1
|
Liu Z, Liang W, Pan Y. Complement-coagulation crosstalk in idiopathic membranous nephropathy: The potential pathogenesis and therapeutic perspective. Autoimmun Rev 2025; 24:103763. [PMID: 39914678 DOI: 10.1016/j.autrev.2025.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 02/12/2025]
Abstract
Idiopathic membranous nephropathy (IMN) is a glomerular disease that is prevalent in elderly males. The pathogenesis of IMN includes abnormal autoimmunity and complement activation, both of which leading to the damage of the glomerular filtration structure. Meanwhile, due to the pathological changes in the kidney, certain coagulation-related proteins are leaked from urine, resulting in the imbalance of coagulation homeostasis. Recent studies have indicated the interaction between complement and coagulation systems, while the aberration of both is common in IMN. In this review, we summarize the subsistent and underlying pathogenesis that ensue from complement-coagulation crosstalk and present the emerging evidence in this evolving field.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Wei Liang
- Department of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| |
Collapse
|
2
|
Mohan V, Krishnan S, Balan S, Das S, Earali J, Maria E, Nair D, John M. Myosin Light Chain 12b and MASP1 as Novel Biomarker Candidates in Active Juvenile Idiopathic Arthritis─A Combined Proteomics/Bioinformatics Approach. J Proteome Res 2025; 24:1439-1448. [PMID: 39932158 DOI: 10.1021/acs.jproteome.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Current diagnostic methods for JIA lack specificity, often failing to distinguish it from other childhood diseases of similar clinical presentations. The present study is a comparative cross-sectional study that identified potential biomarkers using label-free mass spectrometry and bioinformatics. Two differentially expressed proteins (DEPs), Myosin light chain 12b (Myl12b) and Mannose-binding lectin serine protease 1 (MASP1), showed increased expression in JIA patients. Receiver operating characteristic (ROC) analysis revealed strong predictive power (AUC: Myl12b = 0.757, MASP1 = 0.855), validated in a separate cohort via Western blot and ELISA. These findings suggest Myl12b and MASP1 as promising biomarkers for JIA diagnosis and treatment. Data: ProteomeXchange (PXD058863).
Collapse
Affiliation(s)
- Vanditha Mohan
- Department of Biochemistry, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham Campus, Kochi, Kerala 682041, India
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Sajitha Krishnan
- Department of Biochemistry, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham Campus, Kochi, Kerala 682041, India
| | - Suma Balan
- Department of Rheumatology and clinical Immunology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham Campus, Kochi, Kerala 682041, India
| | - Sonu Das
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Jerry Earali
- Department of Medicine, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Evelyn Maria
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Devaki Nair
- Department of Clinical Biochemistry, Royal Free Hospital, London NW3 2QG, U.K
| | - Mathew John
- Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| |
Collapse
|
3
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Wei X, Tu Y, Bu S, Guo G, Wang H, Wang Z. Unraveling the Intricate Web: Complement Activation Shapes the Pathogenesis of Sepsis-Induced Coagulopathy. J Innate Immun 2024; 16:337-353. [PMID: 38815564 PMCID: PMC11249610 DOI: 10.1159/000539502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Sepsis-associated coagulopathy specifically refers to widespread systemic coagulation activation accompanied by a high risk of hemorrhage and organ damage, which in severe cases manifests as disseminated intravascular coagulation (DIC), or even develops into multiple organ dysfunction syndrome (MODS). The complement system and the coagulation system as the main columns of innate immunity and hemostasis, respectively, undergo substantial activation after sepsis. SUMMARY Dysfunction of the complement, coagulation/fibrinolytic cascades caused by sepsis leads to "thromboinflammation," which ultimately amplifies the systemic inflammatory response and accelerates the development of MODS. Recent studies have revealed that massive activation of the complement system exacerbates sepsis-induced coagulation and even results in DIC, which suggests that inhibition of complement activation may have therapeutic potential in the treatment of septic coagulopathy. KEY MESSAGES Sepsis-associated thrombosis involves the upregulation or activation of procoagulant factors, down-regulation or inactivation of anticoagulant factors, and impairment of the fibrinolytic mechanism. This review aims to summarize the latest literature and analyze the underlying molecular mechanisms of the activation of the complement system on the abnormal coagulation cascades in sepsis.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuhong Bu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guimei Guo
- Department of Pediatric Nephrology and Rheumatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongbin Wang
- Master Program of Pharmaceutical Scieneces College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
6
|
Skjeflo EW, Evensen LH, Jensen SB, Latysheva N, Michelsen A, Ueland T, Brækkan SK, Hindberg K, Snir O, Mollnes TE, Hansen JB. Complement factors B, D, C3bBbP and risk of future venous thromboembolism. Clin Immunol 2023; 249:109278. [PMID: 36894046 DOI: 10.1016/j.clim.2023.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
The complement system appears to be involved in the pathogenesis of venous thromboembolism (VTE). We investigated the association of complement factors (CF) B, D, and the alternative pathway convertase, C3bBbP, measured at inclusion, with the risk of future VTE in a nested case-control study; 380 VTE patients and 804 age- and sex-matched controls derived from the Tromsø study. Odds ratios (ORs) with 95% confidence intervals (95% CI) for VTE across tertiles of CF concentrations were estimated using logistic regression. There was no association between CFB or CFD and risk of future VTE. Higher levels of C3bBbP gave an increased risk of provoked VTE; subjects in Q4 had a 1.68-fold higher OR compared with Q1 in the age-, sex- and BMI-adjusted model (OR 1.68; 95% CI 1.08-2.64). There was no increased risk of future VTE in individuals with higher levels of complement factors B or D of the alternative pathway. Increased levels of the alternative pathway activation product, C3bBbP, showed an association with future risk of provoked VTE.
Collapse
Affiliation(s)
- Espen W Skjeflo
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway.
| | - Line H Evensen
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Søren B Jensen
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Nadezhda Latysheva
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Annika Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sigrid K Brækkan
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Kristian Hindberg
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Omri Snir
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Tom Eirik Mollnes
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Bjarne Hansen
- K.G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
7
|
Identification of substrates of MBL Associated Serine Protease-1 (MASP-1) from human plasma using N-terminomics strategy. Mol Immunol 2022; 151:114-125. [PMID: 36126499 DOI: 10.1016/j.molimm.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
MBL Associated Serine Protease-1 (MASP-1) is an abundant enzyme of the lectin complement pathway. MASP-1 cleaves numerous substrates like MASP-2, MASP-3, C2, C3i, fibrinogen, FXIII and prothrombin. It has thrombin-like specificity and can cleave thrombin substrates. Owing to its high concentration and relaxed substrate specificity, MASP-1 has substrates outside the complement system and can influence other proteolytic cascades and physiological processes. The unidentified substrates may assist us to ascertain the role(s) of MASP-1. In this study, we used a high-throughput N-terminomics method to identify substrates of MASP-1 from human plasma. We have identified 35 putative substrates of MASP-1. Among the identified proteins, alpha 2-antiplasmin, alpha-1-acid glycoprotein, antithrombin III, and siglec-6 were demonstrated to be cleaved by MASP-1. We have discussed the physiological relevance of cleavage of these substrates by MASP-1. The expression of Siglec-6 and MASP-1 has been reported in the B cells. Alpha-1-acid glycoprotein cleavage by MASP-1 may occur in the acute phase as it is known to be an inhibitor of platelet aggregation, whereas MASP-1 triggers platelet aggregation. The cleavage alpha2 antiplasmin by MASP-1 implies that MASP-1 may be promoting plasmin-mediated fibrinolysis. Our study supports that MASP-1 may be implicated in thrombosis as well as thrombolysis.
