1
|
Gatti DM, Reynolds LA. Thymic eosinophils: What are you doing here? J Leukoc Biol 2025; 117:qiaf001. [PMID: 39776203 DOI: 10.1093/jleuko/qiaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
The thymus is a primary lymphoid organ where major types of T lymphocytes undergo essential developmental processes. Eosinophils are among the cell types present in microenvironments within the thymus, and perhaps surprisingly, the role of thymic eosinophils, especially during homeostatic conditions, remains unclear. Major physiological events impact thymic organization and function throughout life, including age-related involution, pregnancy, and exposure to chemotherapy or radiation. In this review, we summarize literature that has explored factors that regulate the accumulation, phenotype, and location of thymic eosinophils during homeostatic development and during conditions in which homeostasis is perturbed. Further, we discuss the current theories as to the function of thymic eosinophils and consider how the heterogeneity of thymic eosinophil populations may reflect a temporal, spatial, and situational multifunctionality of thymic eosinophils.
Collapse
Affiliation(s)
- Dominique M Gatti
- Department of Biochemistry and Microbiology, PO Box 1700 STN CSC, Faculty of Science, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, PO Box 1700 STN CSC, Faculty of Science, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| |
Collapse
|
2
|
Park JW, Kang M, Kim G, Hyun SY, Shin J, Kim SY, Lee JH, Choi WS, Lee JH, Lee K, Kim SH, Cho WS, Kim HS. The impact of atmospheric ultrafine particulate matter on IgE-mediated type 1 hypersensitivity reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136705. [PMID: 39637818 DOI: 10.1016/j.jhazmat.2024.136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The effect of atmospheric ultrafine particulate matter (UPM) on respiratory allergic diseases has been investigated for decades; however, the precise molecular mechanisms underlying these effects remain poorly understood. In this study, we used a simulated UPM (sUPM) generated via the spark discharge method to refine black carbon, a core particle that closely mimics real-world UPM, including the size (i.e., size of agglomerates: 165 nm) and organic carbon/elemental carbon ratio (i.e., 2.62). When 25 μg/mouse of dispersed sUPM was instilled into the lungs of mice, it promoted the infiltration and degranulation response of pulmonary mast cells, and exposure to sUPM in an immunoglobulin E (IgE)-mediated passive anaphylaxis model intensified the degranulation response of peripheral mast cells. These effects of sUPM were demonstrated to amplify the downstream signaling mechanism of the high-affinity IgE receptor (FcεRI) mediated by IgE when tested using rat basophil leukemia (RBL)-2H3 and mouse bone marrow-derived mast cells (BMMCs) collected from the bone marrow of BALB/c mice. These results indicate that airborne UPM can exacerbate type 1 hypersensitivity reactions by enhancing the IgE-mediated signaling pathways within mast cells. Furthermore, this study provided mechanistic evidence on exacerbated allergic pulmonary diseases induced by UPM inhalation.
Collapse
Affiliation(s)
- Jeong Won Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Juhyun Shin
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seon Young Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jun Ho Lee
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
3
|
Kosins AE, Gao H, Blankenship RL, Emmerson LN, Ochoa JA, Cook-Mills JM. Maternal supplementation with α-tocopherol inhibits the development of offspring food allergy, H1R signaling and ultimately anaphylaxis early in life. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:199-210. [PMID: 40073242 PMCID: PMC11879001 DOI: 10.1093/jimmun/vkae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/02/2024] [Indexed: 03/14/2025]
Abstract
Food allergy has had a rapid rise in prevalence, and thus it is important to identify approaches to limit the development of food allergy early in life. Because maternal dietary supplementation with α-tocopherol (α-T), an isoform of vitamin E, during pregnancy and nursing increases neonate plasma levels of α-T and can limit neonate development of other allergies, we hypothesized that α-T can limit development of food allergy. To assess this, male mice with mutations in their skin barrier genes (FT-/- mice) were mated with wild-type females that received a diet supplemented with α-tocopherol or a control diet. Starting at postnatal day 3, these FT+/- pups were sensitized 4 to 5 times over 2.5 weeks by skin co-exposure to the food allergen peanut extract (PNE) and the environmental allergen Alternaria alternata (Alt). Control pups were exposed to saline, PNE only or Alt only. Supplementation with α-T blocked Alt+PNE sensitization (anti-PNE-specific IgE), without blocking Alt+PNE-stimulated skin IL33, Areg, OSM, CCL11, TSLP or plasma MCPT1. However, supplementation with α-T blocked mast cell activation, the increase in plasma histamine in Alt+PNE sensitized pups, histamine receptor stimulation of endothelial PKCα signaling, and ultimately oral PNE-induced anaphylaxis in Alt+PNE sensitized mice. Thus, maternal supplementation with α-tocopherol reduced development of food allergy and anaphylaxis in neonates. These results have implications for supplementation of mothers with α-tocopherol to limit development of food allergy in neonates with skin barrier mutations.
