1
|
Chen Y, Liu W, Xu X, Zhen H, Pang B, Zhao Z, Zhao Y, Liu H. The Role of H3K27me3-Mediated Th17 Differentiation in Ankylosing Spondylitis. Inflammation 2024; 47:1685-1698. [PMID: 38517649 DOI: 10.1007/s10753-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/24/2024]
Abstract
Ankylosing spondylitis (AS) is a common chronic progressive inflammatory autoimmune disease. T helper 17 (Th17) cells are the major effector cells mediating AS inflammation. Histone 3 Lys 27 trimethylation (H3K27me3) is an inhibitory histone modification that silences gene transcription and plays an important role in Th17 differentiation. The objective of this study was to investigate the expression of H3K27me3 in patients with AS and to explore its epigenetic regulation mechanism of Th17 differentiation during AS inflammation. We collected serum samples from 45 patients with AS at various stages and 10 healthy controls to measure their Interleukin-17 (IL-17) levels using ELISA. A quantitative polymerase chain reaction was used to quantify the mRNA levels of RORc and the signaling molecules of the JAK2/STAT3 pathway, JMJD3, and EZH2. Additionally, Western blot analysis was performed to quantify the protein levels of H3K27me3, RORγt, JAK2, STAT3, JMJD3, and EZH2 in cell protein extracts. The results showed that H3K27me3 expression in peripheral blood mononuclear cells (PBMCs) was significantly lower in patients with active AS compared to both the normal control groups and those with stable AS. Moreover, a significant negative correlation was observed between H3K27me3 expression and the characteristic transcription factor of Th17 differentiation, RORγt. We also discovered that patients with active AS exhibited significantly higher levels of JMJD3, an inhibitor of H3K27 demethylase, compared to the normal control group and patients with stable AS, while the expression of H3K27 methyltransferase (EZH2) was significantly lower. These findings suggest that H3K27me3 may be a dynamic and important epigenetic modification in AS inflammation, and JMJD3/EZH2 regulates the methylation level of H3K27me3, which may be one of the key regulatory factors in the pathogenesis of AS. These findings contribute to our understanding of the role of epigenetics in AS and may have implications for the development of novel therapeutic strategies for AS.
Collapse
Affiliation(s)
- Yuening Chen
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Wanlin Liu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohan Xu
- Guang'anmen Hospital Jinan, China Academy of Chinese Medical Sciences, Jinan, 250012, China
| | - Hongying Zhen
- Department of Cell Biology, Basic Medical School, Peking University Health Science Center, Beijing, 100191, China
| | - Bo Pang
- Clinical Laboratory, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Zhe Zhao
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Yanan Zhao
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China
| | - Hongxiao Liu
- Department of Rheumatology, China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing, 100053, China.
| |
Collapse
|
2
|
Robert M, Miossec P. [IL-17A and IL-17F: from discovery to target of biologics - an illustrative example of translational research]. Biol Aujourdhui 2024; 218:33-39. [PMID: 39007775 DOI: 10.1051/jbio/2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 07/16/2024]
Abstract
Interleukin (IL)-17A and then IL-17F have been discovered through their roles in chronic inflammatory diseases. These cytokines share 50% of sequence homology and bind to the same receptor made of the IL-17RA et IL-17RC chains. While they have rather similar pro-inflammatory effects, slight differences exist depending on the cell type considered or whether there is TNF or not. Indeed, there is a synergistic effect of TNF and IL-17A or IL-17F on many cell types. In addition, the interactions between immune and stromal cells also modulate their effects which vary according to stromal cell subtype. The identification of IL-17A and IL-17F roles in inflammatory diseases, as psoriasis, has led to the development of inhibitors of those cytokines. Anti-IL-17A, then anti-IL-17A/F and now anti-IL-17RA have been approved for different diseases and are particularly efficient in psoriasis. Their use is expending to other diseases like psoriatic arthritis and spondyloarthritis. Last, the recent understanding of the importance of stromal cells during chronic inflammation explains the relative inefficacy of such inhibitors in some other diseases.
Collapse
Affiliation(s)
- Marie Robert
- Département d'immunologie clinique et de rhumatologie, Unité immunogénomique et inflammation, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, 69437 Lyon, France
| | - Pierre Miossec
- Département d'immunologie clinique et de rhumatologie, Unité immunogénomique et inflammation, Hôpital Edouard Herriot, Hospices Civils de Lyon, 5 Place d'Arsonval, 69437 Lyon, France
| |
Collapse
|
3
|
Fei X, Wang L, Dou YN, Fei F, Zhang Y, Lv W, He X, Wu X, Chao W, Chen H, Wei J, Gao D, Fei Z. Extracellular vesicle encapsulated Homer1a as novel nanotherapeutics against intracerebral hemorrhage in a mouse model. J Neuroinflammation 2024; 21:85. [PMID: 38582897 PMCID: PMC10999083 DOI: 10.1186/s12974-024-03088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Homer1a and A2 astrocytes are involved in the regulation of inflammation induced by intracerebral hemorrhage (ICH). However, there is no anticipated treatment strategy based on the anti-inflammatory effect of Homer1a and A2 astrocytes. Here, we successfully induced A2 astrocytes in vitro, and then we report an efficient method to prepare Homer1a+ EVs derived from A2 astrocytes which making it more stable, safe, and targetable to injured neurons. Homer1a+ EVs promotes the conversion of A1 to A2 astrocytes in ICH mice. Homer1a+ EVs inhibits activation and nuclear translocation of NF-κB, thereby regulating transcription of IL-17A in neurons. Homer1a+ EVs inhibits the RAGE/NF-κB/IL-17 signaling pathway and the binding ability of IL-17A: IL17-AR and RAGE: DIAPH1. In addition, Homer1a+ EVs ameliorates the pathology, behavior, and survival rate in GFAPCreHomer1fl/-Homer1a± and NestinCreRAGEfl/fl ICH mice. Our study provides a novel insight and potential for the clinical translation of Homer1a+ EVs in the treatment of ICH.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Wangshu Chao
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, No. 127, Changle West Road, Xincheng District, , Shaanxi, 710032, China.
| |
Collapse
|
4
|
Robert M, Miossec P. Structural cell heterogeneity underlies the differential contribution of IL-17A, IL-17F and IL-23 to joint versus skin chronic inflammation. Autoimmun Rev 2024; 23:103529. [PMID: 38492906 DOI: 10.1016/j.autrev.2024.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The current therapeutic strategy used in immune-mediated inflammatory diseases (IMIDs) primarily targets immune cells or associated-pathways. However, recent evidence suggests that the microenvironment modulates immune cell development and responses. During inflammation, structural cells acquire a pathogenetic phenotype and the interactions with immune cells are often greatly modified. Understanding the importance of these tissue-specific interactions may allow to explain why some biologics are effective in some IMIDs but not in others. The differential effects of interleukin (IL)-17 A, IL-17F and IL-23 in joint versus skin inflammation depends on structural cell heterogeneity. In addition, the sometimes opposite effects of immune/structural cell interactions on the production of these cytokines illustrate the importance of these cells in chronic inflammation, using the examples of rheumatoid arthritis, psoriasis and spondyloarthritis. This review describes these concepts, shows their interests through clinical observations, and finally discusses strategies to optimize therapeutic strategies.
Collapse
Affiliation(s)
- Marie Robert
- Immunogenomics and Inflammation Research Unit, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
5
|
Roberts JL, Kapfhamer D, Devarapalli V, Drissi H. IL-17RA Signaling in Prx1+ Mesenchymal Cells Influences Fracture Healing in Mice. Int J Mol Sci 2024; 25:3751. [PMID: 38612562 PMCID: PMC11011315 DOI: 10.3390/ijms25073751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - David Kapfhamer
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Varsha Devarapalli
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
6
|
Hughes CD, Ryan SE, Steel KJA, van den Beukel MD, Trouw LA, van Schie KAJ, Toes REM, Menon B, Kirkham BW, Taams LS. Type 17-specific immune pathways are active in early spondyloarthritis. RMD Open 2023; 9:e003328. [PMID: 38123480 DOI: 10.1136/rmdopen-2023-003328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVE Undifferentiated, early inflammatory arthritis (EIA) can differentiate into seropositive or seronegative rheumatoid arthritis (RA), peripheral spondyloarthritis (SpA) or remain as seronegative undifferentiated inflammatory arthritis (UIA). Little is known about immune pathways active in the early stages of SpA and seronegative UIA, in contrast to detailed knowledge of seropositive RA. The aim of this study was to examine if specific immune pathways were active in synovial CD4+ and CD8+ T cells in EIA. METHODS Synovial fluid (SF) samples from 30 patients with EIA were analysed for expression of IL-17A, IFNγ and TNFα in CD8+ or CD4+ T cells. Final clinical diagnoses were made at least 12 months after sample collection, by two independent clinicians blind to the study data. RESULTS Flow cytometry analysis of all EIA samples indicated considerable variation in synovial IL-17A+CD8+ T cells (Tc17) cell frequencies between patients. The group with a final diagnosis of SpA (psoriatic arthritis or peripheral SpA, n=14) showed a significant enrichment in the percentage of synovial Tc17 cells compared with the group later diagnosed with seronegative UIA (n=10). The small number of patients later diagnosed with seropositive RA (n=6) patients had few Tc17 cells, similar to our previous findings in established disease. In contrast, RA SF contained a significantly higher percentage of CD8+IFNγ+ T cells compared with SpA or seronegative UIA. CONCLUSION These results suggest that adaptive T cell cytokine pathways differ not only between RA and SpA but also seronegative UIA early in the disease process, with a particular activation of Tc17 pathways in early SpA.
Collapse
Affiliation(s)
- Catherine D Hughes
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Sarah E Ryan
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Kathryn J A Steel
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | | | - L A Trouw
- Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Karin A J van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Bina Menon
- Department of Rheumatology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Bruce W Kirkham
- Department of Rheumatology, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Leonie S Taams
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| |
Collapse
|
7
|
Tout I, Noack M, Miossec P. Differential effects of interleukin-17A and 17F on cell interactions between immune cells and stromal cells from synovium or skin. Sci Rep 2023; 13:19223. [PMID: 37932356 PMCID: PMC10628108 DOI: 10.1038/s41598-023-45653-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
We compared the contribution of IL-17A and IL-17F in co-culture systems mimicking cell interactions as found in inflamed synovium and skin. Synoviocytes or skin fibroblasts were co-cultured with activated PBMC, with IL-17A, IL-17 A/F, IL-17F, IL-23, anti-IL-17A, anti-IL-17A/F or anti-IL-17F antibodies. IL-17A, IL-17F, IL-6 and IL-10 production was measured at 48 h. mRNA expression of receptor subunits for IL-23, IL-12 and IL-17 was assessed at 24 h. Both cell activation and interactions were needed for a high IL-17A secretion while IL-17F was stimulated by PHA activation alone and further increased in co-cultures. IL-17F levels were higher than IL-17A in both co-cultures (p < 0.05). IL-17F addition decreased IL-17A secretion (p < 0.05) but IL-17A addition had no effect on IL-17F secretion. Interestingly, IL-17A and IL-17F upregulated IL-17RA and IL-17RC mRNA expression in PBMC/skin fibroblast co-cultures (p < 0.05) while only IL-17F exerted this effect in synoviocytes (p < 0.05). Monocyte exclusion in both co-cultures increased IL-17A and IL-17F (twofold, p < 0.05) while decreasing IL-10 and IL-6 secretion (twofold, p < 0.05). IL-17A and F had differential effects on their receptor expression with a higher sensitivity for skin fibroblasts highlighting the differential contribution of IL-17A and F in joint vs. skin diseases.
Collapse
Affiliation(s)
- Issam Tout
- Immunogenomics and Inflammation Research Unit, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France
| | - Mélissa Noack
- Immunogenomics and Inflammation Research Unit, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003, Lyon, France.
- Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, 5 Place d'Arsonval, 69437, Lyon, France.
| |
Collapse
|
8
|
Ma H, Zhang W, Liu K, Xu B, Li M, Meng Q, An Z, Chen B. Generation and characterization of QLS22001, a humanized monoclonal antibody that neutralizes IL-17A and IL-17F with an extended half-life. Int Immunopharmacol 2023; 117:109947. [PMID: 37012892 DOI: 10.1016/j.intimp.2023.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/28/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
Therapeutic intervention to block IL-17A signaling has proven to be an effective treatment for numerous autoimmune diseases, including psoriasis, psoriatic arthritis, and axial spondylarthritis. Among the IL-17 family members, IL-17F, which shares 55% sequence homology with IL-17A, has been reported to functionally overlap with IL-17A in many inflammatory diseases. In this study, we describe the generation and characterization of QLS22001, a humanized monoclonal IgG1 antibody with an extended half-life and high affinity for both IL-17A and IL-17F. QLS22001 effectively blocks IL-17A and IL-17F mediated signaling pathways both in vitro and in vivo. Briefly, the YTE (M225Y/S254T/T256E) modification was introduced into the Fc fragment of QLS22001 WT Fc to prolong its half-life, and the resulting construct was named QLS22001. Functionally, it significantly inhibits IL-17A- and IL-17F-stimulated signaling in cell-based IL-6 release and reporter assays. The dual neutralization of the endogenous IL-17A and IL-17F produced by Th17 cells, as opposed to the selective blockade of IL-17A alone, results in a greater suppression of inflammatory cytokine secretion, according to in vitro blockade assays. Furthermore, in an in vivo mouse pharmacodynamic study, QLS22001 blocked human IL-17A-induced mouse keratinocyte chemoattractant (KC) release. In cynomolgus monkey pharmacokinetics evaluation, QLS22001 showed linear pharmacokinetic characteristics with a mean half-life of 31.2 days, while its parent antibody, QLS22001 WT Fc, had a mean half-life of 17.2 days. In addition, QLS22001 does not induce cytokine release in a human whole-blood assay. Collectively, these data provide a comprehensive preclinical characterization of QLS22001 and support its clinical development.
Collapse
Affiliation(s)
- Huimin Ma
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China
| | - Wei Zhang
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China
| | - Ke Liu
- Nonclinical Development Department, Qilu Pharmaceutical R&D Center Ltd, Jinan, China
| | - Baoxin Xu
- Nonclinical Development Department, Qilu Pharmaceutical R&D Center Ltd, Jinan, China
| | - Minyu Li
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Qingyun Meng
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Zhenming An
- Institute of Biotechnology Development, Qilu Pharmaceutical Co, Ltd, Jinan, China
| | - Bo Chen
- Department of Immunology and Inflammation, Shanghai Qilu Pharmaceutical R&D Center Ltd., Shanghai, China.
| |
Collapse
|
9
|
Nisar H, Attique SA, Javaid A, Ain QU, Butt F, Zaid M, Shahid S, Hassan Nasir M, Sadaf S. Comparative molecular docking analysis for analyzing the inhibitory effect of Anakinra and Ustekinumab against IL17F. J Biomol Struct Dyn 2023; 41:13302-13313. [PMID: 36715128 DOI: 10.1080/07391102.2023.2173299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Interleukin 17 F is a member of IL-17 cytokine family with a 50% structural homology to IL-17A and plays a significant role either alone or in combination with IL-17A towards inflammation in Rheumatoid arthritis (RA). A growing number of drugs targeting IL-17 pathway are being tested against population specific disease markers. The major objective of this research was to investigate the anti-inflammatory effect of Anakinra (an IL-1 R1 inhibitor) and Ustekinumab (an IL-12 and IL-23 inhibitor) by targeting IL17F. The three dimensional structures of IL17F was taken from PDB while structures of drugs were taken from PubChem database. Docking was performed using MOE and Schrodinger ligand docking software and binding energies, including s-score using London-dG fitness function and glide score using glide internal energy function, between drug and targets were compared. Furthermore, Protein-Drug complex were subjected to 150 ns Molecular Dynamics (MD) Simulations using Schrodinger's Desmond Module. Docking and MD simulation results suggest anakinra as a more potent IL17F inhibitor and forming a more structurally stable complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Haseeb Nisar
- Department of Life-Sciences, University of Management and Technology, Lahore, Pakistan
| | - Syed Awais Attique
- School of Interdisciplinary Engineering & Science (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Anum Javaid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Qurat Ul Ain
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Department of Forensic sciences, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fatima Butt
- Department of Life-Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Zaid
- Department of Life-Sciences, University of Management and Technology, Lahore, Pakistan
| | - Samiah Shahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Hassan Nasir
- Faculty of Medicine, University Sultan Zainul Abidin, Jalal Sultan Mahmood, Malaysia
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
10
|
Gremese E, Tolusso B, Bruno D, Perniola S, Ferraccioli G, Alivernini S. The forgotten key players in rheumatoid arthritis: IL-8 and IL-17 - Unmet needs and therapeutic perspectives. Front Med (Lausanne) 2023; 10:956127. [PMID: 37035302 PMCID: PMC10073515 DOI: 10.3389/fmed.2023.956127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Despite the relevant advances in our understanding of the pathogenetic mechanisms regulating inflammation in rheumatoid arthritis (RA) and the development of effective therapeutics, to date, there is still a proportion of patients with RA who do not respond to treatment and end up progressing toward the development of joint damage, extra-articular complications, and disability. This is mainly due to the inter-individual heterogeneity of the molecular and cellular taxonomy of the synovial membrane, which represents the target tissue of RA inflammation. Tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) are crucial key players in RA pathogenesis fueling the inflammatory cascade, as supported by experimental evidence derived from in vivo animal models and the effectiveness of biologic-Disease Modifying Anti-Rheumatic Drugs (b-DMARDs) in patients with RA. However, additional inflammatory soluble mediators such as IL-8 and IL-17 exert their pathogenetic actions promoting the detrimental activation of immune and stromal cells in RA synovial membrane, tendons, and extra-articular sites, as well as blood vessels and lungs, causing extra-articular complications, which might be excluded by the action of anti-TNFα and anti-IL6R targeted therapies. In this narrative review, we will discuss the role of IL-8 and IL-17 in promoting inflammation in multiple biological compartments (i.e., synovial membrane, blood vessels, and lung, respectively) in animal models of arthritis and patients with RA and how their selective targeting could improve the management of treatment resistance in patients.
Collapse
Affiliation(s)
- Elisa Gremese
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Elisa Gremese, Gianfranco Ferraccioli
| | - Barbara Tolusso
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Dario Bruno
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Department of Medicine, University of Verona, Verona, Italy
| | - Simone Perniola
- Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Gianfranco Ferraccioli
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- *Correspondence: Elisa Gremese, Gianfranco Ferraccioli
| | - Stefano Alivernini
- Immunology Core Facility, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
11
|
Šteigerová M, Šíma M, Slanař O. Pathogenesis of Collagen-Induced Arthritis: Role of Immune Cells with Associated Cytokines and Antibodies, Comparison with Rheumatoid Arthritis. Folia Biol (Praha) 2023; 69:41-49. [PMID: 38063000 DOI: 10.14712/fb2023069020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Collagen-induced arthritis is the most com-mon in vivo model of rheumatoid arthritis used for investigation of new potential therapies in preclinical research. Rheumatoid arthritis is a systemic inflammatory and autoimmune disease affecting joints, accompanied by significant extra-articular symptoms. The pathogenesis of rheumatoid arthritis and collagen-induced arthritis involves a so far properly unexplored network of immune cells, cytokines, antibodies and other factors. These agents trigger the autoimmune response leading to polyarthritis with cell infiltration, bone and cartilage degeneration and synovial cell proliferation. Our review covers the knowledge about cytokines present in the rat collagen-induced arthritis model and the factors affecting them. In addition, we provide a comparison with rheumatoid arthritis and a description of their important effects on the development of both diseases. We discuss the crucial roles of various immune cells (subtypes of T and B lymphocytes, dendritic cells, monocytes, macrophages), fibroblast-like synoviocy-tes, and their related cytokines (TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17, IL-23, GM-CSF, TGF-β). Finally, we also focus on key antibodies (rheu-matoid factor, anti-citrullinated protein antibodies, anti-collagen II antibodies) and tissue-degrading enzymes (matrix metalloproteinases).
Collapse
Affiliation(s)
- Monika Šteigerová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Martin Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
12
|
Altieri A, Piyadasa H, Hemshekhar M, Osawa N, Recksiedler B, Spicer V, Hiemstra PS, Halayko AJ, Mookherjee N. Combination of IL-17A/F and TNF-α uniquely alters the bronchial epithelial cell proteome to enhance proteins that augment neutrophil migration. J Inflamm (Lond) 2022; 19:26. [PMCID: PMC9749191 DOI: 10.1186/s12950-022-00323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background The heterodimer interleukin (IL)-17A/F is elevated in the lungs in chronic respiratory disease such as severe asthma, along with the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Although IL-17A/F and TNF-α are known to functionally cooperate to exacerbate airway inflammation, proteins altered by their interaction in the lungs are not fully elucidated. Results We used Slow Off-rate Modified Aptamer-based proteomic array to identify proteins that are uniquely and/or synergistically enhanced by concurrent stimulation with IL-17A/F and TNF-α in human bronchial epithelial cells (HBEC). The abundance of 38 proteins was significantly enhanced by the combination of IL-17A/F and TNF-α, compared to either cytokine alone. Four out of seven proteins that were increased > 2-fold were those that promote neutrophil migration; host defence peptides (HDP; Lipocalin-2 (LCN-2) and Elafin) and chemokines (IL-8, GROα). We independently confirmed the synergistic increase of these four proteins by western blots and ELISA. We also functionally confirmed that factors secreted by HBEC stimulated with the combination of IL-17A/F and TNF-α uniquely enhances neutrophil migration. We further showed that PI3K and PKC pathways selectively control IL-17A/F + TNF-α-mediated synergistic production of HDPs LCN-2 and Elafin, but not chemokines IL-8 and GROα. Using a murine model of airway inflammation, we demonstrated enhancement of IL-17A/F, TNF-α, LCN-2 and neutrophil chemokine KC in the lungs, thus corroborating our findings in-vivo. Conclusion This study identifies proteins and signaling mediated by concurrent IL-17A/F and TNF-α exposure in the lungs, relevant to respiratory diseases characterized by chronic inflammation, especially neutrophilic airway inflammation such as severe asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-022-00323-w.
Collapse
Affiliation(s)
- Anthony Altieri
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Hadeesha Piyadasa
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada ,grid.168010.e0000000419368956Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA USA
| | - Mahadevappa Hemshekhar
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Natasha Osawa
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Breann Recksiedler
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Victor Spicer
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| | - Pieter S Hiemstra
- grid.10419.3d0000000089452978Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J Halayko
- grid.21613.370000 0004 1936 9609Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| | - Neeloffer Mookherjee
- grid.21613.370000 0004 1936 9609Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Immunology, University of Manitoba, Winnipeg, MB Canada ,grid.460198.20000 0004 4685 0561Biology of Breathing Group, The Children’s Hospital Research Institute of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
13
|
Hong D, Liu X, Qiu X, Lu S, Jiang Y, Tan G, Shi Z, Wang L. Profiling Serum Cytokines and Anticytokine Antibodies in Psoriasis Patients. J Immunol Res 2022; 2022:2787954. [PMID: 36118416 PMCID: PMC9477620 DOI: 10.1155/2022/2787954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Cytokines like IL-17A have been consistently found to be elevated in psoriatic lesional skin, and therapeutic antibodies to IL-17 have demonstrated efficacy in treating psoriatic skin and joint disease. However, results about the circulating cytokines in psoriasis patients remained controversial. Anticytokine autoantibodies (ACAAs) were detected in various autoimmune diseases but remained largely unknown in psoriasis. We aimed to investigate the serum levels of cytokines and ACAAs in psoriasis patients. The study included 44 biologics-naive psoriasis patients and 40 healthy controls. Serum cytokines and the corresponding autoantibodies were measured by multiplex bead-based technology. The bioactivity of serum IL-17A was determined by IL-8 production in primary keratinocytes. Herein, we found serum levels of IL-12B (median: 6.16 vs. 9.03, p = 0.0194) and Th17 cytokines (IL-17A: median: 0.32 vs. 1.05, p = 0.0026; IL-22: median: 4.41 vs. 4.41, p = 0.0120) were increased in psoriasis patients. More interestingly, bioactive IL-17A was identified in a proportion of patients and positively correlated with disease severity. A few of cytokines were closely associated with each other and formed into a distinct panel in psoriasis. Of 13 anticytokine antibodies, anti-IL-22 was moderately lower (median: 262.8 vs.190.5, p = 0.0418), and anti-IL-15 was slightly higher (median: 25.5 vs. 30.5, p = 0.0069) in psoriasis than controls. None of ACAAs was related to disease severity. Consequently, the ratios of antibodies to cytokines varied with the pattern of cytokines. In summary, our finding suggested that the levels of circulating bioactive IL-17A were associated with disease activity in psoriasis patients. In contrast, the titers of ACAAs were not significantly altered nor correlated with disease severity. However, the functionality of ACAAs remains to be further demonstrated in vitro in future studies.