Collapse
|
8
|
Golomingi M, Kohler J, Jenny L, Hardy ET, Dobó J, Gál P, Pál G, Kiss B, Lam WA, Schroeder V. Complement lectin pathway components MBL and MASP-1 promote haemostasis upon vessel injury in a microvascular bleeding model. Front Immunol 2022; 13:948190. [PMID: 36032172 PMCID: PMC9412763 DOI: 10.3389/fimmu.2022.948190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundComplement lectin pathway components, in particular mannan-binding lectin (MBL) and MBL-associated serine proteases (MASPs) have been shown to interact with coagulation factors and contribute to clot formation. Here we investigated the role of MBL and MASP-1 in the haemostatic response following mechanical vessel injury in a human microfluidic bleeding model.MethodsWe studied haemostasis in a microvascular bleeding model in the presence of human endothelial cells and human whole blood under flow conditions. We monitored incorporation of proteins into the clot with fluorescently labelled antibodies and studied their effects on clot formation, platelet activation, and bleeding time with specific inhibitors. Platelet activation was also studied by flow cytometry.ResultsUpon vessel injury, MBL accumulated at the injury site in a well-defined wall-like structure. MBL showed partial colocalisation with fibrin, and strong colocalisation with von Willebrand factor and (activated) platelets. Flow cytometry ruled out direct binding of MBL to platelets, but confirmed a PAR4- and thrombin-dependent platelet-activating function of MASP-1. Inhibiting MBL during haemostasis reduced platelet activation, while inhibiting MASP-1 reduced platelet activation, fibrin deposition and prolonged bleeding time.ConclusionWe show in a microvascular human bleeding model that MBL and MASP-1 have important roles in the haemostatic response triggered by mechanical vessel injury: MBL recognises the injury site, while MASP-1 increases fibrin formation, platelet activation and shortens bleeding time. While the complement lectin pathway may be harmful in the context of pathological thrombosis, it appears to be beneficial during the physiological coagulation response by supporting the crucial haemostatic system.
Collapse
Affiliation(s)
- Murielle Golomingi
- Experimental Haemostasis Group, Department for BioMedical Research, DBMR, University of Bern, Bern, Switzerland
| | - Jessie Kohler
- Experimental Haemostasis Group, Department for BioMedical Research, DBMR, University of Bern, Bern, Switzerland
| | - Lorenz Jenny
- Experimental Haemostasis Group, Department for BioMedical Research, DBMR, University of Bern, Bern, Switzerland
| | - Elaissa T. Hardy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research, DBMR, University of Bern, Bern, Switzerland
- *Correspondence: Verena Schroeder,
| |
Collapse
|
9
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
10
|
Gaikwad H, Li Y, Wang G, Li R, Dai S, Rester C, Kedl R, Saba L, Banda NK, Scheinman RI, Patrick C, Mallela KM, Moein Moghimi S, Simberg D. Antibody-Dependent Complement Responses toward SARS-CoV-2 Receptor-Binding Domain Immobilized on "Pseudovirus-like" Nanoparticles. ACS NANO 2022; 16:acsnano.2c02794. [PMID: 35507641 PMCID: PMC9092195 DOI: 10.1021/acsnano.2c02794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 05/09/2023]
Abstract
Many aspects of innate immune responses to SARS viruses remain unclear. Of particular interest is the role of emerging neutralizing antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 in complement activation and opsonization. To overcome challenges with purified virions, here we introduce "pseudovirus-like" nanoparticles with ∼70 copies of functional recombinant RBD to map complement responses. Nanoparticles fix complement in an RBD-dependent manner in sera of all vaccinated, convalescent, and naı̈ve donors, but vaccinated and convalescent donors with the highest levels of anti-RBD antibodies show significantly higher IgG binding and higher deposition of the third complement protein (C3). The opsonization via anti-RBD antibodies is not an efficient process: on average, each bound antibody promotes binding of less than one C3 molecule. C3 deposition is exclusively through the alternative pathway. C3 molecules bind to protein deposits, but not IgG, on the nanoparticle surface. Lastly, "pseudovirus-like" nanoparticles promote complement-dependent uptake by granulocytes and monocytes in the blood of vaccinated donors with high anti-RBD titers. Using nanoparticles displaying SARS-CoV-2 proteins, we demonstrate subject-dependent differences in complement opsonization and immune recognition.
Collapse
Affiliation(s)
- Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ronghui Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cody Rester
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nirmal K. Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Robert I. Scheinman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - S. Moein Moghimi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
11
|
Malicek D, Wittig I, Luger S, Foerch C. Proteomics-Based Approach to Identify Novel Blood Biomarker Candidates for Differentiating Intracerebral Hemorrhage From Ischemic Stroke-A Pilot Study. Front Neurol 2022; 12:713124. [PMID: 34975707 PMCID: PMC8719589 DOI: 10.3389/fneur.2021.713124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: A reliable distinction between ischemic stroke (IS) and intracerebral hemorrhage (ICH) is required for diagnosis-specific treatment and effective secondary prevention in patients with stroke. However, in resource-limited settings brain imaging, which is the current diagnostic gold standard for this purpose, is not always available in time. Hence, an easily accessible and broadly applicable blood biomarker-based diagnostic test differing stroke subtypes would be desirable. Using an explorative proteomics approach, this pilot study aimed to identify novel blood biomarker candidates for distinguishing IS from ICH. Material and Methods: Plasma samples from patients with IS and ICH were drawn during hospitalization and were analyzed by using liquid chromatography/mass spectrometry. Proteins were identified using the human reference proteome database UniProtKB, and label-free quantification (LFQ) data were further analyzed using bioinformatic tools. Results: Plasma specimens of three patients with IS and four patients with ICH with a median National Institute of Health Stroke Scale (NIHSS) of 12 [interquartile range (IQR) 10.5–18.5] as well as serum samples from two healthy volunteers were analyzed. Among 495 identified protein groups, a total of 368 protein groups exhibited enough data points to be entered into quantitative analysis. Of the remaining 22 top-listed proteins, a significant difference between IS and ICH was found for Carboxypeptidase N subunit 2 (CPN2), Coagulation factor XII (FXII), Plasminogen, Mannan-binding lectin serine protease 1, Serum amyloid P-component, Paraoxonase 1, Carbonic anhydrase 1, Fibulin-1, and Granulins. Discussion: In this exploratory proteomics-based pilot study, nine candidate biomarkers for differentiation of IS and ICH were identified. The proteins belong to the immune system, the coagulation cascade, and the apoptosis system, respectively. Further investigations in larger cohorts of patients with stroke using additional biochemical analysis methods, such as ELISA or Western Blotting are now necessary to validate these markers, and to characterize diagnostic accuracy with regard to the development of a point-of-care-system for use in resource-limited areas.
Collapse
Affiliation(s)
- David Malicek
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sebastian Luger
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
13
|
Rawish E, Sauter M, Sauter R, Nording H, Langer HF. Complement, inflammation and thrombosis. Br J Pharmacol 2021; 178:2892-2904. [PMID: 33817781 DOI: 10.1111/bph.15476] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
A mutual relationship exists between immune activation and mechanisms of thrombus formation. In particular, elements of the innate immune response such as the complement system can modulate platelet activation and subsequently thrombus formation. Several components of the complement system including C3 or the membrane attack complex have been reported to be associated with platelets and become functionally active in the micromilieu of platelet activation. The exact mechanisms how this interplay is regulated and its consequences for tissue inflammation, damage or recovery remain to be defined. This review addresses the current state of knowledge on this topic and puts it into context with diseases featuring both thrombosis and complement activation. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Harald F Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Conway EM, Pryzdial ELG. Is the COVID-19 thrombotic catastrophe complement-connected? J Thromb Haemost 2020; 18:2812-2822. [PMID: 32762081 PMCID: PMC7436532 DOI: 10.1111/jth.15050] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, the world was introduced to a new betacoronavirus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for its propensity to cause rapidly progressive lung damage, resulting in high death rates. As fast as the virus spread, it became evident that the novel coronavirus causes a multisystem disease (COVID-19) that may involve multiple organs and has a high risk of thrombosis associated with striking elevations in pro-inflammatory cytokines, D-dimer, and fibrinogen, but without disseminated intravascular coagulation. Postmortem studies have confirmed the high incidence of venous thromboembolism, but also notably revealed diffuse microvascular thrombi with endothelial swelling, consistent with a thrombotic microangiopathy, and inter-alveolar endothelial deposits of complement activation fragments. The clinicopathologic presentation of COVID-19 thus parallels that of other thrombotic diseases, such as atypical hemolytic uremic syndrome (aHUS), that are caused by dysregulation of the complement system. This raises the specter that many of the thrombotic complications arising from SARS-CoV-2 infections may be triggered and/or exacerbated by excess complement activation. This is of major potential clinical relevance, as currently available anti-complement therapies that are highly effective in protecting against thrombosis in aHUS, could be efficacious in COVID-19. In this review, we provide mounting evidence for complement participating in the pathophysiology underlying the thrombotic diathesis associated with pathogenic coronaviruses, including SARS-CoV-2. Based on current knowledge of complement, coagulation and the virus, we suggest lines of study to identify novel therapeutic targets and the rationale for clinical trials with currently available anti-complement agents for COVID-19.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Blood Services, Centre for Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
|
16
|
Kushak RI, Boyle DC, Rosales IA, Ingelfinger JR, Stahl GL, Ozaki M, Colvin RB, Grabowski EF. Platelet thrombus formation in eHUS is prevented by anti-MBL2. PLoS One 2019; 14:e0220483. [PMID: 31881024 PMCID: PMC6934323 DOI: 10.1371/journal.pone.0220483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/05/2019] [Indexed: 11/29/2022] Open
Abstract
E. coli associated Hemolytic Uremic Syndrome (epidemic hemolytic uremic syndrome, eHUS) caused by Shiga toxin-producing bacteria is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney injury that cause acute renal failure in up to 65% of affected patients. We hypothesized that the mannose-binding lectin (MBL) pathway of complement activation plays an important role in human eHUS, as we previously demonstrated that injection of Shiga Toxin-2 (Stx-2) led to fibrin deposition in mouse glomeruli that was blocked by co-injection of the anti-MBL-2 antibody 3F8. However, the markers of platelet thrombosis in affected mouse glomeruli were not delineated. To investigate the effect of 3F8 on markers of platelet thrombosis, we used kidney sections from our mouse model (MBL-2+/+ Mbl-A/C-/-; MBL2 KI mouse). Mice in the control group received PBS, while mice in a second group received Stx-2, and those in a third group received 3F8 and Stx-2. Using double immunofluorescence (IF) followed by digital image analysis, kidney sections were stained for fibrin(ogen) and CD41 (marker for platelets), von-Willebrand factor (marker for endothelial cells and platelets), and podocin (marker for podocytes). Electron microscopy (EM) was performed on ultrathin sections from mice and human with HUS. Injection of Stx-2 resulted in an increase of both fibrin and platelets in glomeruli, while administration of 3F8 with Stx-2 reduced both platelet and fibrin to control levels. EM studies confirmed that CD41-positive objects observed by IF were platelets. The increases in platelet number and fibrin levels by injection of Stx-2 are consistent with the generation of platelet-fibrin thrombi that were prevented by 3F8.
