1
|
Ghorbani Z, Shoaibinobarian N, Noormohammadi M, Taylor K, Kazemi A, Bonyad A, Khoshdooz S, Löber U, Forslund-Startceva SK. Reinforcing gut integrity: A systematic review and meta-analysis of clinical trials assessing probiotics, synbiotics, and prebiotics on intestinal permeability markers. Pharmacol Res 2025; 216:107780. [PMID: 40378939 DOI: 10.1016/j.phrs.2025.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/26/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Given the magnitude and variety of chronic metabolic disease linked to increased intestinal permeability, appropriate strategies to reinforce gut barrier function are urgently needed. METHODS This systematic review and meta-analysis explores the effects of pro- and synbiotic, or prebiotic administration, on various intestinal permeability markers. Systematic searches across the Medline and Scopus databases were performed from 1961 to January 2023. The review included data from 46 published studies on pro- and synbiotics, and 22 studies on prebiotics. 46 The meta-analysis calculated standardized mean differences (SMD) along with 95 % confidence intervals (95 %CIs) using a random-effects model to evaluate the average effect sizes (ES). To analyze heterogeneity, we employed Galbraith plots and performed the Cochrane Chi-squared test. RESULTS The analysis on 24 trials (28 ES, n = 1603) revealed a significant reduction in lipopolysaccharide levels following pro- and synbiotics consumption with high heterogeneity and very low certainty of evidence (SMD (95 %CI) = -0.54 (-1.01, -0.07); I2 (%) = 94.4). Synthesis of 13 trials showed zonulin levels were significantly lowered after pro- and synbiotics consumption with high heterogeneity and moderate certainty of evidence (15 ES, n=778) (SMD (95 %CI) = -0.49 (-0.79, -0.18); I2 (%) = 74.9). Following prebiotics supplementation, a significant reduction in lipopolysaccharide levels was observed, with high heterogeneity identified from data including 16 RCTs (n = 792; SMD (95 %CI) = -0.88 (-1.28, -0.47); P < 0.001; high certainty of evidence; I2 (%) = 85.7; P-heterogeneity< 0.001). CONCLUSION This meta-analysis revealed promising findings regarding the efficacy of pro- and synbiotic and prebiotic supplements in alleviating "leaky gut".
Collapse
Affiliation(s)
- Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Nargeskhatoon Shoaibinobarian
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Nutrition, School of Medical Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Morvarid Noormohammadi
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Kate Taylor
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asma Kazemi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Bonyad
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Khoshdooz
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ulrike Löber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Sofia K Forslund-Startceva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg 69117, Germany.
| |
Collapse
|
2
|
Suarez C, Cheang SE, Larke JA, Jiang J, Weng CYC, Stacy A, Couture G, Chen Y, Bacalzo NP, Smilowitz JT, German JB, Mills DA, Lemay DG, Lebrilla CB. Development of a comprehensive food glycomic database and its application: Associations between dietary carbohydrates and insulin resistance. Food Chem 2025; 473:142977. [PMID: 39864179 DOI: 10.1016/j.foodchem.2025.142977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Carbohydrates are an integral part of a healthy diet. The molecular compositions of carbohydrates encompass a very broad range of unique structures with many being ill-defined. This vast structural complexity is distilled into vague categories such as total carbohydrates, sugars, starches, and soluble/insoluble fibers. Structural elucidation of the food glycome is until recently extremely slow and immensely challenging. Dietary carbohydrates, including monosaccharides, oligosaccharides, glycosidic linkages, and polysaccharides were determined for the most consumed foods in the US consisting of 250 common foods using a multiglycomic platform. The food glycome was then correlated with clinical data from the National Health and Nutrition Examination Survey (NHANES) consisting of dietary recalls from 13,550 adults to determine associations between dietary carbohydrates, their structural features and insulin resistance. Several features were more powerful predictors compared to traditional measures indicating the need for molecular fine-scale food carbohydrate data in guiding precision nutrition initiatives and clinical studies.
Collapse
Affiliation(s)
- Christopher Suarez
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Jules A Larke
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Jiani Jiang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Cheng-Yu Charlie Weng
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Aaron Stacy
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | | | - J Bruce German
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - David A Mills
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Danielle G Lemay
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
3
|
Jadhav A, Vadiveloo M, Laforge R, Melanson KJ. Dietary fermentable carbohydrate consumption and association with cardiometabolic risk markers in college students: A cross-sectional study. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2025:1-10. [PMID: 40126399 DOI: 10.1080/07448481.2025.2475309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/03/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Objective: Determine fermentable carbohydrates (FCs) consumption and health parameter differences between high and low FC consumers in US college students. Participants: Consented students (n = 571; 18-22 years) in a general nutrition course. Methods: Diet History Questionnaire quantified total FC plus subclasses, soluble dietary fibers (SDF), and polyols. Anthropometrics, blood pressure, and blood glucose were collected by standard measures. Median split classified FC intakes; multiple linear regression evaluated differences in health parameters between low and high FC consumers. Results: Average FC intakes for low and high FC consumers were 4.6 ± 1.4gand 10.9 ± 4.0g, with most coming from soluble dietary fibers. After controlling for confounders, low FCs showed higher diastolic blood pressure (β = 2.95, p = 0.04), blood glucose (β = 2.65 mg/dL; p = 0.02*), and BMI (β = 0.99, p = 0.050*, R2=0.04) than high consumers. Conclusions: Despite low intakes, these college students showed inverse associations between FC and diastolic blood pressure, blood glucose, and BMI. Long-term mechanistic studies are needed to evaluate potential relationships.
Collapse
Affiliation(s)
- Ajita Jadhav
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Maya Vadiveloo
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert Laforge
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kathleen J Melanson
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
4
|
Natale A, Fiori F, Turati F, La Vecchia C, Parpinel M, Rossi M. Quantification of Naturally Occurring Prebiotics in Selected Foods. Nutrients 2025; 17:683. [PMID: 40005011 PMCID: PMC11858256 DOI: 10.3390/nu17040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Prebiotics are non-digestible dietary compounds, defined as substrates that are utilised by host microorganisms conferring a health benefit. Although fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs) are among the most studied prebiotics and support intestinal normobiosis, comprehensive data on their content in foods remain limited. Objectives: The objective was to quantify the content of FOSs (kestose, nystose, and 1 F-β-fructofuranosylnystose) and GOSs (raffinose and stachyose) in 35 foods, including fruit and nuts, legumes, and cereals. We also estimated the intakes of prebiotics in an Italian population. Methods: We analysed the prebiotic content in foods using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). We estimated the prebiotic intake of 100 healthy controls from a case-control study on colorectal cancer conducted in Italy between 2017 and 2019. We used dietary information collected through a food frequency questionnaire and the prebiotic data quantified in this and a previous study. Results: FOSs were mostly detected in cereal products, with wheat bran and whole-meal rye flour containing the highest amount (around 0.7 g/100 g each). GOSs were most abundant in legumes, especially in dried soy products (around 4.0 g/100 g each). Mean daily intake was 0.236 g for total FOSs and 0.371 g for total GOSs. Wheat bran, raspberries, chestnuts, walnuts, raisins, soy milk, and soy yoghurt overall accounted for 3.9% of kestose, 1.2% of nystose, 0% of 1F-β-fructofuranosylnystose, 15.5% of raffinose, and 8.3% of stachyose total intakes. Conclusions: The present study enables the development of a comprehensive database on prebiotic content in foods through a consistent analytical method. This makes prebiotic intake assessments more accurate than previously available data and facilitates future epidemiological studies investigating their potential effects on health.
Collapse
Affiliation(s)
- Arianna Natale
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (F.T.); (C.L.V.)
| | - Federica Fiori
- Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Federica Turati
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (F.T.); (C.L.V.)
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (F.T.); (C.L.V.)
| | - Maria Parpinel
- Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (F.T.); (C.L.V.)
| |
Collapse
|
5
|
Kramer CS, Monsegue A, Morwani-Mangnani J, Grootswagers P, Beekman M, Slagboom PE, Verdijk LB, de Groot LCPGM. Design of the VOILA-intervention study: A 12-week nutrition and resistance exercise intervention in metabolic or mobility compromised Dutch older adults and the response on immune-metabolic, gut and muscle health parameters. Mech Ageing Dev 2024; 222:112002. [PMID: 39490538 DOI: 10.1016/j.mad.2024.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Exercise and nutrition interventions can slow ageing-induced decline in physiology. However, effects are heterogeneous and usually studied separately per outcome domain. In the VOILA study, we simultaneously study various health outcomes relevant for older adults and the inter-individual heterogeneity in response to a lifestyle intervention. METHODS VOILA is a 12-week lifestyle intervention in 3 groups of older adults (≥60 years), with compromised mobility (n=50), compromised metabolic health (n=50), or recovering from total knee replacement (TKR, n=70, of which 20 randomized to standard care only). The intervention includes high-intensity resistance exercise training thrice weekly, nutritional counselling, and nutritional supplements every morning and evening (including 20-25 g whey protein and (evening only) 5.5 g Biotis™ GOS). We measure immune-metabolic, gut health, muscle mass and physical functioning at baseline and after completion of the intervention/standard care. An additional reference group of healthy older adults (n=50) will undergo baseline measurements only. DISCUSSION Improvements in various physiological systems are expected, but with differences between groups/individuals. This study will provide insights into how the physiological state of older adults influences the extent of lifestyle-induced health improvements to create better tailored interventions to attenuate biological ageing and improve the health span of subgroups and individuals.
