Whalin M, Roque-Jiménez JA, Oviedo-Ojeda MF, Lee-Rangel HA, Relling AE. Effect of supplementation to offspring during early gestation and the growing phase with different sources of fatty acids on learning and memory ability of postweaning lambs. Transl Anim Sci 2024; 8:txae149. [PMID: 39606551 PMCID: PMC11600440 DOI: 10.1093/tas/txae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024] Open
Abstract
The objective of the current experiment was to evaluate the effects of supplementation with different dietary fatty acid profiles on the dam during the first third of gestation and on the offspring during growth on the offspring's cognitive behavior. Seventy-nine postweaning lambs were blocked by body weight and sex using a 2 × 2 factorial arrangement of treatments. The first factor (maternal supplementation; MS) was supplementation to the ewes in the first third of gestation with 1.61% Ca salts of palm fatty acid distillate (PFAD) or Ca salts enriched with eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) to early pregnant ewes. The second factor (offspring supplementation; OS) was to supplement the offspring during their growing phase with diets that contained 1.48% of PFAD or Ca salts of PFAD or EPA and DHA. Ewes were housed in groups, 3 ewes per pen and 12 pens per treatment, with different treatments until day 50 of gestation. From day 51 of gestation until weaning, all the animals (ewes and lambs) were housed in a common pen. After weaning, lambs were housed in group pens (5 pens per treatment, 3 to 5 per pen). The lambs ran maze tests on weeks 5 and 7 after weaning to evaluate cognitive ability. The maze contained 2 trap zones and had the pen conspecific lambs at the end of the maze. The measurements were the times to solve the traps and the total time to complete the maze. Data were analyzed using a mixed procedure considering the 2×2 factorial arrangement of treatments. There was an MS × OS × time interaction for the time to complete the maze (P = 0.02). Lambs receiving a different type of fatty acid supplementation during gestation than postweaning took less time to complete the maze on the second relative to the first day compared with the lambs fed the same type of fatty acids during gestation and growing. In conclusion, combining different fatty acids during different life stages may improve lambs' cognitive abilities.
Collapse
Affiliation(s)
- Megan Whalin
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
| | - José A Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
- Universidad Autónoma de Baja California, Instituto de Ciencias Agricolas, Mexicali, Baja California, Mexico
| | - Mario F Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí, Mexico
| | - Héctor A Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí, Mexico
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, College of Food, Agricultural, and Environmental Sciences, Wooster, OH 44691, USA
| |
Collapse
|
6
|
Blitek A, Szymanska M. Expression Profiles of Fatty Acid Transporters and the Role of n-3 and n-6 Polyunsaturated Fatty Acids in the Porcine Endometrium. Int J Mol Sci 2024; 25:11102. [PMID: 39456882 PMCID: PMC11507490 DOI: 10.3390/ijms252011102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Fatty acids (FAs) are important for cell membrane composition, eicosanoid synthesis, and metabolic processes. Membrane proteins that facilitate FA transport into cells include FA translocase (also known as CD36) and FA transporter proteins (encoded by SLC27A genes). The present study aimed to examine expression profiles of FA transporters in the endometrium of cyclic and early pregnant gilts on days 3 to 20 after estrus and the possible regulation by conceptus signals and polyunsaturated FAs (PUFAs). The effect of PUFAs on prostaglandin (PG) synthesis and transcript abundance of genes related to FA action and metabolism, angiogenesis, and immune response was also determined. Day after estrus and reproductive status of animals affected FA transporter expression, with greater levels of CD36, SLC27A1, and SLC27A4 observed in pregnant than in cyclic gilts. Conceptus-conditioned medium and/or estradiol-17β stimulated SLC27A1 and CD36 expression. Among PUFAs, linoleic acid decreased SLC27A1 and SLC27A6 mRNA expression, while arachidonic, docosahexaenoic, and eicosapentaenoic acids increased SLC27A4 transcript abundance. Moreover, arachidonic acid stimulated ACOX1, CPT1A, and IL1B expression and increased PGE2 and PGI2 secretion. In turn, α-linolenic acid up-regulated VEGFA, FGF2, FABP4, and PPARG mRNA expression. These results indicate the presence of an active transport of FAs in the porcine endometrium and the role of PUFAs as modulators of the uterine activity during conceptus implantation.
Collapse
Affiliation(s)
- Agnieszka Blitek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | | |
Collapse
|
7
|
Zhang Z, Su J, Xue J, Xiao L, Hong L, Cai G, Gu T. The Research Progress of DNA Methylation in the Development and Function of the Porcine Placenta. Int J Mol Sci 2024; 25:10687. [PMID: 39409016 PMCID: PMC11476760 DOI: 10.3390/ijms251910687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The pig is the most widely consumed domestic animal in China, providing over half of the meat supply in food markets. For livestock, a key economic trait is the reproductive performance, which is significantly influenced by placental development. The placenta, a temporary fetal organ, is crucial for establishing maternal-fetal communication and supporting fetal growth throughout pregnancy. DNA methylation is an epigenetic modification that can regulate the gene expression by recruiting proteins involved in gene silencing or preventing transcription factor binding. To enhance our understanding of the molecular mechanisms underlying DNA methylation in porcine placental development, this review summarizes the structure and function of the porcine placenta and the role of DNA methylation in placental development.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Jiawei Su
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Jiaming Xue
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Liyao Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (J.S.); (J.X.); (L.X.); (L.H.); (G.C.)
- Guangdong Provincial Key Laboratory of Agri-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Bidne KL, Zemski Berry K, Dillon M, Jansson T, Powell TL. Maternal Docosahexaenoic Acid Supplementation Alters Maternal and Fetal Docosahexaenoic Acid Status and Placenta Phospholipids in Pregnancies Complicated by High Body Mass Index. Nutrients 2024; 16:2934. [PMID: 39275250 PMCID: PMC11397315 DOI: 10.3390/nu16172934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
INTRODUCTION An optimal fetal supply of docosahexaenoic acid (DHA) is critical for normal brain development. The relationship between maternal DHA intake and DHA delivery to the fetus is complex and is dependent on placental handling of DHA. Little data exist on placental DHA levels in pregnancies supplemented with the recommended dose of 200 mg/d. Our objective was to determine how prenatal DHA at the recommended 200 mg/d impacts maternal, placental, and fetal DHA status in both normal-weight and high-BMI women compared to women taking no supplements. METHODS Maternal blood, placenta, and cord blood were collected from 30 healthy pregnant women (BMI 18.9-43.26 kg/m2) giving birth at term. Red blood cells (RBCs) and villous tissue were isolated, and lipids were extracted to determine DHA content by LC-MS/MS. Data were analyzed by supplement group (0 vs. 200 mg/d) and maternal BMI (normal weight or high BMI) using two-way ANOVA. We measured maternal choline levels in maternal and cord plasma samples. RESULTS Supplementation with 200 mg/d DHA significantly increased (p < 0.05) maternal and cord RBC DHA content only in pregnancies complicated by high BMI. We did not find any impact of choline levels on maternal or cord RBC phospholipids. There were no significant differences in total placental DHA content by supplementation or maternal BMI (p > 0.05). Placental levels of phosphatidylinositol (PI) and phosphatidic acid containing DHA species were higher (p < 0.05) in high-BMI women without DHA supplementation compared to both normal-BMI and high-BMI women taking DHA supplements. CONCLUSION Maternal DHA supplementation at recommended doses cord increased RBC DHA content only in pregnancies complicated by higher BMI. Surprisingly, we found that obesity was related to an increase in placental PI and phosphatidic acid species, which was ameliorated by DHA supplementation. Phosphatidic acid activates placental mTOR, which regulates amino acid transport and may explain previous findings of the impact of DHA on placental function. Current recommendations for DHA supplementation may not be achieving the goal of improving fetal DHA levels in normal-weight women.
Collapse
Affiliation(s)
- Katie L Bidne
- Departments of Obstetrics and Gynecology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Departments of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Mairead Dillon
- Departments of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Thomas Jansson
- Departments of Obstetrics and Gynecology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Theresa L Powell
- Departments of Obstetrics and Gynecology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
- Departments of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Kobori Y, Hirayama S, Fukushima Y, Ueno T, Sekihara K, Hori A, Horiuchi Y, Makino S, Nishioka E, Miida T. Low serum carnitine level is associated with increased urinary carnitine excretion in late pregnancy. Ann Clin Biochem 2024; 61:356-364. [PMID: 38428946 DOI: 10.1177/00045632241239806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
BACKGROUND Carnitine is essential for fatty acid metabolism. Free carnitine (FCA) is excreted in the urine in the glomerulus, but is partly reabsorbed by a carnitine transporter. The mechanism underlying the decrease in serum carnitine level during pregnancy is unclear. OBJECTIVE To investigate whether low carnitine level is associated with increased renal excretion in pregnant women. METHODS We recruited 43 healthy pregnant and 25 non-pregnant women. Total carnitine (TCA) and FCA levels were measured using the enzymatic cycling method, and the acylcarnitine (ACA) level was calculated. Fractional excretion (FE) was calculated as carnitine clearance divided by creatinine clearance. RESULTS The mean TCA, FCA, and ACA levels were lower at 12 weeks of gestation in pregnant than non-pregnant women (P < .001); the levels decreased further at 36 weeks, reaching 39%, 36%, and 52% of those in non-pregnant women, respectively (P < .001). The FEs were 3-4-fold higher in pregnant women than non-pregnant women. Pregnant women had a lower serum FCA/TCA ratio than non-pregnant women (0.788 ± 0.098 vs 0.830 ± 0.074, respectively; P < .05), whereas the urine FCA/TCA ratio was similar between the groups. CONCLUSION Low carnitine level is associated with increased renal excretion during late pregnancy.
Collapse
Affiliation(s)
- Yutaro Kobori
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Clinical Laboratory, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Health Service Center, Tokyo Gakugei University, Tokyo, Japan
| | - Yoshifumi Fukushima
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Ueno
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Medical Laboratory Sciences, Nitobebunka College, Tokyo, Japan
| | - Kazumasa Sekihara
- Department of Cancer Biology, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Yuna Horiuchi
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| | - Shintaro Makino
- Department of Obstetrics and Gynecology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Emiko Nishioka
- Maternal Nursing, Division of Nursing, Faculty of Health Science and Nursing, Juntendo University, Shizuoka, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Laboratory Technology, Faculty of Medical Science, Juntendo University, Chiba, Japan
| |
Collapse
|
10
|
Hansen SSK, Krautz R, Rago D, Havelund J, Stigliani A, Færgeman NJ, Prézelin A, Rivière J, Couturier-Tarrade A, Akimov V, Blagoev B, Elfving B, Neess D, Vogel U, Khodosevich K, Hougaard KS, Sandelin A. Pulmonary maternal immune activation does not cross the placenta but leads to fetal metabolic adaptation. Nat Commun 2024; 15:4711. [PMID: 38830841 PMCID: PMC11148039 DOI: 10.1038/s41467-024-48492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.
Collapse
Affiliation(s)
- Signe Schmidt Kjølner Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| | - Robert Krautz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Daria Rago
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arnaud Stigliani
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Julie Rivière
- Paris-Saclay University, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Dos Santos Silva P, Kra G, Butenko Y, Daddam JR, Levin Y, Zachut M. Maternal supplementation with n-3 fatty acids affects placental lipid metabolism, inflammation, oxidative stress, the endocannabinoid system, and the neonate cytokine concentrations in dairy cows. J Anim Sci Biotechnol 2024; 15:74. [PMID: 38769527 PMCID: PMC11106909 DOI: 10.1186/s40104-024-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The placenta plays a crucial role in supporting and influencing fetal development. We compared the effects of prepartum supplementation with omega-3 (n-3) fatty acid (FA) sources, flaxseed oil (FLX) and fish oil (FO), on the expression of genes and proteins related to lipid metabolism, inflammation, oxidative stress, and the endocannabinoid system (ECS) in the expelled placenta, as well as on FA profile and inflammatory response of neonates. Late-pregnant Holstein dairy cows were supplemented with saturated fat (CTL), FLX, or FO. Placental cotyledons (n = 5) were collected immediately after expulsion, and extracted RNA and proteins were analyzed by RT-PCR and proteomic analysis. Neonatal blood was assessed for FA composition and concentrations of inflammatory markers. RESULTS FO increased the gene expression of fatty acid binding protein 4 (FABP4), interleukin 10 (IL-10), catalase (CAT), cannabinoid receptor 1 (CNR1), and cannabinoid receptor 2 (CNR2) compared with CTL placenta. Gene expression of ECS-enzyme FA-amide hydrolase (FAAH) was lower in FLX and FO than in CTL. Proteomic analysis identified 3,974 proteins; of these, 51-59 were differentially abundant between treatments (P ≤ 0.05, |fold change| ≥ 1.5). Top canonical pathways enriched in FLX vs. CTL and in FO vs. CTL were triglyceride metabolism and inflammatory processes. Both n-3 FA increased the placental abundance of FA binding proteins (FABPs) 3 and 7. The abundance of CNR1 cannabinoid-receptor-interacting-protein-1 (CNRIP1) was reduced in FO vs. FLX. In silico modeling affirmed that bovine FABPs bind to endocannabinoids. The FLX increased the abundance of inflammatory CD44-antigen and secreted-phosphoprotein-1, whereas prostaglandin-endoperoxide synthase 2 was decreased in FO vs. CTL placenta. Maternal FO enriched neonatal plasma with n-3 FAs, and both FLX and FO reduced interleukin-6 concentrations compared with CTL. CONCLUSION Maternal n-3 FA from FLX and FO differentially affected the bovine placenta; both enhanced lipid metabolism and modulated oxidative stress, however, FO increased some transcriptional ECS components, possibly related to the increased FABPs. Maternal FO induced a unique balance of pro- and anti-inflammatory components in the placenta. Taken together, different sources of n-3 FA during late pregnancy enhanced placental immune and metabolic processes, which may affect the neonatal immune system.