Collapse
Affiliation(s)
- R. I. Kushak
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - D. C. Boyle
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - I. A. Rosales
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. R. Ingelfinger
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - G. L. Stahl
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - M. Ozaki
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - R. B. Colvin
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - E. F. Grabowski
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
Mu L, Wu H, Han K, Wu L, Bian X, Li B, Guo Z, Yin X, Ye J. Molecular and functional characterization of a mannose-binding lectin/ficolin-associated protein (MAp44) from Nile tilapia (Oreochromis niloticus) involved in the immune response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103438. [PMID: 31299190 DOI: 10.1016/j.dci.2019.103438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. Mannose-binding lectin/ficolin-associated protein (MAp44), a multifunctional complement regulator, regulates the complement activation by competing with MASP-1, MASP-2 and MASP-3 for MBL and ficolin binding sites. In this study, we described the identification and functional characterization of a MAp44 homologue (OnMAp44) from Nile tilapia (Oreochromis niloticus) at molecular, cellular and protein levels. The open reading frame (ORF) of OnMAp44 is 1140 bp of nucleotide sequence encoding a polypeptide of 379 amino acids. The deduced amino acids sequence has four characteristic structures, including two C1r/C1s-Uegf-BMP domains (CUB), one epidermal growth factor domain (EGF) and one complement control protein domains (CCP). Expression analysis revealed that the OnMAp44 was highly expressed in liver, and widely existed in other examined tissues. In addition, the OnMAp44 expression was significantly up-regulated in spleen and head kidney following challenges with Streptococcus agalactiae and Aeromonas hydrophila. The up-regulations of OnMAp44 mRNA and protein expression were also observed in hepatocytes and monocytes/macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnMAp44 protein was able to participate in the regulation of inflammation and migration reaction. Taken together, the results indicated that OnMAp44 was likely to involve in the immune response to bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Hairong Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Kailiang Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
18
|
Margraf A, Zarbock A. Platelets in Inflammation and Resolution. THE JOURNAL OF IMMUNOLOGY 2019; 203:2357-2367. [DOI: 10.4049/jimmunol.1900899] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
|
19
|
Liang RA, Høiland II, Ueland T, Aukrust P, Snir O, Hindberg K, Braekkan SK, Garred P, Mollnes TE, Hansen JB. Plasma levels of mannose-binding lectin and future risk of venous thromboembolism. J Thromb Haemost 2019; 17:1661-1669. [PMID: 31220397 DOI: 10.1111/jth.14539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Animal and observational studies have suggested a pathophysiological role for complement in venous thromboembolism (VTE), but the initiating mechanisms are unknown. Mannose-binding lectin (MBL) bound to altered host cells leads to activation of the lectin complement pathway, and both high and low MBL levels have been implicated in the pathophysiology of cardiovascular disease. OBJECTIVES To investigate the association between plasma MBL levels and future risk of incident VTE. METHODS We conducted a nested case-control study in 417 VTE patients and 849 age-matched and sex-matched controls derived from the general population (Tromsø Study). Plasma MBL levels were measured using enzyme-linked immunosorbent assay. Logistic regression models were used to estimate odds ratio (OR) for VTE across quartiles of plasma MBL levels. RESULTS Subjects with plasma MBL levels in the lowest quartile (<435 ng/mL) had a reduced OR for overall VTE (OR 0.79, 95% confidence interval [CI]: 0.56-1.10) and for DVT (OR 0.70, 95% CI: 0.47-1.04) compared to those with MBL in the highest quartile (≥2423 ng/mL) after multivariable adjustments. For VTE, DVT, and pulmonary embolism (PE) the ORs decreased substantially with decreasing time between blood sampling and VTE event. CONCLUSIONS Our findings suggest that low plasma MBL levels are associated with reduced risk of VTE, and DVT in particular.
Collapse
Affiliation(s)
- Robin A Liang
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ina I Høiland
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Thor Ueland
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K. G. Jebsen - Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Omri Snir
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kristian Hindberg
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Sigrid K Braekkan
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
| | - Tom E Mollnes
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Bjarne Hansen
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
20
|
Complement and Coagulation: Cross Talk Through Time. Transfus Med Rev 2019; 33:199-206. [PMID: 31672340 DOI: 10.1016/j.tmrv.2019.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 12/29/2022]
Abstract
Two complex protein defense systems-complement and coagulation-are based on amplifying enzyme cascades triggered by specific local stimuli. Excess systemic activation of either system is pathologic and is normally prevented by a family of regulatory proteins. The 2 systems are ancient biological processes which share a common origin that predates vertebrate evolution. Recent research has uncovered multiple opportunities for cross talk between complement and coagulation including proteins traditionally viewed as coagulation factors that activate and regulate complement, and proteins traditionally seen as part of the complement system that participate in coagulation. Ten examples of cross talk between the 2 systems are described. The mutual engagement of both systems is increasingly recognized to occur in human diseases. Three conditions-paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and the antiphospholipid syndrome-provide examples of the importance of interactions between complement and coagulation in human biology. A better understanding of the mutual engagement of these 2 ancient defense systems is expected to result in improved diagnostics and new treatments for systemic diseases.
Collapse
|
21
|
Jenny L, Noser D, Larsen JB, Dobó J, Gál P, Pál G, Schroeder V. MASP-1 of the complement system alters fibrinolytic behaviour of blood clots. Mol Immunol 2019; 114:1-9. [PMID: 31325724 DOI: 10.1016/j.molimm.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND The lectin pathway serine protease mannan-binding lectin-associated serine protease 1 (MASP-1) has been demonstrated to be a major link between complement and coagulation, yet little is known about its interactions with the fibrinolytic system. The aim of this work was to assess the effects of MASP-1 on fibrin clot lysis in different experimental settings. METHODS Rotational thrombelastometry was used to evaluate the effect of MASP-1 on the lysis of clots formed in whole blood under static conditions. Whole blood clots were also formed in the presence and absence of MASP-1 under flow conditions in the Chandler loop and their lysis was analysed separately by fluorescence release of incorporated labelled fibrin. Real-time observation by laser scanning confocal microscopy was used to investigate the lysis of plasma clots where MASP-1 was present either during clot formation or lysis. Cleavage of tPA or plasminogen by MASP-1 was analysed by gel electrophoresis. We performed a turbidimetric clot lysis assay in the presence and absence of the MASP-1 inhibitor SGMI-1 (Schistocerca gregaria protease inhibitor (SGPI)-based MASP inhibitor-1) to evaluate the effect of endogenous MASP-1 in normal plasma and plasma samples from sepsis patients. RESULTS In the thrombelastometric experiments, where MASP-1 was present during the entire clotting and lysis process, MASP-1 had a significant profibrinolytic effect and accelerated clot lysis. When clots were formed in the presence of MASP-1 under flow in the Chandler loop, the effects on fibrinolysis were heterogenous with impaired fibrinolysis in some individuals (n = 5) and no (n = 3) or even the opposite effect (n = 2) in others. In plasma clot lysis observed by confocal microscopy, lysis was prolonged when MASP-1 was added to the lysis solution, yet there was no difference in lysis time when MASP-1 was present during clot formation. When MASP-1 was incubated with tPA or plasminogen, respectively, cleavage of single-chain tPA into two-chain tPA and a slight reduction of plasminogen were observed. SGMI-1 significantly prolonged clot lysis in the turbidimetric clot lysis assay suggesting that MASP-1 accelerated lysis in plasma samples. CONCLUSION MASP-1 is able to alter the susceptibility of blood clots to the fibrinolytic system. MASP-1 has complex, mostly promoting effects on fibrinolysis with high inter-individual variation. Interactions of MASP-1 with the fibrinolytic system may be relevant in the development and therapy of cardiovascular and thrombotic diseases.