Collapse
Affiliation(s)
- C S Kramer
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - A Monsegue
- Maastricht University Medical Center+, Department of Human Biology, NUTRIM Institute of nutrition and translational research in metabolism, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - J Morwani-Mangnani
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - P Grootswagers
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - M Beekman
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - P E Slagboom
- Leiden University Medical Centre, Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| | - L B Verdijk
- Maastricht University Medical Center+, Department of Human Biology, NUTRIM Institute of nutrition and translational research in metabolism, PO Box 616, Maastricht 6200 MD, the Netherlands.
| | - L C P G M de Groot
- Wageningen University & Research, Wageningen Campus, Agrotechnology and Food Sciences Group, Division of Human Nutrition and Health, PO Box 17, Wageningen 6700 AA, the Netherlands.
| |
Collapse
|
6
|
Finnegan YE, Neill HR, Prpa EJ, Pot B. "Gut" to grips with the science of the microbiome - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e11. [PMID: 39703540 PMCID: PMC11658944 DOI: 10.1017/gmb.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 12/21/2024]
Abstract
The latest Yakult Science Study Day was held virtually on 2 November 2023. Aimed at healthcare professionals, researchers, and students, a variety of experts explored the latest gut microbiome research and what it means in practice. The morning sessions discussed the role of the microbiome in health and disease, the rapid advancements in DNA sequencing and implications for personalised nutrition, the current state of evidence on health benefits associated with fermented foods, prebiotics and probiotics and the challenges involved in interpreting research in this area. The afternoon session considered the emerging research on the microbiota-gut-brain axis in mediating effects of food on mood, the bidirectional impact of menopause on the gut microbiota, and the interplay between the gut and skin with implications for the treatment of rare and common skin disorders. The session ended with an update on the use of faecal microbiota transplant in both research and clinical practice. Undoubtedly, the gut microbiome is emerging as a key conductor of human health, both in relation to gastrointestinal and non-gastrointestinal outcomes. As research continues to elucidate mechanisms of action and confirm their effects in human trials, the gut microbiome should be a key consideration within a holistic approach to health moving forward.
Collapse
Affiliation(s)
- Yvonne E. Finnegan
- Yvonne Finnegan FINNE Nutrition & Regulatory Consultancy, Kilkenny, Ireland
| | | | | | - Bruno Pot
- Yakult Europe BV, Science Department, Almere, The Netherlands
| |
Collapse
|
7
|
Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024; 16:3955. [PMID: 39599742 PMCID: PMC11597603 DOI: 10.3390/nu16223955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The trillions of microbes that constitute the human gut microbiome play a crucial role in digestive health, immune response regulation, and psychological wellness. Maintaining gut microbiota is essential as metabolic diseases are associated with it. Functional food ingredients potentially improving gut health include prebiotics, probiotics, synbiotics, and postbiotics (PPSPs). While probiotics are living bacteria that provide health advantages when ingested sufficiently, prebiotics are non-digestible carbohydrates that support good gut bacteria. Synbiotics work together to improve immunity and intestinal health by combining probiotics and prebiotics. Postbiotics have also demonstrated numerous health advantages, such as bioactive molecules created during probiotic fermentation. According to a recent study, PPSPs can regulate the synthesis of metabolites, improve the integrity of the intestinal barrier, and change the gut microbiota composition to control metabolic illnesses. Additionally, the use of fecal microbiota transplantation (FMT) highlights the potential for restoring gut health through microbiota modulation, reinforcing the benefits of PPSPs in enhancing overall well-being. Research has shown that PPSPs provide several health benefits, such as improved immunological function, alleviation of symptoms associated with irritable bowel disease (IBD), decreased severity of allergies, and antibacterial and anti-inflammatory effects. Despite encouraging results, many unanswered questions remain about the scope of PPSPs' health advantages. Extensive research is required to fully realize the potential of these functional food components in enhancing human health and well-being. Effective therapeutic and prophylactic measures require further investigation into the roles of PPSPs, specifically their immune-system-modulating, cholesterol-lowering, antioxidant, and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Maha Al-Khalili
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Syed Ariful Haque
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman
- Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur 2012, Bangladesh
| | - Moussa Elias
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Nada Al Olqi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Tasnim Al Uraimi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| |
Collapse
|
8
|
Mederle AL, Dima M, Stoicescu ER, Căpăstraru BF, Levai CM, Hațegan OA, Maghiari AL. Impact of Gut Microbiome Interventions on Glucose and Lipid Metabolism in Metabolic Diseases: A Systematic Review and Meta-Analysis. Life (Basel) 2024; 14:1485. [PMID: 39598283 PMCID: PMC11595434 DOI: 10.3390/life14111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The gut microbiome is increasingly recognized as a key player in metabolic health, influencing glucose and lipid metabolism through various mechanisms. However, the efficacy of gut microbiota-targeted interventions, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and diet-based treatments, remains unclear for specific metabolic outcomes. In this study, the aim was to evaluate the impact of these interventions on the glucose and lipid parameters in individuals with metabolic diseases such as diabetes mellitus (DM), obesity, and metabolic syndrome. METHODS This systematic review and meta-analysis included 41 randomized controlled trials that investigated the effects of gut microbiota-targeted treatments on metabolic parameters such as fasting glucose, glycated hemoglobin (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. A comprehensive search was conducted using databases like PubMed, Google Scholar, and Scopus, focusing on interventions targeting the gut microbiota. A meta-analysis was performed using random-effects models, with effect sizes calculated for each outcome. Risk of bias was assessed using the Cochrane Risk of Bias tool. RESULTS Gut microbiota-targeted interventions significantly reduced fasting glucose, HbA1c, HOMA-IR, total cholesterol, LDL-C, and triglycerides, with moderate heterogeneity observed across studies. The interventions also led to modest increases in HDL-C levels. Probiotic and synbiotic interventions showed the most consistent benefits in improving both glucose and lipid profiles, while FMT yielded mixed results. Short-term interventions showed rapid microbial shifts but less pronounced metabolic improvements, whereas longer-term interventions had more substantial metabolic benefits. CONCLUSIONS In this study, it is demonstrated that gut microbiota-targeted interventions can improve key metabolic outcomes, offering a potential therapeutic strategy for managing metabolic diseases. However, the effectiveness of these interventions varies depending on the type, duration, and population characteristics, highlighting the need for further long-term studies to assess the sustained effects of microbiota modulation on metabolic health.
Collapse
Affiliation(s)
- Alexandra Laura Mederle
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.L.M.); (B.F.C.)
| | - Mirabela Dima
- Department of Neonatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emil Robert Stoicescu
- Radiology and Medical Imaging University Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Research Center for Medical Communication, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, “Politehnica” University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Bogdan Florin Căpăstraru
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.L.M.); (B.F.C.)
- Research Center for Medical Communication, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Codrina Mihaela Levai
- Research Center for Medical Communication, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, “Vasile Goldis” Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania;
| | - Anca Laura Maghiari
- Department of Anatomy and Embriology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
9
|
Harkavchenko D, Macůrková A, Hyršlová I, Marhons Š, Štětina J, Čurda L. Preparation of a potentially synbiotic dairy product fortified with galactooligosaccharides. J DAIRY RES 2024; 91:490-497. [PMID: 40071522 DOI: 10.1017/s0022029925000093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
We assessed the chemical, microbiological, rheological and sensory parameters of a fermented dairy product (FDP) containing a galactooligosaccharide (GOS) preparation. This was made from a solution of dried whey and skim milk containing 25% (w/w) lactose using a new enzyme with high transgalactosylation activity (Nurica: Danisco A/S). Conversion of the high initial lactose content enabled a good yield of 56% GOS to be achieved. The obtained GOS preparation was applied to the FDP with a probiotic culture of Bifidobacterium animalis ssp. lactis in amounts of 0, 2, 10, and 20% (w/w). The FDPs were stored and monitored for 9 weeks. Bifidobacteria showed counts higher than 106 CFU/g throughout the storage period. GOS were not significantly utilized during fermentation and their changes during storage were also insignificant. Gel strength after fermentation showed a slight decrease with increasing doses of GOS preparation, but after 6 weeks of storage, the differences were no longer evident. The sensory analysis revealed the overall acceptability of the prepared FDPs, whilst the highest dose (20% GOS preparation) led to a sweeter taste.
Collapse
Affiliation(s)
- Dmytro Harkavchenko
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Anna Macůrková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ivana Hyršlová
- Dairy Research Institute Ltd, Ke Dvoru 12, 160 00 Prague, Czech Republic
| | - Štěpán Marhons
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jiří Štětina
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ladislav Čurda
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
10
|
Pun CK, Huang HC, Chang CC, Chuang CL, Hsu SJ, Hou MC, Lee FY. Fructooligosaccharides reverses hepatic vascular dysfunction and dysbiosis in rats with liver cirrhosis and portal hypertension. Eur J Clin Invest 2024; 54:e14287. [PMID: 39017981 DOI: 10.1111/eci.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Portal hypertension leads to lethal complications in liver cirrhosis. Oxidative stress induced hepatic vascular dysfunction, which exaggerated vasoconstriction and increases hepatic vascular resistance (HVR). Gut dysbiosis further exacerbates portal hypertension. Fructooligosaccharides are prebiotics with potent antioxidant effect. This study aimed to evaluate the roles of fructooligosaccharides in portal hypertension-related vascular dysregulation and gut microbiome. METHODS Sprague-Dawley rats received bile duct ligation to induce cirrhosis or sham operation as controls. The rats then randomly received fructooligosaccharides or vehicle for 4 weeks. Experiments were performed on the 29th day after operations. RESULTS Fructooligosaccharides did not affect portal pressure. Interestingly, fructooligosaccharides significantly attenuated HVR (p = .03). Malondialdehyde, an oxidative stress marker, reduced significantly in the liver in fructooligosaccharides-treated group. In addition, superoxide dismutase and trolox equivalent antioxidant capacity increased in the treatment group. On the other hand, vasodilatation-related protein expressions, GTPCH and phospho-eNOS, enhanced significantly. Fructooligosaccharides had no adverse vasodilatation effects on splanchnic vascular system or porto-systemic collateral systems. Locomotor function was not affected by fructooligosaccharides. Faecal microbiota analysis showed that Negativicutes, Selenomonadales and Lactobacillus salivarius reduced in the fructooligosaccharides-treated group. CONCLUSION In conclusion, fructooligosaccharides attenuate hepatic vascular dysfunction in cirrhotic rats via at least partly, ameliorate of dysbiosis and oxidative stress.