Collapse
Affiliation(s)
- Allison E Kosins
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Haoran Gao
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ross L Blankenship
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lauren N Emmerson
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joel A Ochoa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joan M Cook-Mills
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Yang XA, Wang Y, Gong M, Zhao Z, Lv F, Zhang X, Li Y. RNF149 negatively regulates LPS/TLR4 signal transduction by ubiquitination-mediated CD63 degradation. Heliyon 2024; 10:e34350. [PMID: 39104473 PMCID: PMC11298846 DOI: 10.1016/j.heliyon.2024.e34350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
This study aims to investigate the role of RNF149 and tetraspanin CD63 in lipopolysaccharide/Toll-like receptor 4 (LPS/TLR4) signal transduction. TNF-α was assessed using enzyme-linked immunosorbent assay. The distribution of TLR4 was examined through flow cytometry after CD63 knockdown. Real-time polymerase chain reaction was used to analyze the expression of the target genes RNF149 and CD63 under different conditions. Western blotting was employed to detect gene expression, while immunoprecipitation and confocal microscopy were used to evaluate protein interactions. Transcriptome array data from stimulated monocytes (GSE7547) was obtained from GEO and subjected to bioinformatic analysis. It is suggested that CD63 may serve as a substrate of RNF149, with RNF149 capable of directly interacting with CD63. RNF149 degrades CD63 through covalent modification of CD63 at lysine 29 of the ubiquitin monomer, leading to the formation of a multiubiquitin chain. Both RNF149 and CD63 interact with TLR4, with CD63 promoting LPS/TLR4 signaling and RNF149 inhibits it. CD63 does not impact the distribution of TLR4 on the cell surface and does not directly interact with TIRAP, IRAK4, or TRAF6, but does interact with Myd88.RNF149 plays a negative regulatory role in LPS/TLR4 signal transduction by mediating ubiquitination-induced CD63 degradation.
Collapse
Affiliation(s)
- Xiu-An Yang
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde 067000, China
| | - Yingying Wang
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
| | - Mingyu Gong
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
| | - Zicheng Zhao
- Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China
| | - Fengchun Lv
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
| | - Xiaoyu Zhang
- Laboratory of Genetic Engineering and Genomics, School of Basic Medical Sciences, Chengde Medical University, Chengde 067000, China
- Graduate School of Chengde Medical University, 067000 Chengde, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Omari S, Roded A, Eisenberg M, Ali H, Fukuda M, Galli SJ, Sagi-Eisenberg R. Mast cell secretory granule fusion with amphisomes coordinates their homotypic fusion and release of exosomes. Cell Rep 2024; 43:114482. [PMID: 38985670 DOI: 10.1016/j.celrep.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Secretory granule (SG) fusion is an intermediate step in SG biogenesis. However, the precise mechanism of this process is not completely understood. We show that Golgi-derived mast cell (MC) SGs enlarge through a mechanism that is dependent on phosphoinositide (PI) remodeling and fusion with LC3+ late endosomes (amphisomes), which serve as hubs for the fusion of multiple individual SGs. Amphisome formation is regulated by the tyrosine phosphatase PTPN9, while the subsequent SG fusion event is additionally regulated by the tetraspanin protein CD63 and by PI4K. We also demonstrate that fusion with amphisomes imparts to SGs their capacity of regulated release of exosomes. Finally, we show that conversion of PI(3,4,5)P3 to PI(4,5)P2 and the subsequent recruitment of dynamin stimulate SG fission. Our data unveil a key role for lipid-regulated interactions with the endocytic and autophagic systems in controlling the size and number of SGs and their capacity to release exosomes.
Collapse
Affiliation(s)
- Sewar Omari
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Roded
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maggie Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, and Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305-5176, USA
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Sokolov AV, Lafta MS, Nordberg DOT, Jonsson J, Schiöth HB. Depression proteomic profiling in adolescents with transcriptome analyses in independent cohorts. Front Psychiatry 2024; 15:1372106. [PMID: 38812487 PMCID: PMC11133714 DOI: 10.3389/fpsyt.2024.1372106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Depression is a major global burden with unclear pathophysiology and poor treatment outcomes. Diagnosis of depression continues to rely primarily on behavioral rather than biological methods. Investigating tools that might aid in diagnosing and treating early-onset depression is essential for improving the prognosis of the disease course. While there is increasing evidence of possible biomarkers in adult depression, studies investigating this subject in adolescents are lacking. Methods In the current study, we analyzed protein levels in 461 adolescents assessed for depression using the Development and Well-Being Assessment (DAWBA) questionnaire as part of the domestic Psychiatric Health in Adolescent Study conducted in Uppsala, Sweden. We used the Proseek Multiplex Neuro Exploratory panel with Proximity Extension Assay technology provided by Olink Bioscience, followed by transcriptome analyses for the genes corresponding to the significant proteins, using four publicly available cohorts. Results We identified a total of seven proteins showing different levels between DAWBA risk groups at nominal significance, including RBKS, CRADD, ASGR1, HMOX2, PPP3R1, CD63, and PMVK. Transcriptomic analyses for these genes showed nominally significant replication of PPP3R1 in two of four cohorts including whole blood and prefrontal cortex, while ASGR1 and CD63 were replicated in only one cohort. Discussion Our study on adolescent depression revealed protein-level and transcriptomic differences, particularly in PPP3R1, pointing to the involvement of the calcineurin pathway in depression. Our findings regarding PPP3R1 also support the role of the prefrontal cortex in depression and reinforce the significance of investigating prefrontal cortex-related mechanisms in depression.