Collapse
Affiliation(s)
- Lorenz Jenny
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Danilo Noser
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - József Dobó
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
22
|
Eriksson O, Mohlin C, Nilsson B, Ekdahl KN. The Human Platelet as an Innate Immune Cell: Interactions Between Activated Platelets and the Complement System. Front Immunol 2019; 10:1590. [PMID: 31354729 PMCID: PMC6635567 DOI: 10.3389/fimmu.2019.01590] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected from complement-mediated damage by soluble and membrane-expressed complement regulators, but they bind several complement components on their surfaces and trigger complement activation in the fluid phase. Furthermore, localized complement activation may enhance the procoagulant responses of platelets through the generation of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet membrane. We also highlight the role of post-translational protein modifications in regulating the complement system and the critical role of platelets in driving these reactions. In particular, modification of disulfide bonds by thiol isomerases and protein phosphorylation by extracellular kinases have emerged as important mechanisms to fine-tune complement activity in the platelet microenvironment. Lastly, we describe disorders with perturbed complement activation where part of the clinical presentation includes uncontrolled platelet activation that results in thrombocytopenia, and illustrate how complement-targeting drugs are alleviating the prothrombotic phenotype in these patients. Based on these clinical observations, we discuss the role of limited complement activation in enhancing platelet activation and consider how these drugs may provide opportunities for further dissecting the complex interactions between complement and platelets.
Collapse
Affiliation(s)
- Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Camilla Mohlin
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
23
|
Ulrich-Merzenich G, Hausen A, Zeitler H, Goldmann G, Oldenburg J, Pavlova A. The role of variant alleles of the mannose-binding lectin in the inhibitor development in severe hemophilia A. Thromb Res 2019; 179:140-146. [PMID: 31141731 DOI: 10.1016/j.thromres.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The administration of FVIII leads to inhibitors in up to 30% of patients with hemophilia A (HA), the most severe treatment complication. FVIII-mannosylation fosters the presentation of FVIII to CD4+-T-lymphocytes. Mannose as primary ligand for the mannose-binding lectin (MBL) activates the lectin pathway of complement. MBL2 single nucleotide polymorphisms (SNPs) lead to low peripheral MBL concentrations that may hamper the removal of mannosylated FVIII. OBJECTIVE Investigation of the association between the inhibitor development in hemophilia A and MBL2-SNPs. METHODS In a case-control study the MBL2-SNPs in exon 1 at codons 52, 54 and 57 (C, B, D-Alleles respectively) were determined in 237 patients with severe hemophilia A with and without inhibitors to FVIII (119 vs 118). The association of MBL2-SNPs and the -308 G>A TNF-α-polymorphism with the presence of inhibitors were determined. RESULTS In the inhibitor group higher frequencies of the B allele (codon 54) (OR: 1.77, P < 0.05) were present. Summarising the MBL2 SNPs (alleles B, C and D) as 0, the 0/0 type occurred only in the inhibitor group (frequencies: 0.08 vs 0, P = 0.003). Based on the genetic background a functional immune response phenotype was determined. 11.8% of patients with inhibitors were of the low MBL/high TNF-α phenotype vs 0.03% of the non-inhibitor patients (OR: 3.71). CONCLUSION Data suggest an association of MBL2-SNPs alone or combined with the 308-TNF-α polymorphism in the inhibitor development. Investigations of components of all three complement pathways are required to comprehend their individual and overall contribution to the inhibitor development in HA.
Collapse
Affiliation(s)
- Gudrun Ulrich-Merzenich
- Medical Clinic III, University Hospital Bonn, Centre for Internal Medicine, Sigmund-Freud Street 25, D-53127 Bonn, Germany.
| | - Annekristin Hausen
- Medical Clinic I, University Hospital Bonn, Centre for Internal Medicine, Sigmund-Freud Street 25, D-53127 Bonn, Germany.
| | - Heike Zeitler
- Medical Clinic I, University Hospital Bonn, Centre for Internal Medicine, Sigmund-Freud Street 25, D-53127 Bonn, Germany.
| | - Georg Goldmann
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud Street 25, D-53127 Bonn, Germany.
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud Street 25, D-53127 Bonn, Germany.
| | - Anna Pavlova
- Institute of Experimental Haematology and Transfusion Medicine, University Hospital Bonn, Sigmund-Freud Street 25, D-53127 Bonn, Germany.
| |
Collapse
|
24
|
Abstract
: Complement and coagulation are evolutionarily related proteolytic cascades in the blood that are critical for effecting an appropriate innate response to injury that limits bleeding and infection, while promoting healing. Although often viewed as distinct, it has long been recognized that cross-talk likely exists between these pathways. Only recently have molecular links been established. These are providing insights that are revealing opportunities for the development of novel therapeutic strategies to better treat a wide range of thrombotic, inflammatory, immune, infectious, and malignant diseases. In this brief review, the complex relationship between complement and coagulation is highlighted, underlining some of the newly uncovered interactions, in the hopes of stimulating innovative research that will yield improvements in patient outcomes.
Collapse
|
25
|
Dobó J, Kocsis A, Gál P. Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement-Mediated Diseases. Front Immunol 2018; 9:1851. [PMID: 30135690 PMCID: PMC6092519 DOI: 10.3389/fimmu.2018.01851] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022] Open
Abstract
The complement system has moved into the focus of drug development efforts in the last decade, since its inappropriate or uncontrolled activation has been recognized in many diseases. Some of them are primarily complement-mediated rare diseases, such as paroxysmal nocturnal hemoglobinuria, C3 glomerulonephritis, and atypical hemolytic uremic syndrome. Complement also plays a role in various multifactorial diseases that affect millions of people worldwide, such as ischemia reperfusion injury (myocardial infarction, stroke), age-related macular degeneration, and several neurodegenerative disorders. In this review, we summarize the potential advantages of targeting various complement proteins with special emphasis on the components of the lectin (LP) and the alternative pathways (AP). The serine proteases (MASP-1/2/3, factor D, factor B), which are responsible for the activation of the cascade, are straightforward targets of inhibition, but the pattern recognition molecules (mannose-binding lectin, other collectins, and ficolins), the regulatory components (factor H, factor I, properdin), and C3 are also subjects of drug development. Recent discoveries about cross-talks between the LP and AP offer new approaches for clinical intervention. Mannan-binding lectin-associated serine proteases (MASPs) are not just responsible for LP activation, but they are also indispensable for efficient AP activation. Activated MASP-3 has recently been shown to be the enzyme that continuously supplies factor D (FD) for the AP by cleaving pro-factor D (pro-FD). In this aspect, MASP-3 emerges as a novel feasible target for the regulation of AP activity. MASP-1 was shown to be required for AP activity on various surfaces, first of all on LPS of Gram-negative bacteria.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Kocsis
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
26
|
Complement links platelets to innate immunity. Semin Immunol 2018; 37:43-52. [DOI: 10.1016/j.smim.2018.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
|
27
|
Panagiotou A, Trendelenburg M, Osthoff M. The Lectin Pathway of Complement in Myocardial Ischemia/Reperfusion Injury-Review of Its Significance and the Potential Impact of Therapeutic Interference by C1 Esterase Inhibitor. Front Immunol 2018; 9:1151. [PMID: 29910807 PMCID: PMC5992395 DOI: 10.3389/fimmu.2018.01151] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality in modern medicine. Early reperfusion accomplished by primary percutaneous coronary intervention is pivotal for reducing myocardial damage in ST elevation AMI. However, restoration of coronary blood flow may paradoxically trigger cardiomyocyte death secondary to a reperfusion-induced inflammatory process, which may account for a significant proportion of the final infarct size. Unfortunately, recent human trials targeting myocardial ischemia/reperfusion (I/R) injury have yielded disappointing results. In experimental models of myocardial I/R injury, the complement system, and in particular the lectin pathway, have been identified as major contributors. In line with this, C1 esterase inhibitor (C1INH), the natural inhibitor of the lectin pathway, was shown to significantly ameliorate myocardial I/R injury. However, the hypothesis of a considerable augmentation of myocardial I/R injury by activation of the lectin pathway has not yet been confirmed in humans, which questions the efficacy of a therapeutic strategy solely aimed at the inhibition of the lectin pathway after human AMI. Thus, as C1INH is a multiple-action inhibitor targeting several pathways and mediators simultaneously in addition to the lectin pathway, such as the contact and coagulation system and tissue leukocyte infiltration, this may be considered as being advantageous over exclusive inhibition of the lectin pathway. In this review, we summarize current concepts and evidence addressing the role of the lectin pathway as a potent mediator/modulator of myocardial I/R injury in animal models and in patients. In addition, we focus on the evidence and the potential advantages of using the natural inhibitor of the lectin pathway, C1INH, as a future therapeutic approach in AMI given its ability to interfere with several plasmatic cascades. Ameliorating myocardial I/R injury by targeting the complement system and other plasmatic cascades remains a valid option for future therapeutic interventions.