Collapse
Affiliation(s)
- Priscila Dos Santos Silva
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | - Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yana Butenko
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel
| | | | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
12
|
Powell TL, Ferchaud-Roucher V, Madi L, Uhlson C, Zemski-Berry K, Kramer AC, Erickson K, Palmer C, Chassen SS, Castillo-Castrejon M. Synthesis of phospholipids in human placenta. Placenta 2024; 147:12-20. [PMID: 38278000 PMCID: PMC10923060 DOI: 10.1016/j.placenta.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Placental phospholipid synthesis is critical for the expansion of the placental exchange surface area and for production of signaling molecules. Despite their importance, it is not yet established which enzymes involved in the de novo synthesis and remodeling of placental phospholipids are expressed and active in the human placenta. METHODS We identified phospholipid synthesis enzymes by immunoblotting in placental homogenates and immunofluorescence in placenta tissue sections. Primary human trophoblast (PHT) cells from term healthy placentas (n = 10) were cultured and exposed to 13C labeled fatty acids (16:0, 18:1 and 18:2 n-6, 22:6 n-3) for 2 and 24 h. Three phospholipid classes; phosphatidic acid, phosphatidylcholine, and lysophosphatidylcholine containing 13C fatty acids were quantified by Liquid Chromatography with tandem mass spectrometry (LC/MS-MS). RESULTS Acyl transferase and phospholipase enzymes were detected in human placenta homogenate and primarily expressed in the syncytiotrophoblast. Three representative 13C fatty acids (16:0, 18:1 and 18:2 n-6) were incorporated rapidly into phosphatidic acid in trophoblasts, but 13C labeled docosahexaenoic acid (DHA; 22:6 n-3) incorporation was not detected. 13C DHA was incorporated into phosphatidylcholine. Lysophosphatidylcholine containing all four 13C labeled fatty acids were found in high abundance. CONCLUSIONS Phospholipid synthesis and remodeling enzymes are present in the syncytiotrophoblast. 13C labeled fatty acids were rapidly incorporated into cellular phospholipids. 13C DHA was incorporated into phospholipids through the remodeling pathway rather than by de novo synthesis. These understudied pathways are highly active and critical for structure and function of the placenta.
Collapse
Affiliation(s)
- Theresa L Powell
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA; Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Veronique Ferchaud-Roucher
- University of Nantes-INRAE UMR 1280 PhAN, CHU Nantes, CRNH Ouest CHU Hotel Dieu, 1 place Alexis Ricordeau, 1er etage aile nord HNB, 44093, Nantes Cedex 1, France.
| | - Lana Madi
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Charis Uhlson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Karin Zemski-Berry
- Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Avery C Kramer
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Kathryn Erickson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Claire Palmer
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Stephanie S Chassen
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th St., Stanton L Young Biomedical Research Center Room 458, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
13
|
Matsumoto A, Kawabata T, Kagawa Y, Shoji K, Kimura F, Miyazawa T, Tatsuta N, Arima T, Yaegashi N, Nakai K. Association of maternal blood and umbilical cord blood plasma fatty acid levels with the body size at birth of Japanese infants. Prostaglandins Leukot Essent Fatty Acids 2024; 202:102638. [PMID: 39216412 DOI: 10.1016/j.plefa.2024.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mainly obtained from fish, have been implicated in fetal development. Because few studies have examined maternal and umbilical cord blood fatty acid levels and infant body size in Japan with a fish-eating culture, we examined differences in plasma fatty acid levels in pregnant women and infant size at birth. This study is a large birth cohort study of 1476 pairs of Japanese pregnant women and their infants. Maternal blood DHA levels and infant birth weight showed a positive relationship. However, analysis adjusted for gestational age did not reveal correlations. Negative relationships were found between cord blood DHA levels and infant body size, and between the difference in mother-to-child DHA levels and infant body size. Thus, the smaller the birth size, the higher the differences in umbilical cord blood DHA levels and mother-to-child DHA levels when considering gestational age.
Collapse
Affiliation(s)
- Azusa Matsumoto
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan; Department of Life and Culture, Faculty of Creative Life, Kawamura Gakuen Woman's University, 1133 Sageto, Abiko, Chiba 270-1138, Japan.
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan
| | - Yasuo Kagawa
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan
| | - Fumiko Kimura
- Faculty of Comprehensive Human Sciences, Shokei Gakuin University, 4-10-1 Yurigaoka, Natori, Miyagi 981-1295, Japan; Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Sciences, Tohoku University, 468-1 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Nozomi Tatsuta
- National Institute for Environmental Studies, Health and Environmental Risk Division, Environmental Epidemiology Section, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Nobuo Yaegashi
- Department of Gynecology and Obstetrics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kunihiko Nakai
- School of Sport and Health Science, Tokai Gakuen University, Nishinohora 21-233, Miyoshi, Aichi 470-0207, Japan
| |
Collapse
|
14
|
Houttu N, Vahlberg T, Miles EA, Calder PC, Laitinen K. The impact of fish oil and/or probiotics on serum fatty acids and the interaction with low-grade inflammation in pregnant women with overweight and obesity: secondary analysis of a randomised controlled trial. Br J Nutr 2024; 131:296-311. [PMID: 37642166 PMCID: PMC10751948 DOI: 10.1017/s0007114523001915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
N-3 long-chain PUFA (LC-PUFA) and probiotics are generally considered to induce health benefits. The objective was to investigate (1) the impact of fish oil and/or probiotics on serum fatty acids (sFA), (2) the interaction of sFA with low-grade inflammation and (3) the relation of sFA to the onset of gestational diabetes mellitus (GDM). Pregnant women with overweight/obesity were allocated into intervention groups with fish oil + placebo, probiotics + placebo, fish oil + probiotics or placebo + placebo in early pregnancy (fish oil: 1·9 g DHA and 0·22 g EPA, probiotics: Lacticaseibacillus rhamnosus HN001 and Bifidobacterium animalis ssp. lactis 420, 1010 CFU, each daily). Blood samples were collected in early (n 431) and late pregnancy (n 361) for analysis of fatty acids in serum phosphatidylcholine (PC), cholesteryl esters (CE), TAG and NEFA with GC and high-sensitivity C-reactive protein and GlycA by immunoassay and NMR spectroscopy, respectively. GDM was diagnosed according to 2 h 75 g oral glucose tolerance test. EPA in PC, CE and TAG and DHA in PC, CE, TAG and NEFA were higher in fish oil and fish oil + probiotics groups compared with placebo. EPA in serum NEFA was lower in women receiving probiotics compared with women not receiving. Low-grade inflammation was inversely associated with n-3 LC-PUFA, which were related to an increased risk of GDM. Fish oil and fish oil + probiotics consumption increase serum n-3 LC-PUFA in pregnant women with overweight/obesity. Although these fatty acids were inversely related to inflammatory markers, n-3 LC-PUFA were linked with an increased risk for GDM.
Collapse
Affiliation(s)
- Noora Houttu
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520Turku, Finland
| | - Tero Vahlberg
- Department of Clinical Medicine, Biostatistics, University of Turku, 20520Turku, Finland
| | - Elizabeth A. Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, SouthamptonSO16 6YD, UK
| | - Kirsi Laitinen
- Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, University of Turku, 20520Turku, Finland
- Department of Obstetrics and Gynaecology, Turku University Hospital, 20500Turku, Finland
- Functional Foods Forum, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Carretero-Krug A, Montero-Bravo A, Morais-Moreno C, Puga AM, Samaniego-Vaesken MDL, Partearroyo T, Varela-Moreiras G. Nutritional Status of Breastfeeding Mothers and Impact of Diet and Dietary Supplementation: A Narrative Review. Nutrients 2024; 16:301. [PMID: 38276540 PMCID: PMC10818638 DOI: 10.3390/nu16020301] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Adequate nutrition during breastfeeding is crucial for ensuring the good health of mothers and babies. Despite the high energy and nutrient demands of breastfeeding, lactating women are often vulnerable from a nutritional perspective. The nutritional focus during breastfeeding tends to be on the newborn, often neglecting the mother's diet. Therefore, in the present narrative review, nutrient intakes were compared with the dietary reference values (DRVs) proposed by the European Food Safety Authority (EFSA) as well as by the World Health Organization/Food and Agriculture Organization (WHO/FAO). In the diets of lactating mothers, dietary inadequacies were observed in the intake of some vitamins, such as folic acid, vitamin B12, vitamin A, and vitamin D, and in the intake of certain minerals like calcium, iron, and iodine; polyunsaturated omega-3 fatty acid deficiencies, primarily in eicosapentaenoic acid and docosahexaenoic acid, were also observed. On the other hand, the debate on the necessity of supplementation during lactation continues; the need for nutritional supplementation during lactation depends on many factors, such us mothers' eating habits. There seems to be a positive association between nutritional supplementation of the lactating mother and the concentration of certain nutrients in human milk. The present narrative review provides an update on the nutritional status (fatty acids and micronutrients) of breastfeeding mothers and the impact of diet and dietary supplementation on human milk composition.
Collapse
Affiliation(s)
- Alejandra Carretero-Krug
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-K.); (A.M.-B.); (C.M.-M.); (A.M.P.); (M.d.L.S.-V.); (T.P.)
- Instituto CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Ana Montero-Bravo
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-K.); (A.M.-B.); (C.M.-M.); (A.M.P.); (M.d.L.S.-V.); (T.P.)
- Instituto CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Carmen Morais-Moreno
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-K.); (A.M.-B.); (C.M.-M.); (A.M.P.); (M.d.L.S.-V.); (T.P.)
| | - Ana M. Puga
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-K.); (A.M.-B.); (C.M.-M.); (A.M.P.); (M.d.L.S.-V.); (T.P.)
- Instituto CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Mª de Lourdes Samaniego-Vaesken
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-K.); (A.M.-B.); (C.M.-M.); (A.M.P.); (M.d.L.S.-V.); (T.P.)
- Instituto CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Teresa Partearroyo
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-K.); (A.M.-B.); (C.M.-M.); (A.M.P.); (M.d.L.S.-V.); (T.P.)
- Instituto CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Gregorio Varela-Moreiras
- Grupo USP-CEU de Excelencia “Nutrición para la vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain; (A.C.-K.); (A.M.-B.); (C.M.-M.); (A.M.P.); (M.d.L.S.-V.); (T.P.)
- Instituto CEU Alimentación y Sociedad, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| |
Collapse
|
16
|
Ortiz M, Álvarez D, Muñoz Y, Crisosto N, Valenzuela R, Maliqueo M. Linoleic and Arachidonic Fatty Acids and their Potential Relationship with Inflammation, Pregnancy, and Fetal Development. Curr Med Chem 2024; 31:5046-5060. [PMID: 37415369 DOI: 10.2174/0929867331666230706161144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
A healthy maternal diet must consider an appropriate supply of long-chain polyunsaturated fatty acids (LCPUFAs) precursors to ensure adequate growth and development of the fetus. In this regard, n-6 PUFAs, predominantly linoleic (C18:2 n-6, LA) and arachidonic acid (C20:4 n-6), have a central role in the development of the central nervous system because they are part of the membrane structure and participate in the metabolism and signal transduction of cells. Nevertheless, they can also be transformed into inflammatory metabolites promoting the pathogenesis of cardiovascular diseases, cancer, and autoimmune or inflammatory conditions. In modern westernized societies, there is a high dietary consumption of foods rich in n-6 PUFAs which could have detrimental consequences for the fetus and neonate due to excessive exposure to these fatty acids (FAs). OBJECTIVE To summarize the evidence of maternal, placental, and fetal alterations that an excessive intake of n-6 polyunsaturated FAs (PUFAs), LA, and AA, could produce during pregnancy. METHODS A thorough review of the literature regarding the effects of n-6 PUFAs during pregnancy and lactation including in vivo and in vitro models, was carried out using the PubMed database from the National Library of Medicine-National Institutes of Health. RESULTS An elevated intake of n-6 PUFA, specifically LA, during pregnancy influences children's motor, cognitive, and verbal development during infancy and early childhood. Similarly, they could harm the placenta and the development of other fetal organs such as the fat tissue, liver, and cardiovascular system. CONCLUSION Maternal diet, specifically LA intake, could have significant repercussions on fetal development and long-term consequences in the offspring, including the possibility of future metabolic and mental diseases. It would be necessary to focus on the prevention of these alterations through timely dietary interventions in the target population.