Collapse
Affiliation(s)
- Chon Kit Pun
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Chun Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Chih Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Holistic and Multidisciplinary Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiao-Lin Chuang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Therapeutic and Research Center of Liver Cirrhosis and Portal Hypertension, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Jadhav A, Vadiveloo M, Laforge RG, Melanson KJ. Dietary contributors to fermentable carbohydrate intake in healthy American college students. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2024; 72:2577-2587. [PMID: 36170454 DOI: 10.1080/07448481.2022.2119403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The study explored food items that contribute most toward increased fermentable carbohydrate (FC) intake and its association with diet quality in college students. METHOD This cross-sectional study included 571 consented college students (≥18 years) with reported energy intakes (500-3500 kcal/day for women; 800-4000 kcal/day for men). FC intake and healthy eating index-2015 (HEI-2015) scores were assessed by diet history questionnaire-II. Data were analyzed by unadjusted bivariate linear regression and Pearson correlation tests. RESULTS The mean intakes of total FC (β = 1.24; 95% Confidence Interval: 1.02, 1.47) significantly predicted HEI-2015 scores. Positive correlations were found between FC intake and red and orange vegetables (r = 0.62), whole fruits (r = 0.63), and dark green vegetables (r = 0.58). Conclusions: Higher FC intake was associated with higher diet quality; vegetables and fruits are primary contributors to FC content. Efforts are required to promote these food items to improve diet quality and FC intake to shape eating choices in college students.
Collapse
Affiliation(s)
- Ajita Jadhav
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Maya Vadiveloo
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert G Laforge
- Department of Psychology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kathleen J Melanson
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
12
|
Iatcu OC, Hamamah S, Covasa M. Harnessing Prebiotics to Improve Type 2 Diabetes Outcomes. Nutrients 2024; 16:3447. [PMID: 39458444 PMCID: PMC11510484 DOI: 10.3390/nu16203447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota, a complex ecosystem of microorganisms in the human gastrointestinal tract (GI), plays a crucial role in maintaining metabolic health and influencing disease susceptibility. Dysbiosis, or an imbalance in gut microbiota, has been linked to the development of type 2 diabetes mellitus (T2DM) through mechanisms such as reduced glucose tolerance and increased insulin resistance. A balanced gut microbiota, or eubiosis, is associated with improved glucose metabolism and insulin sensitivity, potentially reducing the risk of diabetes-related complications. Various strategies, including the use of prebiotics like inulin, fructooligosaccharides, galactooligosaccharides, resistant starch, pectic oligosaccharides, polyphenols, β-glucan, and Dendrobium officinale have been shown to improve gut microbial composition and support glycemic control in T2DM patients. These prebiotics can directly impact blood sugar levels while promoting the growth of beneficial bacteria, thus enhancing glycemic control. Studies have shown that T2DM patients often exhibit a decrease in beneficial butyrate-producing bacteria, like Roseburia and Faecalibacterium, and an increase in harmful bacteria, such as Escherichia and Prevotella. This review aims to explore the effects of different prebiotics on T2DM, their impact on gut microbiota composition, and the potential for personalized dietary interventions to optimize diabetes management and improve overall health outcomes.
Collapse
Affiliation(s)
- Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
13
|
Liu S, Hou H, Yang M, Zhang H, Sun C, Wei L, Xu S, Guo W. Hypoglycemic effect of orally administered resistant dextrins prepared with different acids on type 2 diabetes mice induced by high-fat diet and streptozotocin. Int J Biol Macromol 2024; 277:134085. [PMID: 39126981 DOI: 10.1016/j.ijbiomac.2024.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
A comparative study was performed to investigate the physicochemical properties and protective effects of hydrochloric acid-resistant dextrin (H-RD), citric acid-resistant dextrin (C-RD) and tartaric acid-resistant dextrin (T-RD) on the metabolic disorders and intestinal microbiota for type 2 diabetes mellitus (T2DM) mice. T-RD had the minimum molecular weight, with the highest short chain (DP 6-12) proportion and resistant starch content. After 4-week intervention with the three resistant dextrins, the body weight and fasting blood glucose of T2DM mice were improved significantly, accompanied by the reduction of serum indexes (TG, TC, LDL-C, ALT, AST, CRE, BUN, FINS, and GSP), but the serum HDL-C and liver glycogen levels increased. Among the three RDs intervention groups, T-RD showed the most significant improvement, followed by C-RD and finally H-RD. The 16 s rDNA results indicated that oral administration of resistant dextrins favored the proliferation of specific gut microbiota, including Faecalibaculum, Parabacteroides and Dubosiella, and reduced the ratio of Firmicutes/Bacteroidota, which is beneficial for reducing insulin resistance. Herein, the findings supported that the resistant dextrins exhibited a remission effect on T2DM, providing a basis for the development of functional food adjuvants for T2DM treatment.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Meng Yang
- Zhucheng Xingmao corn development Co., LTD, Zhucheng, Shandong 262218, China
| | - Hui Zhang
- Department of Food Science and Nutrition, Culinary Institute, University of Jinan, Jinan, Shandong 250022, China; College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chunrui Sun
- Zhucheng Xingmao corn development Co., LTD, Zhucheng, Shandong 262218, China
| | - Lili Wei
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Song Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Weili Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
14
|
Kaul R, Paul P, Harfouche M, Ayyan M, Laws S, Chaari A. The effect of microbiome-modulating therapeutics on glucose homeostasis in metabolic syndrome: A systematic review, meta-analysis, and meta-regression of clinical trials. Diabetes Metab Syndr 2024; 18:103118. [PMID: 39298907 DOI: 10.1016/j.dsx.2024.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a chronic disorder featuring overweight/obesity, high blood pressure, and dysfunction of lipid and carbohydrate metabolism. Microbiome-modulating probiotics, prebiotics, synbiotics and fecal microbiota transplant (FMT) are promising adjunct therapies for improving parameters of glucose homeostasis and insulinemia. METHODS We conducted a comprehensive systematic review, meta-analyses, and meta-regressions to investigate the effect of the abovementioned microbiome therapies on various biomarkers after screening clinical trials published through April 2023. We pooled data using random effects meta-analyses, reporting them as mean differences (MDs) with 95 % confidence intervals (CIs), and conducting univariate linear model meta-regressions. RESULTS Data from 21 trial comparisons across 19 studies (n = 911) revealed that, compared to placebo/control, microbiome-modulating therapies were associated with statistically significant changes in fasting plasma glucose (MD: 4.03 mg/dL [95%CI: 6.93; -1.13]; p effect = 0.006, I2 = 89.8 %), and fasting insulin (MD: 2.56 μU/mL [95%CI: 4.28; -0.84]; p effect = 0.004, I2 = 87.9 %), but not insulin resistance or sensitivity indices and HbA1c. Age, baseline BMI, baseline biomarker value, pro/synbiotic dosage, trial duration, nutraceutical type, and WHO region were factors affecting the efficacy of these interventions at producing changes in biomarkers, signaling the potential role of personalized precision medicine adjunct therapy for deranged glucose homeostasis in patients with MetS. Nevertheless, presence of heterogeneity calls for further investigation before their clinical application. CONCLUSIONS Probiotics, prebiotics, synbiotics and FMT supplementation improved fasting glucose and insulin in patients with MetS. Further large-scale and high-quality trials are required before potential clinical applications.
Collapse
Affiliation(s)
- Ridhima Kaul
- Medical Education, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Pradipta Paul
- Medical Education, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Manale Harfouche
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar; World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Muhammad Ayyan
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Sa'ad Laws
- Health Sciences Library, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
15
|
Beteri B, Barone M, Turroni S, Brigidi P, Tzortzis G, Vulevic J, Sekulic K, Motei DE, Costabile A. Impact of Combined Prebiotic Galacto-Oligosaccharides and Bifidobacterium breve-Derived Postbiotic on Gut Microbiota and HbA1c in Prediabetic Adults: A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients 2024; 16:2205. [PMID: 39064648 PMCID: PMC11280236 DOI: 10.3390/nu16142205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
The complex interactions between intestinal microbiota and metabolic disorders are well-documented, with implications for glucose metabolism, energy expenditure, and intestinal permeability. Prebiotics induce beneficial changes in gut microbiota composition in prediabetes, while postbiotics can enhance gut barrier function, complementing each other to improve glucose metabolism and insulin sensitivity. This study investigated the effects of a 12-week dietary fibre (DF) supplement on gut health, metabolic function, and diet. The supplement contained konjac glucomannan (KGM), galacto-oligosaccharides (GOSs), and exopolysaccharides (EPSs) from Bifidobacterium breve. In a randomised, double-blind, placebo-controlled, parallel-group clinical trial, 53 prediabetic volunteers were randomly assigned to either a daily DF supplement (YMETA) or a placebo (cellulose microcrystalline) for 12 weeks, followed by a 4-week follow-up. Measurements included gut microbiota composition, glycated haemoglobin (HbA1c), fasting plasma glucose (FPG), plasma lipids, anthropometry, body composition, blood pressure, and dietary intake. The intervention group showed a significant increase in alpha diversity and butyrate-producing bacteria, with reductions in HbA1c and FPG levels below prediabetes thresholds. No significant changes were observed in the placebo group. This study suggests that manipulating the human gut microbiome through dietary interventions could be a promising therapeutic approach to managing prediabetes and preventing or delaying diabetes.
Collapse
Affiliation(s)
- Beyda Beteri
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| | - Monica Barone
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.B.); (P.B.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.B.); (P.B.)
| | - George Tzortzis
- veMico Ltd., Amelia House, Crescent Road, Worthing BN11 1RL, UK; (G.T.); (J.V.)
| | - Jelena Vulevic
- veMico Ltd., Amelia House, Crescent Road, Worthing BN11 1RL, UK; (G.T.); (J.V.)
| | - Karol Sekulic
- Alberta Health Services, Edmonton, AB T5J 3E4, Canada;
| | - Diana-Elena Motei
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| |
Collapse
|
16
|
Chu NHS, Chow E, Chan JCN. The Therapeutic Potential of the Specific Intestinal Microbiome (SIM) Diet on Metabolic Diseases. BIOLOGY 2024; 13:498. [PMID: 39056692 PMCID: PMC11273990 DOI: 10.3390/biology13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Exploring the intricate crosstalk between dietary prebiotics and the specific intestinal microbiome (SIM) is intriguing in explaining the mechanisms of current successful dietary interventions, including the Mediterranean diet and high-fiber diet. This knowledge forms a robust basis for developing a new natural food therapy. The SIM diet can be measured and evaluated to establish a reliable basis for the management of metabolic diseases, such as diabetes, metabolic (dysfunction)-associated fatty liver disease (MAFLD), obesity, and metabolic cardiovascular disease. This review aims to delve into the existing body of research to shed light on the promising developments of possible dietary prebiotics in this field and explore the implications for clinical practice. The exciting part is the crosstalk of diet, microbiota, and gut-organ interactions facilitated by producing short-chain fatty acids, bile acids, and subsequent metabolite production. These metabolic-related microorganisms include Butyricicoccus, Akkermansia, and Phascolarctobacterium. The SIM diet, rather than supplementation, holds the promise of significant health consequences via the prolonged reaction with the gut microbiome. Most importantly, the literature consistently reports no adverse effects, providing a strong foundation for the safety of this dietary therapy.