Collapse
Affiliation(s)
- Dan Hong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiuting Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaonan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Siyao Lu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanyun Jiang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhenrui Shi
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Liangchun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
14
|
Robert M, Miossec P, Hot A. The Th17 Pathway in Vascular Inflammation: Culprit or Consort? Front Immunol 2022; 13:888763. [PMID: 35479069 PMCID: PMC9035791 DOI: 10.3389/fimmu.2022.888763] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The involvement of IL-17A in autoimmune and inflammatory diseases has prompted the development of therapeutic strategies to block the Th17 pathway. Promising results came from their use in psoriasis and in ankylosing spondylitis. IL-17A acts on various cell types and has both local and systemic effects. Considering the premature mortality observed during chronic inflammatory diseases, IL-17A action on vascular cells was studied. Both in vitro and in vivo results suggest that this cytokine favors inflammation, coagulation and thrombosis and promotes the occurrence of cardiovascular events. These observations led to study the role of IL-17A in diseases characterized by vascular inflammation, namely allograft rejection and vasculitis. Increased circulating levels of IL-17A and histological staining reveal that the Th17 pathway is involved in the pathogenesis of these diseases. Vasculitis treatment faces challenges while the use of steroids has many side effects. Regarding results obtained in giant cell arteritis with IL-6 inhibitors, a cytokine involved in Th17 differentiation, the use of anti-IL-17 is a promising strategy. However, lessons from rheumatoid arthritis and multiple sclerosis must be learnt before targeting IL-17 in vasculitis, which may be culprit, consort or both of them.
Collapse
Affiliation(s)
- Marie Robert
- Department of Clinical Immunology and Rheumatology, and Immunogenomics and Inflammation Research Unit, University of Lyon, Hôpital Edouard Herriot, Lyon, France
- Department of Internal Medicine, University of Lyon, Hôpital Edouard Herriot, Lyon, France
- *Correspondence: Marie Robert,
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, and Immunogenomics and Inflammation Research Unit, University of Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Arnaud Hot
- Department of Internal Medicine, University of Lyon, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
15
|
Mostafavi H, Tharmarajah K, Vider J, West NP, Freitas JR, Cameron B, Foster PS, Hueston LP, Lloyd AR, Mahalingam S, Zaid A. Interleukin-17 contributes to Ross River virus-induced arthritis and myositis. PLoS Pathog 2022; 18:e1010185. [PMID: 35143591 PMCID: PMC8830676 DOI: 10.1371/journal.ppat.1010185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Arthritogenic alphaviruses are mosquito-borne viruses that are a major cause of infectious arthropathies worldwide, and recent outbreaks of chikungunya virus and Ross River virus (RRV) infections highlight the need for robust intervention strategies. Alphaviral arthritis can persist for months after the initial acute disease, and is mediated by cellular immune responses. A common strategy to limit inflammation and pathology is to dampen the overwhelming inflammatory responses by modulating proinflammatory cytokine pathways. Here, we investigate the contribution of interleukin-17 (IL-17), a cytokine involved in arthropathies such as rheumatoid arthritis, in the development RRV-induced arthritis and myositis. IL-17 was quantified in serum from RRV-infected patients, and mice were infected with RRV and joints and muscle tissues collected to analyse cellular infiltrates, tissue mRNA, cytokine expression, and joint and muscle histopathology. IL-17 expression was increased in musculoskeletal tissues and serum of RRV-infected mice and humans, respectively. IL-17–producing T cells and neutrophils contributed to the cellular infiltrate in the joint and muscle tissue during acute RRV disease in mice. Blockade of IL-17A/F using a monoclonal antibody (mAb) reduced disease severity in RRV-infected mice and led to decreased proinflammatory proteins, cellular infiltration in synovial tissues and cartilage damage, without affecting viral titers in inflamed tissues. IL-17A/F blockade triggered a shift in transcriptional profile of both leukocyte infiltrates and musculoskeletal stromal cells by downregulating proinflammatory genes. This study highlights a previously uncharacterized role for an effector cytokine in alphaviral pathology and points towards potential therapeutic benefit in targeting IL-17 to treat patients presenting with RRV-induced arthropathy. Some viruses transmitted by mosquitoes cause painful and debilitating arthritis, which manifests both as an acute form shortly following infection, and a chronic form long after the initial symptoms have subsided. These viruses, termed arboviruses, are difficult to control and there are currently no specific treatments to alleviate the pain and loss of mobility. Arthritis caused by arboviruses shares similarities with a non-infectious, autoimmune form of arthritis called rheumatoid arthritis (RA). In RA, an immune molecule termed interleukin-17, or IL-17, has been shown to drive arthritis and treatments that target or block IL-17 are being developed to treat RA. Here, we asked whether arthritis caused by an arbovirus, Ross River virus (RRV), was also associated with elevated IL-17 in humans and mice. Disease severity in mice was associated with high IL-17 expression in the feet and muscle, and blocking IL-17 using an anti-IL-17 monoclonal antibody ameliorated disease in mice infected with RRV. Our study provides new information on a molecule that is implicated in arthritic inflammation, and could be targeted to treat disease caused by arthritogenic arboviruses.
Collapse
Affiliation(s)
- Helen Mostafavi
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Gold Coast, QLD, Australia
| | - Kothila Tharmarajah
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Gold Coast, QLD, Australia
| | - Jelena Vider
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Mucosal Immunology Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Nicholas P. West
- Mucosal Immunology Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Gold Coast, QLD, Australia
| | - Barbara Cameron
- Viral immunology Systems Program, Kirby Institute, University of New South Wales, Kensington, Australia
| | - Paul S. Foster
- School of Biomedical Sciences, Faculty of Health Sciences and Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Linda P. Hueston
- Arbovirus Emerging Diseases Unit, Centre for Infectious Diseases and Microbiology Laboratory Services, Pathology West—ICPMR Westmead, Australia
| | - Andrew R. Lloyd
- Viral immunology Systems Program, Kirby Institute, University of New South Wales, Kensington, Australia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Gold Coast, QLD, Australia
- * E-mail: (SM); (AZ)
| | - Ali Zaid
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
- Global Virus Network (GVN) Centre of Excellence in Arboviruses, Gold Coast, QLD, Australia
- * E-mail: (SM); (AZ)
| |
Collapse
|
16
|
Bolt JW, van Kuijk AW, Teunissen MBM, van der Coelen D, Aarrass S, Gerlag DM, Tak PP, van de Sande MG, Lebre MC, van Baarsen LGM. Impact of Adalimumab Treatment on Interleukin-17 and Interleukin-17 Receptor Expression in Skin and Synovium of Psoriatic Arthritis Patients with Mild Psoriasis. Biomedicines 2022; 10:biomedicines10020324. [PMID: 35203534 PMCID: PMC8869729 DOI: 10.3390/biomedicines10020324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Interleukin (IL)-17 and tumor necrosis factor-alpha (TNF)-α are key players in psoriatic arthritis (PsA) pathogenesis. While both cytokines can be therapeutically targeted with beneficial clinical outcome, it is unclear whether inhibiting one cytokine will affect the other at sites of inflammation. If both act independently, this might provide a rationale for dual or combined inhibition of both cytokines. Here, we evaluated the effect of TNF blockade in PsA patients on IL-17 levels in both skin and synovial tissue biopsies. PsA patients with mild psoriatic skin lesions were randomized to receive either adalimumab or placebo for four weeks. Synovial and skin biopsies were obtained at weeks zero and four. Skin from healthy donors (HDs) was used for comparison. Expression of IL-17A, IL-17F, IL-17RA and IL-17RC was assessed by immunohistochemistry and analyzed with digital image analysis. We found relatively low levels of IL-17 and its receptors in the skin of PsA patients compared to HD, and only IL-17F in the dermis of lesional psoriatic skin was significantly higher compared to HD skin (p = 0.0002). Histologically IL-17A, IL-17F, IL-17RA and IL-17RC in skin and synovial tissue were not downregulated by adalimumab treatment. Thus, in this cohort of PsA patients with mild psoriasis, TNF blockade did not affect the protein levels of IL-17 cytokines and its receptors in skin and synovium, despite reduced cellular inflammation and improved clinical outcome for joint involvement.
Collapse
Affiliation(s)
- Janne W. Bolt
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (D.v.d.C.); (S.A.); (D.M.G.); (P.P.T.); (M.G.v.d.S.)
- Department of Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC)-Reade, 1040 HG Amsterdam, The Netherlands;
| | - Arno W. van Kuijk
- Department of Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC)-Reade, 1040 HG Amsterdam, The Netherlands;
- Department of Rheumatology, Reade, 1056 AB Amsterdam, The Netherlands
| | - Marcel B. M. Teunissen
- Department of Dermatology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Dennis van der Coelen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (D.v.d.C.); (S.A.); (D.M.G.); (P.P.T.); (M.G.v.d.S.)
- Department of Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC)-Reade, 1040 HG Amsterdam, The Netherlands;
| | - Saïda Aarrass
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (D.v.d.C.); (S.A.); (D.M.G.); (P.P.T.); (M.G.v.d.S.)
- Department of Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC)-Reade, 1040 HG Amsterdam, The Netherlands;
| | - Daniëlle M. Gerlag
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (D.v.d.C.); (S.A.); (D.M.G.); (P.P.T.); (M.G.v.d.S.)
- Department of Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC)-Reade, 1040 HG Amsterdam, The Netherlands;
| | - Paul P. Tak
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (D.v.d.C.); (S.A.); (D.M.G.); (P.P.T.); (M.G.v.d.S.)
- Department of Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC)-Reade, 1040 HG Amsterdam, The Netherlands;
- Candel Therapeutics, Needham, MA 02494, USA
- Internal Medicine, Cambridge University, Cambridge CB2 1TN, UK
| | - Marleen G. van de Sande
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (D.v.d.C.); (S.A.); (D.M.G.); (P.P.T.); (M.G.v.d.S.)
- Department of Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC)-Reade, 1040 HG Amsterdam, The Netherlands;
| | - Maria C. Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Lisa G. M. van Baarsen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.W.B.); (D.v.d.C.); (S.A.); (D.M.G.); (P.P.T.); (M.G.v.d.S.)
- Department of Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC)-Reade, 1040 HG Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
17
|
Berry SPDG, Dossou C, Kashif A, Sharifinejad N, Azizi G, Hamedifar H, Sabzvari A, Zian Z. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. Int Immunopharmacol 2021; 102:108402. [PMID: 34863654 DOI: 10.1016/j.intimp.2021.108402] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine involved in chronic inflammation occurring during the pathogenesis of allergy, malignancy, and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis. IL-17 is produced by multiple cell types of adaptive and innate immunity, including T helper 17 cells, CD8 + T cells, γδ T cells, natural killer T cells, and innate lymphoid cells. Monoclonal antibodies (mAbs) targeting IL-17 and/or IL-17R would be a potential approach to study this therapeutic tool for these diseases. In the current review, we aimed to highlight the characteristics of IL-17 and its important role in the pathogenesis of related diseases. Critical evaluation of the mAbs targeting IL-17A and IL-17 receptors (e.g., Ixekizumab, Secukinumab, and Brodalumab) in various immune-mediated diseases will be provided, and finally, their clinical efficacy and safety will be reported.
Collapse
Affiliation(s)
- S P Déo-Gracias Berry
- Centre de Recherches Médicales (CERMEL) de Lambaréné, B.P: 242, Gabon; Technical University of Munich, 80333, Germany
| | - Camille Dossou
- Laboratory of Biology and Molecular Typing in Microbiology. Faculty of Sciences and Techniques/University of Abomey-Calavi, Cotonou 05 BP 1604, Benin
| | - Ali Kashif
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Niusha Sharifinejad
- Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; CinnaGen Research and Production Co, Alborz, Iran
| | - Araz Sabzvari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; Orchid Pharmed Company, Tehran, Iran.