Collapse
Affiliation(s)
- Macarena Ortiz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Daniela Álvarez
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Yasna Muñoz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
- Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Zhu M, Sun R, Jin L, Yu D, Huang X, Zhu T, Gong Y, Chen Y, Shi J, Wang Q, Lu C, Wang D. Metabolomics profiling of maternal and umbilical cord blood in normoglycemia macrosomia. J Matern Fetal Neonatal Med 2023; 36:2270761. [PMID: 37848386 DOI: 10.1080/14767058.2023.2270761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Background: Macrosomia is a common disorder that occurs during pregnancy. We investigated the comprehensive metabolite profiles of pregnant maternal and fetal sera in normoglycemic macrosomia in a Chinese population. Methods: Forty pregnant women and their fetuses were included in the study (twenty macrosomia patients and twenty normal-weight controls). Maternal and umbilical cord serum metabolites were identified using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Results: In total, 203 metabolites were identified. Lipids and lipid-like molecules were the predominant metabolites. Fifty-three metabolites with significant differences were obtained in the maternal samples. In the macrosomia group, the levels of docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid were significantly higher than those in the control group. Umbilical cord serum samples were obtained for 24 different metabolites. The maternal-fetal gradient of polyunsaturated fatty acids was decreased in the macrosomia group. Aconitic acid, citric acid, isocitric acid, 2-methylhexanoic acid, and 12-hydroxystearic acid were the common differential metabolites in the maternal and umbilical cord serum samples. Conclusion: There were obvious metabolic abnormalities in the sera of pregnant women and fetuses with macrosomia. Lipids and lipid-like molecules were the predominant differential metabolites but had different classifications in the maternal and umbilical cord serum. These results may provide new insights into the long-term metabolic disorders associated with macrosomia.
Collapse
Affiliation(s)
- Mianmian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Rongyue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Lixu Jin
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Dandan Yu
- Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Xiaoxia Huang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Ting Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yujing Gong
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Yuan Chen
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Jiamin Shi
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Qiu Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
18
|
Powell TL, Barentsen K, Vaughan O, Uhlson C, Zemski Berry K, Erickson K, Faer K, Chassen SS, Jansson T. Knockdown of Placental Major Facilitator Superfamily Domain Containing 2a in Pregnant Mice Reduces Fetal Brain Growth and Phospholipid Docosahexaenoic Acid Content. Nutrients 2023; 15:4956. [PMID: 38068814 PMCID: PMC10708493 DOI: 10.3390/nu15234956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid critical for fetal brain development that is transported to the fetus from the mother by the placenta. The lysophosphatidylcholine (LPC) transporter, Major Facilitator Superfamily Domain Containing 2a (MFSD2a), is localized in the basal plasma membrane of the syncytiotrophoblast of the human placenta, and MFSD2a expression correlates with umbilical cord blood LPC-DHA levels in human pregnancy. We hypothesized that placenta-specific knockdown of MFSD2a in pregnant mice reduces phospholipid DHA accumulation in the fetal brain. METHODS Mouse blastocysts (E3.5) were transduced with an EGFP-expressing lentivirus containing either an shRNA targeting MFSD2a or a non-coding sequence (SCR), then transferred to pseudopregnant females. At E18.5, fetuses were weighed and their placenta, brain, liver and plasma were collected. MFSD2a mRNA expression was determined by qPCR in the brain, liver and placenta and phospholipid DHA was quantified by LC-MS/MS. RESULTS MFSD2a-targeting shRNA reduced placental mRNA MFSD2a expression by 38% at E18.5 (n = 45, p < 0.008) compared with SCR controls. MFSD2a expression in the fetal brain and liver were unchanged. Fetal brain weight was reduced by 13% (p = 0.006). Body weight, placenta and liver weights were unaffected. Fetal brain phosphatidyl choline and phosphatidyl ethanolamine DHA content was lower in fetuses with placenta-specific MFSD2a knockdown. CONCLUSIONS Placenta-specific reduction in expression of the LPC-DHA transporter MFSD2a resulted in reduced fetal brain weight and lower phospholipid DHA content in the fetal brain. These data provide mechanistic evidence that placental MFSD2a mediates maternal-fetal transfer of LPC-DHA, which is critical for brain growth.
Collapse
Affiliation(s)
- Theresa L. Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kenneth Barentsen
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Owen Vaughan
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Heath, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Charis Uhlson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kathryn Erickson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kelsey Faer
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Stephanie S. Chassen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Liu N, He Y, Zhao F, Li X, Chen Y, Jiang B, Wei M, Li D, Cai L. Association between maternal erythrocyte PUFAs during pregnancy and neurodevelopment in children at 2 years of age: a birth cohort study. Food Funct 2023; 14:7938-7945. [PMID: 37552113 DOI: 10.1039/d3fo01853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background: Previous studies on prenatal polyunsaturated fatty acids (PUFAs) and children's neurodevelopment have shown inconsistent results, and evidence from the Asian population is scarce. Objective: To investigate the association between maternal erythrocyte PUFAs and neurodevelopment in children in the Chinese population. Methods: We included 242 mother-child pairs from the Yuexiu birth cohort. The composition of maternal erythrocyte fatty acids during pregnancy was measured by gas chromatography. Each PUFA was divided into 3 tertiles. Neurodevelopment in children was evaluated with the Ages and Stages Questionnaire at 2 years of age, including 5 domains of development: communication, gross motor, fine motor, problem solving, and personal-social skills. Results: Maternal eicosapentaenoic acid (EPA) [OR (95% CI): 0.34 (0.15, 0.74) for tertile 2, and 0.31 (0.13, 0.70) for tertile 3] was associated with a reduced risk of potential developmental delay in gross motor skills. Conversely, arachidonic acid (AA) [OR (95% CI): 2.54 (1.17, 5.70) for tertile 3] was associated with an increased risk of potential developmental delay in personal-social skills. The ratio of AA/EPA [OR (95% CI): 2.64 (1.18, 6.15) for tertile 3] was associated with an increased risk of potential developmental delay in gross motor skills. No significant association was found between other PUFAs and neurodevelopment. Conclusion: This birth cohort has first shown a beneficial association between maternal EPA and gross motor skills of children. Meanwhile, maternal AA and the ratio of AA/EPA have negative associations with neurodevelopment in children.
Collapse
Affiliation(s)
- Nan Liu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
- Shenzhen Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yannan He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Feng Zhao
- Center of Lipid & Chronic Diseases, Suzhou Industrial Technology Research Institute, Zhejiang University, Hangzhou, China
| | - Xiaoxu Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Yujing Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Bibo Jiang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Min Wei
- Shenzhen Nanshan Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Wu Z, Hu G, Zhang Y, Ao Z. IGF2 May Enhance Placental Fatty Acid Metabolism by Regulating Expression of Fatty Acid Carriers in the Growth of Fetus and Placenta during Late Pregnancy in Pigs. Genes (Basel) 2023; 14:genes14040872. [PMID: 37107630 PMCID: PMC10137774 DOI: 10.3390/genes14040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fatty acids (FAs) are essential substances for the growth and development of the fetus and placenta. The growing fetus and placenta must obtain adequate FAs received from the maternal circulation and facilitated by various placental FA carriers, including FA transport proteins (FATPs), FA translocase (FAT/CD36), and cytoplasmic FA binding proteins (FABPs). Placental nutrition transport was regulated by imprinted genes H19 and insulin-like growth factor 2 (IGF2). Nevertheless, the relationship between the expression patterns of H19/IGF2 and placental fatty acid metabolism throughout pig pregnancy remains poorly studied and unclear. We investigated the placental fatty acid profile, expression patterns of FA carriers, and H19/IGF2 in the placentae on Days 40 (D40), 65 (D65), and 95 (D95) of pregnancy. The results showed that the width of the placental folds and the number of trophoblast cells of D65 placentae were significantly increased than those of D40 placentae. Several important long-chain FAs (LCFAs), including oleic acid, linoleic acid, arachidonatic acid, eicosapentaenoic acid, and docosatetraenoic acid, in the pig placenta showed dramatically increased levels throughout pregnancy. The pig placenta possessed higher expression levels of CD36, FATP4, and FABP5 compared with other FA carriers, and their expression levels had significantly upregulated 2.8-, 5.6-, and 12.0-fold from D40 to D95, respectively. The transcription level of IGF2 was dramatically upregulated and there were corresponding lower DNA methylation levels in the IGF2 DMR2 in D95 placentae relative to D65 placentae. Moreover, in vitro experimentation revealed that the overexpression of IGF2 resulted in a significant increase in fatty acid uptake and expression levels of CD36, FATP4, and FABP5 in PTr2 cells. In conclusion, our results indicate that CD36, FATP4, and FABP5 may be important regulators that enhance the transport of LCFAs in the pig placenta and that IGF2 may be involved in FA metabolism by affecting the FA carriers expression to support the growth of the fetus and placenta during late pregnancy in pigs.
Collapse
Affiliation(s)
- Zhimin Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangling Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
21
|
Roque-Jiménez JA, Oviedo-Ojeda MF, Whalin M, Lee-Rangel HA, Relling AE. Ewe early gestation supplementation with eicosapentaenoic and docosahexaenoic acids affects the liver, muscle, and adipose tissue fatty acid profile and liver mRNA expression in the offspring. J Anim Sci 2023; 101:skad144. [PMID: 37158288 PMCID: PMC10263116 DOI: 10.1093/jas/skad144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Our objectives were to assess the effects of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) supplementation to pregnant ewes during the first third of gestation on their offspring's liver, adipose, and muscle tissues fatty acid (FA) profile and liver mRNA expression after a finishing period receiving diets with different FA profiles. Twenty-four post-weaning lambs, blocked by sex and body weight, were used in a 2 × 2 factorial arrangement of treatments. The first factor was dam supplementation (DS) in the first third of gestation with 1.61% of Ca salts of palm fatty acid distillate (PFAD) or Ca salts enriched with EPA-DHA. Ewes were exposed to rams with marking paint harnesses during the breeding. Ewes started DS at the day of mating, considered day 1 of conception. Twenty-eight days after mating, ultrasonography was used to confirm pregnancy, and nonpregnant ewes were removed from the groups. After weaning, the offspring lambs were supplemented (LS, second main factor) with two different FA sources (1.48% of PFAD or 1.48% of EPA-DHA) during the growing and fattening phase. Lambs were fed the LS diet for 56 d and sent to slaughter, where the liver, muscle, and adipose tissue samples were collected for FA analysis. Liver samples were collected for relative mRNA expression for genes associated with FA transport and metabolism. The data were analyzed as a mixed model in SAS (9.4). In the liver, the amount of C20:5 and C22:6 (P < 0.01) increased in lambs with LS-EPA-DHA, while some C18:1 cis FA isomers were greater in the lambs from DS-PFAD. In muscle, amounts of C22:1, C20:5, and C22:5 increased (P < 0.05) in lambs born from DS-EPA-DHA. The adipose tissue amounts of C20:5, C22:5, and C22:6 were greater (P < 0.01) in lambs from LS-EPA-DHA. Interactions (DS × LS; P < 0.05) were observed for DNMT3β, FABP-1, FABP-5, SCD, and SREBP-1; having greater mRNA expression in liver tissue of LS-EPA-DHA, DS-PFAD and LS-PFAD, DS-EPA-DHA lambs compared with the lambs in the other two treatments. Liver ELOVL2 mRNA relative expression (P < 0.03) was greater in the offspring of DS-PFAD. Relative mRNA expression (P < 0.05) of GLUT1, IGF-1, LPL, and PPARγ increased in the liver from LS-EPA-DHA lambs. Dam supplementation during early gestation using with different FA sources changed the lipid FA profile in MT, LT, and SAT during the finishing period depending on the tissue and type of FA source administered during the growing phase.