Collapse
Affiliation(s)
- Anneza Panagiotou
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Jenny L, Dobó J, Gál P, Pál G, Lam WA, Schroeder V. MASP-1 of the complement system enhances clot formation in a microvascular whole blood flow model. PLoS One 2018; 13:e0191292. [PMID: 29324883 PMCID: PMC5764403 DOI: 10.1371/journal.pone.0191292] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/02/2018] [Indexed: 12/04/2022] Open
Abstract
The complement and coagulation systems closely interact with each other. These interactions are believed to contribute to the proinflammatory and prothrombotic environment involved in the development of thrombotic complications in many diseases. Complement MASP-1 (mannan-binding lectin-associated serine protease-1) activates coagulation factors and promotes clot formation. However, this was mainly shown in purified or plasma-based static systems. Here we describe the role of MASP-1 and complement activation in fibrin clot formation in a microvascular, whole blood flow model. This microfluidic system simulates blood flow through microvessels at physiological flow and shear rates and represents the closest model system to human physiology so far. It features parallel microchannels cultured with endothelial cells in a transparent microfluidic chip allowing real-time evaluation of clot formation by confocal microscopy. To test their effects on clot formation, we added the following activators or inhibitors (individually or in combination) to whole blood and performed perfusion experiments: rMASP-1cf (recombinant active form of MASP-1), complement activator zymosan, selective MASP-1 inhibitor SGMI-1 (based on the Schistocerca gregaria protease inhibitor scaffold), classical pathway inhibitor rSALO (recombinant salivary anti-complement from Lutzomyia longipalpis). Addition of rMASP-1cf resulted in accelerated fibrin clot formation while addition of SGMI-1 delayed it. Complement activation by zymosan led to increased clot formation and this effect was partially reversed by addition of rSALO and almost abolished in combination with SGMI-1. We show for the first time a strong influence of MASP-1, complement activation and pathway-specific inhibition on coagulation in a microvascular flow system that is closest to human physiology, further underpinning the in vivo relevance of coagulation and complement interactions.
Collapse
Affiliation(s)
- Lorenz Jenny
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - József Dobó
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity - a complementary relationship: A review of the intricate relationship between coagulation and complement pathways. Br J Haematol 2017; 180:782-798. [PMID: 29265338 DOI: 10.1111/bjh.15062] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coagulation and innate immunity are linked evolutionary processes that orchestrate the host defence against invading pathogens and injury. The complement system is integral to innate immunity and shares numerous interactions with components of the haemostatic pathway, helping to maintain physiological equilibrium. The term 'immunothrombosis' was introduced in 2013 to embrace this process, and has become an area of much recent interest. What is less apparent in the literature however is an appreciation of the clinical manifestations of the coagulation-complement interaction and the consequences of dysregulation of either system, as seen in many inflammatory and thrombotic disease states, such as sepsis, trauma, atherosclerosis, antiphospholipid syndrome (APS), paroxysmal nocturnal haemoglobinuria (PNH) and some thrombotic microangiopathies to name a few. The growing appreciation of this immunothrombotic phenomenon will foster the drive for novel therapies in these disease states, including anticoagulants as immunomodulators and targeted molecular therapies.
Collapse
Affiliation(s)
- Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Zoe K McQuilten
- Transfusion Research Unit and Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Vic., Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
30
|
Iyer A, Xu W, Reid RC, Fairlie DP. Chemical Approaches to Modulating Complement-Mediated Diseases. J Med Chem 2017; 61:3253-3276. [DOI: 10.1021/acs.jmedchem.7b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weijun Xu
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert C. Reid
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Bender L, Weidmann H, Rose-John S, Renné T, Long AT. Factor XII-Driven Inflammatory Reactions with Implications for Anaphylaxis. Front Immunol 2017; 8:1115. [PMID: 28966616 PMCID: PMC5605561 DOI: 10.3389/fimmu.2017.01115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Anaphylaxis is a life-threatening allergic reaction. It is triggered by the release of pro-inflammatory cytokines and mediators from mast cells and basophils in response to immunologic or non-immunologic mechanisms. Mediators that are released upon mast cell activation include the highly sulfated polysaccharide and inorganic polymer heparin and polyphosphate (polyP), respectively. Heparin and polyP supply a negative surface for factor XII (FXII) activation, a serine protease that drives contact system-mediated coagulation and inflammation. Activation of the FXII substrate plasma kallikrein leads to further activation of zymogen FXII and triggers the pro-inflammatory kallikrein-kinin system that results in the release of the mediator bradykinin (BK). The severity of anaphylaxis is correlated with the intensity of contact system activation, the magnitude of mast cell activation, and BK formation. The main inhibitor of the complement system, C1 esterase inhibitor, potently interferes with FXII activity, indicating a meaningful cross-link between complement and kallikrein-kinin systems. Deficiency in a functional C1 esterase inhibitor leads to a severe swelling disorder called hereditary angioedema (HAE). The significance of FXII in these disorders highlights the importance of studying how these processes are integrated and can be therapeutically targeted. In this review, we focus on how FXII integrates with inflammation and the complement system to cause anaphylaxis and HAE as well as highlight current diagnosis and treatments of BK-related diseases.