Collapse
Affiliation(s)
- Natural H. S. Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
17
|
Ghanbari F, Hasani S, Aghili ZS, Asgary S. The potential preventive effect of probiotics, prebiotics, and synbiotics on cardiovascular risk factors through modulation of gut microbiota: A review. Food Sci Nutr 2024; 12:4569-4580. [PMID: 39055176 PMCID: PMC11266939 DOI: 10.1002/fsn3.4142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a significant contributor to global morbidity and death, underscoring the importance of their prevention and treatment. The association between the development and progression of CVD and several risk factors has been extensively studied. Among these risk factors, the gut microbiota has garnered considerable attention of the scientific community during the last two decades. In particular, dysbiosis is directly associated with many risk factors of CVD in the host, such as diabetes. Prior research has demonstrated a robust correlation between dysbiosis and the development of CVD. Probiotics, prebiotics, and synbiotics are considered important regulators of microbiota imbalances as they increase the colonization of beneficial bacteria and thereby alter the gut microbiota. Although these beneficial effects of biotics are now widely recognized, new evidence has demonstrated that target therapy of the microbiota affects many other organs, including the heart, through a process commonly referred to as the gut-heart axis. In this review, we will discuss the potential benefits of probiotics, prebiotics, and synbiotics for the beneficial effects on cardiovascular disease by modulating gut microbiota.
Collapse
Affiliation(s)
- Fahimeh Ghanbari
- Applied Physiology Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Samira Hasani
- Department of Plant and Animal Biology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Zahra Sadat Aghili
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
18
|
Basuray N, Deehan EC, Vieira FT, Avedzi HM, Duke RL, Colín-Ramírez E, Tun HM, Zhang Z, Wine E, Madsen KL, Field CJ, Haqq AM. Dichotomous effect of dietary fiber in pediatrics: a narrative review of the health benefits and tolerance of fiber. Eur J Clin Nutr 2024; 78:557-568. [PMID: 38480843 DOI: 10.1038/s41430-024-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Dietary fibers are associated with favorable gastrointestinal, immune, and metabolic health outcomes when consumed at sufficient levels. Despite the well-described benefits of dietary fibers, children and adolescents continue to fall short of daily recommended levels. This gap in fiber intake (i.e., "fiber gap") might increase the risk of developing early-onset pediatric obesity and obesity-related comorbidities such as type 2 diabetes mellitus into adulthood. The structure-dependent physicochemical properties of dietary fiber are diverse. Differences in solubility, viscosity, water-holding capacity, binding capability, bulking effect, and fermentability influence the physiological effects of dietary fibers that aid in regulating appetite, glycemic and lipidemic responses, and inflammation. Of growing interest is the fermentation of fibers by the gut microbiota, which yields both beneficial and less favorable end-products such as short-chain fatty acids (e.g., acetate, propionate, and butyrate) that impart metabolic and immunomodulatory properties, and gases (e.g., hydrogen, carbon dioxide, and methane) that cause gastrointestinal symptoms, respectively. This narrative review summarizes (1) the implications of fibers on the gut microbiota and the pathophysiology of pediatric obesity, (2) some factors that potentially contribute to the fiber gap with an emphasis on undesirable gastrointestinal symptoms, (3) some methods to alleviate fiber-induced symptoms, and (4) the therapeutic potential of whole foods and commonly marketed fiber supplements for improved health in pediatric obesity.
Collapse
Affiliation(s)
- Nandini Basuray
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Flávio T Vieira
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hayford M Avedzi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reena L Duke
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Hein M Tun
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Kennedy JM, De Silva A, Walton GE, Gibson GR. A review on the use of prebiotics in ulcerative colitis. Trends Microbiol 2024; 32:507-515. [PMID: 38065786 DOI: 10.1016/j.tim.2023.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 05/12/2024]
Abstract
The gut microbiome in the inflammatory bowel disease, ulcerative colitis (UC), is different to that of healthy controls. Patients with UC have relative reductions in abundance of Firmicutes and Bifidobacterium in the colon, and an increase in sulfate-reducing bacteria. Prebiotics are dietary substrates which are selectively metabolised by the human colonic microbiota to confer health benefits to the host. This review explores our current understanding of the potential benefits of prebiotics on various clinical, biochemical, and microbiological endpoints in UC, including new perspectives gained from recent studies in the field. This review looks to the future and highlights the need for appropriately designed trials to explore this potentially exciting new avenue for the treatment of UC.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Food and Nutritional Sciences, The University of Reading, Reading, RG6 6AP, UK; Department of Gastroenterology, Royal Berkshire NHS Foundation Trust, Reading, RG1 5AN, UK.
| | - Aminda De Silva
- Department of Gastroenterology, Royal Berkshire NHS Foundation Trust, Reading, RG1 5AN, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, The University of Reading, Reading, RG6 6AP, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Reading, RG6 6AP, UK
| |
Collapse
|
20
|
Raoul P, De Gaetano V, Sciaraffia G, Ormea G, Cintoni M, Pozzo C, Strippoli A, Gasbarrini A, Mele MC, Rinninella E. Gastric Cancer, Immunotherapy, and Nutrition: The Role of Microbiota. Pathogens 2024; 13:357. [PMID: 38787209 PMCID: PMC11124250 DOI: 10.3390/pathogens13050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the treatment of gastric cancer (GC), which still represents the third leading cause of cancer-related death in Western countries. However, ICI treatment outcomes vary between individuals and need to be optimized. Recent studies have shown that gut microbiota could represent a key influencer of immunotherapy responses. At the same time, the nutritional status and diet of GC patients are also predictive of immunotherapy treatment response and survival outcomes. The objective of this narrative review is to gather recent findings about the complex relationships between the oral, gastric, and gut bacterial communities, dietary factors/nutritional parameters, and immunotherapy responses. Perigastric/gut microbiota compositions/functions and their metabolites could be predictive of response to immunotherapy in GC patients and even overall survival. At the same time, the strong influence of diet on the composition of the microbiota could have consequences on immunotherapy responses through the impact of muscle mass in GC patients during immunotherapy. Future studies are needed to define more precisely the dietary factors, such as adequate daily intake of prebiotics, that could counteract the dysbiosis of the GC microbiota and the impaired nutritional status, improving the clinical outcomes of GC patients during immunotherapy.
Collapse
Affiliation(s)
- Pauline Raoul
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
| | - Valeria De Gaetano
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Gianmario Sciaraffia
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.D.G.); (G.S.)
| | - Ginevra Ormea
- Degree Course in Pharmacy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmelo Pozzo
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonia Strippoli
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.P.); (A.S.)
| | - Antonio Gasbarrini
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
21
|
Ribeiro MC, Levi Y, Moraschini V, Messora MR, Furlaneto FAC. Effects of Prebiotic Therapy on Gastrointestinal Microbiome of Individuals with Different Inflammatory Conditions: A Systematic Review of Randomized Controlled Trials. Probiotics Antimicrob Proteins 2024; 16:673-695. [PMID: 37093515 DOI: 10.1007/s12602-023-10075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Prebiotics are substrates selectively utilized by host microorganisms conferring a health benefit. The effects of prebiotics on the gut microbiome of individuals with inflammatory processes need further investigations. The purpose of this study was to evaluate the effects of prebiotics on the gastrointestinal microbiome of individuals with some types of inflammatory conditions. Randomized controlled clinical trials (RCTs) evaluating the effects of different prebiotics on the gut microbiome were included. A systematic review of the literature including searches in PubMed/MEDLINE, EMBASE, Cochrane Library, Web of Science, and Scopus databases was performed until 23 March 2023. The risk of bias was assessed using the Cochrane Collaboration's criteria. Qualitative data was tabulated to facilitate comparisons and represented in the form of descriptive statistics and summary tables. Thirty trials, ranging from 12 to 135 patients, were included. The most commonly used prebiotic type was inulin-type fructans, and the treatment duration ranged from 1 to 36 weeks. The majority of the trials investigated the gut microbiome using 16 s rRNA gene sequencing on the Illumina Miseq platform. In general, prebiotic therapy exerted positive effects on inflammatory conditions. An increase in Bifidobacterium genus was the most common shift in bacterial composition observed. Within the limits of this systematic review, it can be suggested that prebiotic therapy presents the potential to favorably modulate the gastrointestinal microbiome of individuals with different types of inflammatory conditions.
Collapse
Affiliation(s)
- M C Ribeiro
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - Ylas Levi
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - V Moraschini
- Department of Periodontology, Dental Research Division, School of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
| | - M R Messora
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - F A C Furlaneto
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Horvath A, Zukauskaite K, Hazia O, Balazs I, Stadlbauer V. Human gut microbiome: Therapeutic opportunities for metabolic syndrome-Hype or hope? Endocrinol Diabetes Metab 2024; 7:e436. [PMID: 37771199 PMCID: PMC10781898 DOI: 10.1002/edm2.436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 09/30/2023] Open
Abstract
Shifts in gut microbiome composition and metabolic disorders are associated with one another. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Diet, intake of probiotics or prebiotics and faecal microbiome transplantation (FMT) are methods to alter a person's microbiome composition. Although FMT may allow establishing a proof of concept to use microbiome modulation to treat metabolic disorders, studies show mixed results regarding the effects on metabolic parameters as well as on the composition of the microbiome. This review summarizes the current knowledge on diet, probiotics, prebiotics and FMT to treat metabolic diseases, focusing on studies that also report alterations in microbiome composition. Furthermore, clinical trial results on the effects of common drugs used to treat metabolic diseases are synopsized to highlight the bidirectional relationship between the microbiome and metabolic diseases. In conclusion, there is clear evidence that microbiome modulation has the potential to influence metabolic diseases; however, it is not possible to distinguish which intervention is the most successful. In addition, a clear commitment from all stakeholders is necessary to move forward in the direction of developing targeted interventions for microbiome modulation.