Collapse
Affiliation(s)
| | | | | | | | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Afsar B, Afsar RE. Hypersensitive Reactions During Hemodialysis Treatment: What Do We Need to Know? Semin Dial 2024; 37:189-199. [PMID: 38433728 DOI: 10.1111/sdi.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Kidney replacement therapies (KRTs) including hemodialysis (HD) are one of the treatment options for most of the patients with end-stage kidney disease. Although HD is vital for these patients, it is not hundred percent physiological, and various adverse events including hypersensitivity reactions may occur. Fortunately, these reactions are rare in total and less when compared to previous decades, but it is still very important for at least two reasons: First, the number of patients receiving kidney replacement treatment is increasing globally; and the cumulative number of these reactions may be substantial. Second, although most of these reactions are mild, some of them may be very severe and even lead to mortality. Thus, it is very important to have basic knowledge and skills to diagnose and treat these reactions. Hypersensitivity reactions can occur at any component of dialysis machinery (access, extracorporeal circuit, medications, etc.). The most important preventive measure is to avoid the allergen. However, even with very specific test, sometimes the allergen cannot be found. In mild conditions, HD can be contained with non-specific treatment (topical creams, antihistaminics, corticosteroids). In more severe conditions, treatment must be stopped immediately, blood should not be returned to patient, drugs must be stopped, and rules of general emergency treatment must be followed.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Lin H, Del Rio Castillo AE, González VJ, Bonaccorso F, Vázquez E, Fadeel B, Bianco A. Cytotoxicity assessment of exfoliated MoS 2 using primary human mast cells and the progenitor cell-derived mast cell line LAD2. NANOSCALE ADVANCES 2024; 6:2419-2430. [PMID: 38694463 PMCID: PMC11059565 DOI: 10.1039/d3na00863k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024]
Abstract
Molybdenum disulfide is an emerging 2D material with several potential applications in medicine. Therefore, it is crucial to ascertain its biocompatibility. Mast cells are immune cells that are found in many organs and tissues in contact with the extracellular environment, and can be cultured from progenitor cells present in the bone marrow. Given the long period required for differentiation and proliferation of primary mast cells, human mast cell lines have emerged as a tractable model for biological and toxicological studies. Here, we compare two types of industrial MoS2 using CD34+-derived primary human mast cells and the LAD2 cell line. Minimal effects were observed on early-stage activation endpoints such as β-hexosaminidase release and expression of surface markers of mast cell activation. Transmission electron microscopy revealed limited uptake of the tested materials. Overall, MoS2 was found to be biocompatible, and the LAD2 cell line was validated as a useful in vitro model of mast cells.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS 67000 Strasbourg France
| | | | - Viviana Jehová González
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha Ciudad Real 13071 Spain
| | | | - Ester Vázquez
- Biograph Solutions, Regional Institute of Applied Scientific Research (IRICA), Department of Organic Chemistry, Faculty of Science and Chemistry Technologies, University of Castilla-La Mancha Ciudad Real 13071 Spain
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet 177 77 Stockholm Sweden
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS 67000 Strasbourg France
| |
Collapse
|
9
|
von Beek C, Fahlgren A, Geiser P, Di Martino ML, Lindahl O, Prensa GI, Mendez-Enriquez E, Eriksson J, Hallgren J, Fällman M, Pejler G, Sellin ME. A two-step activation mechanism enables mast cells to differentiate their response between extracellular and invasive enterobacterial infection. Nat Commun 2024; 15:904. [PMID: 38291037 PMCID: PMC10828507 DOI: 10.1038/s41467-024-45057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Mast cells localize to mucosal tissues and contribute to innate immune defense against infection. How mast cells sense, differentiate between, and respond to bacterial pathogens remains a topic of ongoing debate. Using the prototype enteropathogen Salmonella Typhimurium (S.Tm) and other related enterobacteria, here we show that mast cells can regulate their cytokine secretion response to distinguish between extracellular and invasive bacterial infection. Tissue-invasive S.Tm and mast cells colocalize in the mouse gut during acute Salmonella infection. Toll-like Receptor 4 (TLR4) sensing of extracellular S.Tm, or pure lipopolysaccharide, causes a modest induction of cytokine transcripts and proteins, including IL-6, IL-13, and TNF. By contrast, type-III-secretion-system-1 (TTSS-1)-dependent S.Tm invasion of both mouse and human mast cells triggers rapid and potent inflammatory gene expression and >100-fold elevated cytokine secretion. The S.Tm TTSS-1 effectors SopB, SopE, and SopE2 here elicit a second activation signal, including Akt phosphorylation downstream of effector translocation, which combines with TLR activation to drive the full-blown mast cell response. Supernatants from S.Tm-infected mast cells boost macrophage survival and maturation from bone-marrow progenitors. Taken together, this study shows that mast cells can differentiate between extracellular and host-cell invasive enterobacteria via a two-step activation mechanism and tune their inflammatory output accordingly.