Collapse
Affiliation(s)
- Lysann Bender
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henri Weidmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Clinical Chemistry, Department of Molecular Medicine and Surgery, L1:00 Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Andy T. Long
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehrkop C, Fromell K, Gustafson E, Hong J, Kozarcanin H, Magnusson PU, Huber-Lang M, Garred P, Nilsson B. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev 2017; 274:245-269. [PMID: 27782319 DOI: 10.1111/imr.12471] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity is fundamental to our defense against microorganisms. Physiologically, the intravascular innate immune system acts as a purging system that identifies and removes foreign substances leading to thromboinflammatory responses, tissue remodeling, and repair. It is also a key contributor to the adverse effects observed in many diseases and therapies involving biomaterials and therapeutic cells/organs. The intravascular innate immune system consists of the cascade systems of the blood (the complement, contact, coagulation, and fibrinolytic systems), the blood cells (polymorphonuclear cells, monocytes, platelets), and the endothelial cell lining of the vessels. Activation of the intravascular innate immune system in vivo leads to thromboinflammation that can be activated by several of the system's pathways and that initiates repair after tissue damage and leads to adverse reactions in several disorders and treatment modalities. In this review, we summarize the current knowledge in the field and discuss the obstacles that exist in order to study the cross-talk between the components of the intravascular innate immune system. These include the use of purified in vitro systems, animal models and various types of anticoagulants. In order to avoid some of these obstacles we have developed specialized human whole blood models that allow investigation of the cross-talk between the various cascade systems and the blood cells. We in particular stress that platelets are involved in these interactions and that the lectin pathway of the complement system is an emerging part of innate immunity that interacts with the contact/coagulation system. Understanding the resulting thromboinflammation will allow development of new therapeutic modalities.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Osama A Hamad
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Sana Asif
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Claudia Duehrkop
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Elisabet Gustafson
- Department of Women's and Children's Health, Uppsala University Hospital, Uppsala, Sweden
| | - Jaan Hong
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Huda Kozarcanin
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Faculty of Health and Medical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
33
|
Dobó J, Pál G, Cervenak L, Gál P. The emerging roles of mannose-binding lectin-associated serine proteases (MASPs) in the lectin pathway of complement and beyond. Immunol Rev 2017; 274:98-111. [PMID: 27782318 DOI: 10.1111/imr.12460] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are the enzymatic constituents of the lectin pathway of the complement system. They are complexed with large pattern recognition molecules (PRMs) such as MBL, other collectins, and ficolins. The main function of two of the three MASPs has crystallized lately: MASP-1 autoactivates first, then it activates MASP-2, and finally both participate in the formation of the C4b2a convertase. In addition to this, both enzymes are involved in several other processes which are subject to intense research nowadays. Notably, MASP-1, as a promiscuous enzyme, has been implicated in the coagulation cascade, in the kinin generating contact system, and in cellular activation through protease-activated receptor (PAR) cleavage on endothelial cells. The third protease MASP-3 has emerged recently as the protease responsible for pro-factor D activation in resting blood, providing a fundamental link between two complement pathways. At present all three MASPs have at least one well-defined role and several other possible functions were implicated. Defect or more likely over-activation of MASPs may culminate into diseases such as ischemia-reperfusion injury (IRI); hence, MASPs are all potential targets of drug development.
Collapse
Affiliation(s)
- József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Cervenak
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
34
|
Osthoff M, Walder B, Delhumeau C, Trendelenburg M, Turck N. Association of Lectin Pathway Protein Levels and Genetic Variants Early after Injury with Outcomes after Severe Traumatic Brain Injury: A Prospective Cohort Study. J Neurotrauma 2017; 34:2560-2566. [PMID: 28482760 DOI: 10.1089/neu.2016.4941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The lectin pathway of the complement system has been implicated in secondary ischemic/inflammatory injury after traumatic brain injury (TBI). However, previous experimental studies have yielded conflicting results, and human studies are scarce. In this exploratory study, we investigated associations of several lectin pathway proteins early after injury and single-nucleotide polymorphisms (SNP) with outcomes after severe TBI (mortality at 14 days [primary outcome] and consciousness assessed with the Glasgow Coma Scale [GCS] at 14 days, disability assessed with the Glasgow Outcome Scale Extended [GOSE] at 90 days). Forty-four patients with severe TBI were included. Plasma levels of lectin pathway proteins were sampled at 6, 12, 24, and 48 h after injury and eight mannose-binding lectin (MBL) and ficolin (FCN)2 SNPs were analyzed by enzyme-linked immunosorbent assay (ELISA) and genotyping, respectively. Plasma protein levels were stable with only a slight increase in mannose-binding protein-associated serine protease (MASP)-2 and FCN2 levels after 48 h (p < 0.05), respectively. Neither lectin protein plasma levels (6 h or mean levels) nor MBL2 genotypes or FCN2 variant alleles were associated with 14 day mortality or 14 day consciousness. However, FCN2, FCN3, and MASP-2 levels were higher in patients with an unfavorable outcome (GOSE 1-4) at 90 days (p < 0.05), whereas there was no difference in MBL2 genotypes or FCN2 variant alleles. In particular, higher mean MASP-2 levels over 48 h were independently associated with a GOSE score < 4 at 90 days after adjustment (odds ratio 3.46 [95% confidence interval 1.12-10.68] per 100 ng/mL increase, p = 0.03). No association was observed between the lectin pathway of the complement system and 14 day mortality or 14 day consciousness. However, higher plasma FCN2, FCN3, and, in particular, MASP-2 levels early after injury were associated with an unfavorable outcome at 90 days (death, vegetative state, and severe disability) which may be related to an increased activation of the lectin pathway.
Collapse
Affiliation(s)
- Michael Osthoff
- 1 Division of Internal Medicine, University Hospital Basel , Basel, Switzerland .,2 Department of Biomedicine, University Hospital Basel , Basel, Switzerland
| | - Bernhard Walder
- 3 Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Clinical Pharmacology, University Hospitals of Geneva , Geneva, Switzerland
| | - Cécile Delhumeau
- 3 Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Clinical Pharmacology, University Hospitals of Geneva , Geneva, Switzerland
| | - Marten Trendelenburg
- 1 Division of Internal Medicine, University Hospital Basel , Basel, Switzerland .,2 Department of Biomedicine, University Hospital Basel , Basel, Switzerland
| | - Natacha Turck
- 4 OPTICS Group, Department of Human Protein Sciences, University of Geneva , Geneva, Switzerland
| |
Collapse
|
35
|
Chakraborti S, Dhalla NS, Catarino SJ, Messias-Reason IJ. Serine Proteases in the Lectin Pathway of the Complement System. PROTEASES IN PHYSIOLOGY AND PATHOLOGY 2017. [PMCID: PMC7120406 DOI: 10.1007/978-981-10-2513-6_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system plays a crucial role in host defense against pathogen infections and in the recognition and removal of damaged or altered self-components. Complement system activation can be initiated by three different pathways—classical, alternative, and lectin pathways—resulting in a proteolytic cascade, which culminates in multiple biological processes including opsonization and phagocytosis of intruders, inflammation, cell lysis, and removal of immune complexes and apoptotic cells. Furthermore, it also functions as a link between the innate and adaptive immune responses. The lectin pathway (LP) activation is mediated by serine proteases, termed mannan-binding lectin (MBL)-associated serine proteases (MASPs), which are associated with the pattern recognition molecules (PRMs) that recognize carbohydrates or acetylated compounds on surfaces of pathogens or apoptotic cells. These result in the proteolysis of complement C2 and C4 generating C3 convertase (C4b2a), which carries forward the activation cascade of complements, culminating in the elimination of foreign molecules. This chapter presents an overview of the complement system focusing on the characterization of MASPs and its genes, as well as its functions in the immune response.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- St. Boniface Hospital Research Centre, University of Manitoba, Faculty of Health Sciences, College of Medicine, Institute of Cardiovascular Sciences, Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
36
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
37
|
Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 2017; 129:2291-2302. [PMID: 28223279 DOI: 10.1182/blood-2016-11-749879] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
Expanding evidence indicates multiple interactions between the hemostatic system and innate immunity, and the coagulation and complement cascades. Here we show in a tissue factor (TF)-dependent model of flow restriction-induced venous thrombosis that complement factors make distinct contributions to platelet activation and fibrin deposition. Complement factor 3 (C3) deficiency causes prolonged bleeding, reduced thrombus incidence, thrombus size, fibrin and platelet deposition in the ligated inferior vena cava, and diminished platelet activation in vitro. Initial fibrin deposition at the vessel wall over 6 hours in this model was dependent on protein disulfide isomerase (PDI) and TF expression by myeloid cells, but did not require neutrophil extracellular trap formation involving peptidyl arginine deiminase 4. In contrast to C3-/- mice, C5-deficient mice had no apparent defect in platelet activation in vitro, and vessel wall platelet deposition and initial hemostasis in vivo. However, fibrin formation, the exposure of negatively charged phosphatidylserine (PS) on adherent leukocytes, and clot burden after 48 hours were significantly reduced in C5-/- mice compared with wild-type controls. These results delineate that C3 plays specific roles in platelet activation independent of formation of the terminal complement complex and provide in vivo evidence for contributions of complement-dependent membrane perturbations to prothrombotic TF activation on myeloid cells.