Collapse
Affiliation(s)
- Angela Horvath
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Kristina Zukauskaite
- Medical University of GrazGrazAustria
- Life Sciences CentreVilnius UniversityVilniusLithuania
| | - Olha Hazia
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Irina Balazs
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Vanessa Stadlbauer
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| |
Collapse
|
23
|
Aziz T, Hussain N, Hameed Z, Lin L. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: recent challenges and future recommendations. Gut Microbes 2024; 16:2297864. [PMID: 38174551 PMCID: PMC10773664 DOI: 10.1080/19490976.2023.2297864] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
A healthy balanced diet is crucial in protecting the immune system against infections and diseases. Poor diets, such as the Western diet, contribute to the development of metabolic diseases, hypertension, and obesity. Microbiota, primarily composed of different microorganisms and residing in the gastrointestinal tract (GIT), also play a significant role in maintaining gut health. Polyphenols and probiotics found in fruits, vegetables, whole grains, legumes, nuts, and seeds promote gut health and support the growth of beneficial bacteria. Different types of diets, their categories, and their impact on health are also mentioned. The relationship between diet, gut health, and the risk of developing obesity, cardiovascular diseases, and inflammatory diseases is discussed in this review article. The rationale behind the review concludes future recommendations for maintaining gut health and reducing the occurrence of obesity, cardiometabolic diseases, and other inflammatory diseases. There is also the need for standardized research methods, long-term studies, and translating scientific knowledge into practical dietary recommendations.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Nageen Hussain
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Punjab, Lahore
| | - Zunaira Hameed
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Punjab, Lahore
| | - Lin Lin
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
24
|
Kim N. Colorectal Diseases and Gut Microbiome. SEX/GENDER-SPECIFIC MEDICINE IN CLINICAL AREAS 2024:137-208. [DOI: 10.1007/978-981-97-0130-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Parker C, Hunter KA, Johnson MA, Sharpe GR, Gibson GR, Walton GE, Poveda C, Cousins B, Williams NC. Effects of 24-week prebiotic intervention on self-reported upper respiratory symptoms, gastrointestinal symptoms, and markers of immunity in elite rugby union players. Eur J Sport Sci 2023; 23:2232-2239. [PMID: 37331347 DOI: 10.1080/17461391.2023.2216657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OBJECTIVES Elite rugby union players face numerous physiological and psychological stressors which can increase upper respiratory and gastrointestinal illness risk, and in turn can compromise training and competitive performance. This study aimed to investigate the effect of daily prebiotic supplementation on upper respiratory symptoms, gastrointestinal symptoms, and markers of immune function in elite rugby union players. METHODS Thirty-three elite rugby union players were randomly assigned to consume a prebiotic (2.8 g/day galactooligosaccharide) or placebo (2.8 g/day maltodextrin), daily for 168 days under double-blind conditions. Participants completed daily and weekly questionnaires for self-reported upper respiratory and gastrointestinal symptoms respectively. Blood and saliva samples were collected at 0, 84, and 168 days for assessment of plasma TNF-α and CRP, and saliva IgA respectively. RESULTS The prebiotic group experienced a 2-day reduction in upper respiratory symptom duration (P = 0.045). Gastrointestinal symptom severity and incidence were lower in the prebiotic group compared to the placebo group (P < 0.001, P = 0.041) respectively. Salivary immunoglobulin A secretion rate was 42% greater in the prebiotic group compared to the placebo group at day 168 (P = 0.004), no differences in CRP and TNF-α were found (P > 0.05). CONCLUSION A 168-day dietary prebiotic intervention reduced the duration of upper respiratory symptoms and reduced the incidence and severity of gastrointestinal symptoms in elite rugby union players. These findings suggest that seasonal prebiotic interventions may be beneficial for reducing illness in elite rugby union players, improving their availability to train and compete.Key pointsElite athletes are susceptible to upper respiratory symptoms and gastrointestinal symptoms which may impact upon training availability and competition performance.For the first time, this study shows that a dietary prebiotic intervention can reduce the duration of upper respiratory symptoms by 2 days in elite rugby union players.Dietary prebiotic supplementation can improve the incidence and severity of gastrointestinal symptoms experienced by elite rugby union players.Prebiotic supplementation was able to increase salivary IgA secretion after 168 days.These findings can inform practice suggesting that seasonal prebiotic use has the potential to modulate immune function and reduce illness in elite rugby union, which may improve a player's availability to train and compete.The mechanisms by which prebiotics reduce URS and GIS require further research exploration.
Collapse
Affiliation(s)
- C Parker
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - K A Hunter
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - M A Johnson
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - G R Sharpe
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - G R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, United Kingdom
| | - G E Walton
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, United Kingdom
| | - C Poveda
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, United Kingdom
| | - B Cousins
- London Irish Rugby Football Club, Hazelwood Centre, Sunbury-on-Thames, United Kingdom
| | - N C Williams
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
26
|
Zhang S, Han Y, Schofield W, Nicosia M, Karell PE, Newhall KP, Zhou JY, Musich RJ, Pan S, Valujskikh A, Sangwan N, Dwidar M, Lu Q, Stappenbeck TS. Select symbionts drive high IgA levels in the mouse intestine. Cell Host Microbe 2023; 31:1620-1638.e7. [PMID: 37776865 DOI: 10.1016/j.chom.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
Immunoglobulin A (IgA) is an important factor in maintaining homeostasis at mucosal surfaces, yet luminal IgA levels vary widely. Total IgA levels are thought to be driven by individual immune responses to specific microbes. Here, we found that the prebiotic, pectin oligosaccharide (pec-oligo), induced high IgA levels in the small intestine in a T cell-dependent manner. Surprisingly, this IgA-high phenotype was retained after cessation of pec-oligo treatment, and microbiome transmission either horizontally or vertically was sufficient to retain high IgA levels in the absence of pec-oligo. Interestingly, the bacterial taxa enriched in the overall pec-oligo bacterial community differed from IgA-coated microbes in this same community. Rather, a group of ethanol-resistant microbes, highly enriched for Lachnospiraceae bacterium A2, drove the IgA-high phenotype. These findings support a model of intestinal adaptive immunity in which a limited number of microbes can promote durable changes in IgA directed to many symbionts.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250000, P.R. China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yi Han
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Michael Nicosia
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul E Karell
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin P Newhall
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie Y Zhou
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan J Musich
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohammed Dwidar
- Department of Cardiovascular and Metabolic Sciences, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qiuhe Lu
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
27
|
Sheykhsaran E, Abbasi A, Ebrahimzadeh Leylabadlo H, Sadeghi J, Mehri S, Naeimi Mazraeh F, Feizi H, Bannazadeh Baghi H. Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgrad Med J 2023; 99:384-402. [PMID: 35140178 DOI: 10.1136/postgradmedj-2021-141311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of obesity and overweight is a significant public concern throughout the world. Obesity is a complex disorder involving an excessive amount of body fat. It is not just a cosmetic concern. It is a medical challenge that increases the risk of other diseases and health circumstances, such as diabetes, heart disease, high blood pressure and certain cancers. Environmental and genetic factors are involved in obesity as a significant metabolic disorder along with diabetes. Gut microbiota (GM) has a high potential for energy harvesting from the diet. In the current review, we aim to consider the role of GM, gut dysbiosis and significant therapies to treat obesity. Dietary modifications, probiotics, prebiotics, synbiotics compounds, using faecal microbiota transplant, and other microbial-based therapies are the strategies to intervene in obesity reducing improvement. Each of these factors serves through various mechanisms including a variety of receptors and compounds to control body weight. Trial and animal investigations have indicated that GM can affect both sides of the energy-balancing equation; first, as an influencing factor for energy utilisation from the diet and also as an influencing factor that regulates the host genes and energy storage and expenditure. All the investigated articles declare the clear and inevitable role of GM in obesity. Overall, obesity and obesity-relevant metabolic disorders are characterised by specific modifications in the human microbiota's composition and functions. The emerging therapeutic methods display positive and promising effects; however, further research must be done to update and complete existing knowledge.
Collapse
Affiliation(s)
- Elham Sheykhsaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Sciences and Technology Research Institute, Faculty of Nutrition Sciences and food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Javid Sadeghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Mehri
- Department of Biochemistry and structural Biology, University of Alabama, Birmingham, Alabama, USA
| | - Fariba Naeimi Mazraeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H. Manipulating the Gut Microbiome as a Therapeutic Strategy to Mitigate Late Effects in Childhood Cancer Survivors. Technol Cancer Res Treat 2023; 22:15330338221149799. [PMID: 36624625 PMCID: PMC9834799 DOI: 10.1177/15330338221149799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have identified causal links between altered gut microbiome, chronic inflammation, and inflammation-driven conditions such as diabetes and cardiovascular disease. Childhood cancer survivors (CCS) show late effects of therapy in the form of inflammaging-related disorders as well as microbial dysbiosis, supporting a hypothesis that the conditions are interconnected. Given the susceptibility of the gut microbiome to alteration, a number of therapeutic interventions have been investigated for the treatment of inflammatory conditions, though not within the context of cancer survivorship in children and adolescents. Here, we evaluate the potential for these interventions, which include probiotic supplementation, prebiotics/fiber-rich diet, exercise, and fecal microbiota transplantation for prevention and treatment of cancer treatment-related microbial dysbiosis in survivors. We also make recommendations to improve adherence and encourage long-term lifestyle changes for maintenance of healthy gut microbiome in CCS as a potential strategy to mitigate treatment-related late effects.