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, P.B. 416, Abdelmalek Essaadi University, Tetouan, Morocco.
| |
Collapse
|
18
|
Chen HL, Lin SC, Li S, Tang KT, Lin CC. Alantolactone alleviates collagen-induced arthritis and inhibits Th17 cell differentiation through modulation of STAT3 signalling. PHARMACEUTICAL BIOLOGY 2021; 59:134-145. [PMID: 33556301 PMCID: PMC8871681 DOI: 10.1080/13880209.2021.1876102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Alantolactone, the bioactive component in Inula helenium L. (Asteraceae), exhibits multiple biological effects. OBJECTIVE We aimed to determine the anti-inflammatory effect of alantolactone in a collagen-induced arthritis (CIA) mouse model and its immunomodulatory effects on Th17 differentiation. MATERIALS AND METHODS A CIA mouse model was established with DBA/1 mice randomly divided into four groups (n = 6): healthy, vehicle and two alantolactone-treated groups (25 or 50 mg/kg), followed by oral administration of alantolactone to mice for 21 consecutive days after arthritis onset. The severity of CIA was evaluated by an arthritic scoring system and histopathological examination. Levels of cytokines and anti-CII antibodies as well as percentages of splenic Th17 and Th17 differentiation with or without alantolactone treatments (0.62, 1.2 or 2.5 μM) were detected with ELISA and flow cytometry, respectively. Western blot analysis was used to evaluate intracellular signalling in alantolactone-treated spleen cells. RESULTS In CIA mice, alantolactone at 50 mg/kg attenuated RA symptoms, including high arthritis scores, infiltrating inflammatory cells, synovial hyperplasia, bone erosion and levels of the proinflammatory cytokines TNF-α, IL-6 and IL-17A, but not IL-10 in paw tissues. Alantolactone also reduced the number of splenic Th17 cells and the capability of naïve CD4+ T cells to differentiate into the Th17 subset by downregulating STAT3/RORγt signalling by as early as 24 h of treatment. DISCUSSION AND CONCLUSIONS Alantolactone possesses an anti-inflammatory effect that suppresses murine CIA by inhibiting Th17 cell differentiation, suggesting alantolactone is an adjunctive therapeutic candidate to treat rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/pathology
- Cell Differentiation/drug effects
- Cytokines
- Dose-Response Relationship, Drug
- Female
- Immunologic Factors/administration & dosage
- Immunologic Factors/isolation & purification
- Immunologic Factors/pharmacology
- Inula/chemistry
- Lactones/administration & dosage
- Lactones/isolation & purification
- Lactones/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- STAT3 Transcription Factor/metabolism
- Sesquiterpenes, Eudesmane/administration & dosage
- Sesquiterpenes, Eudesmane/isolation & purification
- Sesquiterpenes, Eudesmane/pharmacology
- Signal Transduction/drug effects
- Th17 Cells/cytology
- Th17 Cells/drug effects
Collapse
Affiliation(s)
- Hsiang-Lai Chen
- Department of Surgery, Division of Urology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Shih Chao Lin
- Bachelor Degree Program in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Shiming Li
- College of Chemistry & Chemical Engineering, Hubei Key Laboratory for Processing & Application of Catalytic Materials, Huanggang Normal University, Huanggang, PR China
| | - Kuo-Tung Tang
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- CONTACT Kuo-Tung Tang Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Chi-Chien Lin
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Chi-Chien Lin Institute of Biomedical Science, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung402, Taiwan, ROC
| |
Collapse
|
19
|
Gender-Related Differences in BMP Expression and Adult Hippocampal Neurogenesis within Joint-Hippocampal Axis in a Rat Model of Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222212163. [PMID: 34830044 PMCID: PMC8620092 DOI: 10.3390/ijms222212163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
BMPs regulate synovial quiescence and adult neurogenesis in the hippocampus in non-stress conditions. However, changes in BMP expression that are induced by inflammation during rheumatoid arthritis (RA) have not yet been reported. Here, we show that signalling with synovial BMPs (BMP-4 and -7) mediates the effect of systemic inflammation on adult neurogenesis in the hippocampus during pristane-induced arthritis (PIA) in Dark Agouti (DA) rats, an animal model of RA. Moreover, we show gender differences in BMP expressions and their antagonists (Noggin and Gremlin) during PIA and their correlations with the clinical course and IL-17A and TNF-α levels in serum. Our results indicate gender differences in the clinical course, where male rats showed earlier onset and earlier recovery but a worse clinical course in the first two phases of the disease (onset and peak), which correlates with the initial increase of serum IL-17A level. The clinical course of the female rats worsened in remission. Their prolonged symptoms could be a reflection of an increased TNF-α level in serum during remission. Synovial inflammation was greater in females in PIA-remission with greater synovial BMP and antagonist expressions. More significant correlations between serum cytokines (IL-17A and TNF-α), and synovial BMPs and their antagonists were found in females than in males. On the other hand, males showed an increase in hippocampal BMP-4 expression during the acute phase, but both genders showed a decrease in antagonist expressions during PIA in general. Both genders showed a decrease in the number of Ki-67+ and SOX-2+ and DCX+ cells and in the ratio of DCX+ to Ki67+ cells in the dentate gyrus during PIA. However, in PIA remission, females showed a faster increase in the number of Ki67+, SOX-2+, and DCX+ cells and a faster increase in the DCX/Ki67 ratio than males. Both genders showed an increase of hippocampal BMP-7 expression during remission, although males constantly showed greater BMP-7 expression at all time points. Our data show that gender differences exist in the BMP expressions in the periphery-hippocampus axis and in the IL-17A and TNF-α levels in serum, which could imply differences in the mechanisms for the onset and progression of the disease, the clinical course severity, and adult neurogenesis with subsequent neurological complications between genders.
Collapse
|
20
|
Chen P, Li Y, Li L, Zhang G, Zhang F, Tang Y, Zhou L, Yang Y, Li J. Association between the interleukin (IL)-17A rs2275913 polymorphism and rheumatoid arthritis susceptibility: a meta-analysis and trial sequential analysis. J Int Med Res 2021; 49:3000605211053233. [PMID: 34704484 PMCID: PMC8554571 DOI: 10.1177/03000605211053233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective This meta-analysis was conducted to investigate the relationship between the interleukin (IL)-17A rs2275913 polymorphism and rheumatoid arthritis (RA) susceptibility. Methods Eligible studies were retrieved from PubMed, Embase, and Web of Science. The fixed- or random-effects model was used to calculate the pooled odds ratios (ORs) and 95% confidence intervals (95%CIs) on the basis of heterogeneity. Results Overall, 11 studies containing 4019 RA patients and 4137 controls were included in this meta-analysis. The results suggested a significant association between the IL-17A rs2275913 polymorphism and RA susceptibility in the overall population (allelic model A vs. G: OR = 0.89, 95%CI: 0.83–0.95; heterozygote model GA vs. GG: OR = 0.87, 95%CI: 0.78–0.96; homozygote model AA vs. GG: OR = 0.82, 95%CI: 0.71–0.96; dominant model GA + AA vs. GG: OR = 0.86, 95%CI: 0.78–0.94). In the subgroup analyses, the IL-17A rs2275913 polymorphism was significantly associated with RA risk in Europeans (allelic model A vs. G: OR = 0.87, 95%CI: 0.78–0.97; heterozygote model GA vs. GG: OR = 0.79, 95%CI: 0.68–0.93; dominant model GA + AA vs. GG: OR = 0.79, 95%CI: 0.68–0.92), but not in Africans or Americans. Conclusion This study suggests that the IL-17A rs2275913 polymorphism is significantly associated with RA susceptibility in Europeans. INPLASY registration number: INPLASY202170056.
Collapse
Affiliation(s)
- Ping Chen
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Yuhao Li
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Liangliang Li
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Guixin Zhang
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Feng Zhang
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Yan Tang
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Li Zhou
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Yi Yang
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Jing Li
- Department of Rheumatology, Daping Hospital, the Third Affiliated Hospital of Third Military Medical University, Chongqing, China
| |
Collapse
|
21
|
Amaral-Silva D, Gonçalves R, Torrão RC, Torres R, Falcão S, Gonçalves MJ, Araújo MP, Martins MJ, Lopes C, Neto A, Marona J, Costa T, Castelão W, Silva AB, Silva I, Lourenço MH, Mateus M, Gonçalves NP, Manica S, Costa M, Pimentel-Santos FM, Mourão AF, Branco JC, Soares H. Direct tissue-sensing reprograms TLR4 + Tfh-like cells inflammatory profile in the joints of rheumatoid arthritis patients. Commun Biol 2021; 4:1135. [PMID: 34580414 PMCID: PMC8476501 DOI: 10.1038/s42003-021-02659-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
CD4+ T cells mediate rheumatoid arthritis (RA) pathogenesis through both antibody-dependent and independent mechanisms. It remains unclear how synovial microenvironment impinges on CD4+ T cells pathogenic functions. Here, we identified a TLR4+ follicular helper T (Tfh) cell-like population present in the blood and expanded in synovial fluid. TLR4+ T cells possess a two-pronged pathogenic activity whereby direct TLR4+ engagement by endogenous ligands in the arthritic joint reprograms them from an IL-21 response, known to sponsor antibody production towards an IL-17 inflammatory program recognized to fuel tissue damage. Ex vivo, synovial fluid TLR4+ T cells produced IL-17, but not IL-21. Blocking TLR4 signaling with a specific inhibitor impaired IL-17 production in response to synovial fluid recognition. Mechanistically, we unveiled that T-cell HLA-DR regulates their TLR4 expression. TLR4+ T cells appear to uniquely reconcile an ability to promote systemic antibody production with a local synovial driven tissue damage program. In order to identify how the synovial microenvironment impinges on CD4+ T cells pathogenic functions in Rheumatoid Arthritis (RA), Amaral-Silva examined RA patient blood and synovial fluif and identified the presence of a TLR4+ follicular helper T (Tfh) cell-like population. They provided mechanistic insight into how TLR4+ T cells uniquely reconcile an ability to promote systemic antibody production with a local synovial driven-tissue damage program.
Collapse
Affiliation(s)
- Daniela Amaral-Silva
- Human Immunobiology and Pathogenesis Group, Lisboa, Portugal
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
| | - Rute Gonçalves
- Human Immunobiology and Pathogenesis Group, Lisboa, Portugal
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
| | - Rita C. Torrão
- Human Immunobiology and Pathogenesis Group, Lisboa, Portugal
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
| | - Rita Torres
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
- Rheumatological Diseases Laboratory, Lisboa, Portugal
| | - Sandra Falcão
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
- Rheumatological Diseases Laboratory, Lisboa, Portugal
| | - Maria João Gonçalves
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Maria Paula Araújo
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Maria José Martins
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Carina Lopes
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Agna Neto
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
- Rheumatological Diseases Laboratory, Lisboa, Portugal
| | - José Marona
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Tiago Costa
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Walter Castelão
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Ana Bento Silva
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Inês Silva
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Maria Helena Lourenço
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Margarida Mateus
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Nuno Pina Gonçalves
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
- Rheumatological Diseases Laboratory, Lisboa, Portugal
| | - Santiago Manica
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
- Rheumatological Diseases Laboratory, Lisboa, Portugal
| | - Manuela Costa
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
| | - Fernando M. Pimentel-Santos
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
- Rheumatological Diseases Laboratory, Lisboa, Portugal
| | - Ana Filipa Mourão
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
- Rheumatological Diseases Laboratory, Lisboa, Portugal
| | - Jaime C. Branco
- grid.414462.10000 0001 1009 677XHospital Egas Moniz, Rua da Junqueira n° 126, Lisboa, Portugal
- Rheumatological Diseases Laboratory, Lisboa, Portugal
- grid.10772.330000000121511713CHRC|CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
| | - Helena Soares
- Human Immunobiology and Pathogenesis Group, Lisboa, Portugal
- grid.10772.330000000121511713iNOVA4Health | CEDOC, NOVA Medical School | Faculdade de Ciências Médicas, NOVA University of Lisbon, Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Rua do Instituto Bacteriológico 5, Lisboa, Portugal
| |
Collapse
|
22
|
Li G, Chen H, Liu L, Xiao P, Xie Y, Geng X, Zhang T, Zhang Y, Lu T, Tan H, Li L, Sun B. Role of Interleukin-17 in Acute Pancreatitis. Front Immunol 2021; 12:674803. [PMID: 34594321 PMCID: PMC8476864 DOI: 10.3389/fimmu.2021.674803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of death and is commonly accompanied by systemic manifestations that are generally associated with a poor prognosis. Many cytokines contribute to pancreatic tissue damage and cause systemic injury. Interleukin-17 (IL-17) is a cytokine that may play a vital role in AP. Specifically, IL-17 has important effects on the immune response and causes interactions between different inflammatory mediators in the AP-related microenvironment. In this literature review, we will discuss the existing academic understanding of IL-17 and the impacts of IL-17 in different cells (especially in acinar cells and immune system cells) in AP pathogenesis. The clinical significance and potential mechanisms of IL-17 on AP deterioration are emphasized. The evidence suggests that inhibiting the IL-17 cytokine family could alleviate the pathogenic process of AP, and we highlight therapeutic strategies that directly or indirectly target IL-17 cytokines in acute pancreatitis.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Tan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
23
|
The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl) 2021; 99:1373-1384. [PMID: 34258628 PMCID: PMC8277227 DOI: 10.1007/s00109-021-02113-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis is a chronic debilitating condition characterized by progressive deposition of connective tissue, leading to a steady restriction of lung elasticity, a decline in lung function, and a median survival of 4.5 years. The leading causes of pulmonary fibrosis are inhalation of foreign particles (such as silicosis and pneumoconiosis), infections (such as post COVID-19), autoimmune diseases (such as systemic autoimmune diseases of the connective tissue), and idiopathic pulmonary fibrosis. The therapeutics currently available for pulmonary fibrosis only modestly slow the progression of the disease. This review is centered on the interplay of damage-associated molecular pattern (DAMP) molecules, Toll-like receptor 4 (TLR4), and inflammatory cytokines (such as TNF-α, IL-1β, and IL-17) as they contribute to the pathogenesis of pulmonary fibrosis, and the possible avenues to develop effective therapeutics that disrupt this interplay.
