1
|
Xie A, Shen X, Hong R, Xie Y, Zhang Y, Chen J, Li Z, Li M, Yue X, Quek SY. Unlocking the potential of donkey Milk: Nutritional composition, bioactive properties and future prospects. Food Res Int 2025; 209:116307. [PMID: 40253152 DOI: 10.1016/j.foodres.2025.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/27/2025] [Accepted: 03/15/2025] [Indexed: 04/21/2025]
Abstract
Donkey milk has garnered increasing attention due to its remarkable similarity to human milk and its diverse bioactive properties. Analysis of its composition shows that donkey milk is characterized by high lactose content, low protein, low fat, a balanced calcium-to‑phosphorus ratio, and abundant in vitamins C and D, making it a promising human milk alternative. Additionally, donkey milk contains a unique composition of whey proteins and polyunsaturated fatty acids, contributing to its beneficial health effects such as antimicrobial, anti-inflammatory, antioxidant, and hypoallergenic properties. This review provides a comprehensive analysis of the nutritional profile of donkey milk in comparison to other mammalian milk sources. Furthermore, it highlights its bioactive potential and discusses the current challenges and future opportunities for expanding its applications in the dairy and health industries. Despite its valuable properties, the development of donkey milk products remains limited due to low milk yield and high production costs. Further research and technological advancements are necessary to optimize its utilization and commercial potential.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiyao Hong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanfang Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yumeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Jiangsu 213164, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand; Riddet Institute, Centre for Research Excellence in Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
2
|
Song J, Zhang Z, Wang H, Meng Y, Sun Y, Yi Y. Study on the structure and lipid-lowering activity of different components of lotus root polysaccharides. Food Res Int 2025; 203:115801. [PMID: 40022331 DOI: 10.1016/j.foodres.2025.115801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
Lotus root is a widely popular aquatic vegetable with edible and medicinal values. Here we report the structure and lipid-lowering activity of two lotus root polysaccharides LRW (lotus root polysaccharide by water extraction) and LRA (lotus root polysaccharide by alkali extraction), that were extracted by aqueous and alkaline solution respectively. The results showed that the yield of polysaccharide from lotus root could be significantly improved by alkali extraction. Basic composition and structural characterization showed that the total sugar contents of LRW and LRA were 96.83 % and 73.66 %, and the molecular weights were 2.464 × 105 Da and 1.727 × 105 Da, respectively. LRW and LRA had the similar structure that the main backbone consisted of →4)-α-D-Glcp-(1→ with branches at C-6 site. Both LRW and LRA could scavenge DPPH and hydroxyl radicals effectively, and have strong adsorption capacity to cholate salts in a concentration-dependent manner. In HepG2 cells, LRW and LRA inhibited the accumulation of lipid droplets induced by oleic acid, and increased the activity of T-SOD and CAT, meanwhile, reduced the level of MDA, TC and TG, showing good lipid-lowering activity. In comparison, the lipid-lowering effect of LRA was better than that of LRW. In addition, gene sequencing and RT-PCR showed that AMPK, ACC, PPARα and CPT-1 were essential for LRA to exert a lipid-lowering effect. This study provides a theoretical basis for the extraction and lipid-lowering application of lotus root polysaccharides.
Collapse
Affiliation(s)
- Jie Song
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhao Zhang
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Ying Sun
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yang Yi
- College of Food Science and Engineering/Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
3
|
Ezz-Eldin YM, Ewees MG, Azouz AA, Khalaf MM. Investigating the tamoxifen/high-fat diet synergy: a promising paradigm for nonalcoholic steatohepatitis induction in a rat model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9067-9079. [PMID: 38884676 PMCID: PMC11522070 DOI: 10.1007/s00210-024-03192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe liver condition characterized by excessive fat deposition, ballooning, and lobular inflammation. This investigation was conducted to estimate the capability of concomitant tamoxifen administration (TAM) with a high fat diet (HFD) to induce a reliable NASH model that mimics human NASH features. Rats were administered TAM (25 mg/kg/day p.o.) and consumed HFD for 5 weeks. A time-course investigation was conducted to determine the optimal time for NASH development. Liver function indices, hepatic lipid profile factors, oxidative stress biomarkers, and inflammatory mediators were estimated. Additionally, macroscopic and microscopic changes were examined. Compared with the time-matched control group receiving vehicle alone, TAM/HFD significantly impaired liver function indices represented as marked elevation in ALT, AST, and ALP serum levels. TAM/HFD significantly increased lipid profile factors including high TG and TC hepatic levels. Additionally, TAM/HFD remarkably raised hepatic levels of TNF-α and IL-17 and significantly decreased IL-10. The combination also increases the oxidative status evidenced by high content of MDA as well as low activity of GPx and SOD. Accordingly, the combination of TAM and HFD for 5 weeks collaboratively promotes NASH development by initiating compromised hepatocyte functionality, elevated lipid levels, oxidative stress, and liver inflammation.
Collapse
Affiliation(s)
- Yousra M Ezz-Eldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed G Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
4
|
Di Majo D, Ricciardi N, Moncada A, Allegra M, Frinchi M, Di Liberto V, Pitonzo R, Rappa F, Saiano F, Vetrano F, Miceli A, Giglia G, Ferraro G, Sardo P, Gambino G. Golden Tomato Juice Enhances Hepatic PPAR-α Expression, Mitigates Metabolic Dysfunctions and Influences Redox Balance in a High-Fat-Diet Rat Model. Antioxidants (Basel) 2024; 13:1324. [PMID: 39594468 PMCID: PMC11591511 DOI: 10.3390/antiox13111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Golden tomato (GT), harvested at the veraison stage, has gained attention due to its rich content of bioactive compounds and potential health benefits. Previous studies have highlighted GT's antioxidant properties and its positive effects on metabolic syndrome (MetS), a condition characterized by obesity, dyslipidemia, and oxidative stress. This study investigates for the first time a derivative from GT, i.e., the juice (GTJ), which could be a potential candidate for development as a functional food. We first characterized GT juice, identifying 9-oxo-10(E),12(E)-octadecadienoic (9-oxo-10(E),12(E)-ODA) fatty acid, a known peroxisome proliferator-activated receptor alpha (PPAR-α) agonist, using High-Performance Liquid Chromatography (HPLC)-mass spectrometry. Then, using a high-fat-diet (HFD) rat model, we assessed the impact of daily GT juice supplementation in addressing MetS. We outlined that GTJ improved body weight and leptin-mediated food intake. Moreover, it ameliorated glucose tolerance, lipid profile, systemic redox homeostasis, hepatic oxidative stress, and steatosis in HFD rats. Furthermore, GT juice enhances the hepatic transcription of PPAR-α, thus putatively promoting fatty acid oxidation and lipid metabolism. These findings suggest that GT juice mitigates lipidic accumulation and putatively halters oxidative species at the hepatic level through PPAR-α activation. Our study underscores the protective effects of GT juice against MetS, highlighting its future potential as a nutraceutical for improving dysmetabolism and associated alterations.
Collapse
Affiliation(s)
- Danila Di Majo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Nicolò Ricciardi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Alessandra Moncada
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Mario Allegra
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Rosa Pitonzo
- ATeN (Advanced Technologies Network) Center, 90128 Palermo, Italy;
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
| | - Filippo Saiano
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Filippo Vetrano
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Alessandro Miceli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90128 Palermo, Italy; (A.M.); (F.S.); (F.V.); (A.M.)
| | - Giuseppe Giglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
- Euro Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Pierangelo Sardo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| | - Giuditta Gambino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (N.R.); (M.F.); (V.D.L.); (F.R.); (G.G.); (G.F.); (P.S.); (G.G.)
- Postgraduate School of Nutrition and Food Science, University of Palermo, 90100 Palermo, Italy;
| |
Collapse
|
5
|
Wang Y, Zhao Y, Gong W, Hou Y, Ren J, Duan C, Zhang H, Nie X, Li J. Aspirin exposure coupled with hypoxia interferes energy metabolism, antioxidant and autophagic processes and causes liver injury in estuarine goby Mugilogobius chulae. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135071. [PMID: 38996678 DOI: 10.1016/j.jhazmat.2024.135071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Toxicity assessments of pollutants often overlook the impact of environmental factors like hypoxia, which can alter chemical toxicity with unexpected consequences. In this study, Mugilogobius chulae, an estuarine fish, was used to investigate the effects of hypoxia (H), aspirin (ASA), and their combination (H_ASA) exposure over 24, 72, and 168 h. We employed RNA-seq analysis, expression of key gene expression profiling, enzymatic activity assays, and histopathological and ultrastructural examinations of liver tissue to explore the effects and mechanisms of ASA-coupled hypoxia exposure in fish. Results showed that glycolysis was inhibited, and lipolysis was enhanced in ASA/H_ASA groups. The PPAR signaling pathway was activated, increasing fatty acid β-oxidation and lipophagy to mitigate energy crisis. Both ASA and H_ASA exposures induced p53 expression and inhibited the TOR pathway to combat environmental stress. However, a greater energy demand and heightened sensitivity to ASA were observed in H_ASA compared to ASA exposure. Disruptions in energy and detoxification pathways led to increased stress responses, including enhanced antioxidant activities, autophagy, and apoptotic events, as observed in organelle structures. Overall, sub-chronic H_ASA exposure caused liver injury in M. chulae by affecting energy metabolism, antioxidant regulation, and autophagy processes. This study highlights the influence of hypoxia on ASA toxicity in fish, providing valuable insights for ecological risk assessment of NSAIDs.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| |
Collapse
|
6
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
7
|
Hayasaka K. Pathogenesis and Management of Citrin Deficiency. Intern Med 2024; 63:1977-1986. [PMID: 37952953 PMCID: PMC11309867 DOI: 10.2169/internalmedicine.2595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Japan
| |
Collapse
|
8
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
9
|
Lee YE, Im DS. Elafibranor PPARα/δ Dual Agonist Ameliorates Ovalbumin-Induced Allergic Asthma. Biomol Ther (Seoul) 2024; 32:460-466. [PMID: 38835138 PMCID: PMC11214965 DOI: 10.4062/biomolther.2023.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 06/06/2024] Open
Abstract
Asthma is characterized by chronic inflammation and respiratory tract remodeling. Peroxisome proliferator-activated receptors (PPARs) play important roles in the pathogenesis and regulation of chronic inflammatory processes in asthma. The role of PPARγ has been studied using synthetic PPARγ agonists in patients with asthma. However, involvement of PPARα/δ has not been studied in asthma. In the present study, we investigated if elafibranor, a PPARα/δ dual agonist, can modulate ovalbumin (OVA)-induced allergic asthma, which is a potential drug candidate for non-alcoholic fatty liver in obese patients. Elafibranor suppresses antigen-induced degranulation in RBL-2H3 mast cells without inducing cytotoxicity in vitro. In mice with OVA-induced allergic asthma, the administration of elafibranor suppressed OVA-induced airway hyper-responsiveness at a dose of 10 mg/kg. Elafibranor also suppressed the OVA-induced increase in immune cells and pro-inflammatory cytokine production in the bronchoalveolar lavage fluid (BALF). Histological studies suggested that elafibranor suppressed OVA-induced lung inflammation and mucin hyper-production in the bronchial airways. In addition, elafibranor suppressed OVA-induced increases in serum immunoglobulin E and IL-13 levels in BALF. Conversely, the present study suggests that elafibranor has the potential for use in patients with allergic asthma.