Collapse
Affiliation(s)
- Lixian Oh
- University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | - Hany Ariffin
- University of Malaya, Kuala Lumpur, Malaysia,Hany Ariffin, Department of Pediatrics,
University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Takeuchi T, Ohno H. IgA in human health and diseases: Potential regulator of commensal microbiota. Front Immunol 2022; 13:1024330. [PMID: 36439192 PMCID: PMC9685418 DOI: 10.3389/fimmu.2022.1024330] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
Gut microbiota has extensive and tremendous impacts on human physiology and pathology. The regulation of microbiota is therefore a cardinal problem for the mutualistic relationship, as both microbial overgrowth and excessive immune reactions toward them could potentially be detrimental to host homeostasis. Growing evidence suggests that IgA, the most dominant secretory immunoglobulin in the intestine, regulates the colonization of commensal microbiota, and consequently, the microbiota-mediated intestinal and extra-intestinal diseases. In this review, we discuss the interactions between IgA and gut microbiota particularly relevant to human pathophysiology. We review current knowledge about how IgA regulates gut microbiota in humans and about the molecular mechanisms behind this interaction. We further discuss the potential role of IgA in regulating human diseases by extrapolating experimental findings, suggesting that IgA can be a future therapeutic strategy that functionally modulates gut microbiota.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
30
|
Zhang M, Li RW, Yang H, Tan Z, Liu F. Recent advances in developing butyrogenic functional foods to promote gut health. Crit Rev Food Sci Nutr 2022; 64:4410-4431. [PMID: 36330804 DOI: 10.1080/10408398.2022.2142194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As one of the major short-chain fatty acids produced via microbial fermentation, butyrate serves as not only a preferred energy substrate but also an important signaling molecule. Butyrate concentrations in circulation, tissues, and gut luminal contents have important pathophysiological implications. The genetic capacity of butyrate biosynthesis by the gut microbiota is frequently compromised during aging and various disorders, such as inflammatory bowel disease, metabolic disorders and colorectal cancer. Substantial efforts have been made to identify potent butyrogenic substrates and butyrate-hyperproducing bacteria to compensate for butyrate deficiency. Interindividual butyrogenic responses exist, which are more strongly predicted by heterogeneity in the gut microbiota composition than by ingested prebiotic substrates. In this review, we catalog major food types rich in butyrogenic substrates. We also discuss the potential of butyrogenic foods with proven properties for promoting gut health and disease management using findings from clinical trials. Potential limitations and constraints in the current research are highlighted. We advocate a precise nutrition approach in designing future clinical trials by prescreening individuals for key gut microbial signatures when recruiting study volunteers. The information provided in this review will be conducive to the development of microbiota engineering approaches for enhancing the sustained production of butyrate.
Collapse
Affiliation(s)
- Miao Zhang
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Chudzicka-Strugała I, Gołębiewska I, Banaszewska B, Brudecki G, Zwoździak B. The Role of Individually Selected Diets in Obese Women with PCOS-A Review. Nutrients 2022; 14:4555. [PMID: 36364814 PMCID: PMC9656326 DOI: 10.3390/nu14214555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 08/11/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the most common heterogeneous endocrine and metabolic disorders in premenopausal women. It is a complex multifactorial disorder with strong epigenetic and environmental influences, including factors related to eating habits and lifestyle. There is a close relationship between obesity and PCOS. Weight gain and obesity are often clinical symptoms manifested by biochemical markers. Moreover, abdominal obesity in women with PCOS is involved in the development of inflammatory changes. A significant share of balanced therapies correcting the lifestyle of patients is suggested, e.g., with the implementation of appropriate diets to minimize exposure to inflammatory factors and prevent abnormal immune system stimulation. In the case of obese patients with PCOS, planning a diet program and supporting the motivation to change eating habits play an important role to lose weight and lower BMI. Probiotics/synbiotic supplementation may enhance weight loss during the diet program and additionally positively affect metabolic and inflammatory factors by improving the intestinal microbiome.
Collapse
Affiliation(s)
- Izabela Chudzicka-Strugała
- Department of Medical Microbiology, Poznan University of Medical Sciences, Wieniawskiego 3, 61-712 Poznan, Poland
| | - Iwona Gołębiewska
- Earth and Life Institute (ELI), UCLouvain, Croix du Sud 2, 1348 Louvain-La-Neuve, Belgium
| | - Beata Banaszewska
- Chair and Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 60-533 Poznan, Poland
| | - Grzegorz Brudecki
- Group 42 (Healthcare), Masdar City, Abu Dhabi P.O. Box 112778, United Arab Emirates
| | - Barbara Zwoździak
- Department of Medical Microbiology, Poznan University of Medical Sciences, Wieniawskiego 3, 61-712 Poznan, Poland
| |
Collapse
|
32
|
Fang J, Zeng L, He Y, Liu X, Zhang T, Wang Q. Effects of Dietary Tannic Acid on Obesity and Gut Microbiota in C57BL/6J Mice Fed with High-Fat Diet. Foods 2022; 11:3325. [PMID: 36359937 PMCID: PMC9659306 DOI: 10.3390/foods11213325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 07/21/2023] Open
Abstract
Dietary tannic acid, as a natural polyphenolic, has many important biological activities. This study aimed to investigate the effect of dietary tannic acid on obesity and gut microbiota in mice with a high-fat diet. Male C57BL/6J mice fed a high-fat diet were treated with dietary tannic acid for eight weeks. Results showed that dietary tannic acid reduced the body weight gain, regulated glycolipid metabolism, improved the insulin resistance, and attenuated the liver oxidative stress in high-fat diet-fed mice. Moreover, both dietary tannic acid intervention groups repaired the gut barrier damage caused by a high-fat diet, especially in the 50 mg/kg/d dietary tannic acid intervention group. Interestingly, the effect of dietary tannic acid on serum endotoxin lipopolysaccharide (LPS) content was correlated with the abundance of the LPS-producing microbiota. In addition, dietary tannic acid altered the abundance of obesity-related gut microbiota (Firmicutes, Bacteroidetes, Bacteroides, Alistipes, and Odoribacter) in the 150 mg/kg/d dietary tannic acid intervention group, while it was not effective in the 50 mg/kg/d dietary tannic acid intervention group. These findings suggested the potential effect of dietary tannic acid for the prevention and control of obesity.
Collapse
|
33
|
Pravilović R, Todić B, Simović M, Banjanac K, Bezbradica D, Nikacevic N. Kinetic Model for Galacto-Oligosaccharide Synthesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Radoslava Pravilović
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Branislav Todić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Milica Simović
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Katarina Banjanac
- University of Belgrade, Innovation Centre Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Dejan Bezbradica
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Nikola Nikacevic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
34
|
Zuo J, Zhang Y, Wu Y, Liu J, Wu Q, Shen Y, Jin L, Wu M, Ma Z, Tong H. Sargassum fusiforme fucoidan ameliorates diet-induced obesity through enhancing thermogenesis of adipose tissues and modulating gut microbiota. Int J Biol Macromol 2022; 216:728-740. [PMID: 35907465 DOI: 10.1016/j.ijbiomac.2022.07.184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022]
Abstract
Obesity has become a global epidemic. Sargassum fusiforme fucoidan (Fuc) is a group of water-soluble heteropolysaccharides that exhibits a wide range of medicinal functions. It consists of l-fucose and sulfate groups, with l-fucose as the main monosaccharide. This study investigated the therapeutic effects of Fuc on diet-induced obesity (DIO) in C57BL/6J female mice. Fuc significantly alleviated obesity in mice induced by high-fat high-fructose (HFHF) feeding, inhibiting body weight gain, reducing fat accumulation, and improving hepatic steatosis. In addition, Fuc significantly improved glucose tolerance and insulin sensitivity by enhancing the phosphorylation level of AKT (at Ser473) in the adipose tissues. Mechanistically, although Fuc did not decrease the energy intake in DIO mice, it significantly increased the energy expenditure by up-regulating the expression of uncoupling protein 1 (UCP1) in the adipose tissues. Notably, Fuc also improved the obesity-driven dysbiosis of gut microbiota and decreased the relative abundance of the obesity-related intestinal bacteria. However, Fuc was unable to alleviate DIO-induced metabolic disorders in pseudo-sterile mice. Our findings suggested that Fuc might remodel gut microbiota and exert its weight loss and hypolipidemic effects by increasing the energy expenditure, thus providing a novel perspective for treating obesity and related complications.
Collapse
Affiliation(s)
- Jihui Zuo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yizhe Shen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Jin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
35
|
Almutairi R, Basson AR, Wearsh P, Cominelli F, Rodriguez-Palacios A. Validity of food additive maltodextrin as placebo and effects on human gut physiology: systematic review of placebo-controlled clinical trials. Eur J Nutr 2022; 61:2853-2871. [PMID: 35230477 PMCID: PMC9835112 DOI: 10.1007/s00394-022-02802-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
PURPOSE Maltodextrin (MDX) is a polysaccharide food additive commonly used as oral placebo/control to investigate treatments/interventions in humans. The aims of this study were to appraise the MDX effects on human physiology/gut microbiota, and to assess the validity of MDX as a placebo-control. METHODS We performed a systematic review of randomized-placebo-controlled clinical trials (RCTs) where MDX was used as an orally consumed placebo. Data were extracted from study results where effects (physiological/microbial) were attributed (or not) to MDX, and from study participant outcomes data, before-and-after MDX consumption, for post-publication 're-analysis' using paired-data statistics. RESULTS Of two hundred-sixteen studies on 'MDX/microbiome', seventy RCTs (n = 70) were selected for analysis. Supporting concerns regarding the validity of MDX as a placebo, the majority of RCTs (60%, CI 95% = 0.48-0.76; n = 42/70; Fisher-exact p = 0.001, expected < 5/70) reported MDX-induced physiological (38.1%, n = 16/42; p = 0.005), microbial metabolite (19%, n = 8/42; p = 0.013), or microbiome (50%, n = 21/42; p = 0.0001) effects. MDX-induced alterations on gut microbiome included changes in the Firmicutes and/or Bacteroidetes phyla, and Lactobacillus and/or Bifidobacterium species. Effects on various immunological, inflammatory markers, and gut function/permeability were also documented in 25.6% of the studies (n = 10/42). Notably, there was considerable variability in the direction of effects (decrease/increase), MDX dose, form (powder/pill), duration, and disease/populations studied. Overall, only 20% (n = 14/70; p = 0.026) of studies cross-referenced MDX as a justifiable/innocuous placebo, while 2.9% of studies (n = 2/70) acknowledged their data the opposite. CONCLUSION Orally-consumed MDX often (63.9% of RCTs) induces effects on human physiology/gut microbiota. Such effects question the validity of MDX as a placebo-control in human clinical trials.