Collapse
|
24
|
Coutant F, Pin JJ, Miossec P. Extensive Phenotype of Human Inflammatory Monocyte-Derived Dendritic Cells. Cells 2021; 10:1663. [PMID: 34359833 PMCID: PMC8307578 DOI: 10.3390/cells10071663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory monocyte-derived dendritic cells (Mo-DCs) have been described in several chronic inflammatory disorders, such as rheumatoid arthritis (RA), and are suspected to play a detrimental role by fueling inflammation and skewing adaptive immune responses. However, the characterization of their phenotype is still limited, as well as the comprehension of the factors that govern their differentiation. Here, we show that inflammatory Mo-DCs generated in vitro expressed a large and atypical panel of C-type lectin receptors, including isoforms of CD209 and CD206, CD303 and CD207, as well as intracellular proteins at their surfaces such as the lysosomal protein CD208. Combination of these markers allowed us to identify cells in the synovial fluid of RA patients with a close phenotype of inflammatory Mo-DCs generated in vitro. Finally, we found in coculture experiments that RA synoviocytes critically affected the phenotypic differentiation of monocytes into Mo-DCs, suggesting that the crosstalk between infiltrating monocytes and local mesenchymal cells is decisive for Mo-DCs generation.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/immunology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- B7 Antigens/genetics
- B7 Antigens/immunology
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Differentiation
- Coculture Techniques
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation/immunology
- Humans
- Immunophenotyping
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Monocytes/immunology
- Monocytes/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Phenotype
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Signal Transduction
- Synovial Fluid/cytology
- Synovial Fluid/immunology
- Synoviocytes/immunology
- Synoviocytes/pathology
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
Collapse
Affiliation(s)
- Frédéric Coutant
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, 69437 Lyon, France;
- Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Jean-Jacques Pin
- Eurobio Scientific/Dendritics—Edouard Herriot Hospital, 69437 Lyon, France;
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, 69437 Lyon, France;
- Department of Immunology and Rheumatology, Edouard Herriot Hospital, 69437 Lyon, France
| |
Collapse
|
25
|
Su TY, Chen IL, Yeh TF, Yu HR, Hsu YL, Hung CH, Huang HC. Salivary cytokine - A non-invasive predictor for bronchopulmonary dysplasia in premature neonates. Cytokine 2021; 148:155616. [PMID: 34134911 DOI: 10.1016/j.cyto.2021.155616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND To find a less invasive method of cytokine detection for premature neonates, we conducted this cohort study to investigate the salivary cytokines and to analyze their correlations with bronchopulmonary dysplasia (BPD). METHODS Premature neonates younger than 34 weeks of gestational age without maternal or neonatal infection were recruited. Salivary samples were collected on their first (D1) and seventh (D7) days of life. The cytokine levels were detected by MILLPLEX® MAP Human multiplex assay. One-way analysis of variance, the Kruskal-Wallis test, Pearson's chi-square test, and logistic regression were used to analyze the data. RESULTS Totally 125 neonates were enrolled and separated into four groups: control, mild, moderate, and severe BPD group. The salivary levels of D1 interleukin (IL)-6, IL-8, IL-10, IL-17, interferon (IFN)-γ, and D7 IL-6 (p = 0.001, 0.001, 0.000, 0.043, 0.037 and 0.001, respectively) were significantly higher in the BPD groups than in the control group. After adjusting for the gestational age, acid-base equivalent, and absolute neutrophil count, comparing to the control group, the levels of D7 IL-17 became significantly lower in all three BPD groups (p = 0.032, 0.030, and 0.030, respectively) and that of D7 IFN-α2 became significantly lower in the severe BPD group (p = 0.037). CONCLUSION Early-life salivary cytokine levels were correlated with the development of BPD in premature neonates. This study provides a novel method to predict BPD early and non-invasively.
Collapse
Affiliation(s)
- Ting-Yu Su
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan (No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City 833, Taiwan, ROC
| | - I-Lun Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan (No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City 833, Taiwan, ROC; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Linkou, Taiwan (No. 259, Wunhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| | - Tsu-Fuh Yeh
- Institute of Maternal-Child Research Health, Taipei Medical University, Taipei, Taiwan (No.250, Wu-Hsing St., Taipei City 110, Taiwan, ROC
| | - Hung-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan (No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City 833, Taiwan, ROC
| | - Ying-Lun Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan (No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City 833, Taiwan, ROC
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (No.100, Tzyou 1st Rd., Sanmin Dist., Kaohsiung City 807, Taiwan, ROC
| | - Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan (No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City 833, Taiwan, ROC; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Linkou, Taiwan (No. 259, Wunhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan, ROC
| |
Collapse
|
26
|
Ceribelli A, Motta F, Vecellio M, Isailovic N, Ciccia F, Selmi C. Clinical Trials Supporting the Role of the IL-17/IL-23 Axis in Axial Spondyloarthritis. Front Immunol 2021; 12:622770. [PMID: 34149686 PMCID: PMC8206811 DOI: 10.3389/fimmu.2021.622770] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
The term spondyloarthritis (SpA) encompasses a heterogeneous group of inflammatory musculoskeletal diseases with several common genetic background and clinical features, including the possible involvement of the axial skeleton with peripheral mono- or oligo- arthritis and frequently coexisting skin, eye and intestinal manifestations. When the sacroiliac joints or other parts of the spine or thoracic wall are predominantly affected at magnetic resonance or X-ray imaging with inflammatory back pain, the disease is classified as axial SpA and the therapeutic choices are significantly different compared to cases of peripheral arthritis. Moving from the narrow effectiveness and safety profiles of non-steroidal anti-inflammatory drugs, there has been a significant research effort aimed at identifying new treatments based on our better understanding of the pathogenesis of SpA. Indeed, in parallel with the solid data demonstrating that IL-17 and IL-23 are key cytokines in the development of enthesitis and spondylitis, monoclonal antibodies interfering with this pathway have been developed for the treatment of axial SpA. Furthermore, the IL-17/IL-23 axis is key to extra-articular manifestations such as inflammatory bowel disease, uveitis, and psoriasis which are frequent comorbidities of SpA. Currently available drugs act through these mechanisms recognizing IL-23 and targeting IL-17, such as secukinumab and ixekizumab. These therapeutic approaches are now envisioned in the international treatment recommendations for psoriatic arthritis with an axial phenotype as well as for ankylosing spondylitis (AS). We will provide herein a concise comprehensive overview of the clinical evidence supporting the use of these and other drugs acting on IL-23 and IL-17 in axial SpA.
Collapse
Affiliation(s)
- Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano (Mi), Italy
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano (Mi), Italy
| | - Matteo Vecellio
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
| | - Francesco Ciccia
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano (Mi), Italy
| |
Collapse
|
27
|
Shams S, Martinez JM, Dawson JRD, Flores J, Gabriel M, Garcia G, Guevara A, Murray K, Pacifici N, Vargas MV, Voelker T, Hell JW, Ashouri JF. The Therapeutic Landscape of Rheumatoid Arthritis: Current State and Future Directions. Front Pharmacol 2021; 12:680043. [PMID: 34122106 PMCID: PMC8194305 DOI: 10.3389/fphar.2021.680043] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease with grave physical, emotional and socioeconomic consequences. Despite advances in targeted biologic and pharmacologic interventions that have recently come to market, many patients with RA continue to have inadequate response to therapies, or intolerable side effects, with resultant progression of their disease. In this review, we detail multiple biomolecular pathways involved in RA disease pathogenesis to elucidate and highlight pathways that have been therapeutic targets in managing this systemic autoimmune disease. Here we present an up-to-date accounting of both emerging and approved pharmacological treatments for RA, detailing their discovery, mechanisms of action, efficacy, and limitations. Finally, we turn to the emerging fields of bioengineering and cell therapy to illuminate possible future targeted therapeutic options that combine material and biological sciences for localized therapeutic action with the potential to greatly reduce side effects seen in systemically applied treatment modalities.
Collapse
Affiliation(s)
- Shahin Shams
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Joseph M. Martinez
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - John R. D. Dawson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Juan Flores
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Marina Gabriel
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gustavo Garcia
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Amanda Guevara
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, Davis, CA, United States
| | - Noah Pacifici
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | | | - Taylor Voelker
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Judith F. Ashouri
- Rosalind Russell and Ephraim R. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
28
|
Atzeni F, Carriero A, Boccassini L, D’Angelo S. Anti-IL-17 Agents in the Treatment of Axial Spondyloarthritis. Immunotargets Ther 2021; 10:141-153. [PMID: 33977094 PMCID: PMC8104974 DOI: 10.2147/itt.s259126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Axial spondyloarthritis (axSpA) describes a group of chronic inflammatory rheumatic diseases primarily involving the axial skeleton. IL-17 is involved in the pathogenesis of numerous inflammatory diseases, including inflammatory arthritis. Until a few years ago, the only biological agents licensed for the treatment of axSpA and nr-axSpA were TNF inhibitors. However, as some patients did not respond to TNF inhibition or experienced secondary failure, the introduction of the first two IL-17 inhibitors (secukinumab [SEC] and ixekizumab [IXE]) has extended the treatment options, and there are now three others (bimekizumab, brodalumab and netakimab) in various stages of clinical development. The last ten years have seen the development of a number of therapeutic recommendations that aimed at improving the management of axSpA patients. The aim of this narrative review of the published literature concerning the role of IL-17 in the pathogenesis of SpA, and the role of IL-17 inhibitors in the treatment of axSpA, is to provide a comprehensive picture of the clinical efficacy and safety of the drugs themselves, and the treatment strategies recommended in the international guidelines.
Collapse
Affiliation(s)
- Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Carriero
- Rheumatology Institute of Lucania (IReL), Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
- Translational and Clinical Medicine, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Laura Boccassini
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, University School of Medicine, Milan, Italy
| | - Salvatore D’Angelo
- Rheumatology Institute of Lucania (IReL), Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| |
Collapse
|
29
|
Nakamura A, Haroon N. Recent Updates in the Immunopathology of Type 3 Immunity-Mediated Enthesitis. Curr Rheumatol Rep 2021; 23:31. [PMID: 33893896 DOI: 10.1007/s11926-021-00995-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Enthesitis is a cardinal feature of spondyloarthritis (SpA). Despite increasing available treatments, challenges remain in adequately controlling inflammation and subsequent new bone formation (NBF) in entheses; thus, a better understanding of the immunopathogenesis is warranted. RECENT FINDINGS Increasing evidence has identified immune cells playing key roles in enthesitis such as γδ T cells and group 3 innate lymphoid cells (ILC3), possibly with site-specific regulatory systems. The presence of T cells producing interleukin (IL)-17 independent of IL-23 in human spinal entheses was recently reported, which may corroborate the discrepancy between recent clinical trials and pre-clinical studies. In addition, the contribution of myeloid cells has also been focused in both human and pre-clinical SpA models. Moreover, not only the IL-23/IL-17 signaling, but other key type 3 immunity mediators, such as IL-22 and granulocyte-macrophage colony-stimulating factor (GM-CSF), have been reported as pivotal cytokines in inflammation and NBF of entheses. Immune cells demonstrating distinct features orchestrate entheses, leading to the complex landscape of enthesitis. However, recent advances in understanding the immunopathogenesis may provide new therapeutic targets and future research directions.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Spondylitis Program, University Health Network, Toronto, Ontario, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Spondylitis Program, University Health Network, Toronto, Ontario, Canada. .,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Corral-Jara KF, Chauvin C, Abou-Jaoudé W, Grandclaudon M, Naldi A, Soumelis V, Thieffry D. Interplay between SMAD2 and STAT5A is a critical determinant of IL-17A/IL-17F differential expression. MOLECULAR BIOMEDICINE 2021; 2:9. [PMID: 35006414 PMCID: PMC8607379 DOI: 10.1186/s43556-021-00034-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Interleukins (IL)-17A and F are critical cytokines in anti-microbial immunity but also contribute to auto-immune pathologies. Recent evidence suggests that they may be differentially produced by T-helper (Th) cells, but the underlying mechanisms remain unknown. To address this question, we built a regulatory graph integrating all reported upstream regulators of IL-17A and F, completed by ChIP-seq data analyses. The resulting regulatory graph encompasses 82 components and 136 regulatory links. The graph was then supplemented by logical rules calibrated with original flow cytometry data using naive CD4+ T cells, in conditions inducing IL-17A or IL-17F. The model displays specific stable states corresponding to virtual phenotypes explaining IL-17A and IL-17F differential regulation across eight cytokine stimulatory conditions. Our model analysis points to the transcription factors NFAT2A, STAT5A and SMAD2 as key regulators of the differential expression of IL-17A and IL-17F, with STAT5A controlling IL-17F expression, and an interplay of NFAT2A, STAT5A and SMAD2 controlling IL-17A expression. We experimentally observed that the production of IL-17A was correlated with an increase of SMAD2 transcription, and the expression of IL-17F correlated with an increase of BLIMP-1 transcription, together with an increase of STAT5A expression (mRNA), as predicted by our model. Interestingly, RORγt presumably plays a more determinant role in IL-17A expression as compared to IL-17F expression. In conclusion, we propose the first mechanistic model accounting for the differential expression of IL-17A and F in Th cells, providing a basis to design novel therapeutic interventions in auto-immune and inflammatory diseases.