Collapse
Affiliation(s)
- Ye-Eul Lee
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Dong-Soon Im
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| |
Collapse
|
10
|
Żulińska S, Strosznajder AK, Strosznajder JB. Current View on PPAR-α and Its Relation to Neurosteroids in Alzheimer's Disease and Other Neuropsychiatric Disorders: Promising Targets in a Therapeutic Strategy. Int J Mol Sci 2024; 25:7106. [PMID: 39000217 PMCID: PMC11241121 DOI: 10.3390/ijms25137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) may play an important role in the pathomechanism/pathogenesis of Alzheimer's disease (AD) and several other neurological/neuropsychiatric disorders. AD leads to progressive alterations in the redox state, ion homeostasis, lipids, and protein metabolism. Significant alterations in molecular processes and the functioning of several signaling pathways result in the degeneration and death of synapses and neuronal cells, leading to the most severe dementia. Peroxisome proliferator-activated receptor alpha (PPAR-α) is among the processes affected by AD; it regulates the transcription of genes related to the metabolism of cholesterol, fatty acids, other lipids and neurotransmission, mitochondria biogenesis, and function. PPAR-α is involved in the cholesterol transport to mitochondria, the substrate for neurosteroid biosynthesis. PPAR-α-coding enzymes, such as sulfotransferases, which are responsible for neurosteroid sulfation. The relation between PPAR-α and cholesterol/neurosteroids may have a significant impact on the course and progression of neurodegeneration/neuroprotection processes. Unfortunately, despite many years of intensive studies, the pathogenesis of AD is unknown and therapy for AD and other neurodegenerative diseases is symptomatic, presenting a significant goal and challenge today. This review presents recent achievements in therapeutic approaches for AD, which are targeting PPAR-α and its relation to cholesterol and neurosteroids in AD and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sylwia Żulińska
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| | - Anna K. Strosznajder
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Joanna B. Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
11
|
Trinchese G, Feola A, Cavaliere G, Cimmino F, Catapano A, Penna E, Scala G, Greco L, Bernardo L, Porcellini A, Crispino M, Pezone A, Mollica MP. Mitochondrial metabolism and neuroinflammation in the cerebral cortex and cortical synapses of rats: effect of milk intake through DNA methylation. J Nutr Biochem 2024; 128:109624. [PMID: 38518858 DOI: 10.1016/j.jnutbio.2024.109624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/24/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Brain plasticity and cognitive functions are tightly influenced by foods or nutrients, which determine a metabolic modulation having a long-term effect on health, involving also epigenetic mechanisms. Breast milk or formula based on cow milk is the first food for human beings, who, throughout their lives, are then exposed to different types of milk. We previously demonstrated that rats fed with milk derived from distinct species, with different compositions and nutritional properties, display selective modulation of systemic metabolic and inflammatory profiles through changes of mitochondrial functions and redox state in liver, skeletal and cardiac muscle. Here, in a rat model, we demonstrated that isoenergetic supplementation of milk from cow (CM), donkey (DM) or human (HM) impacts mitochondrial functions and redox state in the brain cortex and cortical synapses, affecting neuroinflammation and synaptic plasticity. Interestingly, we found that the administration of different milk modulates DNA methylation in rat brain cortex and consequently affects gene expression. Our results emphasize the importance of nutrition in brain and synapse physiology, and highlight the key role played in this context by mitochondria, nutrient-sensitive organelles able to orchestrate metabolic and inflammatory responses.
Collapse
Affiliation(s)
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Luca Bernardo
- Department of Childhood and Developmental Medicine, Fatebenefratelli Hospital, Milan, Italy
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Bråtveit M, Van Parys A, Olsen T, Strand E, Marienborg I, Laupsa-Borge J, Haugsgjerd TR, McCann A, Dhar I, Ueland PM, Dierkes J, Dankel SN, Nygård OK, Lysne V. Association between dietary macronutrient composition and plasma one-carbon metabolites and B-vitamin cofactors in patients with stable angina pectoris. Br J Nutr 2024; 131:1678-1690. [PMID: 38361451 PMCID: PMC11063666 DOI: 10.1017/s0007114524000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Elevated plasma concentrations of several one-carbon metabolites are associated with increased CVD risk. Both diet-induced regulation and dietary content of one-carbon metabolites can influence circulating concentrations of these markers. We cross-sectionally analysed 1928 patients with suspected stable angina pectoris (geometric mean age 61), representing elevated CVD risk, to assess associations between dietary macronutrient composition (FFQ) and plasma one-carbon metabolites and related B-vitamin status markers (GC-MS/MS, LC-MS/MS or microbiological assay). Diet-metabolite associations were modelled on the continuous scale, adjusted for age, sex, BMI, smoking, alcohol and total energy intake. Average (geometric mean (95 % prediction interval)) intake was forty-nine (38, 63) energy percent (E%) from carbohydrate, thirty-one (22, 45) E% from fat and seventeen (12, 22) E% from protein. The strongest associations were seen for higher protein intake, i.e. with higher plasma pyridoxal 5'-phosphate (PLP) (% change (95 % CI) 3·1 (2·1, 4·1)), cobalamin (2·9 (2·1, 3·7)), riboflavin (2·4 (1·1, 3·7)) and folate (2·1 (1·2, 3·1)) and lower total homocysteine (tHcy) (-1·4 (-1·9, -0·9)) and methylmalonic acid (MMA) (-1·4 (-2·0, -0·8)). Substitution analyses replacing MUFA or PUFA with SFA demonstrated higher plasma concentrations of riboflavin (5·0 (0·9, 9·3) and 3·3 (1·1, 5·6)), tHcy (2·3 (0·7, 3·8) and 1·3 (0·5, 2·2)) and MMA (2·0 (0·2, 3·9) and 1·7 (0·7, 2·7)) and lower PLP (-2·5 (-5·3, 0·3) and -2·7 (-4·2, -1·2)). In conclusion, a higher protein intake and replacing saturated with MUFA and PUFA were associated with a more favourable metabolic phenotype regarding metabolites associated with CVD risk.
Collapse
Affiliation(s)
- Marianne Bråtveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Strand
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Marienborg
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Indu Dhar
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Kjell Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Shi K, Liu X, Duan Y, Jiang X, Li N, Du Y, Li D, Feng C. Dynamic Changes in Intestinal Gene Expression and Microbiota across Chicken Egg-Laying Stages. Animals (Basel) 2024; 14:1529. [PMID: 38891577 PMCID: PMC11171086 DOI: 10.3390/ani14111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Eggs are a vital dietary component for humans, and it is beneficial to increase egg production to support poultry farming. Initially, the egg production rate rises rapidly with young hens until it reaches its peak, and then it declines gradually. By extending the duration of peak egg production, the hens' performance can be enhanced significantly. Previous studies found dynamic changes in gut microbiota during egg-laying, and several species of microbiota isolated from the chicken gut improved egg-laying performance. However, the interaction between microbes and host gene expression is still unclear. This study provides a more comprehensive understanding of chicken egg-laying by examining dynamic alterations in the microbiota of the entire intestinal tract (i.e., duodenum, jejunum, and ileum) and gene expression. The microbial community in the intestine underwent significant changes during different egg-laying periods (i.e., pre-, peak-, and late-laying periods). Metagenomic functional analysis showed that the relative abundance of biosynthesis of amino acids, secondary metabolites, and cofactors decreased significantly in the duodenum, jejunum, and ileum of aging hens. The relative levels of aldosterone, GnRH, insulin, growth hormone, and other hormone-related pathways increased dramatically in the intestinal microbiota during egg-laying, but only in the microbiota located in the duodenum and ileum. Transcriptome analysis suggested that genes associated with various transport processes were upregulated consistently in the small intestine during egg-laying; genes involved in the development of intestinal structure were down-regulated; and genes involved in response to DNA damage and stress were consistent with changes in laying rate. The abundance of Lactobacillus was related to the expression of ANGPTRL1, ANGPTRL2, ANGPT1L, and NOXO1 in the duodenum; Muricomes was correlated significantly with NFKBIZ, LYG2, and IRG1L expression in the jejunum; and Campylobacter was correlated positively with the expression of KMT2A and USF3 in the ileum. These results indicated that the intestinal microbiota and host gene expression may influence egg production jointly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.S.); (X.J.); (D.L.)