Collapse
Affiliation(s)
- José A Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Mario F Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor A Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
22
|
Geographic variations and determinants of EPA plus DHA and EPA alone in pregnant and lactating women from China. Br J Nutr 2022; 128:733-743. [PMID: 34526160 DOI: 10.1017/s0007114521003731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
EPA and DHA are essential for maternal and fetal health, but epidemiological data are sparse in China. We examined the trends of EPA alone and a combination of EPA plus DHA in pregnant and lactating women in three distinct geographic regions in China and explored their potential influencing factors. A total of 1015 healthy women during mid-pregnancy, late pregnancy or lactation were recruited from Weihai (coastland), Yueyang (lakeland) and Baotou (inland) cities of China between May and July of 2014. Maternal EPA and DHA concentrations (percentage of total fatty acids) in plasma and erythrocytes were measured by capillary GC. Adjusted EPA plus DHA concentrations in both plasma and erythrocytes significantly declined from mid-pregnancy (2·92 %, 6·95 %) to late pregnancy (2·20 %, 6·42 %) and lactation (2·40 %, 6·29 %) (Ptrend < 0·001); and both concentrations were highest in coastland, followed by lakeland, and lowest in inland (P < 0·001). Regarding EPA alone, the concentrations were higher in women during lactation or late pregnancy and in women in coastland and inland areas. Moreover, concentrations of EPA or EPA plus DHA were higher in women with older age, higher education, higher annual family income per capita and higher dietary intake of marine aquatic product and mutton. In lactating women, erythrocyte EPA concentration was higher in those having breast-feeding partially v. exclusively. In conclusion, maternal plasma and erythrocyte concentrations of EPA plus DHA or EPA alone differed with geographic regions, physiological periods and maternal characteristics, indicating a need of population-specific health strategies to improve fatty acids status in pregnant and lactating women.
Collapse
|
23
|
Mir SA, Chen L, Burugupalli S, Burla B, Ji S, Smith AAT, Narasimhan K, Ramasamy A, Tan KML, Huynh K, Giles C, Mei D, Wong G, Yap F, Tan KH, Collier F, Saffery R, Vuillermin P, Bendt AK, Burgner D, Ponsonby AL, Lee YS, Chong YS, Gluckman PD, Eriksson JG, Meikle PJ, Wenk MR, Karnani N. Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk: a mother-offspring cohort study. BMC Med 2022; 20:242. [PMID: 35871677 PMCID: PMC9310480 DOI: 10.1186/s12916-022-02432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. METHODS LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26-28 weeks of gestation (n=752) and 4-5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. RESULTS Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=-2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=-0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. CONCLUSIONS In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. CLINICAL TRIAL REGISTRATION This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875 .
Collapse
Affiliation(s)
- Sartaj Ahmad Mir
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Li Chen
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Satvika Burugupalli
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Adam Alexander T Smith
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Kothandaraman Narasimhan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Adaikalavan Ramasamy
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Karen Mei-Ling Tan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Ding Mei
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Gerard Wong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore
| | - Fabian Yap
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Kok Hian Tan
- KK Women's and Children's Hospital, Singapore, Singapore
| | - Fiona Collier
- School of Medicine, Deakin University, Geelong, Australia.,Child Health Research Unit, Barwon Health, Geelong, Australia.,Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, Australia.,Child Health Research Unit, Barwon Health, Geelong, Australia.,Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - David Burgner
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.,Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Folkhalsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia.
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore. .,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Neerja Karnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore. .,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore, 117609, Singapore. .,DataHub Division, Bioinformatics Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
24
|
Lin LH, Lin J, Yan JY. Interactive Affection of Pre-Pregnancy Overweight or Obesity, Excessive Gestational Weight Gain and Glucose Tolerance Test Characteristics on Adverse Pregnancy Outcomes Among Women With Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:942271. [PMID: 35872998 PMCID: PMC9301308 DOI: 10.3389/fendo.2022.942271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose To examine the combined effect of pre-pregnancy overweight or obesity, excessive gestational weight gain, and glucose tolerance status on the incidence of adverse pregnancy outcomes among women with gestational diabetes mellitus. Methods A observational study including 5529 gestational diabetes mellitus patients was performed. Logistic regression were used to assess the independent and multiplicative interactions of overweight or obese, excessive gestational weight gain, abnormal items of oral glucose tolerance test and adverse pregnancy outcomes. Additive interactions were calculated using an Excel sheet developed by Anderson to calculate relative excess risk. Results Overall 1076(19.46%) study subject were overweight or obese and 1858(33.60%) women gained weight above recommended. Based on IADPSG criteria, more than one-third women with two, or three abnormal glucose values. Preconception overweight or obesity, above recommended gestational weight gain, and two or more abnormal items of oral glucose tolerance test parameters significantly increased the risk of adverse pregnancy outcomes, separately. After accounting for confounders, each two of overweight or obesity, excessive gestational weight gain, two or more abnormal items of OGTT parameters, the pairwise interactions on adverse pregnancy outcomes appear to be multiplicative. Coexistence of preconception overweight or obesity, above recommended gestational weight gain and two or more abnormal items of oral glucose tolerance test parameters increased the highest risk for adverse pregnancy outcomes. No additive interaction was found. Conclusions Pre-pregnancy overweight or obesity, excessive gestational weight gain, two or more abnormal items of OGTT parameters contribute to adverse pregnancy outcomes independently among women with gestational diabetes mellitus. Additionally, the combined effect between these three factors and adverse pregnancy outcomes appear to be multiplicative. Interventions focus on maternal overweight or obesity and gestational weight gain should be offered to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Li-hua Lin
- Department of Healthcare, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Juan Lin
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Jian-ying Yan
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, Fuzhou, China
| |
Collapse
|
25
|
Rasmussen JM, Thompson PM, Gyllenhammer LE, Lindsay KL, O'Connor TG, Koletzko B, Entringer S, Wadhwa PD, Buss C. Maternal free fatty acid concentration during pregnancy is associated with newborn hypothalamic microstructure in humans. Obesity (Silver Spring) 2022; 30:1462-1471. [PMID: 35785481 PMCID: PMC9541037 DOI: 10.1002/oby.23452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study tested the hypothesis, in a prospective cohort study design, that maternal saturated free fatty acid (sFFA) concentration during pregnancy is prospectively associated with offspring (newborn) hypothalamic (HTH) microstructure and to explore the functional relevance of this association with respect to early-childhood body fat percentage (BF%). METHODS In N = 94 healthy newborns (born mean 39.3 [SD 1.5] weeks gestation), diffusion-weighted magnetic resonance imaging was performed shortly after birth (25.3 [12.5] postnatal days), and a subgroup (n = 37) underwent a dual-energy x-ray absorptiometry scan in early childhood (4.7 [SD 0.7] years). Maternal sFFA concentration during pregnancy was quantified in fasting blood samples via liquid chromatography-mass spectrometry. Infant HTH microstructural integrity was characterized using mean diffusivity (MD). Multiple linear regression was used to test the association between maternal sFFA and HTH MD, accounting for newborn sex, age at scan, mean white matter MD, and image quality. Multiple linear regression models also tested the association between HTH MD and early-childhood BF%, accounting for breastfeeding status. RESULTS Maternal sFFA during pregnancy accounted for 8.3% of the variation in newborn HTH MD (β-std = 0.25; p = 0.006). Furthermore, newborn HTH MD prospectively accounted for 15% of the variation in early-childhood BF% (β-std = 0.32; p = 0.019). CONCLUSIONS These findings suggest that maternal overnutrition during pregnancy may influence the development of the fetal hypothalamus, which, in turn, may have clinical relevance for childhood obesity risk.
Collapse
Affiliation(s)
- Jerod M. Rasmussen
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Lauren E. Gyllenhammer
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
| | - Karen L. Lindsay
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- University of California, Irvine Susan Samueli Integrative Health InstituteCollege of Health Sciences, University of California, IrvineIrvineCaliforniaUSA
| | - Thomas G. O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, and Obstetrics and GynecologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr von Hauner Children's HospitalLudwig‐Maximillian University Munich, University HospitalsMunichGermany
| | - Sonja Entringer
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Institute of Medical PsychologyCharité University Hospital Berlin, corporate member of Free University of Berlin, Humboldt‐University of BerlinBerlinGermany
| | - Pathik D. Wadhwa
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Psychiatry and Human BehaviorUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Obstetrics and GynecologyUniversity of California, IrvineIrvineCaliforniaUSA
- Department of EpidemiologyUniversity of California, IrvineIrvineCaliforniaUSA
| | - Claudia Buss
- Development, Health and Disease Research ProgramUniversity of California, IrvineIrvineCaliforniaUSA
- Department of PediatricsUniversity of California, IrvineIrvineCaliforniaUSA
- Institute of Medical PsychologyCharité University Hospital Berlin, corporate member of Free University of Berlin, Humboldt‐University of BerlinBerlinGermany
| |
Collapse
|
26
|
Rodents on a high-fat diet born to mothers with gestational diabetes exhibit sex-specific lipidomic changes in reproductive organs. Acta Biochim Biophys Sin (Shanghai) 2022; 54:736-747. [PMID: 35643955 PMCID: PMC9828243 DOI: 10.3724/abbs.2022052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Maternal gestatonal diabetes mellitus (GDM) and offspring high-fat diet (HFD) have been shown to have sex-specific detrimental effects on the health of the offspring. Maternal GDM combined with an offspring HFD alters the lipidomic profiles of offspring reproductive organs with sex hormones and increases insulin signaling, resulting in offspring obesity and diabetes. The pre-pregnancy maternal GDM mice model is established by feeding maternal C57BL/6 mice and their offspring are fed with either a HFD or a low-fat diet (LFD). Testis, ovary and liver are collected from offspring at 20 weeks of age. The lipidomic profiles of the testis and ovary are characterized using gas chromatography-mass spectrometry. Male offspring following a HFD have elevated body weight. In reproductive organs and hormones, male offspring from GDM mothers have decreased testes weights and testosterone levels, while female offspring from GDM mothers show increased ovary weights and estrogen levels. Maternal GDM aggravates the effects of an offspring HFD in male offspring on the AKT pathway, while increasing the risk of developing inflammation when expose to a HFD in female offspring liver. Testes are prone to the effect of maternal GDM, whereas ovarian metabolite profiles are upregulated in maternal GDM and downregulated in offspring following an HFD. Maternal GDM and an offspring HFD have different metabolic effects on offspring reproductive organs, and PUFAs may protect against detrimental outcomes in the offspring, such as obesity and diabetes.
Collapse
|
27
|
Garcia-Santillan JA, Lazo-de-la-Vega-Monroy ML, Rodriguez-Saldaña GC, Solis-Barbosa MA, Corona-Figueroa MA, Gonzalez-Dominguez MI, Gomez-Zapata HM, Malacara JM, Barbosa-Sabanero G. Placental Nutrient Transporters and Maternal Fatty Acids in SGA, AGA, and LGA Newborns From Mothers With and Without Obesity. Front Cell Dev Biol 2022; 10:822527. [PMID: 35399516 PMCID: PMC8990844 DOI: 10.3389/fcell.2022.822527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/25/2022] [Indexed: 12/01/2022] Open
Abstract
Adverse environmental factors in early life result in fetal metabolic programming and increased risk of adult diseases. Birth weight is an indirect marker of the intrauterine environment, modulated by nutrient availability and placental transport capacity. However, studies of placental transporters in idiopathic birth weight alterations and in maternal obesity in relation to neonatal metabolic outcomes are scarce. We aimed to analyze the placental nutrient transporter protein expression in small (SGA, n = 14), adequate (AGA, n = 18), and large (LGA n = 10) gestational age term for newborns from healthy or obese mothers (LGA-OB, n = 9) and their association with maternal fatty acids, metabolic status, placental triglycerides, and neonatal outcomes. The transporter expression was determined by Western blot. The fatty acid profile was evaluated by gas chromatography, and placental triglycerides were quantified by an enzymatic colorimetric method. GLUT1 was higher in LGA and lower in SGA and positively correlated with maternal HbA1c and placental weight (PW). SNAT2 was lower in SGA, while SNAT4 was lower in LGA-OB. FATP1 was lower in SGA and higher in LGA. SNAT4 correlated negatively and FATP1 correlated positively with the PW and birth anthropometry (BA). Placental triglycerides were higher in LGA and LGA-OB and correlated with pregestational BMI, maternal insulin, and BA. Maternal docosahexaenoic acid (DHA) was higher in SGA, specifically in male placentas, correlating negatively with maternal triglycerides, PW, cord glucose, and abdominal perimeter. Palmitic acid (PA) correlated positively with FATP4 and cord insulin, linoleic acid correlated negatively with PA and maternal cholesterol, and arachidonic acid correlated inversely with maternal TG and directly with FATP4. Our study highlights the importance of placental programming in birth weight both in healthy and obese pregnancies.