Collapse
Affiliation(s)
- Rawan Almutairi
- Department of Pathology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH, 44106, USA
| | - Abigail Raffner Basson
- Department of Medicine and Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Pamela Wearsh
- Department of Pathology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH, 44106, USA
| | - Fabio Cominelli
- Department of Medicine and Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- University Hospitals Research and Education Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Department of Medicine and Division of Gastroenterology & Liver Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Germ-Free and Gut Microbiome Core, Cleveland Digestive Diseases Research Core Center, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH, USA.
- University Hospitals Research and Education Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
36
|
Gulliver EL, Young RB, Chonwerawong M, D'Adamo GL, Thomason T, Widdop JT, Rutten EL, Rossetto Marcelino V, Bryant RV, Costello SP, O'Brien CL, Hold GL, Giles EM, Forster SC. Review article: the future of microbiome-based therapeutics. Aliment Pharmacol Ther 2022; 56:192-208. [PMID: 35611465 PMCID: PMC9322325 DOI: 10.1111/apt.17049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic. AIM This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development. METHODS Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'. RESULTS Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics. CONCLUSIONS Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Remy B. Young
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Gemma L. D'Adamo
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tamblyn Thomason
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - James T. Widdop
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Emily L. Rutten
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Vanessa Rossetto Marcelino
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Robert V. Bryant
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Samuel P. Costello
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Georgina L. Hold
- Microbiome Research Centre, St George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Edward M. Giles
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
37
|
Milenkovic D, Capel F, Combaret L, Comte B, Dardevet D, Evrard B, Guillet C, Monfoulet LE, Pinel A, Polakof S, Pujos-Guillot E, Rémond D, Wittrant Y, Savary-Auzeloux I. Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Crit Rev Food Sci Nutr 2022; 63:11185-11210. [PMID: 35730212 DOI: 10.1080/10408398.2022.2089870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of gut function is one of the explanatory mechanisms of health status decline in elderly population. These impairments involve a decline in gut digestive physiology, metabolism and immune status, and associated to that, changes in composition and function of the microbiota it harbors. Continuous deteriorations are generally associated with the development of systemic dysregulations and ultimately pathologies that can worsen the initial health status of individuals. All these alterations observed at the gut level can then constitute a wide range of potential targets for development of nutritional strategies that can impact gut tissue or associated microbiota pattern. This can be key, in a preventive manner, to limit gut functionality decline, or in a curative way to help maintaining optimum nutrients bioavailability in a context on increased requirements, as frequently observed in pathological situations. The aim of this review is to give an overview on the alterations that can occur in the gut during aging and lead to the development of altered function in other tissues and organs, ultimately leading to the development of pathologies. Subsequently is discussed how nutritional strategies that target gut tissue and gut microbiota can help to avoid or delay the occurrence of aging-related pathologies.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Frédéric Capel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Lydie Combaret
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Blandine Comte
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Bertrand Evrard
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Christelle Guillet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Alexandre Pinel
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Sergio Polakof
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Didier Rémond
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Yohann Wittrant
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | |
Collapse
|
38
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
39
|
Jardon KM, Canfora EE, Goossens GH, Blaak EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 2022; 71:1214-1226. [PMID: 35135841 PMCID: PMC9120404 DOI: 10.1136/gutjnl-2020-323715] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that the gut microbiome is an important regulator of body weight, glucose and lipid metabolism, and inflammatory processes, and may thereby play a key role in the aetiology of obesity, insulin resistance and type 2 diabetes. Interindividual responsiveness to specific dietary interventions may be partially determined by differences in baseline gut microbiota composition and functionality between individuals with distinct metabolic phenotypes. However, the relationship between an individual's diet, gut microbiome and host metabolic phenotype is multidirectional and complex, yielding a challenge for practical implementation of targeted dietary guidelines. In this review, we discuss the latest research describing interactions between dietary composition, the gut microbiome and host metabolism. Furthermore, we describe how this knowledge can be integrated to develop precision-based nutritional strategies to improve bodyweight control and metabolic health in humans. Specifically, we will address that (1) insight in the role of the baseline gut microbial and metabolic phenotype in dietary intervention response may provide leads for precision-based nutritional strategies; that (2) the balance between carbohydrate and protein fermentation by the gut microbiota, as well as the site of fermentation in the colon, seems important determinants of host metabolism; and that (3) 'big data', including multiple omics and advanced modelling, are of undeniable importance in predicting (non-)response to dietary interventions. Clearly, detailed metabolic and microbial phenotyping in humans is necessary to better understand the link between diet, the gut microbiome and host metabolism, which is required to develop targeted dietary strategies and guidelines for different subgroups of the population.
Collapse
Affiliation(s)
- Kelly M Jardon
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands,TiFN, Wageningen, The Netherlands
| | - Emanuel E Canfora
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gijs H Goossens
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen E Blaak
- Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands .,TiFN, Wageningen, The Netherlands
| |
Collapse
|
40
|
Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. Int J Mol Sci 2022; 23:ijms23116097. [PMID: 35682774 PMCID: PMC9181475 DOI: 10.3390/ijms23116097] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes and obesity are metabolic diseases that have become alarming conditions in recent decades. Their rate of increase is becoming a growing concern worldwide. Recent studies have established that the composition and dysfunction of the gut microbiota are associated with the development of diabetes. For this reason, strategies such as the use of prebiotics to improve intestinal microbial structure and function have become popular. Consumption of prebiotics for modulating the gut microbiota results in the production of microbial metabolites such as short-chain fatty acids that play essential roles in reducing blood glucose levels, mitigating insulin resistance, reducing inflammation, and promoting the secretion of glucagon-like peptide 1 in the host, and this accounts for the observed remission of metabolic diseases. Prebiotics can be either naturally extracted from non-digestible carbohydrate materials or synthetically produced. In this review, we discussed current findings on how the gut microbiota and microbial metabolites may influence host metabolism to promote health. We provided evidence from various studies that show the ability of prebiotic consumption to alter gut microbial profile, improve gut microbial metabolism and functions, and improve host physiology to alleviate diabetes and obesity. We conclude among other things that the application of systems biology coupled with bioinformatics could be essential in ascertaining the exact mechanisms behind the prebiotic–gut microbe–host interactions required for diabetes and obesity improvement.
Collapse
|
41
|
Overview of Nutraceuticals and Cardiometabolic Diseases following Socio-Economic Analysis. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The importance of functional food and nutraceutical products to deal with cardiometabolic diseases (CMDs) and metabolic syndrome (MetS) has gained attention in the past few years. The aim of this narrative review is to highlight the potential and effectiveness of nutraceutical in the improvement of CMDs and MetS biomarkers, alongside their burden of disease and economic health expenditure. A science database search was conducted between May and June 2021. A total of 35 studies were included in this paper. We included male and female subjects, children, and adults, in good health or with cardiovascular or metabolic disease. CMDs and MetS have gradually become worldwide health problems, becoming two of the major causes of morbidity and mortality in western countries. The results indicate a positive link between daily consumption of nutraceutical products and an improvement in cardiometabolic and anthropometric biomarkers. In this paper we included a wide range of nutraceutical products. Most of them showed promising data, indicating that nutraceuticals could provide a new therapeutic treatment to reduce prevalence and pharmaceutical expenditures attributed to CMDs and MetS. Unfortunately, there is a huge vacuum of data on nutraceutical usage, savings, and burden reduction. Therefore, further clinical and pharmaco-economic research in the field is highly required.
Collapse
|
42
|
Abstract
The incorporation of functional ingredients, such as prebiotics and probiotics in food matrices, became a common practice in the human diet to improve the nutritional value of the food product itself. Worldwide, skim milk (SKM) is one of the most consumed food matrices, comprising all the essential nutrients desired for a balanced diet. Thus, the modulation of the human gut microbiota by SKM supplemented with different well-known functional ingredients was evaluated. Four well-studied prebiotics, fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), mannan-oligosaccharides (MOS) and inulin, and one probiotic product, UL-250® (Saccharomyces boulardii) were added at 1% (w/v) to SKM and subjected to a gastrointestinal in vitro model. The impact of each combination on gut microbiota profile and their fermentation metabolites (i.e., short-chain fatty acids–SCFA) was assessed by quantitative polymerase chain reaction (qPCR) and high-performance liquid chromatography (HPLC), respectively. The addition of FOS to SKM had promising results, showing prebiotic potential by promoting the growth of Lactobacillus, Bifidobacterium, and Clostridium cluster IV. Moreover, the increment of SCFA levels and the decrease of total ammonia nitrogen were observed throughout colonic fermentation. Overall, these results demonstrate that the combination SKM + FOS was the most beneficial to the host’s health by positively modulating the gut microbiota.
Collapse
|
43
|
Anto L, Blesso CN. Interplay Between Diet, the Gut Microbiome, and Atherosclerosis: Role of Dysbiosis and Microbial Metabolites on Inflammation and Disordered Lipid Metabolism. J Nutr Biochem 2022; 105:108991. [DOI: 10.1016/j.jnutbio.2022.108991] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
|
44
|
Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2022; 57:101427. [PMID: 34973469 PMCID: PMC8829807 DOI: 10.1016/j.molmet.2021.101427] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.