| |
Collapse
|
14
|
Agrawal P, Kaur J, Singh J, Rasane P, Sharma K, Bhadariya V, Kaur S, Kumar V. Genetics, Nutrition, and Health: A New Frontier in Disease Prevention. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:326-338. [PMID: 38015713 DOI: 10.1080/27697061.2023.2284997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The field of nutrition research has traditionally focused on the effects of macronutrients and micronutrients on the body. However, it has become evident that individuals have unique genetic makeups that influence their response to food. Nutritional genomics, which includes nutrigenetics and nutrigenomics, explores the interaction between an individual's genetic makeup, diet, and health outcomes. Nutrigenetics studies the impact of genetic variation on an individual's response to dietary nutrients, while nutrigenomics investigates how dietary components affect gene regulation and expression. These disciplines seek to understand the impact of diet on the genome, transcriptome, proteome, and metabolome. It provides insights into the mechanisms underlying the effect of diet on gene expression. Nutrients can cause the modification of genetic expression through epigenetic changes, such as DNA methylation and histone modifications. The aim of nutrigenomics is to create personalized diets based on the unique metabolic profile of an individual, gut microbiome, and genetic makeup to prevent diseases and promote health. Nutrigenomics has the potential to revolutionize the field of nutrition by combining the practicality of personalized nutrition with knowledge of genetic factors underlying health and disease. Thus, nutrigenomics offers a promising approach to improving health outcomes (in terms of disease prevention) through personalized nutrition strategies based on an individual's genetic and metabolic characteristics.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Kartik Sharma
- Faculty of Agro-Industry, Prince of Songkla University, Songkla, Thailand
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Vikas Kumar
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
15
|
Li LJ, Lu R, Rawal S, Birukov A, Weir NL, Tsai MY, Wu J, Chen Z, Zhang C. Maternal plasma phospholipid polyunsaturated fatty acids in early pregnancy and thyroid function throughout pregnancy: a longitudinal study. Am J Clin Nutr 2024; 119:1065-1074. [PMID: 38408725 PMCID: PMC11181349 DOI: 10.1016/j.ajcnut.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Evidence has indicated that polyunsaturated fatty acids (PUFAs)-enriched diet could reduce inflammation because of thyroid autoimmunity in vivo, and therefore, enhance thyroid function. OBJECTIVES We investigated whether early pregnancy plasma phospholipid PUFAs could benefit maternal thyroid function across pregnancy, which is critical to fetal brain development and growth in pregnancy. METHODS Within the National Institute of Child Health and Human Development Fetal Growth Studies-Singleton Cohort, we collected plasma samples longitudinally from 214 subjects [107 with gestational diabetes mellitus (GDM) matched with 107 controls] with a singleton pregnancy. We measured 11 PUFAs at early pregnancy (10-14 wk) and 5 thyroid biomarkers at 10-14, 15-26, 23-31, and 33-39 wk, including free thyroxine (fT4), free triiodothyronine (fT3), thyroid-stimulating hormone, antithyroid peroxidase, and antithyroglobulin. Associations of PUFAs with thyroid function biomarkers and relative risk (RR) of gestational hypothyroidism (GHT) during pregnancy were assessed using generalized linear mixed models and modified Poisson regression, respectively. RESULTS After sample weighting because of subjects with GDM over-representing in the analytic sample with biomarkers, eicosapentaenoic acid (EPA) at early pregnancy was associated with a reduction of 0.24 pmol/L (95% confidence intervals: -0.31, -0.16) in fT3 across gestation per standard deviation (SD) increment, whereas docosahexaenoic acid (DHA) at early pregnancy was associated with an increment of 0.04 ng/dL (0.02, 0.05) in fT4 across gestation per SD increment. Furthermore, EPA and docosatetraenoic acid (DTA) were associated with lower risks of persistent GHT (EPA-RR: 0.13; 0.06, 0.28; DTA-RR: 0.24; 0.13, 0.44) per SD increment. All significant associations remained robust in sensitivity analysis and multiple testing. CONCLUSIONS Certain plasma phospholipid PUFAs were associated with optimal levels of thyroid biomarkers and even lower risk of GHT throughout pregnancy, which might be potentially targeted for maternal thyroid regulation in early pregnancy. CLINICAL TRIAL REGISTRY This trial was registered at https://beta. CLINICALTRIALS gov/study/NCT00912132?distance=50&term=NCT00912132&rank=1 as NCT00912132.
Collapse
Affiliation(s)
- Ling-Jun Li
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruijin Lu
- Division of Biostatistics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Shristi Rawal
- Department of Clinical and Preventive Nutrition Sciences, School of Health Professions, Rutgers Global Health Institute, Rutgers University, NJ, United States
| | - Anna Birukov
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Natalie L Weir
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wu
- Glotech Inc., Bethesda, MD, United States
| | - Zhen Chen
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Cuilin Zhang
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Kalitin N, Dudina G, Kostritsa N, Sivirinova A, Vaiman A, Karamysheva A. Clinical Relevance of Differential RARα and PPARβ/δ Expression in Myelodysplastic Syndromes. In Vivo 2024; 38:657-664. [PMID: 38418133 PMCID: PMC10905464 DOI: 10.21873/invivo.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM Myelodysplastic syndromes (MDS) are clinically heterogeneous hematological malignancies with an increased risk of transformation to acute myeloid leukemia, emphasizing the importance of identifying new diagnostic and prognostic markers. This study sought to investigate the predictive ability of all-trans retinoic acid (ATRA)-dependent nuclear transcription factors RARα and PPARβ/δ gene expression in MDS patients. MATERIALS AND METHODS Peripheral blood specimens were collected from 49 MDS patients and 15 healthy volunteers. The specimens were further separated in Ficoll density gradient to obtain the mononuclear cells fractions. Gene expression analysis was carried out using quantitative real-time polymerase chain reaction (qRT-PCR) technique. RESULTS In the mononuclear cell fractions of MDS patients, RARα expression was increased (p<0.05) and PPARβ/δ expression was decreased (p<0.01) compared to healthy volunteers. When RARα and PPARβ/δ expression was compared in groups of MDS patients with different risks of disease progression, no statistically significant difference was found for RARα expression, while PPARβ/δ expression was significantly lower in the high-risk group of patients compared to the low-risk group (p<0.05). The expression of RARα was significantly associated with overall survival (p<0.05). ROC analysis showed that the expression of PPARβ/δ, rather than RARα expression, could have potential diagnostic value for MDS patients (AUC=0.75, p=0.003 and AUC=0.65, p=0.081, respectively). CONCLUSION RARα and PPARβ/δ genes are putative biomarkers that may be associated with the diagnosis and prognosis of MDS.
Collapse
Affiliation(s)
- Nikolay Kalitin
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation;
| | - Galina Dudina
- Department of Oncohematology, A.S. Loginov Moscow Clinical Scientific Center, Moscow, Russian Federation
| | - Natalia Kostritsa
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anastasiya Sivirinova
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Andrey Vaiman
- Laboratory of Tumor Cell Genetics, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Aida Karamysheva
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
17
|
Olga L, McKenzie K, Kerac M, Boyne M, Badaloo A, Bandsma RHJ, Koulman A, Thompson DS. Weight gain during nutritional rehabilitation post-childhood malnutrition may influence the associations between adulthood desaturases activity and anthro-cardiometabolic risk factors. Clin Nutr 2024; 43:747-755. [PMID: 38330703 DOI: 10.1016/j.clnu.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUNDS & AIMS Childhood malnutrition is a major global health problem with long-term sequelae, including non-communicable diseases (NCDs). Mechanisms are unknown but may involve metabolic programming, resulting from "short-term" solutions to optimise survival by compromising non-priority organs. As key players in lipid metabolism, desaturases have been shown to be predictive of NCDs. We hypothesised that the association between specific desaturase activities and NCD risk determinants (including body composition, serum glucose, insulin levels, and blood pressure) are influenced by childhood post-malnutrition weight gain. METHODS 278 Afro-Caribbean adults with well-documented clinical history of severe malnutrition in childhood were studied. Extensive metabolic analyses including body composition (DXA), fasting serum glucose and lipidomics (n = 101), and fasting serum insulin (n = 83) were performed in malnutrition survivors and matched community controls (n = 90). Established lipid ratios were used as proxies of desaturase activities: CE 16:1/CE 16:0 for stearoyl-CoA desaturase (SCD1), LysoPC 20:4/20:3 for fatty acid desaturase 1 (FADS1), and LysoPC 20:3/18:2 for FADS2. RESULTS Compared to community controls, adult malnutrition survivors (mean ± SD) age 28.3 ± 7.8 and BMI 23.6 ± 5.2 had higher SCD1 and FADS1 activity, (B ± SE) 0.07 ± 0.02 and 0.7 ± 0.08, respectively, but lower FADS2 activities (B ± SE) -0.05 ± 0.01, adjusted for sex and age (p < 0.0005). SCD1 was positively associated with adult BMI and body fat percentage, and negatively associated with lean mass and height. Stratification based on weight gain during nutritional rehabilitation among malnutrition survivors might signal the potential associations between weight gain during that critical period, desaturase activities, and some of adult metabolic parameters, with the lowest tertiles (slowest catch-up weight gain) performing more similarly to controls. CONCLUSIONS In adult survivors of early-life severe acute malnutrition, desaturase activity is associated with markers of NCD risk, especially adiposity. These associations seem to be strengthened by faster weight gain during nutritional rehabilitation.
Collapse
Affiliation(s)
- Laurentya Olga
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Kimberley McKenzie
- Caribbean Institute for Health Research, The University of the West Indies, Kingston, Jamaica
| | - Marko Kerac
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Boyne
- Department of Medicine, The University of the West Indies, Kingston, Jamaica
| | - Asha Badaloo
- Caribbean Institute for Health Research, The University of the West Indies, Kingston, Jamaica
| | - Robert H J Bandsma
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada; Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Albert Koulman
- MRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Debbie S Thompson
- Caribbean Institute for Health Research, The University of the West Indies, Kingston, Jamaica
| |
Collapse
|
18
|
Shi K, Liu X, Duan Y, Ding J, Jia Y, Jiang Z, Feng C. Multi-omics analysis reveals associations between host gene expression, gut microbiota, and metabolites in chickens. J Anim Sci 2024; 102:skae263. [PMID: 39243135 PMCID: PMC11457126 DOI: 10.1093/jas/skae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024] Open
Abstract
Egg-laying is an important trait in chickens, and it is affected by many factors, such as hormones regulated by the hypothalamic-pituitary axis and precursors synthesized by the liver. Recent studies showed that gut microbiota was associated with egg-laying, however, its underlying mechanism remains unclear. We comprehensively analyzed the host transcriptome, gut microbiota, and metabolome in broiler breeder hens during the pre-laying, peak-laying, and late-laying periods. The transcriptome analysis of the tissues related to the hypothalamic-pituitary-liver (HPL) axis revealed dynamic gene expression during egg-laying periods. Differentially expressed genes (DEGs) (i.e., PENK, NPY, AVP, PRL, RLN3, and FST) from the hypothalamus and pituitary gland were involved in female gonadal development, hormone secretion, response to endogenous stimulus, liver development, and amide metabolism. In liver, DEGs (i.e., FABP3, VTG1, LPL, APOA5, APOV1, and RBP5) were enriched in efferocytosis, sphingolipid metabolism, amide, and peptide biosynthesis. Alpha and beta diversity changed significantly in cecum microbiota during different laying periods. The abundance of Firmicutes was decreased and the abundance of Bacteroidota was increased during the peak-laying period. Functional analysis showed that the biosynthesis of secondary metabolites, amino acids, purine, and steroid hormones was altered during laying. The metabolome analysis from cecal contents showed that amino acid metabolism and steroid hormone biosynthesis changed during laying. Integrated analysis of the cecal microbiota and metabolites showed the genus Megasphaera was involved in amino acid metabolism, which included 3-phenyllatic acid, quinic acid, caffeic acid, and folic acid, and the genus Hungatella participated in steroid hormone biosynthesis through its strong correlation with estradiol. These results explored the dynamic changes in tissues related to the HPL axis and cecal microbiota and provided new insights into the interaction between the host and microbiota during egg-laying in chickens.