Collapse
Affiliation(s)
- Christopher von Beek
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Fahlgren
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Petra Geiser
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Otto Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Grisna I Prensa
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erika Mendez-Enriquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jens Eriksson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala, Sweden.
| |
Collapse
|
10
|
Park J, Cho Y, Yang D, Yang H, Lee D, Kubo M, Kang SJ. The transcription factor NFIL3/E4BP4 regulates the developmental stage-specific acquisition of basophil function. J Allergy Clin Immunol 2024; 153:132-145. [PMID: 37783432 DOI: 10.1016/j.jaci.2023.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Basophils are rare but important effector cells in many allergic disorders. Contrary to their early progenitors, the terminal developmental processes of basophils in which they gain their unique functional properties are unknown. OBJECTIVE We sought to identify a novel late-stage basophil precursor and a transcription factor regulating the terminal maturation of basophils. METHODS Using flow cytometry, transcriptome analysis, and functional assays, we investigated the identification and functionality of the basophil precursors as well as basophil development. We generated mice with basophil-specific deletion of nuclear factor IL-3 (NFIL3)/E4BP4 and analyzed the functional impairment of NFIL3/E4BP4-deficient basophils in vitro and in vivo using an oxazolone-induced murine model of allergic dermatitis. RESULTS We report a new mitotic transitional basophil precursor population (referred to as transitional basophils) that expresses the FcεRIα chain at higher levels than mature basophils. Transitional basophils are less responsive to IgE-linked degranulation but produce more cytokines in response to IL-3, IL-33, or IgE cross-linking than mature basophils. In particular, we found that the expression of NFIL3/E4BP4 gradually rises as cells mature from the basophil progenitor stage. Basophil-specific deletion of NFIL3/E4BP4 reduces the expression of genes necessary for basophil function and impairs IgE receptor signaling, cytokine secretion, and degranulation in the context of murine atopic dermatitis. CONCLUSIONS We discovered transitional basophils, a novel late-stage mitotic basophil precursor cell population that exists between basophil progenitors and postmitotic mature basophils. We demonstrated that NFIL3/E4BP4 augments the IgE-mediated functions of basophils, pointing to a potential therapeutic regulator for allergic diseases.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yuri Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dongchan Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan; Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
11
|
Kang C, He H, Liu P, Liu Y, Li X, Zhang J, Ran H, Zeng X, Zhao H, Liu J, Qiu S. Role of dendritic cell‑derived exosomes in allergic rhinitis (Review). Int J Mol Med 2023; 52:117. [PMID: 37888754 PMCID: PMC10635688 DOI: 10.3892/ijmm.2023.5320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Allergic rhinitis (AR) is a common pathological condition in otorhinolaryngology. Its prevalence has been increasing worldwide and is becoming a major burden to the world population. Dendritic cells (DCs) are typically activated and matured after capturing, phagocytosing, and processing allergens during the immunopathogenesis of AR. In addition, the process of DC activation and maturation is accompanied by the production of exosomes, which are cell‑derived extracellular vesicles (EVs) that can carry proteins, lipids, nucleic acids, and other cargoes involved in intercellular communication and material transfer. In particular, DC‑derived exosomes (Dex) can participate in allergic immune responses, where the biological substances carried by them can have potentially important implications for both the pathogenesis and treatment of AR. Dex can also be exploited to carry anti‑allergy agents to effectively treat AR. This provides a novel method to explore the pathogenesis of and treatment strategies for AR further. Therefore, the present review focuses on the origin, composition, function, and biological characteristics of DCs, exosomes, and Dex, in addition to the possible relationship between Dex and AR.