Collapse
|
38
|
Fumagalli S, De Simoni MG. Lectin Complement Pathway and Its Bloody Interactions in Brain Ischemia. Stroke 2016; 47:3067-3073. [PMID: 27811336 DOI: 10.1161/strokeaha.116.012407] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefano Fumagalli
- From the Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria-Grazia De Simoni
- From the Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
39
|
Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 2016; 274:74-97. [PMID: 27782323 DOI: 10.1111/imr.12468] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mannose-binding lectin (MBL), collectin-10, collectin-11, and the ficolins (ficolin-1, ficolin-2, and ficolin-3) are soluble pattern recognition molecules in the lectin complement pathway. These proteins act as mediators of host defense and participate in maintenance of tissue homeostasis. They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature of these molecules is their ability to interact with a set of serine proteases named MASPs (MASP-1, MASP-2, and MASP-3). MASP-1 and -2 trigger the activation of the lectin pathway and MASP-3 may be involved in the activation of the alternative pathway of complement. Furthermore, MASPs mediate processes related to coagulation, bradykinin release, and endothelial and platelet activation. Variant alleles affecting expression and structure of the proteins have been associated with a variety of infectious and non-infectious diseases, most commonly as disease modifiers. Notably, the severe 3MC (Malpuech, Michels, Mingarelli, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Human mannose-binding lectin inhibitor prevents Shiga toxin-induced renal injury. Kidney Int 2016; 90:774-82. [PMID: 27378476 DOI: 10.1016/j.kint.2016.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 01/22/2023]
Abstract
Hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli (STEC HUS) is a worldwide endemic problem, and its pathophysiology is not fully elucidated. Here we tested whether the mannose-binding lectin (MBL2), an initiating factor of lectin complement pathway activation, plays a crucial role in STEC HUS. Using novel human MBL2-expressing mice (MBL2 KI) that lack murine Mbls (MBL2(+/+)Mbl1(-/-)Mbl2(-/-)), a novel STEC HUS model consisted of an intraperitoneal injection with Shiga toxin-2 (Stx-2) with or without anti-MBL2 antibody (3F8, intraperitoneal). Stx-2 induced weight loss, anemia, and thrombocytopenia and increased serum creatinine, free serum hemoglobin, and cystatin C levels, but a significantly decreased glomerular filtration rate compared with control/sham mice. Immunohistochemical staining revealed renal C3d deposition and fibrin deposition in glomeruli in Stx-2-injected mice. Treatment with 3F8 completely inhibited serum MBL2 levels and significantly attenuated Stx-2 induced-renal injury, free serum hemoglobin levels, renal C3d, and fibrin deposition and preserved the glomerular filtration rate. Thus, MBL2 inhibition significantly protected against complement activation and renal injury induced by Stx-2. This novel mouse model can be used to study the role of complement, particularly lectin pathway-mediated complement activation, in Stx-2-induced renal injury.
Collapse
|
41
|
Kahlow BS, Nery RA, Skare TL, Ribas CAPM, Ramos GP, Petisco RD. ON VASCULAR STENOSIS, RESTENOSIS AND MANNOSE BINDING LECTIN. ABCD-ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA 2016; 29:57-9. [PMID: 27120743 PMCID: PMC4851154 DOI: 10.1590/0102-6720201600010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/03/2015] [Indexed: 11/22/2022]
Abstract
Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes
carbohydrate patterns found on the surface of a large number of pathogenic
micro-organisms, activating the complement system. However, this protein seems to
increase the tissue damage after ischemia. In this paper is reviewed some aspects of
harmful role of the mannose binding lectin in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Barbara Stadler Kahlow
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Rodrigo Araldi Nery
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Thelma L Skare
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | | | - Gabriela Piovezani Ramos
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| | - Roberta Dombroski Petisco
- Medical Research Institute, University Evangelic Hospital of Curitiba, Evangelic Faculty of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
42
|
Qin YR, You SJ, Zhang Y, Li Q, Wang XH, Wang F, Hu LF, Liu CF. Hydrogen sulfide attenuates ferric chloride-induced arterial thrombosis in rats. Free Radic Res 2016; 50:654-65. [PMID: 26982248 DOI: 10.3109/10715762.2016.1164311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yi-Ren Qin
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Shou-Jiang You
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Neurology, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Qian Li
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Pharmacology, School of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Xian-Hui Wang
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li-Fang Hu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Pharmacology, School of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
43
|
Kozarcanin H, Lood C, Munthe-Fog L, Sandholm K, Hamad OA, Bengtsson AA, Skjoedt MO, Huber-Lang M, Garred P, Ekdahl KN, Nilsson B. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J Thromb Haemost 2016; 14:531-45. [PMID: 26614707 DOI: 10.1111/jth.13208] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED ESSENTIALS: The lectin pathway's MASP-1/2 activates coagulation factors but the trigger of the activation is unknown. MASP-1/2 activation was assessed by quantifying complexes between MASPs and antithrombin/C1-inhibitor. Activated platelets and fibrin were demonstrated to activate MASP-1 and MASP-2 both in vitro and in vivo. These findings may represent a crossroad between the complement and the coagulation systems. SUMMARY BACKGROUND The activated forms of the complement lectin pathway (LP) proteases MASP-1 and MASP-2 are able to cleave the coagulation factors prothrombin, fibrinogen, factor XIII and thrombin-activatable fibrinolysis inhibitor in vitro. In vivo studies also show that MASP-1 is involved in thrombogenesis. OBJECTIVES To clarify the not yet identified mechanisms involved in triggering activation of the LP during thrombotic reactions. METHODS Novel sandwich-ELISAs for detection of complexes between MASP-1 or MASP-2 and the serpins C1 inhibitor (C1-INH) or antithrombin (AT), were used to specifically detect and quantify the activated forms of MASP-1 and MASP-2. RESULTS Activated platelets were shown by flow cytometry to bind Ficolin-1, -2 and -3 but not MBL, which was associated with activation of MASP-1 and MASP-2. We also demonstrated that fibrin and the plasmin-generated fibrin fragment DD in plasma, bind and activate MASP-1 and MASP-2. As demonstrated by the ELISA and SDS-PAGE/Western blotting, the fibrin-associated activation was reflected in a specific inactivation by AT during clotting without the assistance of heparin. In all other cases the MASPs were, as previously reported, inactivated by C1-INH. In systemic lupus erythematosus patients with thrombotic disease and in polytrauma patients, the levels of activated MASP-1 and MASP-2 in complex with both AT and C1-INH were associated with markers of thrombotic disease and contact/coagulation system activation. CONCLUSIONS MASP-1 and MASP-2 are activated during blood clotting. This activation is triggered by activated platelets and by the generation of fibrin during thrombotic reactions in vitro and in vivo, and may represent a novel activation/amplification mechanism in thromboinflammation.
Collapse
Affiliation(s)
- H Kozarcanin
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - C Lood
- Section of Rheumatology, Department of Clinical Sciences Lund, Skåne University Hospital and Lund University, Lund, Sweden
| | - L Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - K Sandholm
- Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - O A Hamad
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - A A Bengtsson
- Section of Rheumatology, Department of Clinical Sciences Lund, Skåne University Hospital and Lund University, Lund, Sweden
| | - M-O Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Huber-Lang
- Department of Traumatology, Hand, Plastic, Reconstructive Surgery, University Hospital of Ulm, Ulm, Germany
| | - P Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - K N Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
- Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - B Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Jenny L, Dobó J, Gál P, Schroeder V. MASP-1 Induced Clotting--The First Model of Prothrombin Activation by MASP-1. PLoS One 2015; 10:e0144633. [PMID: 26645987 PMCID: PMC4672900 DOI: 10.1371/journal.pone.0144633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/21/2015] [Indexed: 01/24/2023] Open
Abstract
Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity. Due to its interplay with several coagulation factors, it has the ability to induce fibrin clot formation independent of the usual coagulation activation pathways. We have recently shown that MASP-1 activates prothrombin and identified arginine (R) 155, R271, and R393 as potential cleavage sites. FXa cleaves R320 instead of R393, and thrombin cleaves R155 and R284 in prothrombin. Here we have used three arginine-to-glutamine mutants of prothrombin, R271Q, R320Q, R393Q and the serine-to-alanine active site mutant S525A to investigate in detail the mechanism of MASP-1 mediated prothrombin activation. Prothrombin wildtype and mutants were digested with MASP-1 and the cleavage products were analysed by SDS-PAGE and N-terminal sequencing. A functional clotting assay was performed by thrombelastography. We have found that MASP-1 activates prothrombin via two simultaneous pathways, either cleaving at R271 or R393 first. Both pathways result in the formation of several active alternative thrombin species. Functional studies confirmed that both R393 and R320 are required for prothrombin activation by MASP-1, whereas R155 is not considered to be an important cleavage site in this process. In conclusion, we have described for the first time a detailed model of prothrombin activation by MASP-1.