Collapse
Affiliation(s)
- Kai Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiangping Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ying Duan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiqiang Ding
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ziqin Jiang
- Department of Breeding Research, Guangdong Wens South Poultry Breeding Co. Ltd, Yunfu, China
| | - Chungang Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Ortiz M, Álvarez D, Muñoz Y, Crisosto N, Valenzuela R, Maliqueo M. Linoleic and Arachidonic Fatty Acids and their Potential Relationship with Inflammation, Pregnancy, and Fetal Development. Curr Med Chem 2024; 31:5046-5060. [PMID: 37415369 DOI: 10.2174/0929867331666230706161144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
A healthy maternal diet must consider an appropriate supply of long-chain polyunsaturated fatty acids (LCPUFAs) precursors to ensure adequate growth and development of the fetus. In this regard, n-6 PUFAs, predominantly linoleic (C18:2 n-6, LA) and arachidonic acid (C20:4 n-6), have a central role in the development of the central nervous system because they are part of the membrane structure and participate in the metabolism and signal transduction of cells. Nevertheless, they can also be transformed into inflammatory metabolites promoting the pathogenesis of cardiovascular diseases, cancer, and autoimmune or inflammatory conditions. In modern westernized societies, there is a high dietary consumption of foods rich in n-6 PUFAs which could have detrimental consequences for the fetus and neonate due to excessive exposure to these fatty acids (FAs). OBJECTIVE To summarize the evidence of maternal, placental, and fetal alterations that an excessive intake of n-6 polyunsaturated FAs (PUFAs), LA, and AA, could produce during pregnancy. METHODS A thorough review of the literature regarding the effects of n-6 PUFAs during pregnancy and lactation including in vivo and in vitro models, was carried out using the PubMed database from the National Library of Medicine-National Institutes of Health. RESULTS An elevated intake of n-6 PUFA, specifically LA, during pregnancy influences children's motor, cognitive, and verbal development during infancy and early childhood. Similarly, they could harm the placenta and the development of other fetal organs such as the fat tissue, liver, and cardiovascular system. CONCLUSION Maternal diet, specifically LA intake, could have significant repercussions on fetal development and long-term consequences in the offspring, including the possibility of future metabolic and mental diseases. It would be necessary to focus on the prevention of these alterations through timely dietary interventions in the target population.
Collapse
Affiliation(s)
- Macarena Ortiz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Daniela Álvarez
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Yasna Muñoz
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
- Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Valenzuela
- Nutrition Department, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Zhu Y, Song G. Molecular origin and biological effects of exercise mimetics. J Exerc Sci Fit 2024; 22:73-85. [PMID: 38187084 PMCID: PMC10770624 DOI: 10.1016/j.jesf.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
With the rapid development of sports science and molecular biology technology, academia refers to molecules or microorganisms that mimic or enhance the beneficial effects of exercise on the body, called "exercise mimetics." This review aims to clarify the concept and development history of exercise mimetics, and to define the concept of exercise mimetics by summarizing its characteristics and functions. Candidate molecules and drug targets for exercise mimetics are summarized, and the relationship between exercise mimetics and exercise is explained, as well as the targeting system and function of exercise mimetics. The main targeting systems for exercise mimetics are the exercise system, circulatory system, endocrine system, endocrine system, and nervous system, while the immune system is potential targeting systems. Finally, future research directions for exercise mimetics are discussed.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
21
|
Trohl J, Schindler M, Buske M, de Nivelle J, Toto Nienguesso A, Navarrete Santos A. Advanced maternal age leads to changes within the insulin/IGF system and lipid metabolism in the reproductive tract and preimplantation embryo: insights from the rabbit model. Mol Hum Reprod 2023; 29:gaad040. [PMID: 38001038 DOI: 10.1093/molehr/gaad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Reproductive potential in women declines with age. The impact of ageing on embryo-maternal interactions is still unclear. Rabbits were used as a reproductive model to investigate maternal age-related alterations in reproductive organs and embryos on Day 6 of pregnancy. Blood, ovaries, endometrium, and blastocysts from young (16-20 weeks) and advanced maternal age phase (>108 weeks, old) rabbits were analysed at the mRNA and protein levels to investigate the insulin-like growth factor (IGF) system, lipid metabolism, and stress defence system. Older rabbits had lower numbers of embryos at Day 6 of pregnancy. Plasma insulin and IGF levels were reduced, which was accompanied by paracrine regulation of IGFs and their receptors in ovaries and endometrium. Embryos adapted to hormonal changes as indicated by reduced embryonic IGF1 and 2 levels. Aged reproductive organs increased energy generation from the degradation of fatty acids, leading to higher oxidative stress. Stress markers, including catalase, superoxide dismutase 2, and receptor for advanced glycation end products were elevated in ovaries and endometrium from aged rabbits. Embryonic fatty acid uptake and β-oxidation were increased in both embryonic compartments (embryoblast and trophoblast) in old rabbits, associated with minor changes in the oxidative and glycative stress defence systems. In summary, the insulin/IGF system, lipid metabolism, and stress defence were dysregulated in reproductive tissues of older rabbits, which is consistent with changes in embryonic metabolism and stress defence. These data highlight the crucial influence of maternal age on uterine adaptability and embryo development.
Collapse
Affiliation(s)
- Juliane Trohl
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Maximilian Buske
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Johanna de Nivelle
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Alicia Toto Nienguesso
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| |
Collapse
|
22
|
Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, Bleicher A, Novak G, Liu TT, Newman S, Ricke WA, Matkowskyj KA, Ong IM, Jang C, Simcox J, Lamming DW. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab 2023; 35:1976-1995.e6. [PMID: 37939658 PMCID: PMC10655617 DOI: 10.1016/j.cmet.2023.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yasmine H Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Anneliese Bleicher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Grace Novak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Teresa T Liu
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Sarah Newman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Kristina A Matkowskyj
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
23
|
Pinna G. Role of PPAR-Allopregnanolone Signaling in Behavioral and Inflammatory Gut-Brain Axis Communications. Biol Psychiatry 2023; 94:609-618. [PMID: 37156350 DOI: 10.1016/j.biopsych.2023.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The gut microbiome regulates emotional behavior, stress responses, and inflammatory processes by communicating with the brain. How and which neurobiological mediators underlie this communication remain poorly understood. PPAR-α (peroxisome proliferator-activated receptor α), a transcription factor susceptible to epigenetic modifications, regulates pathophysiological functions, including metabolic syndrome, inflammation, and behavior. Mood disorders, inflammatory processes, and obesity are intertwined phenomena that are associated with low blood concentrations of the anti-inflammatory and "endogenous tranquilizer" neurosteroid allopregnanolone and poor PPAR-α function. Stress and consumption of obesogenic diets repress PPAR function in brain, enterocytes, lipocytes, and immune modulatory cells favoring inflammation, lipogenesis, and mood instability. Conversely, micronutrients and modulators of PPAR-α function improve microbiome composition, dampen systemic inflammation and lipogenesis, and improve anxiety and depression. In rodent stress models of anxiety and depression, PPAR activation normalizes both PPAR-α expression downregulation and decreased allopregnanolone content and ameliorates depressive-like behavior and fear responses. PPAR-α is known to regulate metabolic and inflammatory processes activated by short-chain fatty acids; endocannabinoids and congeners, such as N-palmitoylethanolamide, drugs that treat dyslipidemias; and micronutrients, including polyunsaturated fatty acids. Both PPAR-α and allopregnanolone are abundantly expressed in the colon, and they exert potent anti-inflammatory actions by blocking the toll-like receptor-4-nuclear factor-κB pathway in peripheral immune cells, neurons, and glia. The perspective that PPAR-α regulation in the colon by gut microbiota or metabolites influences central allopregnanolone content after trafficking to the brain, thereby serving as a mediator of gut-brain axis communications, is examined in this review.
Collapse
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, University of Illinois Center on Depression and Resilience, and Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
24
|
Kinota F, Droma Y, Kobayashi N, Horiuchi T, Kitaguchi Y, Yasuo M, Ota M, Hanaoka M. The Contribution of Genetic Variants of the Peroxisome Proliferator-Activated Receptor-Alpha Gene to High-Altitude Hypoxia Adaptation in Sherpa Highlanders. High Alt Med Biol 2023; 24:186-192. [PMID: 30475063 PMCID: PMC10516232 DOI: 10.1089/ham.2018.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Kinota, Fumiya, Yunden Droma, Nobumitsu Kobayashi, Toshimichi Horiuchi, Yoshiaki Kitaguchi, Masanori Yasuo, Masao Ota, and Masayuki Hanaoka. The contribution of genetic variants of the gene encoding peroxisome proliferator-activated receptor-alpha gene (PPARA) to high-altitude hypoxia adaptation in Sherpa highlanders. High Alt Med Biol. 24:186-192, 2023.-Sherpa highlanders, who play invaluable roles in the exploration of Mount Everest, have exceptional tolerance to hypobaric hypoxia. Sherpa people are well known to possess the traits determined by genetic background for high-altitude adaptation. The metabolic adaptation mechanism is one of the biological ways for Sherpa highlanders in protecting them from hypoxia stress at high altitude. Studies have suggested that the gene encoding PPARA is associated with metabolic adaptation in the Himalayan population of Tibetans. This study attempts to investigate the genetic variants of the PPARA in Sherpa highlanders and the association with high-altitude hypoxia adaptation. Seven single-nucleotide polymorphisms (SNPs; rs135547, rs5769178, rs881740, rs4253712, rs5766741, and rs5767700 in introns and rs1800234 in exon 6) in the PPARA were genotyped in 105 Sherpa highlanders who lived in the Khumbu region (3440 m above sea level) and 111 non-Sherpa lowlanders who resided in Kathmandu (1300 m) in Nepal. By means of analyses of genetic distances, genotype distributions, allele frequencies, linkage disequilibrium, and haplotype constructions of the seven SNPs in the Sherpa highlanders versus the non-Sherpa lowlanders, it was revealed that the frequencies of minor alleles of rs4253712, rs5766741, rs5767700, and rs1800234 SNPs, as well as the frequency of haplotype constructed by the minor alleles of rs5766741-rs5767700-rs1800234, were significantly overrepresented in the Sherpa highlanders in comparison with the non-Sherpa lowlanders. The results strongly suggest that the genetic variants of the PPARA are likely to contribute to the high-altitude adaptation in Sherpa highlanders.