Collapse
Affiliation(s)
- Chenglin Kang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Haipeng He
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Yue Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xiaomei Li
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Jin Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
- Department of Otorhinolaryngology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Hong Ran
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Hailiang Zhao
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Jiangqi Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
12
|
Kondo D, Suzuki R, Matsumura A, Meguri H, Tanaka M, Itakura M, Hirashima N. Methiothepin downregulates SNAP-23 and inhibits degranulation of rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Eur J Immunol 2023; 53:e2250360. [PMID: 37736882 DOI: 10.1002/eji.202250360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
In the present study, we found that methiothepin (a nonselective 5-hydroxytryptamine [5-HT] receptor antagonist) inhibited antigen-induced degranulation in rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Although antigen stimulation induces release of histamine and serotonin (5-HT) by exocytosis and mast cells express several types of 5-HT receptor, the detailed role of these receptors remains unclear. Here, pretreatment of cells with methiothepin attenuated increased intracellular Ca2+ concentration, phosphorylated critical upstream signaling components (Src family tyrosine kinases, Syk, and PLCγ1), and suppressed TNF-α secretion via inhibition of Akt (a Ser/Thr kinase activated by PI3K)and ERK phosphorylation. Furthermore, it inhibited PMA/ionomycin-induced degranulation; this finding suggested that methiothepin affected downstream signaling. IκB kinase β phosphorylates synaptosomal associated protein 23, which regulates the fusion events of the secretory granule/plasma membrane after mast cell activation, resulting in degranulation. We showed that methiothepin blocked PMA/ionomycin-induced phosphorylation of synaptosomal associated protein 23 by inhibiting its interaction with IκB kinase β. Together with the results of selective 5-HT antagonists, it is suggested that methiothepin inhibits mast cell degranulation by downregulating upstream signaling pathways and exocytotic fusion machinery through mainly 5-HT1A receptor. Our findings provide that 5-HT antagonists may be used to relieve allergic reactions.
Collapse
Affiliation(s)
- Daisuke Kondo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ruriko Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ayako Matsumura
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hitomi Meguri
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiko Tanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naohide Hirashima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
13
|
Hemme E, Biskop D, Depuydt MAC, Smit V, Delfos L, Bernabé Kleijn MNA, Foks AC, Kuiper J, Bot I. Bruton's Tyrosine Kinase inhibition by Acalabrutinib does not affect early or advanced atherosclerotic plaque size and morphology in Ldlr-/- mice. Vascul Pharmacol 2023; 150:107172. [PMID: 37075932 DOI: 10.1016/j.vph.2023.107172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Atherosclerosis is characterized by the accumulation of lipids and immune cells, including mast cells and B cells, in the arterial wall. Mast cells contribute to atherosclerotic plaque growth and destabilization upon active degranulation. The FcεRI-IgE pathway is the most prominent mast cell activation route. Bruton's Tyrosine Kinase (BTK) is involved in FcεRI-signaling and may be a potential therapeutic target to limit mast cell activation in atherosclerosis. Additionally, BTK is crucial in B cell development and B-cell receptor signaling. In this project, we aimed to assess the effects of BTK inhibition on mast cell activation and B cell development in atherosclerosis. In human carotid artery plaques, we showed that BTK is primarily expressed on mast cells, B cells and myeloid cells. In vitro, BTK inhibitor Acalabrutinib dose-dependently inhibited IgE mediated activation of mouse bone marrow derived mast cells. In vivo, male Ldlr-/- mice were fed a high-fat diet for eight weeks, during which mice were treated with Acalabrutinib or control solvent. In Acalabrutinib treated mice, B cell maturation was reduced compared to control mice, showing a shift from follicular II towards follicular I B cells. Mast cell numbers and activation status were not affected. Acalabrutinib treatment did not affect atherosclerotic plaque size or morphology. In advanced atherosclerosis, where mice were first fed a high-fat diet for eight weeks before receiving treatment, similar effects were observed. Conclusively, BTK inhibition by Acalabrutinib alone did neither affect either mast cell activation nor early- and advanced atherosclerosis, despite the effects on follicular B cell maturation.
Collapse
Affiliation(s)
- Esmeralda Hemme
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Danique Biskop
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Marie A C Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Virginia Smit
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Lucie Delfos
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Mireia N A Bernabé Kleijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands..
| |
Collapse
|
14
|
Parente R, Giudice V, Cardamone C, Serio B, Selleri C, Triggiani M. Secretory and Membrane-Associated Biomarkers of Mast Cell Activation and Proliferation. Int J Mol Sci 2023; 24:ijms24087071. [PMID: 37108232 PMCID: PMC10139107 DOI: 10.3390/ijms24087071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Mast cells (MCs) are immune cells distributed in many organs and tissues and involved in the pathogenesis of allergic and inflammatory diseases as a major source of pro-inflammatory and vasoactive mediators. MC-related disorders are heterogeneous conditions characterized by the proliferation of MC within tissues and/or MC hyper-reactivity that leads to the uncontrolled release of mediators. MC disorders include mastocytosis, a clonal disease characterized by tissue MC proliferation, and MC activation syndromes that can be primary (clonal), secondary (related to allergic disorders), or idiopathic. Diagnosis of MC disorders is difficult because symptoms are transient, unpredictable, and unspecific, and because these conditions mimic many other diseases. Validation of markers of MC activation in vivo will be useful to allow faster diagnosis and better management of MC disorders. Tryptase, being the most specific MC product, is a widely used biomarker of proliferation and activation. Other mediators, such as histamine, cysteinyl leukotrienes, and prostaglandin D2, are unstable molecules and have limitations in their assays. Surface MC markers, detected by flow cytometry, are useful for the identification of neoplastic MC in mastocytosis but, so far, none of them has been validated as a biomarker of MC activation. Further studies are needed to identify useful biomarkers of MC activation in vivo.