Collapse
Affiliation(s)
| | | | | | - Miguel-Angel Solis-Barbosa
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Campus Leon, Guanajuato, Mexico
| | | | | | | | - Juan-Manuel Malacara
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Campus Leon, Guanajuato, Mexico
| | - Gloria Barbosa-Sabanero
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Campus Leon, Guanajuato, Mexico
- *Correspondence: Gloria Barbosa-Sabanero,
| |
Collapse
|
28
|
Nema J, Joshi N, Sundrani D, Joshi S. Influence of maternal one carbon metabolites on placental programming and long term health. Placenta 2022; 125:20-28. [DOI: 10.1016/j.placenta.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
29
|
Voerman E, Jaddoe VWV, Shokry E, Ruijter GJG, Felix JF, Koletzko B, Gaillard R. Associations of maternal and infant metabolite profiles with foetal growth and the odds of adverse birth outcomes. Pediatr Obes 2022; 17:e12844. [PMID: 34384140 PMCID: PMC9285592 DOI: 10.1111/ijpo.12844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adaptations in maternal and foetal metabolic pathways may predispose to altered foetal growth and adverse birth outcomes. OBJECTIVE To assess the associations of maternal early-pregnancy metabolite profiles and infant metabolite profiles at birth with foetal growth from first trimester onwards and the odds of adverse birth outcomes. METHODS In a prospective population-based cohort among 976 Dutch pregnant women and their children, serum concentrations of amino acids, non-esterified fatty acids (NEFA), phospholipids (PL) and carnitines in maternal early-pregnancy blood and in cord blood were obtained by liquid-chromatography tandem mass spectrometry. Information on foetal growth was available from first trimester onwards. RESULTS After false discovery rate correction for multiple testing, higher infant total and individual NEFA concentrations were associated with a lower weight, length, and head circumference at birth. Higher infant total and individual acyl-lysophosphatidylcholine (lyso.PC.a) and alkyl-lysophosphatidylcholine concentrations were associated with higher weight and head circumference (lyso.PC.a only) at birth, higher odds of LGA and lower odds of SGA. Few individual maternal metabolites were associated with foetal growth measures in third trimester and at birth, but not with the odds of adverse birth outcomes. CONCLUSIONS Our results suggest that infant metabolite profiles, particularly total and individual lyso.PC.a and NEFA concentrations, were strongly related to growth measures at birth and the odds of adverse birth outcomes. Few individual maternal early-pregnancy metabolites, but not total metabolite concentrations, are associated with foetal growth measures in third trimester and at birth.
Collapse
Affiliation(s)
- Ellis Voerman
- The Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Engy Shokry
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's HospitalLMU ‐ Ludwig‐Maximilians Universität MünchenMunichGermany
| | - George J. G. Ruijter
- Department of Clinical Genetics, Center for Lysosomal and Metabolic Disease, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's HospitalLMU ‐ Ludwig‐Maximilians Universität MünchenMunichGermany
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands,Department of Pediatrics, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
30
|
Chen Q, Chen H, Wang M, Qiu L, Xi F, Jiang Y, Lv M, Huang HF, Luo Q. The association between alteration of maternal lipid levels and birthweight at term: A within-family comparison. Front Endocrinol (Lausanne) 2022; 13:989663. [PMID: 36246889 PMCID: PMC9562839 DOI: 10.3389/fendo.2022.989663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
CONTEXT Maternal lipid levels affect birthweight and the long-term health of the offsprings. However, this association could be influenced by genetic and other common factors. OBJECTIVE This work aimed to explore the relationship between maternal lipid levels and birthweight of two pregnancies in the same mother. METHODS In this population-based cohort study, 705 women and their 1 410 offsprings were included. From an initial sample of women with more than one singleton birth in the database, we made the following exclusions: missing data for pre-pregnancy BMI, pregnancy weight gain, birthweight and lipid values; maternal age less than 19 or older than 44 years old; gestational age < 37 weeks or > 41weeks, gestational diabetes mellitus/diabetic. In the second and third trimesters, serum samples were collected for the determination of fasting total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels. Then we assessed the association between maternal lipids and birthweight. RESULTS Infants of women whose 2nd-trimester TC increased by 10th-20th percentile (-0.92~-0.56 mmol/L) from 1st to 2nd pregnancy were 239.69 (62.32~417.06) g lighter at birth than were infants of women those of 40th-50th percentile (-0.20~-0.03 mmol/L). Parity, gestational age, neonatal gender, maternal pre-pregnancy body mass index, maternal weight gain, and 3rd-trimester TC and HDL-C were all associated with higher birth weight. Every unit increase in TC in the third trimester increases birthweight by 53.13 (14.32 ~91.94) g. CONCLUSION Maternal TC level is associated with birthweight independent of shared genes. TC may be used to guide diet and predict birthweight combined with ultrasound and other indicators.
Collapse
Affiliation(s)
- Qinqing Chen
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huiqi Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Minmin Wang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liping Qiu
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangfang Xi
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Lv
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - He-Feng Huang
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qiong Luo, ; He-Feng Huang,
| | - Qiong Luo
- Department of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Qiong Luo, ; He-Feng Huang,
| |
Collapse
|
31
|
Lee JG, Kim G, Park SG, Yon JM, Yeom J, Song HE, Cheong SA, Lim JS, Sung YH, Kim K, Yoo HJ, Hong EJ, Nam KH, Seong JK, Kim CJ, Nam SY, Baek IJ. Lipid signatures reflect the function of the murine primary placentation. Biol Reprod 2021; 106:583-596. [PMID: 34850819 DOI: 10.1093/biolre/ioab219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The placenta regulates maternal-fetal communication, and its defect leads to significant pregnancy complications. The maternal and embryonic circulations are primitively connected in early placentation, but the function of the placenta during this developmentally essential period is relatively unknown. We thus performed a comparative proteomic analysis of the placenta before and after primary placentation and found that the metabolism and transport of lipids were characteristically activated in this period. The placental fatty acid (FA) carriers in specific placental compartments were upregulated according to gestational age, and metabolomic analysis also showed that the placental transport of FAs increased in a time-dependent manner. Further analysis of two mutant mice models with embryonic lethality revealed that lipid-related signatures could reflect the functional state of the placenta. Our findings highlight the importance of the nutrient transport function of the primary placenta in the early gestational period and the role of lipids in embryonic development.
Collapse
Affiliation(s)
- Jong Geol Lee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Globinna Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seul Gi Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Jung-Min Yon
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeonghun Yeom
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Eun Song
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-A Cheong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Hoan Nam
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Yoon Nam
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Korea Mouse Phenotyping Center, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Peng J, Yang M, Li G, Zhang X, Huang Y, Tang Y. Effects of palmitic acid and eicosapentaenoic acid on angiogenesis of porcine vascular endothelial cells. Vet Med Sci 2021; 7:2260-2267. [PMID: 34547178 PMCID: PMC8604142 DOI: 10.1002/vms3.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Restricted placental angiogenesis is an important cause of intrauterine growth retardation in piglets. During pregnancy, sow obesity can result in an increase in placental lipid deposition, subsequently inhibiting placental angiogenesis and fetal development. However, the effect of different types of fatty acids on placental angiogenesis is still unclear. Trophoblast cells and vascular endothelial cells constitute two important types of placental tissue. In this study, we used palmitic acid (C16:0) and eicosapentaenoic acid (C20:5, n-3), respectively, to treat porcine trophectoderm cells (pTr2) and porcine iliac artery endothelial cells (PIEC) to study the effects of saturated fatty acids and n-3 polyunsaturated fatty acids (PUFAs) on placental angiogenesis in vitro. We found that C16:0 caused significant cytotoxicity in pTr2 and PIEC (p < 0.01) and inhibited the proliferation and migration of PIEC (p < 0.01), whereas C20:5 treatment exhibited very low cytotoxicity and minimal inhibition of cellular proliferation. Meanwhile, a low concentration of C16:0 had no effect on the tube formation in PIEC, whereas C20:5 significantly promoted tube formation of PIEC (p < 0.01). These results suggested that saturated fatty acids and n-3 PUFAs had different effects on placental angiogenesis. As essential functional fatty acid, n-3 PUFA might be effective measure in alleviating the placental lipotoxicity caused by sow obesity during pregnancy.
Collapse
Affiliation(s)
- Jie Peng
- Innovative Institute of Animal Healthy BreedingZhongkai University of Agriculture and EngineeringGuangzhouChina
- College of Animal Sciences and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Menglin Yang
- Innovative Institute of Animal Healthy BreedingZhongkai University of Agriculture and EngineeringGuangzhouChina
- College of Animal Sciences and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Guoli Li
- Guangzhou Fishtech Biotechnology Co., Ltd.GuangzhouChina
| | - Xiu Zhang
- Ministry of Agriculture and Rural AffairsWENS Research InstituteYunfuChina
| | - Yanhua Huang
- Innovative Institute of Animal Healthy BreedingZhongkai University of Agriculture and EngineeringGuangzhouChina
- College of Animal Sciences and TechnologyZhongkai University of Agriculture and EngineeringGuangzhouChina
- Guangzhou Fishtech Biotechnology Co., Ltd.GuangzhouChina
| | - Yimei Tang
- Innovative Institute of Animal Healthy BreedingZhongkai University of Agriculture and EngineeringGuangzhouChina
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhouChina
| |
Collapse
|
33
|
Chen KY, Lin SY, Lee CN, Wu HT, Kuo CH, Kuo HC, Chuang CC, Kuo CH, Chen SC, Fan KC, Lin MW, Fang CT, Li HY. Maternal Plasma Lipids During Pregnancy, Insulin-like Growth Factor-1, and Excess Fetal Growth. J Clin Endocrinol Metab 2021; 106:e3461-e3472. [PMID: 34021357 DOI: 10.1210/clinem/dgab364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT Maternal lipids during pregnancy and placental growth factors are associated with excess fetal growth. However, how these factors interact to increase the risk of delivering large-for-gestational-age (LGA) neonates remains unclear. In this study, we investigated the relationship between maternal plasma triglycerides (TGs) and free fatty acids (FFAs) during pregnancy, cord blood insulin-like growth factors (IGF), and LGA. OBJECTIVE In a cell model, we studied the effect of different FAs on placental IGF-1 secretion. METHODS This cohort study included pregnant women with term pregnancy and without diabetes or hypertensive disorders in pregnancy. Maternal fasting plasma TGs and FFAs were measured in the second trimester. Cord blood IGF-1, IGF-2, and IGF binding protein-1 and protein-3 were measured at the time of delivery. A human trophoblast cell line, 3A-sub-E, was used to evaluate the effect of different FFAs on placental IGF-1 secretion. RESULTS We recruited 598 pregnant women-neonate pairs. Maternal plasma TG (180 mg/dL [152.5-185.5 mg/dL] vs 166 mg/dL [133-206 mg/dL], P = .04) and cord blood IGF-1 concentrations (72.7 ± 23.0 vs 54.1 ± 22.8 ng/mL, P < .001) were higher in the LGA group and were significantly associated with birth weight z score. Maternal plasma free palmitic acid (PA) and stearic acid (SA), but not oleic acid (OA) or linoleic acid (LA), were significantly associated with cord blood IGF-1 concentrations. In 3A-sub-E cells, treatment with PA, SA, and LA, but not OA, induced IGF-1 expression and secretion. CONCLUSION Certain FFAs can induce placental IGF-1 secretion, which suggests a potential pathophysiology linking maternal plasma lipids and LGA.
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Internal Medicine, ANSN Clinic, Hsin-Chu 300, Taiwan
| | - Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 100, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-Chi Chuang
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Heng Kuo
- Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- College of Medicine, Fu Jen Catholic University, New Taipei City 243, Taiwan
| | - Szu-Chi Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Ren-Ai branch, Taipei 100, Taiwan
| | - Kang-Chih Fan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 300, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chi-Tai Fang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
34
|
Prado-Cabrero A, Nolan JM. Omega-3 nutraceuticals, climate change and threats to the environment: The cases of Antarctic krill and Calanus finmarchicus. AMBIO 2021; 50:1184-1199. [PMID: 33502683 PMCID: PMC8068752 DOI: 10.1007/s13280-020-01472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The nutraceutical market for EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) is promoting fishing for Euphasia superba (Antarctic krill) in the Southern Ocean and Calanus finmarchicus in Norwegian waters. This industry argues that these species are underexploited, but they are essential in their ecosystems, and climate change is altering their geographical distribution. In this perspective, we advocate the cessation of fishing for these species to produce nutraceuticals with EPA and DHA. We argue that this is possible because, contrary to what this industry promotes, the benefits of these fatty acids only seem significant to specific population groups, and not for the general population. Next, we explain that this is desirable because there is evidence that these fisheries may interact with the impact of climate change. Greener sources of EPA and DHA are already available on the market, and their reasonable use would ease pressure on the Arctic and Antarctic ecosystems.
Collapse
Affiliation(s)
- Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Carriganore, Waterford, Ireland
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Carriganore, Waterford, Ireland
| |
Collapse
|
35
|
Safety and Efficacy of Early High Parenteral Lipid Supplementation in Preterm Infants: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13051535. [PMID: 34063216 PMCID: PMC8147506 DOI: 10.3390/nu13051535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
The objective of this systematic review and meta-analysis was to summarize the effects of early initiation and achievement of a high dose of parenteral lipids (≥1.5 g/kg/day reached within the first 24 h of birth) on growth and adverse outcomes in preterm infants. PubMed, EMBASE, and Cochrane databases were utilized to search for publications for this meta-analysis. Randomized controlled trials were eligible if data on growth or clinical outcome was available. The search returned nine studies. The mean proportion of postnatal weight loss (%) was lower (mean difference [MD]: −2.73; 95% confidence interval [CI]: −3.69, −1.78), and the mean head circumference near the term equivalent age (cm) was higher in the early high lipid treatment group (MD: 0.67; 95% CI: 0.25, 1.09). There was a favorable association of early high lipid administration with the incidence of extrauterine growth restriction (relative risk [RR]: 0.27; 95% CI: 0.15, 0.48). Generally, there were no differences in morbidities or adverse outcomes with early high lipid administration. Early initiation of parenteral lipids and high dose achieved within the first 24 h of life appear to be safe and endurable and offer benefits in terms of growth.