Collapse
Affiliation(s)
- Fumiya Kinota
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yunden Droma
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nobumitsu Kobayashi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Toshimichi Horiuchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiaki Kitaguchi
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanori Yasuo
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Division of Hepatology and Gastroenterology, Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayuki Hanaoka
- The First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
25
|
Gong Y, Luo H, Li Z, Feng Y, Liu Z, Chang J. Metabolic Profile of Alzheimer's Disease: Is 10-Hydroxy-2-decenoic Acid a Pertinent Metabolic Adjuster? Metabolites 2023; 13:954. [PMID: 37623897 PMCID: PMC10456792 DOI: 10.3390/metabo13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) represents a significant public health concern in modern society. Metabolic syndrome (MetS), which includes diabetes mellitus (DM) and obesity, represents a modifiable risk factor for AD. MetS and AD are interconnected through various mechanisms, such as mitochondrial dysfunction, oxidative stress, insulin resistance (IR), vascular impairment, inflammation, and endoplasmic reticulum (ER) stress. Therefore, it is necessary to seek a multi-targeted and safer approach to intervention. Thus, 10-hydroxy-2-decenoic acid (10-HDA), a unique hydroxy fatty acid in royal jelly, has shown promising anti-neuroinflammatory, blood-brain barrier (BBB)-preserving, and neurogenesis-promoting properties. In this paper, we provide a summary of the relationship between MetS and AD, together with an introduction to 10-HDA as a potential intervention nutrient. In addition, molecular docking is performed to explore the metabolic tuning properties of 10-HDA with associated macromolecules such as GLP-1R, PPARs, GSK-3, and TREM2. In conclusion, there is a close relationship between AD and MetS, and 10-HDA shows potential as a beneficial nutritional intervention for both AD and MetS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Ren’ai Road, Suzhou 215123, China; (Y.G.)
| |
Collapse
|
26
|
Amodeo V, Davies T, Martinez-Segura A, Clements MP, Ragdale HS, Bailey A, Dos Santos MS, MacRae JI, Mokochinski J, Kramer H, Garcia-Diaz C, Gould AP, Marguerat S, Parrinello S. Diet suppresses glioblastoma initiation in mice by maintaining quiescence of mutation-bearing neural stem cells. Dev Cell 2023; 58:836-846.e6. [PMID: 37084728 PMCID: PMC10618406 DOI: 10.1016/j.devcel.2023.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 12/09/2021] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention.
Collapse
Affiliation(s)
- Valeria Amodeo
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Timothy Davies
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Amalia Martinez-Segura
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | | | - Andrew Bailey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | | | - James I MacRae
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK
| | - Alex P Gould
- The Francis Crick Institute, 1 Midland Road, London NW1 1AA, UK
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
27
|
Macchi C, Sirtori CR, Corsini A, Mannuccio Mannucci P, Ruscica M. Pollution from fine particulate matter and atherosclerosis: A narrative review. ENVIRONMENT INTERNATIONAL 2023; 175:107923. [PMID: 37119653 DOI: 10.1016/j.envint.2023.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
According to the WHO, the entire global population is exposed to air pollution levels higher than recommended for health preservation. Air pollution is a complex mixture of nano- to micro-sized particles and gaseous components that poses a major global threat to public health. Among the most important air pollutants, causal associations have been established between particulate matter (PM), mainly < 2.5 μm, and cardiovascular diseases (CVD), i.e., hypertension, coronary artery disease, ischemic stroke, congestive heart failure, arrhythmias as well as total cardiovascular mortality. Aim of this narrative review is to describe and critically discuss the proatherogenic effects of PM2.5 that have been attributed to many direct or indirect effects comprising endothelial dysfunction, a chronic low-grade inflammatory state, increased production of reactive oxygen species, mitochondrial dysfunction and activation of metalloproteases, all leading to unstable arterial plaques. Higher concentrations of air pollutants are associated with the presence of vulnerable plaques and plaque ruptures witnessing coronary artery instability. Air pollution is often disregarded as a CVD risk factor, in spite of the fact that it is one of the main modifiable factors relevant for prevention and management of CVD. Thus, not only structural actions should be taken in order to mitigate emissions, but health professionals should also take care to counsel patients on the risks of air pollution.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Italy.
| |
Collapse
|
28
|
Cizkova K, Tauber Z. Fibrates Affect Levels of Phosphorylated p38 in Intestinal Cells in a Differentiation-Dependent Manner. Int J Mol Sci 2023; 24:ijms24097695. [PMID: 37175404 PMCID: PMC10178720 DOI: 10.3390/ijms24097695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Fibrates are widely used hypolipidaemic agents that act as ligands of the peroxisome proliferator-activated receptor α (PPARα). p38 is a protein kinase that is mainly activated by environmental and genotoxic stress. We investigated the effect of the PPARα activators fenofibrate and WY-14643 and the PPARα inhibitor GW6471 on the levels of activated p38 (p-p38) in the colorectal cancer cell lines HT-29 and Caco2 in relation to their differentiation status. Fibrates increased p-p38 in undifferentiated HT-29 cells, whereas in other cases p-p38 expression was decreased. HT-29 cells showed p-p38 predominantly in the cytoplasm, whereas Caco2 cells showed higher nuclear positivity. The effect of fibrates may depend on the differentiation status of the cell, as differentiated HT-29 and undifferentiated Caco2 cells share similar characteristics in terms of villin, CYP2J2, and soluble epoxide hydrolase (sEH) expression. In human colorectal carcinoma, higher levels of p-p38 were detected in the cytoplasm, whereas in normal colonic surface epithelium, p-p38 showed nuclear positivity. The decrease in p-p38 positivity was associated with a decrease in sEH, consistent with in vitro results. In conclusion, fibrates affect the level of p-p38, but its exact role in the process of carcinogenesis remains unclear and further research is needed in this area.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
29
|
Aljahdali AA, Goodrich JM, Dolinoy DC, Kim HM, Ruiz-Narváez EA, Baylin A, Cantoral A, Torres-Olascoaga LA, Téllez-Rojo MM, Peterson KE. DNA Methylation Is a Potential Biomarker for Cardiometabolic Health in Mexican Children and Adolescents. EPIGENOMES 2023; 7:4. [PMID: 36810558 PMCID: PMC9944859 DOI: 10.3390/epigenomes7010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
DNA methylation (DNAm) is a plausible mechanism underlying cardiometabolic abnormalities, but evidence is limited among youth. This analysis included 410 offspring of the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort followed up to two time points in late childhood/adolescence. At Time 1, DNAm was quantified in blood leukocytes at long interspersed nuclear elements (LINE-1), H19, and 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), and at Time 2 in peroxisome proliferator-activated receptor alpha (PPAR-α). At each time point, cardiometabolic risk factors were assessed including lipid profiles, glucose, blood pressure, and anthropometry. Linear mixed effects models were used for LINE-1, H19, and 11β-HSD-2 to account for the repeated-measure outcomes. Linear regression models were conducted for the cross-sectional association between PPAR-α with the outcomes. DNAm at LINE-1 was associated with log glucose at site 1 [β = -0.029, p = 0.0006] and with log high-density lipoprotein cholesterol at site 3 [β = 0.063, p = 0.0072]. 11β-HSD-2 DNAm at site 4 was associated with log glucose (β = -0.018, p = 0.0018). DNAm at LINE-1 and 11β-HSD-2 was associated with few cardiometabolic risk factors among youth in a locus-specific manner. These findings underscore the potential for epigenetic biomarkers to increase our understanding of cardiometabolic risk earlier in life.
Collapse
Affiliation(s)
- Abeer A. Aljahdali
- Department of Clinical Nutrition, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Hyungjin M. Kim
- Center for Computing, Analytics and Research, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Ana Baylin
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alejandra Cantoral
- Department of Health, Iberoamericana University, Mexico City 01219, Mexico
| | - Libni A. Torres-Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Martha M. Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Essadek S, Gondcaille C, Savary S, Samadi M, Vamecq J, Lizard G, Kebbaj RE, Latruffe N, Benani A, Nasser B, Cherkaoui-Malki M, Andreoletti P. Two Argan Oil Phytosterols, Schottenol and Spinasterol, Attenuate Oxidative Stress and Restore LPS-Dysregulated Peroxisomal Functions in Acox1-/- and Wild-Type BV-2 Microglial Cells. Antioxidants (Basel) 2023; 12:168. [PMID: 36671029 PMCID: PMC9854540 DOI: 10.3390/antiox12010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress and inflammation are the key players in neuroinflammation, in which microglia dysfunction plays a central role. Previous studies suggest that argan oil attenuates oxidative stress, inflammation, and peroxisome dysfunction in mouse brains. In this study, we explored the effects of two major argan oil (AO) phytosterols, Schottenol (Schot) and Spinasterol (Spina), on oxidative stress, inflammation, and peroxisomal dysfunction in two murine microglial BV-2 cell lines, wild-ype (Wt) and Acyl-CoA oxidase 1 (Acox1)-deficient cells challenged with LPS treatment. Herein, we used an MTT test to reveal no cytotoxicity for both phytosterols with concentrations up to 5 µM. In the LPS-activated microglial cells, cotreatment with each of these phytosterols caused a significant decrease in intracellular ROS production and the NO level released in the culture medium. Additionally, Schot and Spina were able to attenuate the LPS-dependent strong induction of Il-1β and Tnf-α mRNA levels, as well as the iNos gene and protein expression in both Wt and Acox1-/- microglial cells. On the other hand, LPS treatment impacted both the peroxisomal antioxidant capacity and the fatty acid oxidation pathway. However, both Schot and Spina treatments enhanced ACOX1 activity in the Wt BV-2 cells and normalized the catalase activity in both Wt and Acox1-/- microglial cells. These data suggest that Schot and Spina can protect cells from oxidative stress and inflammation and their harmful consequences for peroxisomal functions and the homeostasis of microglial cells. Collectively, our work provides a compelling argument for the protective mechanisms of two major argan oil phytosterols against LPS-induced brain neuroinflammation.