Collapse
Affiliation(s)
- Roberta Parente
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| | - Valentina Giudice
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Chiara Cardamone
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| | - Bianca Serio
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Selleri
- Division of Hematology and Transplant Center, University of Salerno, 84081 Baronissi, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
15
|
Skenteris NT, Hemme E, Delfos L, Karadimou G, Karlöf E, Lengquist M, Kronqvist M, Zhang X, Maegdefessel L, Schurgers LJ, Arnardottir H, Biessen EAL, Bot I, Matic L. Mast cells participate in smooth muscle cell reprogramming and atherosclerotic plaque calcification. Vascul Pharmacol 2023; 150:107167. [PMID: 36958707 DOI: 10.1016/j.vph.2023.107167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Calcification, a key feature of advanced human atherosclerosis, is positively associated with vascular disease burden and adverse events. We showed that macrocalcification can be a stabilizing factor for carotid plaque molecular biology, due to inverse association with immune processes. Mast cells (MCs) are important contributors to plaque instability, but their relationship with macrocalcification is unexplored. With a hypothesis that MC activation negatively associates with carotid plaque macrocalcification, we aimed to investigate the link between MCs and carotid plaque vulnerability, and study MC role in plaque calcification via smooth muscle cells (SMCs). METHODS Pre-operative computed tomography angiographies of patients (n = 40) undergoing surgery for carotid stenosis were used to characterize plaque morphology. Plaque microarrays (n = 40 and n = 126) were used for bioinformatic deconvolution of immune cell populations. Tissue microarrays (n = 103) were used to histologically validate the contribution of activated and resting MCs in plaques. RESULTS Activated MCs and their typical markers were negatively correlated with macrocalcification. The ratio of activated vs. resting MCs was increased in low-calcified plaques from symptomatic patients. There was no modulating effect of medication on MC ratios. In vitro experiments showed that SMC calcification attenuated MC activation, while both active and resting MCs stimulated SMC calcification and induced dedifferentiation towards a pro-inflammatory-, osteochondrocyte-like phenotype, without modulating their migro-proliferative function. CONCLUSIONS Integrative analyses from human plaques showed that MC activation is inversely associated with macrocalcification and positively with parameters of plaque vulnerability. Mechanistically, MCs induce SMC osteogenic reprograming, while matrix calcification in turn attenuates MC activation, offering new therapeutic avenues for exploration.
Collapse
Affiliation(s)
- Nikolaos T Skenteris
- Cardiovascular Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, the Netherlands
| | - Esmeralda Hemme
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Lucie Delfos
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Glykeria Karadimou
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Karlöf
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Mariette Lengquist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kronqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Xiang Zhang
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Lars Maegdefessel
- Cardiovascular Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden; Technical University Munich, Klinikum rechts der Isar, Department for Vascular and Endovascular Surgery, Germany
| | - Leon J Schurgers
- Department of Biochemistry and CARIM, School for Cardiovascular Diseases, Maastricht University, Netherlands; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Hildur Arnardottir
- Cardiovascular Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Ljubica Matic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Rujitharanawong C, Yoodee S, Sueksakit K, Peerapen P, Tuchinda P, Kulthanan K, Thongboonkerd V. Systematic comparisons of various markers for mast cell activation in RBL-2H3 cells. Cell Tissue Res 2022; 390:413-428. [PMID: 36125550 DOI: 10.1007/s00441-022-03687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Mast cell activation plays a key role in various allergic diseases and anaphylaxis. Several methods/techniques can be used for detection of mast cell activation. However, there was no previous systematic evaluation to compare the efficacy of each method/technique. The present study thus systematically compared various markers for mast cell activation induced by IgE cross-linking. The widely used RBL-2H3 mast cells were sensitized with anti-DNP (dinitrophenyl) IgE overnight and activated with DNP-BSA (bovine serum albumin) for up to 4 h. The untreated cells and those with anti-DNP IgE sensitization but without DNP-BSA activation served as the controls. Intracellular calcium level gradually increased to ~2-fold at 1 h, reached its peak (~5-fold) at 2 h, and returned to the basal level at 3-h post-activation. The increases in cellular tryptase level (by Western blotting) (~0.3- to 0.4-fold) and average cell size (~2.5-fold) and decrease of nucleus/cytoplasm ratio (~0.4- to 0.5-fold) were marginal at all time-points. By contrast, β-hexosaminidase release and CD63 expression (by both flow cytometry and immunofluorescence detection/localization), secreted tryptase level (by Western blotting), and tryptase expression (by immunofluorescence detection/localization) stably and obviously increased (~10-fold as compared with the untreated control and sensitized-only cells or detectable only after activation). Based on these data, the stably obvious increases (by ≥ 10-fold) in β-hexosaminidase release, CD63 expression (by both flow cytometry and immunofluorescence staining), secreted tryptase level (by Western blotting), and tryptase expression (by immunofluorescence staining) are recommended as the markers of choice for the in vitro study of mast cell activation using RBL-2H3 cells.