Collapse
Affiliation(s)
- Karla Fabiola Corral-Jara
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005, Paris, France
| | - Camille Chauvin
- Integrative Biology of Human Dendritic Cells and T Cells Team, Institut de Recherche St-Louis, U976, Hôpital Saint Louis, 75010, Paris, France
| | - Wassim Abou-Jaoudé
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005, Paris, France
| | - Maximilien Grandclaudon
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005, Paris, France
| | - Aurélien Naldi
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005, Paris, France
| | - Vassili Soumelis
- Integrative Biology of Human Dendritic Cells and T Cells Team, Institut de Recherche St-Louis, U976, Hôpital Saint Louis, 75010, Paris, France.
| | - Denis Thieffry
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005, Paris, France.
| |
Collapse
|
31
|
Miossec P. Local and systemic effects of IL-17 in joint inflammation: a historical perspective from discovery to targeting. Cell Mol Immunol 2021; 18:860-865. [PMID: 33692481 PMCID: PMC7943939 DOI: 10.1038/s41423-021-00644-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
The role of IL-17 in many inflammatory and autoimmune diseases is now well established, with three currently registered anti-IL-17-targeted therapies. This story has taken place over a period of 20 years and led to the demonstration that a T cell product could regulate, and often amplify, the inflammatory response. The first results described the contribution of IL-17 to local features in arthritis. Then, understanding was extended to its systemic effects, with a focus on cardiovascular aspects. This review provides a historical perspective of these discoveries focused on arthritis, which started in 1995, followed 10 years later by the description of Th17 cells. Today, IL-17 inhibitors for three chronic inflammatory diseases have been registered. More options are now being tested in ongoing and future clinical trials. Inhibitors of IL-17 family members and Th17 cells ranging from antibodies to small molecules are under active development. The identification of patients with IL-17-driven disease is a key target for the improved selection of patients expected to have a strongly positive response.
Collapse
Affiliation(s)
- Pierre Miossec
- Department of Clinical Immunology and Rheumatology and the Immunogenomics and Inflammation Research Unit, University of Lyon, Hôpital Edouard Herriot, Lyon, France.
| |
Collapse
|
32
|
Taams LS. Interleukin-17 in rheumatoid arthritis: Trials and tribulations. J Exp Med 2020; 217:133698. [PMID: 32023342 PMCID: PMC7062523 DOI: 10.1084/jem.20192048] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Interleukin-17A (IL-17A) is a pro-inflammatory cytokine with well-characterized biological effects on stromal cell activation, angiogenesis, and osteoclastogenesis. The presence of this cytokine in the inflamed joints of patients with rheumatoid arthritis (RA), together with compelling data from in vitro and experimental arthritis models demonstrating its pro-inflammatory effects, made this cytokine a strong candidate for therapeutic targeting. Clinical trials, however, have shown relatively modest success in RA as compared with other indications. Guided by recent insights in IL-17 biology, this review aims to explore possible reasons for the limited clinical efficacy of IL-17A blockade in RA, and what we can learn from these results going forward.
Collapse
Affiliation(s)
- Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
33
|
Robert M, Hot A, Mifsud F, Ndongo-Thiam N, Miossec P. Synergistic Interaction Between High Bioactive IL-17A and Joint Destruction for the Occurrence of Cardiovascular Events in Rheumatoid Arthritis. Front Immunol 2020; 11:1998. [PMID: 32983142 PMCID: PMC7479831 DOI: 10.3389/fimmu.2020.01998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) remains a cause of morbidity and mortality in many patients while new treatments have changed the face of the disease. Despite the emergence of these new drugs, cardiovascular (CV) diseases remain more frequent in RA patients compared with the general population. However, predictive biomarkers of RA severity and precise guidelines to manage the CV risk in these patients are still lacking. Pro-inflammatory cytokines contribute both to RA and CV pathogenesis. Focusing on IL-17A, high levels of bioactive IL-17A were associated with destruction in RA but also during myocardial infarction. The study aimed to assess the relationship between bioactive IL-17A, destruction and the occurrence of CV events (CVE) in RA patients with a very long follow-up. Thirty-six RA patients were followed between 1970 and 2012 in Lyon, France. They were tested for bioactive IL-17A and clinical and biological characteristics were recorded at baseline. Then, the occurrence of CVE was registered during the follow-up. To study the bioactive fraction of IL-17A, the bioassay used the ability of human umbilical vein endothelial cells to produce IL-8 in presence of RA plasma samples with or without an anti-IL-17A antibody. Bioactive IL-17A level at baseline was higher in RA patients who later experienced a CVE compared to those without (0.77 vs 0.21 ng/ml, p-value = 0.0095, Mann-Whitney test) and synergized with joint destruction (p-value = 0.020, Kruskal-Wallis test). Through its effects on vessels and thrombosis, high levels of bioactive IL-17A could represent a long-term marker of CV risk.
Collapse
Affiliation(s)
- Marie Robert
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Lyon, France
| | - Arnaud Hot
- Department of Internal Medicine, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Lyon, France
| | - François Mifsud
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Lyon, France
| | - Ndiémé Ndongo-Thiam
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Lyon, France
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Lyon, France
| |
Collapse
|
34
|
Adams R, Maroof A, Baker T, Lawson ADG, Oliver R, Paveley R, Rapecki S, Shaw S, Vajjah P, West S, Griffiths M. Bimekizumab, a Novel Humanized IgG1 Antibody That Neutralizes Both IL-17A and IL-17F. Front Immunol 2020; 11:1894. [PMID: 32973785 PMCID: PMC7473305 DOI: 10.3389/fimmu.2020.01894] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-17A is a key driver of inflammation and the principal target of anti-IL-17 therapeutic monoclonal antibodies. IL-17A, and its structurally similar family member IL-17F, have been shown to be functionally dysregulated in certain human immune-mediated inflammatory diseases such as psoriasis, psoriatic arthritis, and axial spondyloarthritis. Given the overlapping biology of these two cytokines, we postulated that dual neutralization of IL-17A and IL-17F may provide a greater depth of clinical response in IL-17-mediated diseases than IL-17A inhibition alone. We identified 496.g1, a humanized antibody with strong affinity for IL-17A but poor affinity for IL-17F. Affinity maturation of 496.g1 to 496.g3 greatly enhanced the affinity of the Fab fragment for IL-17F while retaining strong binding to IL-17A. As an IgG1, the affinity for IL-17A and IL-17F was 3.2 pM and 23 pM, respectively. Comparison of 496.g3 IgG1 with the commercially available anti-IL-17A monoclonal antibodies ixekizumab and secukinumab, by surface plasmon resonance and in a human in vitro IL-17A functional assay, showed that 496.g3 and ixekizumab display equivalent affinity for IL-17A, and that both antibodies are markedly more potent than secukinumab. In contrast to ixekizumab and secukinumab, 496.g3 exhibited the unique feature of also being able to neutralize the biological activity of IL-17F. Therefore, antibody 496.g3 was selected for clinical development for its ability to neutralize the biologic function of both IL-17A and IL-17F and was renamed bimekizumab (formerly UCB4940). Early clinical data in patients with psoriasis, in those with psoriatic arthritis, and from the Phase 2 studies in psoriasis, psoriatic arthritis, and ankylosing spondylitis, are encouraging and support the targeted approach of dual neutralization of IL-17A and IL-17F. Taken together, these findings provide the rationale for the continued clinical evaluation of bimekizumab in patients with immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ralph Adams
- Discovery Science, New Modality Therapeutics, UCB Pharma, Slough, United Kingdom
| | - Asher Maroof
- Immuno-Bone Therapeutic Area, Immunology Research, UCB Pharma, Slough, United Kingdom
| | - Terry Baker
- Discovery Science, New Modality Therapeutics, UCB Pharma, Slough, United Kingdom
| | | | - Ruth Oliver
- Development Science, QP/DMPK, UCB Pharma, Slough, United Kingdom
| | - Ross Paveley
- Immuno-Bone Therapeutic Area, Immuno-Bone Discovery, UCB Pharma, Slough, United Kingdom
| | - Steve Rapecki
- Discovery Science, New Modality Therapeutics, UCB Pharma, Slough, United Kingdom
| | - Stevan Shaw
- Immuno-Bone Therapeutic Area, Immunology Research, UCB Pharma, Slough, United Kingdom
| | - Pavan Vajjah
- Development Science, QP/DMPK, UCB Pharma, Slough, United Kingdom
| | - Shauna West
- Immuno-Bone Therapeutic Area, Immuno-Bone Discovery, UCB Pharma, Slough, United Kingdom
| | - Meryn Griffiths
- Translational Medicine, TM Immuno-Bone, UCB Pharma, Slough, United Kingdom
| |
Collapse
|
35
|
Azevedo MLV, Malaquias MAS, de Paula CBV, de Souza CM, Júnior VHC, Raboni SM, Halila R, Rosendo G, Gozzo P, do Carmo LAP, Neto PC, Nagashima S, de Noronha L. The role of IL-17A/IL-17RA and lung injuries in children with lethal non-pandemic acute viral pneumonia. Immunobiology 2020; 225:151981. [PMID: 32747026 DOI: 10.1016/j.imbio.2020.151981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 01/12/2023]
Abstract
This study aimed to evaluate IL-17A (interleukin 17A) and IL-17RA (IL-17A receptor) in a pediatric population that died with non-pandemic acute viral pneumonia compared to the non-viral pneumonia group. Necropsy lung samples (n = 193) from children that died after severe acute infection pneumonia were selected and processed for viral antigen detection by immunohistochemistry. After this, they were separated into two groups: virus-positive (n = 68) and virus-negative lung samples (n = 125). Immunohistochemistry was performed to assess the presence of IL-17A and IL-17RA in the lung tissue. The virus-positive group showed stronger immunolabeling for IL-17A and IL-17RA (p = 0.020 and p < 0.001, respectively). The result of this study may suggest that IL-17A and IL-17RA plays an essential role in the maintenance of viral infection and lung injuries. These aspects may increase the severity of the inflammatory response leading to lethal lung injuries in these patients. Children with community-acquired non-pandemic pneumonia that requiring hospitalization could benefit from using IL-17RA/IL-17A monoclonal antibodies to block their injurious effects.
Collapse
Affiliation(s)
- Marina Luise Viola Azevedo
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Mineia Alessandra Scaranello Malaquias
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Caroline Busatta Vaz de Paula
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Cleber Machado de Souza
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Victor Horácio Costa Júnior
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Sonia Mara Raboni
- Virology Laboratory, Infectious Diseases Division, Federal University of Parana - UFPR, R. Padre Camargo, 280 - Alto da Gloria, Curitiba, PR, Brazil.
| | - Renata Halila
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Giuliana Rosendo
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Priscilla Gozzo
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Leticia Arianne Panini do Carmo
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Plínio Cézar Neto
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Seigo Nagashima
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil.
| | - Lucia de Noronha
- Laboratory of Experimental Pathology, School of Medicine, Pontifical Catholic University of Parana - PUCPR, R. Imaculada Conceição, 1155 - Prado Velho, Curitiba, PR, Brazil; Department of Medical Pathology, Federal University of Parana - UFPR, R. Padre Camargo, 280 - Alto da Glória, Curitiba, PR, Brazil.
| |
Collapse
|
36
|
Zhou C, Monin L, Gordon R, Aggor FEY, Bechara R, Edwards TN, Kaplan DH, Gingras S, Gaffen SL. An IL-17F.S65L Knock-In Mouse Reveals Similarities and Differences in IL-17F Function in Oral Candidiasis: A New Tool to Understand IL-17F. THE JOURNAL OF IMMUNOLOGY 2020; 205:720-730. [PMID: 32601099 DOI: 10.4049/jimmunol.2000394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
Oropharyngeal candidiasis (OPC) is an opportunistic infection of the oral mucosa caused by the commensal fungus Candida albicans IL-17R signaling is essential to prevent OPC in mice and humans, but the individual roles of its ligands, IL-17A, IL-17F, and IL-17AF, are less clear. A homozygous IL-17F deficiency in mice does not cause OPC susceptibility, whereas mice lacking IL-17A are moderately susceptible. In humans, a rare heterozygous mutation in IL-17F (IL-17F.S65L) was identified that causes chronic mucocutaneous candidiasis, suggesting the existence of essential antifungal pathways mediated by IL-17F and/or IL-17AF. To investigate the role of IL-17F and IL-17AF in more detail, we exploited this "experiment of nature" by creating a mouse line bearing the homologous mutation in IL-17F (Ser65Leu) by CRISPR/Cas9. Unlike Il17f-/- mice that are resistant to OPC, Il17fS65L/S65L mice showed increased oral fungal burdens similar to Il17a -/- mice. In contrast to humans, however, disease was only evident in homozygous, not heterozygous, mutant mice. The mutation was linked to modestly impaired CXC chemokine expression and neutrophil recruitment to the infected tongue but not to alterations in oral antimicrobial peptide expression. These findings suggest mechanisms by which the enigmatic cytokine IL-17F contributes to host defense against fungi. Moreover, because these mice do not phenocopy Il17f-/- mice, they may provide a valuable tool to interrogate IL-17F and IL-17AF function in vivo in other settings.