Collapse
Affiliation(s)
- Soukaina Essadek
- Laboratory of Biochimistry, Neuroscience, Natural Resources and Environment, Faculty of Science and Technology, University Hassan I, Settat 26000, Morocco
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Catherine Gondcaille
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Stéphane Savary
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France
| | - Joseph Vamecq
- Inserm and HMNO, CBP, CHRU Lille, and RADEME EA 7364, Faculté de Médecine, Université de Lille 2, 59045 Lille, France
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan 1st University, Settat 26000, Morocco
| | - Norbert Latruffe
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Alexandre Benani
- CSGA—Centre des Sciences du Goût et de l’Alimentation, CNRS—Centre National de la Recherche Scientifique, INRAE—Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement, Institut Agro Dijon, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Boubker Nasser
- Laboratory of Biochimistry, Neuroscience, Natural Resources and Environment, Faculty of Science and Technology, University Hassan I, Settat 26000, Morocco
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, EA7270, University Bourgogne Franche-Comté/Inserm, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
31
|
Guo Y, Wang L, Hanson A, Urriola PE, Shurson GC, Chen C. Identification of Protective Amino Acid Metabolism Events in Nursery Pigs Fed Thermally Oxidized Corn Oil. Metabolites 2023; 13:metabo13010103. [PMID: 36677028 PMCID: PMC9866068 DOI: 10.3390/metabo13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Feeding thermally oxidized lipids to pigs has been shown to compromise growth and health, reduce energy digestibility, and disrupt lipid metabolism. However, the effects of feeding oxidized lipids on amino acid metabolism in pigs have not been well defined even though amino acids are indispensable for the subsistence of energy metabolism, protein synthesis, the antioxidant system, and many other functions essential for pig growth and health. In this study, oxidized corn oil (OCO)-elicited changes in amino acid homeostasis of nursery pigs were examined by metabolomics-based biochemical analysis. The results showed that serum and hepatic free amino acids and metabolites, including tryptophan, threonine, alanine, glutamate, and glutathione, as well as associated metabolic pathways, were selectively altered by feeding OCO, and more importantly, many of these metabolic events possess protective functions. Specifically, OCO activated tryptophan-nicotinamide adenosine dinucleotide (NAD+) synthesis by the transcriptional upregulation of the kynurenine pathway in tryptophan catabolism and promoted adenine nucleotide biosynthesis. Feeding OCO induced oxidative stress, causing decreases in glutathione (GSH)/oxidized glutathione (GSSG) ratio, carnosine, and ascorbic acid in the liver but simultaneously promoted antioxidant responses as shown by the increases in hepatic GSH and GSSG as well as the transcriptional upregulation of GSH metabolism-related enzymes. Moreover, OCO reduced the catabolism of threonine to α-ketobutyrate in the liver by inhibiting the threonine dehydratase (TDH) route. Overall, these protective metabolic events indicate that below a certain threshold of OCO consumption, nursery pigs are capable of overcoming the oxidative stress and metabolic challenges posed by the consumption of oxidized lipids by adjusting antioxidant, nutrient, and energy metabolism, partially through the transcriptional regulation of amino acid metabolism.
Collapse
Affiliation(s)
- Yue Guo
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
| | - Lei Wang
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
| | - Andrea Hanson
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Gerald C. Shurson
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave., St. Paul, MN 55108, USA
- Department of Animal Science, University of Minnesota, 1364 Eckles Ave., St. Paul, MN 55108, USA
- Correspondence: ; Tel.: +1-612-624-7704; Fax: +1-612-625-5272
| |
Collapse
|
32
|
Zeng W, Yin X, Jiang Y, Jin L, Liang W. PPARα at the crossroad of metabolic-immune regulation in cancer. FEBS J 2022; 289:7726-7739. [PMID: 34480827 DOI: 10.1111/febs.16181] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023]
Abstract
Rewiring metabolism to sustain cell growth, division, and survival is the most prominent feature of cancer cells. In particular, dysregulated lipid metabolism in cancer has received accumulating interest, since lipid molecules serve as cell membrane structure components, secondary signaling messengers, and energy sources. Given the critical role of immune cells in host defense against cancer, recent studies have revealed that immune cells compete for nutrients with cancer cells in the tumor microenvironment and accordingly develop adaptive metabolic strategies for survival at the expense of compromised immune functions. Among these strategies, lipid metabolism reprogramming toward fatty acid oxidation is closely related to the immunosuppressive phenotype of tumor-infiltrated immune cells, including macrophages and dendritic cells. Therefore, it is important to understand the lipid-mediated crosstalk between cancer cells and immune cells in the tumor microenvironment. Peroxisome proliferator-activated receptors (PPARs) consist of a nuclear receptor family for lipid sensing, and one of the family members PPARα is responsible for fatty acid oxidation, energy homeostasis, and regulation of immune cell functions. In this review, we discuss the emerging role of PPARα-associated metabolic-immune regulation in tumor-infiltrated immune cells, and key metabolic events and pathways involved, as well as their influences on antitumor immunity.
Collapse
Affiliation(s)
- Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhe Yin
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Yunhan Jiang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lingtao Jin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Wu J, Chu E, Paul B, Kang Y. Mechanistic Studies and a Retrospective Cohort Study: The Interaction between PPAR Agonists and Immunomodulatory Agents in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14215272. [PMID: 36358696 PMCID: PMC9657746 DOI: 10.3390/cancers14215272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/05/2023] Open
Abstract
Our previous study demonstrated that peroxisome proliferator-activated receptor (PPAR) agonists downregulated cereblon (CRBN) expression and reduced the anti-myeloma activity of lenalidomide in vitro and in vivo. We aimed to determine whether DNA methylation and protein degradation contribute to the effects of PPAR agonists. CRBN promoter methylation status was detected using methylation-specific polymerase chain reaction. The CRBN protein degradation rate was measured using a cycloheximide chase assay. Metabolomic analysis was performed in multiple myeloma (MM) cells treated with PPAR agonists and/or lenalidomide. Our retrospective study determined the effect of co-administration of PPAR agonists with immunomodulatory drugs on the outcomes of patients with MM. CpG islands of the CRBN promoter region became highly methylated upon treatment with PPAR agonists, whereas treatment with PPAR antagonists resulted in unmethylation. The CRBN protein was rapidly degraded after treatment with PPAR agonists. Lenalidomide and fenofibrate showed opposite effects on acylcarnitines and amino acids. Co-administration of immunomodulatory drugs and PPAR agonists was associated with inferior treatment responses and poor survival. Our study provides the first evidence that PPAR agonists reduce CRBN expression through various mechanisms including inducing methylation of CRBN promoter CpG island, enhancing CRBN protein degradation, and affecting metabolomics of MM cells.
Collapse
|
34
|
Li C, Zhang C, Zhu C, Zhang J, Xia Q, Liu K, Zhang Y. Inflammation aggravated the hepatotoxicity of triptolide by oxidative stress, lipid metabolism disorder, autophagy, and apoptosis in zebrafish. Front Pharmacol 2022; 13:949312. [PMID: 36110530 PMCID: PMC9468416 DOI: 10.3389/fphar.2022.949312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Triptolide is a major compound isolated from the Tripterygium wilfordii Hook that is mainly used for the treatment of autoimmune disorders and inflammatory diseases. Though triptolide-induced hepatotoxicity has been widely reported, the hepatic effects when the patients are in an inflammatory state are not clear. In this study, we used low-dose Lipopolysaccharides (LPS) to disrupt the inflammation homeostasis in the liver of zebrafish and explored the hepatotoxicity of triptolide under an inflammatory state. Compared with the Triptolide group, LPS-Triptolide cotreatment exacerbate the liver injury with a remarkable decrease of liver size and liver-specific fluorescence intensity, accompanied by significant elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Liver cell damages were further demonstrated by histological staining and scanning electron microscopy observation. Lipid metabolism was severely impaired as indicated by delayed yolk sac absorption, accumulated triglycerides in the liver, and dysregulation of the related genes, such as ppar-α, cpt-1, mgst, srebf1/2, and fasn. Oxidative stress could be involved in the molecular mechanism as the Nrf2/keap1 antioxidant pathways were down-regulated when the zebrafish in an inflammatory state. Moreover, the expression of autophagy-related genes such as beclin, atg5, map1lc3b, and atg3 was also dysregulated. Finally, apoptosis was significantly induced in responses to LPS-Triptolide co-treatment. We speculate that triptolide could exacerbate the immune response and impair lipid metabolism, resulting in enhanced sensitivity of the zebrafish liver to triptolide-induced toxic effects through disruption of the antioxidant system and induction of apoptosis.
Collapse
Affiliation(s)
- Chenqinyao Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Changqing Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
- *Correspondence: Yun Zhang,
| |
Collapse
|
35
|
Cizkova K, Koubova K, Tauber Z. Lipid Messenger Phosphatidylinositol-4,5-Bisphosphate Is Increased by Both PPARα Activators and Inhibitors: Relevance for Intestinal Cell Differentiation. BIOLOGY 2022; 11:biology11070997. [PMID: 36101378 PMCID: PMC9312331 DOI: 10.3390/biology11070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Fibrates, such as fenofibrate, are widely used drugs for dyslipidaemia treatment. It is known that they activate peroxisome proliferator-activated receptor α (PPARα) which serves as a lipid sensor in the organism. This article addresses how activators and inhibitor of the PPARα could affect differentiation of intestinal cells. Carcinogenesis is a disruption of normal differentiation process and colorectal carcinoma is the third most common cancer in terms of incidence, but the secondp in terms of mortality. One of the important signalling pathways in intestinal cell differentiation as well as carcinogenesis is PI3K/Akt/PTEN. We showed that PPARα activators as well as inhibitor affected the levels of one member of this pathway called phosphatidylinositol-4,5-bisphosphate. This molecule is important for formation of microvilli, the essential structures of fully differentiated intestinal cells. Abstract We investigated the effects of PPARα activators fenofibrate and WY-14643 as well as the PPARα inhibitor GW6471 on the PI3K/Akt/PTEN pathway of intestinal cell differentiation. Our previous study showed that all these compounds increased the expression of villin, a specific marker of intestinal cell differentiation in HT-29 and Caco2 cells. Our current results confirmed the central role of lipid messenger phosphatidylinositol-4,5-bisphosphate (PIP2), a known player in brush border formation, in mediating the effects of tested PPARα ligands. Although all tested compounds increased its levels, surprisingly, each of them affected different PIP2-metabolizing enzymes, especially the levels of PIP5K1C and PTEN. Moreover, we found a positive relationship between the expression of PPARα itself and PIP2 as well as PIP5K1C. By contrast, PPARα was negatively correlated with PTEN. However, the expression of antigens of interest was independent of PPARα subcellular localization, suggesting that it is not directly involved in their regulation. In colorectal carcinoma tissues we found a decrease in PTEN expression, which was accompanied by a change in its subcellular localization. This change was also observed for the regulatory subunit of PI3K. Taken together, our data revealed that fenofibrate, WY-14643, and GW6471 affected different members of the PI3K/Akt/PTEN pathway. However, these effects were PPARα-independent.