Collapse
Affiliation(s)
- Chuda Rujitharanawong
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Papapit Tuchinda
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokvalai Kulthanan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
17
|
Testera-Montes A, Palomares F, Jurado-Escobar R, Fernandez-Santamaria R, Ariza A, Verge J, Salas M, Campo P, Mayorga C, Torres MJ, Rondon C, Eguiluz-Gracia I. Sequential class switch recombination to IgE and allergen-induced accumulation of IgE + plasmablasts occur in the nasal mucosa of local allergic rhinitis patients. Allergy 2022; 77:2712-2724. [PMID: 35340036 DOI: 10.1111/all.15292] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The involvement of allergen-specific (s)IgE in local allergic rhinitis (LAR) has been debated. Here, we investigate the effect of nasal allergen challenge with Dermatophagoides pteronyssinus (NAC-DP) in mucosal and peripheral B-cell subpopulations in LAR patients. METHODS Nine LAR, 5 allergic rhinitis (AR), and 5 non-atopic healthy control (HC) individuals were subjected to a 3-day NAC-DP protocol, and nasal biopsies and blood samples were collected before and after provocation. Nasal biopsies were used for immunohistochemistry and gene expression studies, whereas the frequency of lymphocyte subsets and basophil activation test (BAT) were analyzed in blood samples by flow cytometry. sIgG was measured in sera. RESULTS NAC-DP induced an increase in IgE+ CD38+ plasmablasts in the nasal mucosa of LAR patients, but not in AR or HC individuals. Markers of sequential recombination to IgE (εCSR) (from IgG) were observed in 33% of LAR, 20% of AR, and 0% of HC subjects. NAC-DP increased the proportion of peripheral CD19+ CD20+ CD38+ plasmablasts in AR and LAR patients, but not in HC. Expression of the mucosal homing receptor CXCR3 in peripheral CD19+ CD20+ CD38+ plasmablasts from LAR, AR, and HC individuals was 7%, 5%, and 0.5%, respectively. In vitro DP stimulation increased proliferating CD19+ CD20+ CD38+ plasmablasts in LAR and AR patients, but not in HC. Serum DP-sIgG was higher in LAR and AR patients as compared to HC. BAT was positive in 33%, 100%, and 0% of LAR, AR, and HC subjects, respectively. CONCLUSION These results suggest that allergen exposure induces the sequential εCSR of IgG+ CD19+ CD20+ CD38+ plasmablasts in the nasal mucosa of LAR patients.
Collapse
Affiliation(s)
- Almudena Testera-Montes
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Raquel Jurado-Escobar
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Ruben Fernandez-Santamaria
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Adriana Ariza
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Jesus Verge
- ENT Unit, Hospital Clinico Virgen de la Victoria, Malaga, Spain
| | - Maria Salas
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Paloma Campo
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
| | - Cristobalina Mayorga
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - Maria Jose Torres
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
- Universidad de Málaga (UMA), Málaga, Spain
| | - Carmen Rondon
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malaga, Malaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), RICORS "Enfermedades inflamatorias", Málaga, Spain
| |
Collapse
|
18
|
Saha SS, Samanas NB, Miralda I, Shubin NJ, Niino K, Bhise G, Acharya M, Seo AJ, Camp N, Deutsch GH, James RG, Piliponsky AM. Mast cell surfaceome characterization reveals CD98 heavy chain is critical for optimal cell function. J Allergy Clin Immunol 2022; 149:685-697. [PMID: 34324892 PMCID: PMC8792104 DOI: 10.1016/j.jaci.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mast cells are involved in many distinct pathologic conditions, suggesting that they recognize and respond to various stimuli and thus require a rich repertoire of cell surface proteins. However, mast cell surface proteomes have not been comprehensively characterized. OBJECTIVE We aimed to further characterize the mast cell surface proteome to obtain a better understanding of how mast cells function in health and disease. METHODS We enriched for glycosylated surface proteins expressed in mouse bone marrow-derived cultured mast cells (BMCMCs) and identified them using mass spectrometry analysis. The presence of novel surface proteins in mast cells was validated by real-time quantitative PCR and flow cytometry analysis in BMCMCs and peritoneal mast cells (PMCs). We developed a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to disrupt genes of interest in BMCMCs. RESULTS The glycoprotein enrichment approach resulted in the identification of 1270 proteins in BMCMCs, 378 of which were localized to the plasma membrane. The most common protein classes among plasma membrane proteins were small GTPases, receptors, and transporters. One such cell surface protein was CD98 heavy chain (CD98hc), encoded by the Slc3a2 gene. Slc3a2 gene disruption resulted in a significant reduction in CD98hc expression, adhesion, and proliferation. CONCLUSIONS Glycoprotein enrichment coupled with mass spectrometry can be used to identify novel surface molecules in mast cells. Moreover, CD98hc plays an important role in mast cell function.