Collapse
|
36
|
Woodard V, Thoene M, Van Ormer M, Thompson M, Hanson C, Natarajan SK, Mukherjee M, Yuil-Valdes A, Nordgren TM, Ulu A, Harris Jackson K, Anderson-Berry A. Intrauterine Transfer of Polyunsaturated Fatty Acids in Mother-Infant Dyads as Analyzed at Time of Delivery. Nutrients 2021; 13:nu13030996. [PMID: 33808763 PMCID: PMC8003544 DOI: 10.3390/nu13030996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are essential for fetal development, and intrauterine transfer is the only supply of PUFAs to the fetus. The prevailing theory of gestational nutrient transfer is that certain nutrients (including PUFAs) may have prioritized transport across the placenta. Numerous studies have identified correlations between maternal and infant fatty acid concentrations; however, little is known about what role maternal PUFA status may play in differential intrauterine nutrient transfer. Twenty mother–infant dyads were enrolled at delivery for collection of maternal and umbilical cord blood, and placental tissue samples. Plasma concentrations of PUFAs were assessed using gas chromatography (GC-FID). Intrauterine transfer percentages for each fatty acid were calculated as follows: ((cord blood fatty acid level/maternal blood fatty acid level) × 100). Kruskal–Wallis tests were used to compare transfer percentages between maternal fatty acid tertile groups. A p-value < 0.05 was considered significant. There were statistically significant differences in intrauterine transfer percentages of arachidonic acid (AA) (64% vs. 65% vs. 45%, p = 0.02), eicosapentaenoic acid (EPA) (41% vs. 19% vs. 17%, p = 0.03), and total fatty acids (TFA) (27% vs. 26% vs. 20%, p = 0.05) between maternal plasma fatty acid tertiles. Intrauterine transfer percentages of AA, EPA, and TFA were highest in the lowest tertile of respective maternal fatty acid concentration. These findings may indicate that fatty acid transfer to the fetus is prioritized during gestation even during periods of maternal nutritional inadequacy.
Collapse
Affiliation(s)
- Vanessa Woodard
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Melissa Thoene
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Matthew Van Ormer
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Maranda Thompson
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Corrine Hanson
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence:
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, College of Education and Human Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583, USA;
| | - Maheswari Mukherjee
- Department of Medical Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ana Yuil-Valdes
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| | - Tara M. Nordgren
- Division of Biomedical Sciences, College of Medicine, University of California Riverside, Riverside, CA 92521, USA; (T.M.N.); (A.U.)
| | - Arzu Ulu
- Division of Biomedical Sciences, College of Medicine, University of California Riverside, Riverside, CA 92521, USA; (T.M.N.); (A.U.)
| | - Kristina Harris Jackson
- OmegaQuant Analytics LLC, 5009 W. 12th St., Suite 8, Sioux Falls, SD 57106, USA;
- Department of Internal Medicine, College of Medicine, University of South Dakota Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Ann Anderson-Berry
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (V.W.); (M.T.); (M.V.O.); (M.T.); (A.Y.-V.); (A.A.-B.)
| |
Collapse
|
37
|
Roque-Jiménez JA, Rosa-Velázquez M, Pinos-Rodríguez JM, Vicente-Martínez JG, Mendoza-Cervantes G, Flores-Primo A, Lee-Rangel HA, Relling AE. Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals (Basel) 2021; 11:ani11030762. [PMID: 33801880 PMCID: PMC8001802 DOI: 10.3390/ani11030762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The objective of the current review is to provide a broad perspective on developmental program aspects of dietary n-3 FA supplementation in ruminants during pre-conception, conception, pregnancy, early life, including its effects on production, lipid metabolism, and health of the offspring. Offspring growth and metabolism could change depending on the FA profile and the stage of gestation when the dam is supplemented. Despite this extended review we are highlighting areas that we consider that there is a lack of information. Abstract Nutrition plays a critical role in developmental programs. These effects can be during gametogenesis, gestation, or early life. Omega-3 polyunsaturated fatty acids (PUFA) are essential for normal physiological functioning and for the health of humans and all domestic species. Recent studies have demonstrated the importance of n-3 PUFA in ruminant diets during gestation and its effects on pre-and postnatal offspring growth and health indices. In addition, different types of fatty acids have different metabolic functions, which affects the developmental program differently depending on when they are supplemented. This review provides a broad perspective of the effect of fatty acid supplementation on the developmental program in ruminants, highlighting the areas of a developmental program that are better known and the areas that more research may be needed.
Collapse
Affiliation(s)
- José Alejandro Roque-Jiménez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Milca Rosa-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Juan Manuel Pinos-Rodríguez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Jorge Genaro Vicente-Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | | | - Argel Flores-Primo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Héctor Aarón Lee-Rangel
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
- Correspondence: ; Tel.: +1-330-263-3900
| |
Collapse
|
38
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
39
|
Zhu N, Ji X, Geng X, Yue H, Li G, Sang N. Maternal PM 2.5 exposure and abnormal placental nutrient transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111281. [PMID: 32919195 DOI: 10.1016/j.ecoenv.2020.111281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies of human and animal experiments indicated that gestational exposure to atmospheric pollutants could be followed by the abnormal placental development. However, the effects of this exposure on the placental transportation for nutrients have not been systematically investigated. In this study, fine particulate matters (PM2.5) samples were collected in Taiyuan and pregnant rodent models were administered with 3 mg/kg b.w. PM2.5 by oropharyngeal aspiration every other day starting on embryonic day 0.5 (E0.5). Then the pregnant mice were sacrificed and their placentas were collected at different time points. The results showed that maternal PM2.5 exposure (MPE) disrupted the expression of proliferating cell nuclear antigen (PCNA) at all time points and inhibited the cell proliferation in placenta. Following that, the capacity for placental nutrient transport was impaired. The changes at E18.5 were observed most significantly, showing the altered mRNA expression of amino acid, long-chain polyunsaturated fatty acid (LCPUFA), glucose and folate transporters. In addition, the glycogen content was elevated at E18.5, and the triglyceride content was increased at E13.5 and E15.5 and decreased at E18.5 in the placenta after MPE. In a word, the adverse effect induced by MPE revealed that MPE led tothe disruption on the nutrient supply to the developing fetus via modulating the abundance of placental nutrient transporters (PNT).
Collapse
Affiliation(s)
- Na Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
40
|
Álvarez D, Muñoz Y, Ortiz M, Maliqueo M, Chouinard-Watkins R, Valenzuela R. Impact of Maternal Obesity on the Metabolism and Bioavailability of Polyunsaturated Fatty Acids during Pregnancy and Breastfeeding. Nutrients 2020; 13:nu13010019. [PMID: 33374585 PMCID: PMC7822469 DOI: 10.3390/nu13010019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Prenatal and postnatal development are closely related to healthy maternal conditions that allow for the provision of all nutritional requirements to the offspring. In this regard, an appropriate supply of fatty acids (FA), mainly n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA), is crucial to ensure a normal development, because they are an integral part of cell membranes and participate in the synthesis of bioactive molecules that regulate multiple signaling pathways. On the other hand, maternal obesity and excessive gestational weight gain affect FA supply to the fetus and neonate, altering placental nutrient transfer, as well as the production and composition of breast milk during lactation. In this regard, maternal obesity modifies FA profile, resulting in low n-3 and elevated n-6 PUFA levels in maternal and fetal circulation during pregnancy, as well as in breast milk during lactation. These modifications are associated with a pro-inflammatory state and oxidative stress with short and long-term consequences in different organs of the fetus and neonate, including in the liver, brain, skeletal muscle, and adipose tissue. Altogether, these changes confer to the offspring a higher risk of developing obesity and its complications, as well as neuropsychiatric disorders, asthma, and cancer. Considering the consequences of an abnormal FA supply to offspring induced by maternal obesity, we aimed to review the effects of obesity on the metabolism and bioavailability of FA during pregnancy and breastfeeding, with an emphasis on LCPUFA homeostasis.
Collapse
Affiliation(s)
- Daniela Álvarez
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Yasna Muñoz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Macarena Ortiz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: or ; Tel.: +56-2-9786746
| |
Collapse
|
41
|
Chen L, Zhu Y, Fei Z, Hinkle SN, Xia T, Liu X, Rahman ML, Li M, Wu J, Weir NL, Tsai MY, Zhang C. Plasma Phospholipid n-3/ n-6 Polyunsaturated Fatty Acids and Desaturase Activities in Relation to Moderate-to-Vigorous Physical Activity through Pregnancy: A Longitudinal Study within the NICHD Fetal Growth Studies. Nutrients 2020; 12:nu12113544. [PMID: 33227993 PMCID: PMC7699189 DOI: 10.3390/nu12113544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022] Open
Abstract
Maternal plasma phospholipid polyunsaturated fatty acids (PUFAs) play critical roles in maternal health and fetal development. Beyond dietary factors, maternal moderate-to-vigorous physical activity (MVPA) has been linked to multiple health benefits for both the mother and offspring, but studies investigating the influence of maternal MVPA on maternal PUFA profile are scarce. The objective of present study was to examine the time-specific and prospective associations of MVPA with plasma PUFA profile among pregnant women. This study included 321 participants from the National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies–Singletons cohort. Maternal plasma phospholipid PUFAs and MPVA were measured at four visits during pregnancy (10–14, 15–26, 23–31, and 33–39 gestational weeks (GW)). Associations of maternal MVPA with individual plasma PUFAs and desaturase activity were examined using generalized linear models. Maternal MVPA was associated inversely with plasma phospholipid linoleic acid, gamma-linolenic acid, and Δ6-desaturase in late pregnancy (23–31 or 33–39 GW), independent of maternal age, race, education, parity, pre-pregnancy body mass index, and dietary factors. Findings from this longitudinal study indicate that maternal habitual MVPA may play a role on PUFAs metabolism, particular by alerting plasma n-6 subclass and desaturase activity in late pregnancy. These associations are novel and merit confirmation in future studies.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA; (L.C.); (T.X.); (X.L.)
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA;
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Stefanie N. Hinkle
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (S.N.H.); (M.L.); (J.W.)
| | - Tong Xia
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA; (L.C.); (T.X.); (X.L.)
| | - Xinyue Liu
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA; (L.C.); (T.X.); (X.L.)
| | - Mohammad L. Rahman
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA 02215, USA;
| | - Mengying Li
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (S.N.H.); (M.L.); (J.W.)
| | - Jing Wu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (S.N.H.); (M.L.); (J.W.)
| | - Natalie L. Weir
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (N.L.W.); (M.Y.T.)
| | - Michael Y. Tsai
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (N.L.W.); (M.Y.T.)
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (S.N.H.); (M.L.); (J.W.)
- Correspondence: ; Tel.: +301-435-6917; Fax: +301-402-2084
| |
Collapse
|
42
|
Rosa Velazquez M, Batistel F, Pinos Rodriguez JM, Relling AE. Effects of maternal dietary omega-3 polyunsaturated fatty acids and methionine during late gestation on fetal growth, DNA methylation, and mRNA relative expression of genes associated with the inflammatory response, lipid metabolism and DNA methylation in placenta and offspring's liver in sheep. J Anim Sci Biotechnol 2020; 11:111. [PMID: 33292515 PMCID: PMC7672917 DOI: 10.1186/s40104-020-00513-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Omega-3 PUFA or methionine (Met) supply during gestation alters offspring physiology. However, the effect of both nutrients on fetal development has not been explored. Our objective was to determine the effects of supplementation of these two nutrients during late gestation on fetal growth, DNA methylation, and mRNA expression of genes associated with the inflammatory response, and DNA methylation. Ewes (n = 5/treatment) were fed from day 100 to 145 of gestation one of the following treatments: 1) basal diet (NS) without fatty acids (FS) or methionine (MS) supplementation; 2) FS (10 g/kg Ca salts, source omega-3 PUFA); 3) MS (1 g/kg rumen protected methionine); and 4) FS and MS (FS-MS). On day 145, ewes were euthanized, and data from dams and fetus was recorded. Placenta (cotyledon), fetal liver, and blood samples were collected. RESULTS A treatments interaction on fetal liver weight, ewe body weight and body condition score (BCS) was observed; FS-MS were heavier (P < 0.01) than FS and MS, and FS-MS ewes had a better (P = 0.02) BCS than NS. Methionine increased (P = 0.03) ewe plasma glucose concentration. Fetal liver global DNA methylation increased (P < 0.01) in FS and MS. Dietary treatments modify the mRNA relative expression on some of the genes evaluated. In the fetal liver, FS increased (P = 0.04) the mRNA relative expression of arachidonate-5-lipoxygenase-activating-protein and tended to decrease (P = 0.06) methionine-adenosyltransferase-1A. Moreover, MS decreased (P = 0.04) DNA-methyltransferase-1 and tended to decrease (P = 0.08) free-fatty-acid-receptor-1 mRNA relative expression. Furthermore, FS-MS decreased mRNA relative expression of tumor-necrosis-factor-alpha (P = 0.05), peroxisome-proliferator-activated-receptor-delta (P = 0.03) and gamma (P = 0.04), tended to decrease (P ≤ 0.09) interleukin-6, fatty-acid-transport-protein-1, and delta-5-desaturase, and increased adenosylhomocysteinase (P = 0.04) mRNA relative expression. In cotyledon, FS tended to decrease fatty acid binding protein 4 (P = 0.09) mRNA relative expression. CONCLUSION Omega-3 PUFA and Met supplementation improves dam's performance in late gestation, which was positively correlated with an increase in offspring's liver development. Moreover, FS-MS decreased mRNA relative expression of proinflammatory cytokines, and lipogenic genes, and increased the expression on an enzyme that has an important role in methylation.