Collapse
Affiliation(s)
- Chunsheng Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Rachael Gordon
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Felix E Y Aggor
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Rami Bechara
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Tara N Edwards
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
37
|
Huang YS, Chin WC, Guilleminault C, Chu KC, Lin CH, Li HY. Inflammatory Factors: Nonobese Pediatric Obstructive Sleep Apnea and Adenotonsillectomy. J Clin Med 2020; 9:jcm9041028. [PMID: 32260590 PMCID: PMC7230716 DOI: 10.3390/jcm9041028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Inflammation is often considered relating to pediatric obstructive sleep apnea (OSA). We conducted a study investigating cytokines, including Il-17 and Il-23, in children with OSA before and after adenotonsillectomy (T&A), compared with controls. Methods: Children with OSA between age 4 and 12 receiving T&A were prospectively followed. Evaluation before and reevaluation six months after the treatment were done, including polysomnography (PSG), blood tests, and questionnaires. Blood samples were obtained to determine the values of high-sensitivity-C-reactive-protein (HS-CRP); tumor-necrosis-factor-alpha (TNF-α); and interleukin (IL)-1, 6, 10, 12, 17, and 23. We compared the results with an age-matched control group. Results: We included 55 OSA children and 32 controls. Children with OSA presented significant improvement after T&A in complaints, signs, apnea hypopnea index (AHI) (p < 0.001), mean oxygen desaturation index (p < 0.001), and mean oxygen saturation (p = 0.010). Upon entering this study, children with OSA had significantly higher cytokine levels than the controls and significant changes in HS-CRP (p = 0.013), TNF-α (p = 0.057), IL-1β (p = 0.022), IL-10 (p = 0.035), and IL-17 (p = 0.010) after T&A. Children with improved but persistently abnormal AHI did not have all cytokine levels normalized, particularly IL-23 and HS-CRP. Conclusion: Sleep-disordered breathing can persist after T&A and can continue to have a negative inflammatory effect. HS-CRP and IL-23 may serve as blood markers for the persistence of sleep-disordered breathing after T&A.
Collapse
Affiliation(s)
- Yu-Shu Huang
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 33305, Taiwan; (Y.-S.H.); (W.-C.C.)
| | - Wei-Chih Chin
- Department of Child Psychiatry and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 33305, Taiwan; (Y.-S.H.); (W.-C.C.)
| | | | - Kuo-Chung Chu
- Department of Information Management National Taipei University of Nursing and Health Science, Taipei 11219, Taiwan;
| | - Cheng-Hui Lin
- Department of Craniofacial Research Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 33305, Taiwan
- Correspondence: (C.-H.L.); (H.-Y.L.)
| | - Hsueh-Yu Li
- Department of Otolaryngology and Sleep Center, Chang Gung Memorial Hospital and College of Medicine, Taoyuan 33305, Taiwan
- Correspondence: (C.-H.L.); (H.-Y.L.)
| |
Collapse
|
38
|
CUX1 and IκBζ (NFKBIZ) mediate the synergistic inflammatory response to TNF and IL-17A in stromal fibroblasts. Proc Natl Acad Sci U S A 2020; 117:5532-5541. [PMID: 32079724 DOI: 10.1073/pnas.1912702117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of stromal fibroblasts in chronic inflammation is unfolding. In rheumatoid arthritis, leukocyte-derived cytokines TNF and IL-17A work together, activating fibroblasts to become a dominant source of the hallmark cytokine IL-6. However, IL-17A alone has minimal effect on fibroblasts. To identify key mediators of the synergistic response to TNF and IL-17A in human synovial fibroblasts, we performed time series, dose-response, and gene-silencing transcriptomics experiments. Here we show that in combination with TNF, IL-17A selectively induces a specific set of genes mediated by factors including cut-like homeobox 1 (CUX1) and IκBζ (NFKBIZ). In the promoters of CXCL1, CXCL2, and CXCL3, we found a putative CUX1-NF-κB binding motif not found elsewhere in the genome. CUX1 and NF-κB p65 mediate transcription of these genes independent of LIFR, STAT3, STAT4, and ELF3. Transcription of NFKBIZ, encoding the atypical IκB factor IκBζ, is IL-17A dose-dependent, and IκBζ only mediates the transcriptional response to TNF and IL-17A, but not to TNF alone. In fibroblasts, IL-17A response depends on CUX1 and IκBζ to engage the NF-κB complex to produce chemoattractants for neutrophil and monocyte recruitment.
Collapse
|
39
|
|
40
|
Burns LA, Maroof A, Marshall D, Steel KJA, Lalnunhlimi S, Cole S, Catrina A, Kirkham B, Taams LS. Presence, function, and regulation of IL-17F-expressing human CD4 + T cells. Eur J Immunol 2020; 50:568-580. [PMID: 31850514 PMCID: PMC7187427 DOI: 10.1002/eji.201948138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
The pro-inflammatory cytokine IL-17A has been implicated in the immunopathology of inflammatory arthritis. IL-17F bears 50% homology to IL-17A and has recently been suggested to play a role in inflammation. We investigated the induction and cytokine profile of IL-17F+ CD4+ T cells, and how IL-17F may contribute to inflammation. Upon culture of healthy donor CD4+ T cells with IL-1β, IL-23, anti-CD3, and anti-CD28 mAb, both IL-17A and IL-17F-expressing cells were detected. In comparison to IL-17A+ IL-17F- CD4+ T cells, IL-17F+ IL-17A- and IL-17A+ IL-17F+ CD4+ T cells contained lower proportions of IL-10-expressing and GM-CSF-expressing cells and higher proportions of IFN-γ-expressing cells. Titration of anti-CD28 mAb revealed that strong co-stimulation increased IL-17F+ IL-17A- and IL-17A+ IL-17F+ CD4+ T cell frequencies, whereas IL-17A+ IL-17F- CD4+ T cell frequencies decreased. This was partly mediated via an IL-2-dependent mechanism. Addition of IL-17A, IL-17F, and TNF-α to synovial fibroblasts from patients with inflammatory arthritis resulted in significant production of IL-6 and IL-8, which was reduced to a larger extent by combined blockade of IL-17A and IL-17F than blockade of IL-17A alone. Our data indicate that IL-17A and IL-17F are differentially regulated upon T cell co-stimulation, and that dual blockade of IL-17A and IL-17F reduces inflammation more effectively than IL-17A blockade alone.
Collapse
Affiliation(s)
- Lachrissa A Burns
- Centre for Inflammation Biology and Cancer Immunology, Department Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | | | - Kathryn J A Steel
- Centre for Inflammation Biology and Cancer Immunology, Department Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology, Department Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Anca Catrina
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Bruce Kirkham
- Dept Rheumatology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
41
|
Chen S, Blijdorp IC, van Mens LJJ, Bowcutt R, Latuhihin TE, van de Sande MGH, Shaw S, Yeremenko NG, Baeten DLP. Interleukin 17A and IL-17F Expression and Functional Responses in Rheumatoid Arthritis and Peripheral Spondyloarthritis. J Rheumatol 2020; 47:1606-1613. [PMID: 31941804 DOI: 10.3899/jrheum.190571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Targeting the interleukin 17 (IL-17) axis is efficacious in psoriasis and spondyloarthritis (SpA), but not in rheumatoid arthritis (RA). We investigated potential differences in tissue expression and function of IL-17A and IL-17F in these conditions. METHODS mRNA expression of cytokines and their receptors was assessed by quantitative PCR in psoriasis skin samples, in SpA and RA synovial tissue (ST) samples and in fibroblast-like synoviocytes (FLS). Cytokines were measured in synovial fluid (SF) and FLS supernatants by ELISA. FLS were stimulated with IL-17A or IL-17F cytokines supplemented with tumor necrosis factor (TNF), or with pooled SF from patients with SpA or RA. RESULTS Levels of IL-17A (P = 0.031) and IL-17F (P = 0.017) mRNA were lower in psoriatic arthritis ST compared to paired psoriasis skin samples. The level of IL-17A mRNA was 2.7-fold lower than that of IL-17F in skin (P = 0.0078), but 17.3-fold higher in ST (P < 0.0001). In SF, the level of IL-17A protein was 37.4-fold higher than that of IL-17F [median 292.4 (IQR 81.4-464.2) vs median 7.8 (IQR 7.7-8.7) pg/mL; P < 0.0001]. IL-17A and IL-17F mRNA and protein levels did not differ in SpA compared to RA synovitis samples, and neither were the IL-17 receptors IL-17RA and IL-17RC, or the TNF receptors TNFR1 and TNR2, differentially expressed between SpA and RA ST, nor between SpA and RA FLS. SpA and RA FLS produced similar amounts of IL-6 and IL-8 protein upon stimulation with IL-17A or IL-17F cytokines, supplemented with 1 ng/ml TNF. Pooled SpA or RA SF samples similarly enhanced the inflammatory response to IL-17A and IL-17F simulation in FLS. CONCLUSION The IL-17A/IL-17F expression ratio is higher in SpA synovitis compared to psoriasis skin. Expression of IL-17A and IL-17F, and the functional response to these cytokines, appear to be similar in SpA and RA synovitis.
Collapse
Affiliation(s)
- Sijia Chen
- S. Chen, MD, PhD, Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands, and Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Iris C Blijdorp
- I.C. Blijdorp, BSc, T.E. Latuhihin, BSc, N.G. Yeremenko, PhD, Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, and Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Leonieke J J van Mens
- L.J. van Mens, MD, PhD, M.G. van de Sande, MD, PhD, Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rowann Bowcutt
- R. Bowcutt, PhD, S. Shaw, PhD, New Medicines, UCB Pharma, Slough, UK
| | - Talia E Latuhihin
- I.C. Blijdorp, BSc, T.E. Latuhihin, BSc, N.G. Yeremenko, PhD, Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, and Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marleen G H van de Sande
- L.J. van Mens, MD, PhD, M.G. van de Sande, MD, PhD, Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Stevan Shaw
- R. Bowcutt, PhD, S. Shaw, PhD, New Medicines, UCB Pharma, Slough, UK
| | - Nataliya G Yeremenko
- I.C. Blijdorp, BSc, T.E. Latuhihin, BSc, N.G. Yeremenko, PhD, Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, and Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dominique L P Baeten
- D.L. Baeten, MD, PhD, Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands, and New Medicines, UCB Pharma, Slough, UK.
| |
Collapse
|
42
|
Interleukin-17: Potential Target for Chronic Wounds. Mediators Inflamm 2019; 2019:1297675. [PMID: 31827374 PMCID: PMC6885835 DOI: 10.1155/2019/1297675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic wounds exhibit persistent inflammation with markedly delayed healing. The significant burden of chronic wounds, which are often resistant to standard therapy, prompts further research on novel therapies. Since the interleukin-17 family has been implicated as a group of proinflammatory cytokines in immune-mediated diseases in the gut and connective tissue, as well as inflammatory skin conditions, we consider here if it may contribute to the pathogenesis of chronic wounds. In this review, we discuss the interleukin-17 family's signaling pathways and role in tissue repair. A PubMed review of the English literature on interleukin-17, wound healing, chronic wounds, and inflammatory skin conditions was conducted. Interleukin-17 family signaling is reviewed in the context of tissue repair, and preclinical and clinical studies examining its role in the skin and other organ systems are critically reviewed. The published work supports a pathologic role for interleukin-17 family members in chronic wounds, though this needs to be more conclusively proven. Clinical studies using monoclonal interleukin-17 antibodies to improve healing of chronic skin wounds have not yet been performed, and only a few studies have examined interleukin-17 family expression in chronic skin wounds. Furthermore, different interleukin-17 family members could be playing selective roles in the repair process. These studies suggest a therapeutic role for targeting interleukin-17A to promote wound healing; therefore, interleukin-17A may be a target worthy of pursuing in the near future.