Collapse
|
36
|
Bertasso IM, de Moura EG, Pietrobon CB, Cabral SS, Kluck GEG, Atella GC, Manhães AC, Lisboa PC. Low protein diet during lactation programs hepatic metabolism in adult male and female rats. J Nutr Biochem 2022; 108:109096. [PMID: 35779796 DOI: 10.1016/j.jnutbio.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/28/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
The liver is an essential regulator of energy metabolism, and its function can be disrupted by nutritional alterations. Since liver development continues during breastfeeding nutritional challenges during this period predispose patients to diseases throughout life. A maternal protein-restricted (PR) diet during lactation promotes reductions in the body weight, adiposity, and plasma glucose and insulin, leptin resistance and an increase in corticosterone and catecholamines in adult male rat offspring. Here, we investigated hepatic metabolism in the offspring (both sexes) of PR (8% protein diet during lactation) and control (23% protein diet) dams. Both male and female offspring were evaluated at 6 months of age. PR males had no liver steatosis and manifested a reduction in lipids in hepatocytes adjacent to the vasculature. These animals had lower levels of esterified cholesterol in hepatocytes, suggesting higher biliary excretion, unchanged glycolysis and gluconeogenesis, and lower contents of the markers of mitochondrial redox balance and endoplasmic reticulum (ER) stress response and estrogen receptor alpha. PR females showed normal hepatic morphology associated with higher uptake of cholesterol esters, normal glycolysis and gluconeogenesis, and lower ER stress parameters without changes in the key markers of the redox balance. Additionally, these animals had lower content of estrogen receptor alpha and higher content of androgen receptor. The maternal PR diet during lactation did not program hepatic lipid accumulation in the adult progeny. However, several repair homeostasis pathways were altered in males and females, possibly compromising maintenance of normal liver function.
Collapse
Affiliation(s)
- Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Silva Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
37
|
Al-khfajy WS, Arif IS, Al-sudani BT. Synergistic effect of obeticholic acid and fasting-mimicking on proliferative, migration, and survival signaling in prostate cancer. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e81452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The systemic and resistant nature of the androgen-independent stage of prostate cancers makes it largely incurable even after intensive multimodal therapy. Apoptosis and epithelial-mesenchymal transition (EMT) are two fundamental events that are deeply linked to carcinogenesis. Hence, it is necessary to find a new combination of several therapies targeting apoptosis and EMT without causing side effects. Several recent studies have indicated that the Farnesoid X receptor is extensively associated with human tumorigenesis. The FXR agonist obeticholic acid (INT 747) has preliminarily exhibited a tumor suppressor potential. In this present study, we assess the potential synergism of FXR activation under nutrient deprivation in prostate cancer cell lines to investigate whether FXR activation enhances starvation-induced apoptosis in PC3 cells. In this study, PC-3 treatment with INT 747 significantly repressed cell proliferation and clonogenic potential. In addition, it significantly induced apoptosis of PC-3 cells and decreased their cancerogenic potential, as evaluated by annexin v apoptosis and transwell migration assay, respectively. The decreased expression of pro-caspase 3 by western blot analysis further confirmed INT 747-induced apoptosis. Furthermore, the fasting-mimicking diet (FMD) potentiated the antiproliferative, pro-apoptotic, and antimetastatic effects of INT 747. Mechanistically, these effects were mediated through the downregulation of cyclin D1 and upregulation of PTEN. In conclusion, INT 747 alone markedly decreases, and when combined with FMD abrogates the growth and migration of PC-3 cells.
Collapse
|
38
|
Anjum NF, Shanmugarajan D, Shivaraju VK, Faizan S, Naishima NL, Prashantha Kumar BR, Javid S, Purohit MN. Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies. RSC Adv 2022; 12:16966-16978. [PMID: 35754905 PMCID: PMC9172550 DOI: 10.1039/d2ra02116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Eugenol is a natural product abundantly found in clove buds known for its pharmacological activities such as anti-inflammatory, antidiabetic, antioxidant, and anticancer activities. It is well known from the literature that peroxisome proliferator-activated receptors (PPARγ) have been reported to regulate inflammatory responses. In this backdrop, we rationally designed semi-synthetic derivatives of eugenol with the aid of computational studies, and synthesized, purified, and analyzed four eugenol derivatives as PPARγ agonists. Compounds were screened for PPARγ protein binding by time-resolved fluorescence (TR-FRET) assay. The biochemical assay results were favorable for 1C which exhibited significant binding affinity with an IC50 value of 10.65 μM as compared to the standard pioglitazone with an IC50 value of 1.052 μM. In addition to the protein binding studies, as a functional assay, the synthesized eugenol derivatives were screened for in vitro anti-inflammatory activity at concentrations ranging from 6.25 μM to 400 μM. Among the four compounds tested 1C shows reasonably good anti-inflammatory activity with an IC50 value of 133.8 μM compared to a standard diclofenac sodium IC50 value of 54.32 μM. Structure-activity relationships are derived based on computational studies. Additionally, molecular dynamics simulations were performed to examine the stability of the protein-ligand complex, the dynamic behavior, and the binding affinity of newly synthesized molecules. Altogether, we identified novel eugenol derivatives as potential anti-inflammatory agents via PPARγ agonism.
Collapse
Affiliation(s)
- Noor Fathima Anjum
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy Mysuru 570 015 India
| | - Dhivya Shanmugarajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | | | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Namburu Lalitha Naishima
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Saleem Javid
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy Mysuru 570 015 India
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| | - Madhusudan N Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy Mysuru 570 015 India +91-821-2548359 +91-821-2548353
- JSS Academy of Higher Education & Research Mysuru 570 015 India
| |
Collapse
|
39
|
Tian JJ, Levy M, Zhang X, Sinnott R, Maddela R. Counteracting Health Risks by Modulating Homeostatic Signaling. Pharmacol Res 2022; 182:106281. [PMID: 35661711 DOI: 10.1016/j.phrs.2022.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Homeostasis was initially conceptualized by Bernard and Cannon around a century ago as a steady state of physiological parameters that vary within a certain range, such as blood pH, body temperature, and heart rate1,2. The underlying mechanisms that maintain homeostasis are explained by negative feedbacks that are executed by the neuronal, endocrine, and immune systems. At the cellular level, homeostasis, such as that of redox and energy steady state, also exists and is regulated by various cell signaling pathways. The induction of homeostatic mechanism is critical for human to adapt to various disruptive insults (stressors); while on the other hand, adaptation occurs at the expense of other physiological processes and thus runs the risk of collateral damages, particularly under conditions of chronic stress. Conceivably, anti-stress protection can be achieved by stressor-mimicking medicinals that elicit adaptive responses prior to an insult and thereby serve as health risk countermeasures; and in situations where maladaptation may occur, downregulating medicinals could be used to suppress the responses and prevent subsequent pathogenesis. Both strategies are preemptive interventions particularly suited for individuals who carry certain lifestyle, environmental, or genetic risk factors. In this article, we will define and characterize a new modality of prophylactic intervention that forestalls diseases via modulating homeostatic signaling. Moreover, we will provide evidence from the literature that support this concept and distinguish it from other homeostasis-related interventions such as adaptogen, hormesis, and xenohormesis.
Collapse
Affiliation(s)
- Junqiang J Tian
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA.
| | - Mark Levy
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Xuekai Zhang
- Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing100029, China; US Center for Chinese Medicine, 14801 Physicians lane, 171 A 2nd Floor, #281, Rockville MD 20850, USA
| | - Robert Sinnott
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| | - Rolando Maddela
- USANA Health Science, Inc., 3838 Parkway Blvd, Salt Lake City, UT 84121, USA
| |
Collapse
|
40
|
Mizuno G, Yamada H, Munetsuna E, Ando Y, Teshigawara A, Ito M, Kageyama I, Nouchi Y, Wakasugi T, Sakakibara T, Yamazaki M, Fujii R, Ishikawa H, Suzuki K, Hashimoto S, Ohashi K. High-fructose corn syrup intake has stronger effects on the transcription level of hepatic lipid metabolism-related genes, via DNA methylation modification, in childhood and adolescence than in other generations. Life Sci 2022; 301:120638. [PMID: 35588866 DOI: 10.1016/j.lfs.2022.120638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS This study aimed to analyze differences in sensitivity to hepatic lipid metabolism at different ages, through DNA methylation, using an experimental rat model of high-fructose corn syrup (HFCS) intake. MAIN METHODS The experimental was divided into three periods: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD61-100), and adulthood (PD101-140). Rats in the different age groups were assigned to receive either water (C: control group) or 20% HFCS solution (H: HFCS-fed group). We measured hepatic mRNA levels of peroxisome proliferator-activated receptor alpha (Ppara), carnitine palmitoyltransferase 1A (Cpt1a), fatty acid synthase (Fasn), and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (Pgc1a) using real-time PCR. Additionally, we examined the DNA methylation levels of Ppara, Cpt1a, Fasn, and Pgc1a using pyrosequencing. KEY FINDINGS Gene expressions of Cpt1a and Ppara in childhood and adolescence were significantly lower in the H group than in the C group. Conversely, Fasn and Pgc1a expressions were significantly higher in the H group than in the C group. Additionally, there was hypermethylation of Cpt1a and Ppara and hypomethylation of Fasn and Pgc1a in the H groups of childhood and adolescence. However, only one gene expression and methylation change was observed in young adulthood and adulthood groups. We found that HFCS intake in rats had stronger lipid metabolic effects in childhood and adolescence than in other generations, and that its mechanism involved epigenetic regulation. SIGNIFICANCE We anticipate that these research findings will be a breakthrough for elucidating the varying effects of growth stage in the future.
Collapse
Affiliation(s)
- Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Manaka Ito
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Nouchi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tomohide Sakakibara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure Town Takamatsu, Kagawa 761-0123, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
41
|
Kanti MM, Striessnig-Bina I, Wieser BI, Schauer S, Leitinger G, Eichmann TO, Schweiger M, Winkler M, Winter E, Lana A, Kufferath I, Marsh LM, Kwapiszewska G, Zechner R, Hoefler G, Vesely PW. Adipose triglyceride lipase-mediated lipid catabolism is essential for bronchiolar regeneration. JCI Insight 2022; 7:e149438. [PMID: 35349484 PMCID: PMC9090255 DOI: 10.1172/jci.insight.149438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene‑induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.