Collapse
Affiliation(s)
- Milca Rosa Velazquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, 91710, Veracruz, Mexico.,Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 114 Gerlaugh Hall, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | | | - Alejandro Enrique Relling
- Department of Animal Science, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 114 Gerlaugh Hall, 1680 Madison Ave, Wooster, OH, 44691, USA.
| |
Collapse
|
43
|
LaBarre JL, Puttabyatappa M, Song PXK, Goodrich JM, Zhou L, Rajendiran TM, Soni T, Domino SE, Treadwell MC, Dolinoy DC, Padmanabhan V, Burant CF. Maternal lipid levels across pregnancy impact the umbilical cord blood lipidome and infant birth weight. Sci Rep 2020; 10:14209. [PMID: 32848180 PMCID: PMC7449968 DOI: 10.1038/s41598-020-71081-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Major alterations in metabolism occur during pregnancy enabling the mother to provide adequate nutrients to support infant development, affecting birth weight (BW) and potentially long-term risk of obesity and cardiometabolic disease. We classified dynamic changes in the maternal lipidome during pregnancy and identified lipids associated with Fenton BW z-score and the umbilical cord blood (CB) lipidome. Lipidomics was performed on first trimester maternal plasma (M1), delivery maternal plasma (M3), and CB plasma in 106 mother-infant dyads. Shifts in the maternal and CB lipidome were consistent with the selective transport of long-chain polyunsaturated fatty acids (PUFA) as well as lysophosphatidylcholine (LysoPC) and lysophosphatidylethanolamine (LysoPE) species into CB. Partial correlation networks demonstrated fluctuations in correlations between lipid groups at M1, M3, and CB, signifying differences in lipid metabolism. Using linear models, LysoPC and LysoPE groups in CB were positively associated with BW. M1 PUFA containing triglycerides (TG) and phospholipids were correlated with CB LysoPC and LysoPE species and total CB polyunsaturated TGs. These results indicate that early gestational maternal lipid levels influence the CB lipidome and its relationship with BW, suggesting an opportunity to modulate maternal diet and improve long-term offspring cardiometabolic health.
Collapse
Affiliation(s)
- Jennifer L LaBarre
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Peter X K Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ling Zhou
- Center of Statistical Research, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
| | - Thekkelnaycke M Rajendiran
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA.,Department of Pathology, Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
| | - Steven E Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marjorie C Treadwell
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Vasantha Padmanabhan
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.,Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA. .,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Goss KCW, Goss VM, Townsend JP, Koster G, Clark HW, Postle AD. Postnatal adaptations of phosphatidylcholine metabolism in extremely preterm infants: implications for choline and PUFA metabolism. Am J Clin Nutr 2020; 112:1438-1447. [PMID: 32778895 PMCID: PMC7727469 DOI: 10.1093/ajcn/nqaa207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lipid metabolism in pregnancy delivers PUFAs from maternal liver to the developing fetus. The transition at birth to diets less enriched in PUFA is especially challenging for immature, extremely preterm infants who are typically supported by total parenteral nutrition. OBJECTIVE The aim was to characterize phosphatidylcholine (PC) and choline metabolism in preterm infants and demonstrate the molecular specificity of PC synthesis by the immature preterm liver in vivo. METHODS This MS-based lipidomic study quantified the postnatal adaptations to plasma PC molecular composition in 31 preterm infants <28 weeks' gestational age. Activities of the cytidine diphosphocholine (CDP-choline) and phosphatidylethanolamine-N-methyltransferase (PEMT) pathways for PC synthesis were assessed from incorporations of deuterated methyl-D9-choline chloride. RESULTS The concentration of plasma PC in these infants increased postnatally from median values of 481 (IQR: 387-798) µM at enrollment to 1046 (IQR: 616-1220) µM 5 d later (P < 0.001). Direct incorporation of methyl-D9-choline demonstrated that this transition was driven by an active CDP-choline pathway that synthesized PC enriched in species containing oleic and linoleic acids. A second infusion of methyl-D9-choline chloride at day 5 clearly indicated continued activity of this pathway. Oxidation of D9-choline through D9-betaine resulted in the transfer of 1 deuterated methyl group to S-adenosylmethionine. A very low subsequent transfer of this labeled methyl group to D3-PC indicated that liver PEMT activity was essentially inactive in these infants. CONCLUSIONS This study demonstrated that the preterm infant liver soon after birth, and by extension the fetal liver, was metabolically active in lipoprotein metabolism. The low PEMT activity, which is the only pathway for endogenous choline synthesis and is responsible for hormonally regulated export of PUFAs from adult liver, strongly supports increased supplementation of preterm parenteral nutrition with both choline and PUFAs.
Collapse
Affiliation(s)
- Kevin C W Goss
- Child Health, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom,NIHR Southampton Respiratory Biomedical Research Unit, University Hospitals Southampton, Southampton, United Kingdom
| | - Victoria M Goss
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospitals Southampton, Southampton, United Kingdom
| | - J Paul Townsend
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospitals Southampton, Southampton, United Kingdom
| | - Grielof Koster
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospitals Southampton, Southampton, United Kingdom
| | - Howard W Clark
- Present address for HWC: UCL EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | | |
Collapse
|
45
|
Roque-Jimenez JA, Oviedo-Ojeda MF, Whalin M, Lee-Rangel HA, Relling AE. Eicosapentaenoic and docosahexaenoic acid supplementation during early gestation modified relative abundance on placenta and fetal liver tissue mRNA and concentration pattern of fatty acids in fetal liver and fetal central nervous system of sheep. PLoS One 2020; 15:e0235217. [PMID: 32574225 PMCID: PMC7310831 DOI: 10.1371/journal.pone.0235217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
In sheep, polyunsaturated fatty acid (PUFA) supplementations in late gestation increases the growth of offspring; however, there is a lack of evidence on the effect of PUFA supplementation during early gestation. Thus, the objective of this study was to evaluate the effect of dietary supplementation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in early gestation pregnant ewes on fatty acid concentration of fetal liver (FL) and fetal central nervous system (FCNS), and relative abundance of the mRNA for genes associated with transport and metabolism of fatty acids in FL and placenta. A total of 12 ewes, block for stage of gestation were fed a diet containing 1.6% (dry matter basis) monounsaturated fatty acids (MUFA) or EPA+DHA during the first 45 days of gestation. A cesarean section was conducted on day 45 of gestation to collect placenta (caruncle and cotyledon), FL, and FCNS. Relative abundance of mRNA in FL and FCNS and fatty acid concentration were analyzed using a 2x2 factorial arrangement of treatments considering fatty acid supplementation and tissue as the main factors. Concentrations of C18:1 isomers increase (P < 0.05) in FL and FCNS with MUFA supplementation; the FL and FCNS had a greater concentration of C20:3(n-6), C20:3(n-3), C22:1, C22:5 and C22:6 (P < 0.05) with EPA+DHA supplementation. In FL, the relative abundance of LPL mRNA was greater (P = 0.02) as a result of MUFA supplementation. In placenta, there was a FA x tissue interaction for relative abundance of DNMT3b and FFAR-4 mRNA (P < 0.05). Fetus from MUFA-supplemented dams had a greater relative abundance of FABP-4 mRNA (P < 0.05). Results indicate supplementation with EPA+DHA during early gestation increases the total EPA and DHA in FL. For the placenta, EPA+DHA supplementation led to an increase in the relative abundance of lipid mRNA for transport genes.
Collapse
Affiliation(s)
- José Alejandro Roque-Jimenez
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía, Soledad de Graciano Sánchez, San Luis Potosí, México
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
| | - Mario Francisco Oviedo-Ojeda
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía, Soledad de Graciano Sánchez, San Luis Potosí, México
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
| | - Megan Whalin
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
| | - Héctor Aaron Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía, Soledad de Graciano Sánchez, San Luis Potosí, México
| | - Alejandro Enrique Relling
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
- * E-mail:
| |
Collapse
|
46
|
Griffith RJ, Alsweiler J, Moore AE, Brown S, Middleton P, Shepherd E, Crowther CA. Interventions to prevent women from developing gestational diabetes mellitus: an overview of Cochrane Reviews. Cochrane Database Syst Rev 2020; 6:CD012394. [PMID: 32526091 PMCID: PMC7388385 DOI: 10.1002/14651858.cd012394.pub3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prevalence of gestational diabetes mellitus (GDM) is increasing, with approximately 15% of pregnant women affected worldwide, varying by country, ethnicity and diagnostic thresholds. There are associated short- and long-term health risks for women and their babies. OBJECTIVES We aimed to summarise the evidence from Cochrane systematic reviews on the effects of interventions for preventing GDM. METHODS We searched the Cochrane Database of Systematic Reviews (6 August 2019) with key words 'gestational diabetes' OR 'GDM' to identify reviews pre-specifying GDM as an outcome. We included reviews of interventions in women who were pregnant or planning a pregnancy, irrespective of their GDM risk status. Two overview authors independently assessed eligibility, extracted data and assessed quality of evidence using ROBIS and GRADE tools. We assigned interventions to categories with graphic icons to classify the effectiveness of interventions as: clear evidence of benefit or harm (GRADE moderate- or high-quality evidence with a confidence interval (CI) that did not cross the line of no effect); clear evidence of no effect or equivalence (GRADE moderate- or high-quality evidence with a narrow CI crossing the line of no effect); possible benefit or harm (low-quality evidence with a CI that did not cross the line of no effect or GRADE moderate- or high-quality evidence with a wide CI); or unknown benefit or harm (GRADE low-quality evidence with a wide CI or very low-quality evidence). MAIN RESULTS We included 11 Cochrane Reviews (71 trials, 23,154 women) with data on GDM. Nine additional reviews pre-specified GDM as an outcome, but did not identify GDM data in included trials. Ten of the 11 reviews were judged to be at low risk of bias and one review at unclear risk of bias. Interventions assessed included diet, exercise, a combination of diet and exercise, dietary supplements, pharmaceuticals, and management of other health problems in pregnancy. The quality of evidence ranged from high to very low. Diet Unknown benefit or harm: there was unknown benefit or harm of dietary advice versus standard care, on the risk of GDM: risk ratio (RR) 0.60, 95% CI 0.35 to 1.04; 5 trials; 1279 women; very low-quality evidence. There was unknown benefit or harm of a low glycaemic index diet versus a moderate-high glycaemic index diet on the risk of GDM: RR 0.91, 95% CI 0.63 to 1.31; 4 trials; 912 women; low-quality evidence. Exercise Unknown benefit or harm: there was unknown benefit or harm for exercise interventions versus standard antenatal care on the risk of GDM: RR 1.10, 95% CI 0.66 to 1.84; 3 trials; 826 women; low-quality evidence. Diet and exercise combined Possible benefit: combined diet and exercise interventions during pregnancy versus standard care possibly reduced the risk of GDM: RR 0.85, 95% CI 0.71 to 1.01; 19 trials; 6633 women; moderate-quality evidence. Dietary supplements Clear evidence of no effect: omega-3 fatty acid supplementation versus none in pregnancy had no effect on the risk of GDM: RR 1.02, 95% CI 0.83 to 1.26; 12 trials; 5235 women; high-quality evidence. Possible benefit: myo-inositol supplementation during pregnancy versus control possibly reduced the risk of GDM: RR 0.43, 95% CI 0.29 to 0.64; 3 trials; 502 women; low-quality evidence. Possible benefit: vitamin D supplementation versus placebo or control in pregnancy possibly reduced the risk of GDM: RR 0.51, 95% CI 0.27 to 0.97; 4 trials; 446 women; low-quality evidence. Unknown benefit or harm: there was unknown benefit or harm of probiotic with dietary intervention versus placebo with dietary intervention (RR 0.37, 95% CI 0.15 to 0.89; 1 trial; 114 women; very low-quality evidence), or probiotic with dietary intervention versus control (RR 0.38, 95% CI 0.16 to 0.92; 1 trial; 111 women; very low-quality evidence) on the risk of GDM. There was unknown benefit or harm of vitamin D + calcium supplementation versus placebo (RR 0.33, 95% CI 0.01 to 7.84; 1 trial; 54 women; very low-quality evidence) or vitamin D + calcium + other minerals versus calcium + other minerals (RR 0.42, 95% CI 0.10 to 1.73; 1 trial; 1298 women; very low-quality evidence) on the risk of GDM. Pharmaceutical Possible benefit: metformin versus placebo given to obese pregnant women possibly reduced the risk of GDM: RR 0.85, 95% CI 0.61 to 1.19; 3 trials; 892 women; moderate-quality evidence. Unknown benefit or harm:eight small trials with low- to very low-quality evidence showed unknown benefit or harm for heparin, aspirin, leukocyte immunisation or IgG given to women with a previous stillbirth on the risk of GDM. Management of other health issues Clear evidence of no effect: universal versus risk based screening of pregnant women for thyroid dysfunction had no effect on the risk of GDM: RR 0.93, 95% CI 0.70 to 1.25; 1 trial; 4516 women; moderate-quality evidence. Unknown benefit or harm: there was unknown benefit or harm of using fractional exhaled nitrogen oxide versus a clinical algorithm to adjust asthma therapy on the risk of GDM: RR 0.74, 95% CI 0.31 to 1.77; 1 trial; 210 women; low-quality evidence. There was unknown benefit or harm of pharmacist led multidisciplinary approach to management of maternal asthma versus standard care on the risk of GDM: RR 5.00, 95% CI 0.25 to 99.82; 1 trial; 58 women; low-quality evidence. AUTHORS' CONCLUSIONS No interventions to prevent GDM in 11 systematic reviews were of clear benefit or harm. A combination of exercise and diet, supplementation with myo-inositol, supplementation with vitamin D and metformin were of possible benefit in reducing the risk of GDM, but further high-quality evidence is needed. Omega-3-fatty acid supplementation and universal screening for thyroid dysfunction did not alter the risk of GDM. There was insufficient high-quality evidence to establish the effect on the risk of GDM of diet or exercise alone, probiotics, vitamin D with calcium or other vitamins and minerals, interventions in pregnancy after a previous stillbirth, and different asthma management strategies in pregnancy. There is a lack of trials investigating the effect of interventions prior to or between pregnancies on risk of GDM.