Collapse
|
43
|
Sieper J, Poddubnyy D, Miossec P. The IL-23-IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat Rev Rheumatol 2019; 15:747-757. [PMID: 31551538 DOI: 10.1038/s41584-019-0294-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
The cytokines IL-23 and IL-17 have an important role in the pathogenesis of, and as a therapeutic target in, both animal models of chronic inflammation and some human chronic inflammatory diseases. The traditional view is that a main source of IL-17 is T cells and that IL-17 production is under the control of IL-23. IL-17 inhibition has shown good efficacy in clinical trials for ankylosing spondylitis (AS), a subtype of axial spondyloarthritis (axSpA) characterized by radiographic evidence of sacroiliitis. On the basis of data from animal models, genetic studies and the investigation of tissue and blood samples from patients with AS, IL-23 had also been predicted to be important in the pathogenesis of this disease and was therefore considered a potential therapeutic target for axSpA. However, two placebo-controlled, double-blind clinical trials in axSpA of monoclonal antibodies directed against either the p40 protein or the p19 protein of the IL-23 molecule had clear negative results. These findings indicate that IL-23 and IL-17 are at least partly uncoupled in axSpA. Reasons as to why, when and how such an uncoupling might occur are discussed in this Review, with special reference to the unique microenvironment of the subchondral bone marrow in axSpA.
Collapse
Affiliation(s)
- Joachim Sieper
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Epidemiology Unit, German Rheumatism Research Centre, Berlin, Germany
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA4130, Department of Immunology and Rheumatology, Hôpital Édouard Herriot, University of Lyon, Lyon, France
| |
Collapse
|
44
|
Abstract
Spondyloarthritis (SpA) is a term that refers to a group of inflammatory diseases that includes psoriatic arthritis, axial SpA and nonradiographic axial SpA, reactive arthritis, enteropathic arthritis and undifferentiated SpA. The disease subtypes share clinical and immunological features, including joint inflammation (peripheral and axial skeleton); skin, gut and eye manifestations; and the absence of diagnostic autoantibodies (seronegative). The diseases also share genetic factors. The aetiology of SpA is still the subject of research by many groups worldwide. Evidence from genetic, experimental and clinical studies has accumulated to indicate a clear role for the IL-17 pathway in the pathogenesis of SpA. The IL-17 family consists of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F, of which IL-17A is the best studied. IL-17A is a pro-inflammatory cytokine that also has the capacity to promote angiogenesis and osteoclastogenesis. Of the six family members, IL-17A has the strongest homology with IL-17F. In this Review, we discuss how IL-17A and IL-17F and their cellular sources might contribute to the immunopathology of SpA.
Collapse
|
45
|
Cui YF, Yu L, Wang FJ, Shen XL, Yang GB. Molecular cloning, expression and biological activity of rhesus macaque interleukin-17A and interleukin-17F. Mol Immunol 2019; 114:196-206. [PMID: 31377676 DOI: 10.1016/j.molimm.2019.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Interleukin-17A (IL-17A) and interleukin-17F (IL-17F) as two potent proinflammatory cytokines and the signature cytokines of Th17 cells play important roles in human autoimmune diseases, inflammation and host defenses. In this study, rhesus macaque IL-17A (rhIL-17A) and IL-17F (rhIL-17F) were cloned and expressed, and their biological activities and in vivo distribution were examined. The resulting data showed that both the rhIL-17A and rhIL-17F genes were consisted of three exons and two introns. RhIL-17A and rhIL-17F shared 96.8% and 93.9% amino acid sequence identity with human IL-17A (huIL-17A) and IL-17F (huIL-17F) respectively and the sequences also shared one N-glycosylation site and six conserved cysteine residues with huIL-17A and huIL-17F. IL-17A and IL-17F transcripts were highly expressed in lymphoid tissues and the intestinal tract of rhesus macaques. Functionally, recombinant rhIL-17A and rhIL-17F showed similar effect on Act1 levels and NF-κB phosphorylation compared with that of commercial human IL-17A and IL-17F. Moreover, the antibacterial proteins (such as β-defensin 2, S100A8, S100A9, RegIIIα and Muc1) and the tight junction associated genes (including CLDN1, CLDN4, OCLN, and ZO1) expressed by Caco-2 cells were largely enhanced after treatment with rhIL-17A and rhIL-17F. Meanwhile, purified rhIL-17A and rhIL-17F could also induce the expression of IL-6 and TNF-α by THP-1 cells. These data indicated that rhesus macaque IL-17A and IL-17F are highly similar to that of humans in both structure and function. Studies on rhIL-17A/rhIL-17F are promising approach to contribute to the understanding of human IL-17A and IL-17F-related intestinal diseases.
Collapse
Affiliation(s)
- Yan-Fang Cui
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Lei Yu
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Feng-Jie Wang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Xiu-Li Shen
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China
| | - Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing 102206, PR China.
| |
Collapse
|
46
|
Noack M, Beringer A, Miossec P. Additive or Synergistic Interactions Between IL-17A or IL-17F and TNF or IL-1β Depend on the Cell Type. Front Immunol 2019; 10:1726. [PMID: 31396230 PMCID: PMC6664074 DOI: 10.3389/fimmu.2019.01726] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023] Open
Abstract
Background: IL-17A has effects on several cell types and is a therapeutic target in several inflammatory diseases. IL-17F shares 50% homology and biological activities with IL-17A. It is now of interest to target both cytokines. The objective was to compare the IL-17A and IL-17F effect on cytokine production by RA synoviocytes, and to extend to other cells. Methods: Cells (RA synoviocytes, psoriasis skin fibroblasts, endothelial cells, myoblasts, and hepatocytes) were cultured in the presence or not of: IL-17A, IL-17F, TNF, IL-1β alone or their combinations, IL-17A/TNF, IL-17A/IL-1β, IL-17A/TNF/IL-1β, IL-17F/TNF, IL-17F/IL-1β, and IL-17F/TNF/IL-1β. All experiments were performed in parallel to reduce variability. After 48 h, supernatants were recovered and IL-6 and IL-8 levels were measured by ELISA. Results: IL-17A and IL-17F alone increased significantly IL-6 and IL-8 productions by synoviocytes, with a stronger effect for IL-17A. For IL-6 production, TNF or IL-1β alone had the largest effect on myoblasts (5-fold increase), while for IL-8 production, it was on skin fibroblasts (5-fold increase). The IL-17A/TNF synergistic increase was observed on all cells for IL-6; and for IL-8, except for endothelial cells. For IL-17F/TNF, except with endothelial cells, a synergistic effect was also observed, but less powerful than with IL-17A/TNF. IL-17A/IL-1β or IL-17F/IL-1β effect was cell-type dependent, with an additive effect for synoviocytes (1.6 and 2-fold increase, respectively for IL-6, and 1.8 and 2-fold increase, respectively for IL-8) and a synergistic effect for hepatocytes (3.8 and 4.2-fold increase, respectively for IL-6, and 6 and 2-fold increase, respectively for IL-8). The three-cytokine combination induced an additive effect for synoviocytes and a synergistic effect for skin fibroblasts. Conclusion: IL-17A and IL-17F acted similarly by inducing pro-inflammatory cytokine secretion, with a stronger response intensity with IL-17A. Their activities were potentiated by the combination with TNF and IL-1β, with an effect dependent on the cell type.
Collapse
Affiliation(s)
- Mélissa Noack
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| | - Audrey Beringer
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, Edouard Herriot Hospital, Hospices Civils de Lyon and University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
47
|
Beringer A, Miossec P. IL-17 and TNF-α co-operation contributes to the proinflammatory response of hepatic stellate cells. Clin Exp Immunol 2019; 198:111-120. [PMID: 31102558 DOI: 10.1111/cei.13316] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatic stellate cells (HSCs) have a central role in liver inflammation and fibrosis by producing inflammatory and fibrotic mediators. Their activation is regulated through direct cell-cell interactions, but also through systemic and local effects of soluble factors such as cytokines. The effects of the proinflammatory cytokines interleukin (IL)-17 and tumor necrosis factor (TNF)-α and cell interactions with hepatocytes on HSC activation were assessed. Human HSC and HepaRG cells were exposed to IL-17 and/or TNF-α. IL-17 and TNF-α contribution from immune cells was determined in a co-culture model with phytohemagglutinin (PHA)-activated peripheral blood mononuclear cells (PBMC), HSC and/or hepatocytes. IL-17 enhanced TNF-α effects on the induction of IL-6, IL-1β, and the chemokine IL-8, chemokine (C-C motif) ligand 20 (CCL20) and monocyte chemoattractant protein-1 (MCP-1) expression/secretion in isolated HSC cultures. HSC-hepatocyte interactions did not enhance IL-6, IL-8 and CCL20 production compared to hepatocyte alone. However, HSC-hepatocyte interactions increased C-reactive protein expression. IL-17 and/or TNF-α had no direct profibrotic effects on collagen 1 α1, tissue inhibitor of matrix metalloproteinase (TIMP) and matrix metalloproteinase (MMP) 2 gene expression, whereas mRNA levels of MMP3, an enzyme involved in matrix destruction, were up-regulated in HSCs. The use of specific inhibitors of IL-17 and TNF-α indicated their contribution to the strong increase of IL-6 and IL-8 production induced by PBMC, HSC and/or hepatocyte interactions. As chronic liver inflammation leads to liver fibrosis, IL-17 and/or TNF-α neutralization can be of interest to control liver inflammation and therefore its effects on fibrosis.
Collapse
Affiliation(s)
- A Beringer
- Immunogenomics and Inflammation research Unit EA 4130, University of Lyon, Lyon, France.,Department of Clinical Immunology and Rheumatology, Hospices Civils de Lyon, Lyon, France
| | - P Miossec
- Immunogenomics and Inflammation research Unit EA 4130, University of Lyon, Lyon, France.,Department of Clinical Immunology and Rheumatology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
48
|
Interleukin-17A Genetic Polymorphisms as a Prognostic Markers for Resistence to Visceral Leishamniasis in the Iranian Population. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.57163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Jiang L, Zhou X, Xiong Y, Bao J, Xu K, Wu L. Association between interleukin-17A/F single nucleotide polymorphisms and susceptibility to osteoarthritis in a Chinese population. Medicine (Baltimore) 2019; 98:e14944. [PMID: 30896662 PMCID: PMC6708862 DOI: 10.1097/md.0000000000014944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-17A/F (IL-17A/F) might play a role in the pathophysiology of osteoarthritis (OA), but several studies exploring the association between IL-17A/F single nucleotide polymorphisms and OA in different populations present inconsistent results. Thus, this case-control study, involving 410 OA cases and 507 controls, was aimed to investigate such association in a Chinese population. Genotyping was performed using standard polymerase chain reaction and restriction fragment length polymorphism. It was found that AA genotype or A allele carriers of IL-17A gene rs2275913 polymorphism were associated with OA susceptibility. Stratified analyses showed IL-17A rs2275913 polymorphism was evidently associated with a significantly increased risk for OA among males, <60 years old patients, smokers, and drinkers. No significant association was observed between IL-17F gene rs763780 polymorphism and OA risk. In conclusion, IL-17A rs2275913 polymorphism is involved in the development of OA in Chinese Han population. This finding should be confirmed by a larger study from diverse ethnic populations.
Collapse
Affiliation(s)
- Lifeng Jiang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yan Xiong
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Jiapeng Bao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Kai Xu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| | - Lidong Wu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou
| |
Collapse
|
50
|
Robert M, Miossec P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to Circulating Bioactive Levels. Front Med (Lausanne) 2019; 5:364. [PMID: 30693283 PMCID: PMC6339915 DOI: 10.3389/fmed.2018.00364] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin (IL)-17A has a direct contribution in early induction and late chronic stages of various inflammatory diseases. In vitro and in vivo experiments have first characterized its local effects on different cell types and then its systemic effects. For instance, IL-17 axis is now identified as a key driver of psoriasis through its effects on keratinocytes. Similar observations apply for rheumatoid arthritis (RA) where IL-17A triggers changes in the synovium that lead to synovitis and maintain local inflammation. These results have prompted the development of biologics to target this cytokine. However, while convincing studies are reported on the efficacy of IL-17 inhibitors in psoriasis, there are conflicting results in RA. Patient heterogeneity but also the involvement of mediators that regulate IL-17 function may explain these results. Therefore, new tools and concepts are required to identify patients that could benefit from these IL-17 targeted therapies in RA and the development of predictive biomarkers of response has started with the emergence of various bioassays. Current strategies are also focusing on synovial biopsies that may be used to stratify patients. From local to systemic levels, new approaches are developing and move the field of RA management into the era of precision medicine.
Collapse
Affiliation(s)
- Marie Robert
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | - Pierre Miossec
- Department of Clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|