Collapse
Affiliation(s)
- Manu Manjunath Kanti
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabelle Striessnig-Bina
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beatrix Irene Wieser
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- BioTechMed-Graz, Graz, Austria
- Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Thomas O. Eichmann
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Martina Schweiger
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margit Winkler
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Graz, Austria
| | - Elke Winter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Lana
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh Matthew Marsh
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Giessen, Germany
| | - Rudolf Zechner
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Paul Willibald Vesely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
42
|
Magida JA, Tan Y, Wall CE, Harrison BC, Marr TG, Peter AK, Riquelme CA, Leinwand LA. Burmese pythons exhibit a transient adaptation to nutrient overload that prevents liver damage. J Gen Physiol 2022; 154:213093. [PMID: 35323838 PMCID: PMC8958269 DOI: 10.1085/jgp.202113008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
As an opportunistic predator, the Burmese python (Python molurus bivittatus) consumes large and infrequent meals, fasting for up to a year. Upon consuming a large meal, the Burmese python exhibits extreme metabolic responses. To define the pathways that regulate these postprandial metabolic responses, we performed a comprehensive profile of plasma metabolites throughout the digestive process. Following ingestion of a meal equivalent to 25% of its body mass, plasma lipoproteins and metabolites, such as chylomicra and bile acids, reach levels observed only in mammalian models of extreme dyslipidemia. Here, we provide evidence for an adaptive response to postprandial nutrient overload by the python liver, a critical site of metabolic homeostasis. The python liver undergoes a substantial increase in mass through proliferative processes, exhibits hepatic steatosis, hyperlipidemia-induced insulin resistance indicated by PEPCK activation and pAKT deactivation, and de novo fatty acid synthesis via FASN activation. This postprandial state is completely reversible. We posit that Burmese pythons evade the permanent hepatic damage associated with these metabolic states in mammals using evolved protective measures to inactivate these pathways. These include a transient activation of hepatic nuclear receptors induced by fatty acids and bile acids, including PPAR and FXR, respectively. The stress-induced p38 MAPK pathway is also transiently activated during the early stages of digestion. Taken together, these data identify a reversible metabolic response to hyperlipidemia by the python liver, only achieved in mammals by pharmacologic intervention. The factors involved in these processes may be relevant to or leveraged for remediating human hepatic pathology.
Collapse
Affiliation(s)
- Jason A Magida
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Yuxiao Tan
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | - Christopher E Wall
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Brooke C Harrison
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | | | - Angela K Peter
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| | - Cecilia A Riquelme
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO.,Department of Cell and Molecular Biology, Catholic University of Chile, Santiago, Chile
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO
| |
Collapse
|
43
|
Prenatal exposure to insecticides and child cardiometabolic risk factors in the VHEMBE birth cohort. Environ Epidemiol 2022; 6:e196. [PMID: 35434465 PMCID: PMC9005249 DOI: 10.1097/ee9.0000000000000196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
As part of malaria control programs, many countries spray dichlorodiphenyltrichloroethane (DDT) or pyrethroid insecticides inside dwellings in a practice called indoor residual spraying that results in high levels of exposure to local populations. Gestational exposure to these endocrine- and metabolism-disrupting chemicals may influence child cardiometabolic health.
Collapse
|
44
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
45
|
Zugravu CA, Bohiltea RE, Salmen T, Pogurschi E, Otelea MR. Antioxidants in Hops: Bioavailability, Health Effects and Perspectives for New Products. Antioxidants (Basel) 2022; 11:antiox11020241. [PMID: 35204124 PMCID: PMC8868281 DOI: 10.3390/antiox11020241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hop plant (Humulus lupulus L.) has been used by humans for ages, presumably first as a herbal remedy, then in the manufacturing of different products, from which beer is the most largely consumed. Female hops cones have different useful chemical compounds, an important class being antioxidants, mainly polyphenols. This narrative review describes the main antioxidants in hops, their bioavailability and biological effects, and the results obtained by now in the primary and secondary prevention of several non-communicable diseases, such as the metabolic syndrome related diseases and oncology. This article presents in vitro and in vivo data in order to better understand what was accomplished in terms of knowledge and practice, and what needs to be clarified by additional studies, mainly regarding xantohumol and its derivates, as well as regarding the bitter acids of hops. The multiple protective effects found by different studies are hindered up to now by the low bioavailability of some of the main antioxidants in hops. However, there are new promising products with important health effects and perspectives of use as food supplements, in a market where consumers increasingly search for products originating directly from plants.
Collapse
Affiliation(s)
- Corina-Aurelia Zugravu
- Department of Hygiene and Ecology, “Carol Davila” University of Medicine and Pharmacy, 050463 Bucharest, Romania; or
| | - Roxana-Elena Bohiltea
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; or
| | - Teodor Salmen
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N.C.Paulescu” National Institute of Diabetes, 030167 Bucharest, Romania
- Correspondence: ; Tel.: +40-743526731
| | - Elena Pogurschi
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 57 Marasti Blvd, 011464 Bucharest, Romania; or
| | - Marina Ruxandra Otelea
- Clinical Department 5, “Carol Davila” University of Medicine and Pharmacy, 050463 Bucharest, Romania; or
| |
Collapse
|
46
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|
47
|
Zhu L, An J, Chinnarasu S, Luu T, Pettway YD, Fahey K, Litts B, Kim HYH, Flynn CR, Linton MF, Stafford JM. Expressing the Human Cholesteryl Ester Transfer Protein Minigene Improves Diet-Induced Fatty Liver and Insulin Resistance in Female Mice. Front Physiol 2022; 12:799096. [PMID: 35082691 PMCID: PMC8784660 DOI: 10.3389/fphys.2021.799096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
Mounting evidence has shown that CETP has important physiological roles in adapting to chronic nutrient excess, specifically, to protect against diet-induced insulin resistance. However, the underlying mechanisms for the protective roles of CETP in metabolism are not yet clear. Mice naturally lack CETP expression. We used transgenic mice with a human CETP minigene (huCETP) controlled by its natural flanking region to further understand CETP-related physiology in response to obesity. Female huCETP mice and their wild-type littermates were fed a high-fat diet for 6 months. Blood lipid profile and liver lipid metabolism were studied. Insulin sensitivity was analyzed with euglycemic-hyperinsulinemic clamp studies combined with 3H-glucose tracer techniques. While high-fat diet feeding induced obesity for huCETP mice and their wild-type littermates lacking CETP expression, insulin sensitivity was higher for female huCETP mice than for their wild-type littermates. There was no difference in insulin sensitivity for male huCETP mice vs. littermates. The increased insulin sensitivity in females was largely caused by the better insulin-mediated suppression of hepatic glucose production. In huCETP females, CETP in the circulation decreased HDL-cholesterol content and increased liver cholesterol uptake and liver cholesterol and oxysterol contents, which was associated with the upregulation of LXR target genes in long-chain polyunsaturated fatty acid biosynthesis and PPARα target genes in fatty acid β-oxidation in the liver. The upregulated fatty acid β-oxidation may account for the improved fatty liver and liver insulin action in female huCETP mice. This study provides further evidence that CETP has beneficial physiological roles in the metabolic adaptation to nutrient excess by promoting liver fatty acid oxidation and hepatic insulin sensitivity, particularly for females.
Collapse
Affiliation(s)
- Lin Zhu
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Julia An
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Sivaprakasam Chinnarasu
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Thao Luu
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Yasminye D. Pettway
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Kelly Fahey
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Bridget Litts
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Hye-Young H. Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Charles R. Flynn
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - MacRae F. Linton
- Atherosclerosis Research Unit, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John M. Stafford
- VA Tennessee Valley Healthcare System, Nashville, TN, United States
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
48
|
Dias BV, Gomes SV, da Cruz Castro ML, Carvalho LCF, Breguez GS, de Souza DMS, de Oliveira Ramos C, Sant'Ana MR, Nakandakari SCBR, Araujo CM, Grabe-Guimarães A, Talvani A, Carneiro CM, Cintra DEC, Costa DC. EPA/DHA AND LINSEED OIL HAVE DIFFERENT EFFECTS ON LIVER AND ADIPOSE TISSUE IN RATS FED WITH A HIGH-FAT DIET. Prostaglandins Other Lipid Mediat 2022; 159:106622. [DOI: 10.1016/j.prostaglandins.2022.106622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
|
49
|
Wu T, Luo G, Lian Q, Sui C, Tang J, Zhu Y, Zheng B, Li Z, Zhang Y, Zhang Y, Bao J, Hu J, Shen S, Yang Z, Wu J, Wang K, Zhao Y, Yang S, Wang S, Qiu X, Wang W, Wu X, Wang H, Gu J, Chen L. Discovery of a Carbamoyl Phosphate Synthetase 1-Deficient HCC Subtype With Therapeutic Potential Through Integrative Genomic and Experimental Analysis. Hepatology 2021; 74:3249-3268. [PMID: 34343359 DOI: 10.1002/hep.32088] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Metabolic reprogramming plays an important role in tumorigenesis. However, the metabolic types of different tumors are diverse and lack in-depth study. Here, through analysis of big databases and clinical samples, we identified a carbamoyl phosphate synthetase 1 (CPS1)-deficient hepatocellular carcinoma (HCC) subtype, explored tumorigenesis mechanism of this HCC subtype, and aimed to investigate metabolic reprogramming as a target for HCC prevention. APPROACH AND RESULTS A pan-cancer study involving differentially expressed metabolic genes of 7,764 tumor samples in 16 cancer types provided by The Cancer Genome Atlas (TCGA) demonstrated that urea cycle (UC) was liver-specific and was down-regulated in HCC. A large-scale gene expression data analysis including 2,596 HCC cases in 7 HCC cohorts from Database of HCC Expression Atlas and 17,444 HCC cases from in-house hepatectomy cohort identified a specific CPS1-deficent HCC subtype with poor clinical prognosis. In vitro and in vivo validation confirmed the crucial role of CPS1 in HCC. Liquid chromatography-mass spectrometry assay and Seahorse analysis revealed that UC disorder (UCD) led to the deceleration of the tricarboxylic acid cycle, whereas excess ammonia caused by CPS1 deficiency activated fatty acid oxidation (FAO) through phosphorylated adenosine monophosphate-activated protein kinase. Mechanistically, FAO provided sufficient ATP for cell proliferation and enhanced chemoresistance of HCC cells by activating forkhead box protein M1. Subcutaneous xenograft tumor models and patient-derived organoids were employed to identify that blocking FAO by etomoxir may provide therapeutic benefit to HCC patients with CPS1 deficiency. CONCLUSIONS In conclusion, our results prove a direct link between UCD and cancer stemness in HCC, define a CPS1-deficient HCC subtype through big-data mining, and provide insights for therapeutics for this type of HCC through targeting FAO.
Collapse
Affiliation(s)
- Tong Wu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guijuan Luo
- Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Qiuyu Lian
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China.,MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Chengjun Sui
- Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Zhu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bo Zheng
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhixuan Li
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yani Zhang
- Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University, Shanghai, China
| | - Yangqianwen Zhang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jinxia Bao
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ji Hu
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Siyun Shen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhao Yang
- Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jianmin Wu
- Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University, Shanghai, China
| | - Kaiting Wang
- Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Zhao
- Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University, Shanghai, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Wang
- Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyao Qiu
- Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenwen Wang
- Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Wu
- Department of Laboratory Medicine, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, China
| | - Hongyang Wang
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
50
|
Dixit G, Prabhu A. The pleiotropic peroxisome proliferator activated receptors: Regulation and therapeutics. Exp Mol Pathol 2021; 124:104723. [PMID: 34822814 DOI: 10.1016/j.yexmp.2021.104723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.
Collapse
Affiliation(s)
- Gargi Dixit
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|