Collapse
Affiliation(s)
- Lorenz Jenny
- University Clinic of Haematology, Haemostasis Research Laboratory, University Hospital Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Verena Schroeder
- University Clinic of Haematology, Haemostasis Research Laboratory, University Hospital Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
45
|
Schuett KA, Lehrke M, Marx N, Burgmaier M. High-Risk Cardiovascular Patients: Clinical Features, Comorbidities, and Interconnecting Mechanisms. Front Immunol 2015; 6:591. [PMID: 26635805 PMCID: PMC4655316 DOI: 10.3389/fimmu.2015.00591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/03/2015] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in the Western world with an increase over the last few decades. Atherosclerosis with its different manifestations in the coronary artery tree, the cerebral, as well as peripheral arteries is the basis for cardiovascular events, such as myocardial infarction, stroke, and cardiovascular death. The pathophysiological understanding of the mechanisms that promote the development of vascular disease has changed over the last few decades, leading to the recognition that inflammation and inflammatory processes in the vessel wall are major contributors in atherogenesis. In addition, a subclinical inflammatory status, e.g., in patients with diabetes or the presence of a chronic inflammatory disease, such as rheumatoid arthritis, have been recognized as strong risk factors for cardiovascular disease. The present review will summarize the different inflammatory processes in the vessel wall leading to atherosclerosis and highlight the role of inflammation in diabetes and chronic inflammatory diseases for cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital RWTH Aachen , Aachen , Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital RWTH Aachen , Aachen , Germany
| | - Mathias Burgmaier
- Department of Internal Medicine I, University Hospital RWTH Aachen , Aachen , Germany
| |
Collapse
|
46
|
Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J 2015; 34:2735-57. [PMID: 26489954 DOI: 10.15252/embj.201591881] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
The complement system is an essential element of the innate immune response that becomes activated upon recognition of molecular patterns associated with microorganisms, abnormal host cells, and modified molecules in the extracellular environment. The resulting proteolytic cascade tags the complement activator for elimination and elicits a pro-inflammatory response leading to recruitment and activation of immune cells from both the innate and adaptive branches of the immune system. Through these activities, complement functions in the first line of defense against pathogens but also contributes significantly to the maintenance of homeostasis and prevention of autoimmunity. Activation of complement and the subsequent biological responses occur primarily in the extracellular environment. However, recent studies have demonstrated autocrine signaling by complement activation in intracellular vesicles, while the presence of a cytoplasmic receptor serves to detect complement-opsonized intracellular pathogens. Furthermore, breakthroughs in both functional and structural studies now make it possible to describe many of the intricate molecular mechanisms underlying complement activation and the subsequent downstream events, as well as its cross talk with, for example, signaling pathways, the coagulation system, and adaptive immunity. We present an integrated and updated view of complement based on structural and functional data and describe the new roles attributed to complement. Finally, we discuss how the structural and mechanistic understanding of the complement system rationalizes the genetic defects conferring uncontrolled activation or other undesirable effects of complement.
Collapse
Affiliation(s)
- Goran Bajic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA, USA
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Abstract
Throughout evolution, organisms have developed means to contain wounds by simultaneously limiting bleeding and eliminating pathogens and damaged host cells via the recruitment of innate defense mechanisms. Disease emerges when there is unchecked activation of innate immune and/or coagulation responses. A key component of innate immunity is the complement system. Concurrent excess activation of coagulation and complement - two major blood-borne proteolytic pathways - is evident in numerous diseases, including atherosclerosis, diabetes, venous thromboembolic disease, thrombotic microangiopathies, arthritis, cancer, and infectious diseases. Delineating the cross-talk between these two cascades will uncover novel therapeutic insights.
Collapse
Affiliation(s)
- E M Conway
- Centre for Blood Research, Life Sciences Institute, Division of Hematology, Department of Medicine, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
48
|
Beltrame MH, Boldt ABW, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I. MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 2015; 67:85-100. [PMID: 25862418 PMCID: PMC7112674 DOI: 10.1016/j.molimm.2015.03.245] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
MASP-1 and MASP-2 are central players of the lectin pathway of complement. MASP1 and MASP2 gene polymorphisms regulate protein serum levels and activity. MASP deficiencies are associated with increased infection susceptibility. MASP polymorphisms and serum levels are associated with disease progression.
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. After binding of mannan-binding lectin (MBL), ficolins or collectin 11 to carbohydrates or acetylated residues on pathogen surfaces, dimers of MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2) activate a proteolytic cascade, which culminates in the formation of the membrane attack complex and pathogen lysis. Alternative splicing of the pre-mRNA encoding MASP-1 results in two other products, MASP-3 and MAp44, which regulate activation of the cascade. A similar mechanism allows the gene encoding MASP-2 to produce the truncated MAp19 protein. Polymorphisms in MASP1 and MASP2 genes are associated with protein serum levels and functional activity. Since the first report of a MASP deficiency in 2003, deficiencies in lectin pathway proteins have been associated with recurrent infections and several polymorphisms were associated with the susceptibility or protection to infectious diseases. In this review, we summarize the findings on the role of MASP polymorphisms and serum levels in bacterial, viral and protozoan infectious diseases.
Collapse
Affiliation(s)
- Marcia H Beltrame
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Angelica B W Boldt
- Department of Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sandra J Catarino
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Hellen C Mendes
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Stefanie E Boschmann
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Isabela Goeldner
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | - Iara Messias-Reason
- Department of Clinical Pathology, Hospital de Clínicas, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
49
|
Jenny L, Dobó J, Gál P, Schroeder V. MASP-1 of the complement system promotes clotting via prothrombin activation. Mol Immunol 2015; 65:398-405. [PMID: 25745807 DOI: 10.1016/j.molimm.2015.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/13/2022]
Abstract
Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity, and it has been shown to activate coagulation factors. Here we studied the effects of MASP-1 on clot formation in whole blood (WB) and platelet-poor plasma (PPP) by thrombelastography and further elucidated the underlying mechanism. Cleavage of prothrombin by MASP-1 was investigated by SDS-PAGE and N-terminal sequencing of cleavage products. Addition of MASP-1 or thrombin to WB and PPP shortened the clotting time and clot formation time significantly compared to recalcified-only samples. The combination of MASP-1 and thrombin had additive effects. In a purified system, MASP-1 was able to induce clotting only in presence of prothrombin. Analysis of MASP-1-digested prothrombin confirmed that MASP-1 cleaves prothrombin at three cleavage sites. In conclusion, we have shown that MASP-1 is able to induce and promote clot formation measured in a global setting using the technique of thrombelastography. We further confirmed that MASP-1-induced clotting is dependent on prothrombin. Finally, we have demonstrated that MASP-1 cleaves prothrombin and identified its cleavage sites, suggesting that MASP-1 gives rise to an alternative active form of thrombin by cleaving at the cleavage site R393.
Collapse
Affiliation(s)
- Lorenz Jenny
- University Clinic of Haematology, Haemostasis Research Laboratory, University Hospital Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1113 Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1113 Budapest, Hungary
| | - Verena Schroeder
- University Clinic of Haematology, Haemostasis Research Laboratory, University Hospital Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
50
|
Ulrich-Lynge SL, Dalgaard TS, Norup LR, Song X, Sørensen P, Juul-Madsen HR. Chicken mannose-binding lectin function in relation to antibacterial activity towards Salmonella enterica. Immunobiology 2015; 220:555-63. [PMID: 25623031 DOI: 10.1016/j.imbio.2014.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
Abstract
Mannose-binding lectin (MBL) is a C-type serum lectin of importance in innate immunity. Low serum concentrations of MBL have been associated with greater susceptibility to infections. In this study, binding of purified chicken MBL (cMBL) to Salmonella enterica subsp. enterica (S. enterica) serotypes B, C1 and D was investigated by flow cytometry, and Staphylococcus aureus (S. aureus) was used for comparison. For S. enterica the C1 serotypes were the only group to exhibit binding to cMBL. Furthermore, functional studies of the role of cMBL in phagocytosis and complement activation were performed. Spiking with cMBL had a dose-dependent effect on the HD11 phagocytic activity of S. enterica subsp. enterica serovar Montevideo, and a more pronounced effect in a carbohydrate competitive assay. This cMBL dose dependency of opsonophagocytic activity by HD11 cells was not observed for S. aureus. No difference in complement-dependent bactericidal activity in serum with high or low cMBL concentrations was found for S. Montevideo. On the other hand, serum with high concentrations of cMBL exhibited a greater bactericidal activity to S. aureus than serum with low concentrations of cMBL. The results presented here emphasise that chicken cMBL exhibits functional similarities with its mammalian counterparts, i.e. playing a role in opsonophagocytosis and complement activation.
Collapse
Affiliation(s)
- Sofie L Ulrich-Lynge
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Liselotte R Norup
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu Province, PR China
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Helle R Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark.
| |
Collapse
|