Collapse
Affiliation(s)
- Rebecca J Griffith
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Jane Alsweiler
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Abigail E Moore
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Stephen Brown
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| | - Philippa Middleton
- Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Emily Shepherd
- Robinson Research Institute, Discipline of Obstetrics and Gynaecology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | | |
Collapse
|
47
|
Chassen SS, Ferchaud-Roucher V, Palmer C, Li C, Jansson T, Nathanielsz PW, Powell TL. Placental fatty acid transport across late gestation in a baboon model of intrauterine growth restriction. J Physiol 2020; 598:2469-2489. [PMID: 32338384 PMCID: PMC7384518 DOI: 10.1113/jp279398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Intrauterine growth restriction (IUGR) is associated with perinatal morbidity and increased risk of lifelong disease, including neurodevelopmental impairment. Fatty acids (FA) are critical for normal brain development, although their transport across the placenta in IUGR pregnancies is poorly understood. The present study used a baboon model of IUGR (maternal nutrient restriction, MNR) to investigate placental expression of FA transport and binding proteins, and to determine gestational age-related changes in maternal and fetal plasma FA concentrations. We found MNR to be associated with increased placental expression of FA binding and transport proteins in late gestation, with fetal plasma FA concentrations that were similar to those of control animals. The present study is the first to report a profile of fetal and maternal plasma FA concentrations in a baboon model of growth restriction with data that suggest adaptation of placental transport to maintain delivery of critically needed FA. ABSTRACT Intrauterine growth restriction (IUGR) is associated with specific changes in placental transport of amino acids, folate and ions. However, little is known about placental fatty acid (FA) transport in IUGR. We hypothesized that placental FA transport proteins (FATP) and FA binding proteins (FABP) are up-regulated and fetal plasma FA concentrations are decreased at term in a baboon model of IUGR. Pregnant baboons were fed control or maternal nutrient restricted (MNR) diet (70% of control calories) from gestation day (GD) 30 (term 184 days). Plasma and placental samples were collected at GD120 (control n = 8, MNR n = 9), GD140 (control n = 6, MNR n = 7) and GD170 (control n = 6, MNR n = 6). Placentas were homogenized, and syncytiotrophoblast microvillous plasma membrane (MVM) and basal plasma membranes (BM) were isolated. Protein expression of FABP1, 3, 4 and 5 (homogenate) and FATP2, 4, and 6 (MVM, BM) was determined by Western blotting. FA content in maternal and umbilical vein plasma was measured by gas chromatography-mass spectrometry. Placental FABP1 and FABP5 expression was increased in MNR compared to controls at GD170, as was MVM FATP2 and FATP6 expression at GD140 and FATP2 expression at GD170. BM FATP4 and FATP6 expression was increased in MNR at GD140. Fetal plasma FA concentrations were similar in controls and MNR. These data suggest the adaptation of placental transport when aiming to maintain delivery of critically needed FAs for fetal growth and brain development.
Collapse
Affiliation(s)
- Stephanie S Chassen
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Ferchaud-Roucher
- University of Nantes, CHU Nantes, INRA, UMR 1280 Physiology of Nutritional Adaptations, Nantes, France
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire Palmer
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Theresa L Powell
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
48
|
Voerman E, Jaddoe VWV, Uhl O, Shokry E, Horak J, Felix JF, Koletzko B, Gaillard R. A population-based resource for intergenerational metabolomics analyses in pregnant women and their children: the Generation R Study. Metabolomics 2020; 16:43. [PMID: 32206914 PMCID: PMC7089886 DOI: 10.1007/s11306-020-01667-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Adverse exposures in early life may predispose children to cardio-metabolic disease in later life. Metabolomics may serve as a valuable tool to disentangle the metabolic adaptations and mechanisms that potentially underlie these associations. OBJECTIVES To describe the acquisition, processing and structure of the metabolomics data available in a population-based prospective cohort from early pregnancy onwards and to examine the relationships between metabolite profiles of pregnant women and their children at birth and in childhood. METHODS In a subset of 994 mothers-child pairs from a prospective population-based cohort study among pregnant women and their children from Rotterdam, the Netherlands, we used LC-MS/MS to determine concentrations of amino acids, non-esterified fatty acids, phospholipids and carnitines in blood serum collected in early pregnancy, at birth (cord blood), and at child's age 10 years. RESULTS Concentrations of diacyl-phosphatidylcholines, acyl-alkyl-phosphatidylcholines, alkyl-lysophosphatidylcholines and sphingomyelines were the highest in early pregnancy, concentrations of amino acids and non-esterified fatty acids were the highest at birth and concentrations of alkyl-lysophosphatidylcholines, free carnitine and acyl-carnitines were the highest at age 10 years. Correlations of individual metabolites between pregnant women and their children at birth and at the age of 10 years were low (range between r = - 0.10 and r = 0.35). CONCLUSION Our results suggest that unique metabolic profiles are present among pregnant women, newborns and school aged children, with limited intergenerational correlations between metabolite profiles. These data will form a valuable resource to address the early metabolic origins of cardio-metabolic disease.
Collapse
Affiliation(s)
- Ellis Voerman
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Olaf Uhl
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, LMU - Ludwig-Maximilians Universität München, Munich, Germany
| | - Engy Shokry
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, LMU - Ludwig-Maximilians Universität München, Munich, Germany
| | - Jeannie Horak
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, LMU - Ludwig-Maximilians Universität München, Munich, Germany
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. Von Hauner Children's Hospital, LMU - Ludwig-Maximilians Universität München, Munich, Germany
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
- The Generation R Study Group, Erasmus MC, University Medical Center, Room Na-2908, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Mao J, Jain A, Denslow ND, Nouri MZ, Chen S, Wang T, Zhu N, Koh J, Sarma SJ, Sumner BW, Lei Z, Sumner LW, Bivens NJ, Roberts RM, Tuteja G, Rosenfeld CS. Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta-brain axis. Proc Natl Acad Sci U S A 2020; 117:4642-4652. [PMID: 32071231 PMCID: PMC7060676 DOI: 10.1073/pnas.1919563117] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Placental trophoblast cells are potentially at risk from circulating endocrine-disrupting chemicals, such as bisphenol A (BPA). To understand how BPA and the reputedly more inert bisphenol S (BPS) affect the placenta, C57BL6J mouse dams were fed 200 μg/kg body weight BPA or BPS daily for 2 wk and then bred. They continued to receive these chemicals until embryonic day 12.5, whereupon placental samples were collected and compared with unexposed controls. BPA and BPS altered the expression of an identical set of 13 genes. Both exposures led to a decrease in the area occupied by spongiotrophoblast relative to trophoblast giant cells (GCs) within the junctional zone, markedly reduced placental serotonin (5-HT) concentrations, and lowered 5-HT GC immunoreactivity. Concentrations of dopamine and 5-hydroxyindoleacetic acid, the main metabolite of serotonin, were increased. GC dopamine immunoreactivity was increased in BPA- and BPS-exposed placentas. A strong positive correlation between 5-HT+ GCs and reductions in spongiotrophoblast to GC area suggests that this neurotransmitter is essential for maintaining cells within the junctional zone. In contrast, a negative correlation existed between dopamine+ GCs and reductions in spongiotrophoblast to GC area ratio. These outcomes lead to the following conclusions. First, BPS exposure causes almost identical placental effects as BPA. Second, a major target of BPA/BPS is either spongiotrophoblast or GCs within the junctional zone. Third, imbalances in neurotransmitter-positive GCs and an observed decrease in docosahexaenoic acid and estradiol, also occurring in response to BPA/BPS exposure, likely affect the placental-brain axis of the developing mouse fetus.
Collapse
Affiliation(s)
- Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Biomedical Sciences, University of Missouri, Columbia, MO 65211
| | - Ashish Jain
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Nancy D Denslow
- Physiological Sciences, University of Florida, Gainesville, FL 32611
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| | - Mohammad-Zaman Nouri
- Physiological Sciences, University of Florida, Gainesville, FL 32611
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Tingting Wang
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Ning Zhu
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Jin Koh
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610
| | - Saurav J Sarma
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
| | - Barbara W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
| | - Zhentian Lei
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
- Biochemistry, University of Missouri, Columbia, MO 65211
| | - Lloyd W Sumner
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- University of Missouri Metabolomics Center, University of Missouri, Columbia, MO 65211
- Biochemistry, University of Missouri, Columbia, MO 65211
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211;
- Biochemistry, University of Missouri, Columbia, MO 65211
- Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Geetu Tuteja
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011;
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211;
- Biomedical Sciences, University of Missouri, Columbia, MO 65211
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211
- University of Missouri Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
50
|
Jaramillo AM, Garmendia ML, Muñoz P, Corbari A, Valenzuela R, Casanello P. Evaluation of the Stability of Fatty Acids in Erythrocytes from Human Umbilical Cord. Lipids 2020; 55:53-62. [PMID: 31943229 DOI: 10.1002/lipd.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022]
Abstract
The interest in the amount of polyunsaturated fatty acids (PUFA) in the umbilical cord blood (UCB) is increasing, but the stability of erythrocyte PUFA in these samples during storage and washing of the erythrocytes has not been directly evaluated. The purpose of this study was to analyze the effect of the lapse of time on the fatty acid (FA) content from UCB sample collection and maintained at 4 °C (0-12 h) until erythrocyte separation and washing. Palmitic acid (16:0), stearic acid (18:0), 18:1n-7/n-9, linoleic acid (18:2n-6), arachidonic acid (20:4n-6), 22:4n-6, eicosapentaenoic acid (20:5n-3), docosapentaenoic acid (22:5n-3), and docosahexaenoic acid (22:6n-3) together accounted for 87% of the FA profile in the umbilical vein erythrocytes. No difference was observed in the concentration of any of the FA studied, nor in the sum of saturated fatty acids (SFA), PUFA, or LC-PUFA in umbilical erythrocytes obtained at delivery and stored up to 12 h before the separation of erythrocytes. However, if a washing step was included in the processing of the erythrocytes, a decrease in the concentration of 16:0, 18:0, 18:3n-3, 20:4n-6, 22:4n-6, total SFA, PUFA, LC-PUFA, and n-6 LC-PUFA was evidenced, compared to unwashed erythrocytes. The FA concentration in umbilical cord erythrocytes did not change between samples stored from 0 to 12 h until erythrocyte separation. Erythrocyte washing before storage decreased the concentration of significant individual and total SFA, PUFA, and LC-PUFA. These results should be considered when planning the collection of UCB samples for the study of fatty acid concentration due to the nonscheduled timing of deliveries.
Collapse
Affiliation(s)
- Angela M Jaramillo
- PhD Program in Nutrition and Foods, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - María L Garmendia
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Patricio Muñoz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alicia Corbari
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|