Collapse
Affiliation(s)
- Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Timothy Lipuma
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
45
|
Islam MR, Arthur S, Haynes J, Butts MR, Nepal N, Sundaram U. The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients 2022; 14:624. [PMID: 35276983 PMCID: PMC8838694 DOI: 10.3390/nu14030624] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota is a complex community of microorganisms that has become a new focus of attention due to its association with numerous human diseases. Research over the last few decades has shown that the gut microbiota plays a considerable role in regulating intestinal homeostasis, and disruption to the microbial community has been linked to chronic disease conditions such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and obesity. Obesity has become a global pandemic, and its prevalence is increasing worldwide mostly in Western countries due to a sedentary lifestyle and consumption of high-fat/high-sugar diets. Obesity-mediated gut microbiota alterations have been associated with the development of IBD and IBD-induced CRC. This review highlights how obesity-associated dysbiosis can lead to the pathogenesis of IBD and CRC with a special focus on mechanisms of altered absorption of short-chain fatty acids (SCFAs).
Collapse
Affiliation(s)
| | | | | | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.R.I.); (S.A.); (J.H.); (M.R.B.); (N.N.)
| |
Collapse
|
46
|
van Dorst JM, Tam RY, Ooi CY. What Do We Know about the Microbiome in Cystic Fibrosis? Is There a Role for Probiotics and Prebiotics? Nutrients 2022; 14:480. [PMID: 35276841 PMCID: PMC8840103 DOI: 10.3390/nu14030480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening genetic disorder that affects the cystic fibrosis transmembrane conductance regulator (CFTR) protein. In the gastrointestinal (GI) tract, CFTR dysfunction results in low intestinal pH, thick and inspissated mucus, a lack of endogenous pancreatic enzymes, and reduced motility. These mechanisms, combined with antibiotic therapies, drive GI inflammation and significant alteration of the GI microbiota (dysbiosis). Dysbiosis and inflammation are key factors in systemic inflammation and GI complications including malignancy. The following review examines the potential for probiotic and prebiotic therapies to provide clinical benefits through modulation of the microbiome. Evidence from randomised control trials suggest probiotics are likely to improve GI inflammation and reduce the incidence of CF pulmonary exacerbations. However, the highly variable, low-quality data is a barrier to the implementation of probiotics into routine CF care. Epidemiological studies and clinical trials support the potential of dietary fibre and prebiotic supplements to beneficially modulate the microbiome in gastrointestinal conditions. To date, limited evidence is available on their safety and efficacy in CF. Variable responses to probiotics and prebiotics highlight the need for personalised approaches that consider an individual's underlying microbiota, diet, and existing medications against the backdrop of the complex nutritional needs in CF.
Collapse
Affiliation(s)
- Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
| | - Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
- Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, Sydney 2031, Australia
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney 2031, Australia
| |
Collapse
|
47
|
Liu Y, Wang J, Wu C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front Nutr 2022; 8:634897. [PMID: 35047537 PMCID: PMC8761849 DOI: 10.3389/fnut.2021.634897] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract harbours a complex microbial community, which interacts with the mucosal immune system closely. Gut microbiota plays a significant role in maintaining host health, which could supply various nutrients, regulate energy balance, modulate the immune response, and defence against pathogens. Therefore, maintaining a favourable equilibrium of gut microbiota through modulating bacteria composition, diversity, and their activity is beneficial to host health. Several studies have shown that probiotics and pre-biotics could directly and indirectly regulate microbiota and immune response. In addition, post-biotics, such as the bioactive metabolites, produced by gut microbiota, and/or cell-wall components released by probiotics, also have been shown to inhibit pathogen growth, maintain microbiota balance, and regulate an immune response. This review summarises the studies concerning the impact of probiotics, pre-biotics, and post-biotics on gut microbiota and immune systems and also describes the underlying mechanisms of beneficial effects of these substances. Finally, the future and challenges of probiotics, pre-biotics, and post-biotics are proposed.
Collapse
Affiliation(s)
- Yue Liu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jiaqi Wang
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Key Lab of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China.,The Provincial Key Laboratories for Prevention and Treatment of Major Infectious Diseases Shanxi, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
48
|
Blanco-Morales V, Silvestre RDLÁ, Hernández-Álvarez E, Donoso-Navarro E, Alegría A, Garcia-Llatas G. Influence of Galactooligosaccharides on the Positive Effect of Plant Sterol-Enriched Beverages on Cardiovascular Risk and Sterol Colon Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:532-542. [PMID: 35012310 PMCID: PMC9127961 DOI: 10.1021/acs.jafc.1c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In the present study, the impact of galactooligosaccharide (GOS) addition to a plant sterol (PS)-enriched beverage on the hypocholesterolemic effect and on the bioavailability and colonic metabolization of sterols was evaluated. A crossover trial was undertaken in postmenopausal women who intook a PS-enriched (2 g PS/day) or PS-GOS-enriched beverage (2 g PS/day and 4.3 g GOS/day) for 6 weeks. The presence of GOS did not modify the hypocholesterolemic effect of the PS-enriched beverage (total- and low-density lipoprotein-cholesterol reductions) or sterol bioavailability (increments of serum markers of dietary PS intake and of cholesterol synthesis). The consumption of both beverages led to an increase of sterol and metabolite excretion (with the exception of coprostanol, which decreased) and to slight changes in women's capacities for sterol conversion, regardless of the GOS presence. This study demonstrates the suitability of simultaneous enrichment with PS and GOS in milk-based fruit beverages, considering their hypocholesterolemic effect.
Collapse
Affiliation(s)
- Virginia Blanco-Morales
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| | - Ramona de los Ángeles Silvestre
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Elena Hernández-Álvarez
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Encarnación Donoso-Navarro
- Clinical
Biochemistry, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, C/Manuel de Falla, 1, Madrid 28222, Spain
| | - Amparo Alegría
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition
and Food Science Area, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n,
Burjassot, Valencia 46100, Spain
| |
Collapse
|
49
|
Yang Y, Xu K, Chen X, Ding J, Shi J, Li J. The Accuracy and Clinical Relevance of the Multi-echo Dixon Technique for Evaluating Changes to Hepatic Steatosis in Patients with Non-alcoholic Fatty Liver Disease Treated with Formulated Food. Magn Reson Med Sci 2022; 22:263-271. [PMID: 35676065 PMCID: PMC10086395 DOI: 10.2463/mrms.mp.2021-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The Multi-echo Dixon (ME-Dixon) is a non-invasive quantitative MRI technique to diagnose non-alcoholic fatty liver disease (NAFLD). In this study, the hydrogen proton MR spectroscopy (1H-MRS) was used as a reference to explore the accuracy of the ME-Dixon technique in evaluating hepatic steatosis in NAFLD patients after ingesting formulated food and its correlation with changes in clinical indicators. METHODS Twenty-seven patients with NAFLD were enrolled. Fifteen patients completed 12 weeks of treatment with prebiotics and dietary fiber. In addition, abdominal MRI scans and blood tests were performed before and after treatment. The MRI-proton density fat fraction (MRI-PDFF) and MRS-PDFF were measured using the ME-Dixon and 1H-MRS techniques. The Bland-Altman method and Pearson correlation analysis were used to test the consistency of the two techniques for measuring the liver fat content and the changed values. Besides, correlation analysis was conducted between the MRI-PDFF value and metabolic indicators. RESULTS In the PDFF quantification of 42 person-times and the monitoring of the PDFF change in 15 patients under treatment, there was a good consistency and a correlation between MRI and MRS. At baseline, MRI-PDFF was positively correlated with insulin resistance index (HOMA-IR), fatty liver index (FLI), and liver enzymes. After treatment, the changes in MRI-PDFF were positively correlated with the recovery degree of FLI and liver enzymes. CONCLUSION ME-Dixon has a good consistency and a correlation with MRS in quantifying the liver fat content and monitoring the treatment effect, which may be used as an accurate indicator for clinical monitoring of changes in the liver fat content.
Collapse
Affiliation(s)
- Ying Yang
- Department of Radiology, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine
| | - Kuanghui Xu
- Department of Radiology, Hangzhou Normal University Affiliated Hospital
| | - Xiaofei Chen
- Department of Radiology, Hangzhou Normal University Affiliated Hospital
| | - Jianping Ding
- Department of Radiology, Hangzhou Normal University Affiliated Hospital
| | - Junping Shi
- Department of Clinical Medicine, Medical College, Hangzhou Normal University
| | - Jie Li
- Department of Radiology, Hangzhou Normal University Affiliated Hospital
| |
Collapse
|
50
|
Parker J, O'Brien C, Hawrelak J. A narrative review of the role of gastrointestinal dysbiosis in the pathogenesis of polycystic ovary syndrome. Obstet Gynecol Sci 2022; 65:14-28. [PMID: 34958733 PMCID: PMC8784943 DOI: 10.5468/ogs.21185] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Diet-induced gastrointestinal dysbiosis has been hypothesized to play a significant role in stimulating an increase in gastrointestinal permeability and activating systemic inflammation in women with polycystic ovary syndrome (PCOS). We reviewed the current proof-of-concept studies on the proposed mechanism of dysbiosis in the pathogenesis of PCOS. A literature search was performed to identify articles on changes in the intestinal microbiome (dysbiosis) and increased intestinal mucosal permeability involving lipopolysaccharide (LPS), LPS-binding protein (LPS-BP), and zonulin. We also searched for systematic reviews and meta-analyses that synthesized the results of studies on the therapeutic effects of prebiotics, probiotics, or synbiotics in women with PCOS. Our search was confined to human studies between 2012 and 2021 using the PubMed, Scopus, and Cochrane databases. Thirty-one studies met the inclusion criteria (14 microbiota, 1 LPS, 1 LPS-BP, 1 LPS and LPS-BP, 5 zonulin, 9 systematic reviews). Our analysis revealed that most studies reported reduced alpha diversity and dysbiosis in women with PCOS. Preliminary studies suggest that LPS, LPS-BP, and zonulin may be involved in the pathophysiology of increased intestinal permeability. Treatment of PCOS with prebiotics, probiotics, and synbiotics appears to have a range of beneficial effects on metabolic and biochemical profiles. This review highlights the need for continued research into the pathophysiological mechanisms of dysbiosis and the clinical efficacy of prebiotics, probiotics, and synbiotics in women with PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Claire O'Brien
- Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Jason Hawrelak
- College of Health and Medicine, University of Tasmania, Tasmania, Australia
| |
Collapse
|