Collapse
Affiliation(s)
- Siddhartha S. Saha
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nyssa B. Samanas
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Irina Miralda
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nicholas J. Shubin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kerri Niino
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Gauri Bhise
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Manasa Acharya
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Albert J. Seo
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Nathan Camp
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Gail H. Deutsch
- Department of Laboratories, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Richard G. James
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, United States of America,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America,Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America,Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America,Corresponding author: Adrian M. Piliponsky, Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, 1900 9th Ave, Room 721, , Phone number: 206-884-7226, Fax number: 206-987-7310
| |
Collapse
|
19
|
Hu M, Lu Y, Wang S, Zhang Z, Qi Y, Chen N, Shen M, Chen F, Chen M, Yang L, Chen S, Zeng D, Wang F, Su Y, Xu Y, Wang J. CD63 acts as a functional marker in maintaining hematopoietic stem cell quiescence through supporting TGFβ signaling in mice. Cell Death Differ 2022; 29:178-191. [PMID: 34363017 PMCID: PMC8738745 DOI: 10.1038/s41418-021-00848-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cell (HSC) fate is tightly controlled by various regulators, whereas the underlying mechanism has not been fully uncovered due to the high heterogeneity of these populations. In this study, we identify tetraspanin CD63 as a novel functional marker of HSCs in mice. We show that CD63 is unevenly expressed on the cell surface in HSC populations. Importantly, HSCs with high CD63 expression (CD63hi) are more quiescent and have more robust self-renewal and myeloid differentiation abilities than those with negative/low CD63 expression (CD63-/lo). On the other hand, using CD63 knockout mice, we find that loss of CD63 leads to reduced HSC numbers in the bone marrow. In addition, CD63-deficient HSCs exhibit impaired quiescence and long-term repopulating capacity, accompanied by increased sensitivity to irradiation and 5-fluorouracil treatment. Further investigations demonstrate that CD63 is required to sustain TGFβ signaling activity through its interaction with TGFβ receptors I and II, thereby playing an important role in regulating the quiescence of HSCs. Collectively, our data not only reveal a previously unrecognized role of CD63 but also provide us with new insights into HSC heterogeneity.
Collapse
Affiliation(s)
- Mengjia Hu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yukai Lu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Song Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zihao Zhang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yan Qi
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Naicheng Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mingqiang Shen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fang Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mo Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lijing Yang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shilei Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Dongfeng Zeng
- grid.410570.70000 0004 1760 6682Department of Hematology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fengchao Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yongping Su
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yang Xu
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Junping Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Kiron V, Kathiresan P, Fernandes JM, Sørensen M, Vasanth GK, Qingsong L, Lin Q, Kwang LT, Dahle D, Dias J, Trichet VV. Clues from the intestinal mucus proteome of Atlantic salmon to counter inflammation. J Proteomics 2022; 255:104487. [DOI: 10.1016/j.jprot.2022.104487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
21
|
Revel-Vilk S, Naamad M, Frydman D, Freund MR, Dinur T, Istaiti M, Becker-Cohen M, Falk R, Broide E, Michelson AD, Frelinger AL, Zimran A. Platelet Activation and Reactivity in a Large Cohort of Patients with Gaucher Disease. Thromb Haemost 2021; 122:951-960. [PMID: 34507369 DOI: 10.1055/a-1642-4206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Patients with Gaucher disease (GD) are at increased risk of bleeding and have varying degrees of thrombocytopenia, making the analysis of platelet function difficult. This study aimed to provide a clinically relevant quantitative assessment of platelet function and determine its relationship with bleeding and GD-related data. METHODS Unstimulated and stimulated platelet function was measured by whole blood flow cytometry of platelet surface-activated αIIbβ3 integrin (detected with monoclonal antibody PAC1), P-selectin (CD62P), and lysosomal-associated membrane protein (LAMP3/CD63) in 149 GD patients. RESULTS GD patients had a higher level of unstimulated CD63 expression than healthy subjects, which was mildly correlated with glucosylsphingosine (lyso-Gb1) levels (r = 0.17, p-value = 0.042). Splenectomized GD patients had a higher level of unstimulated αIIbβ3 integrin and P-selectin expression. Reduced platelet reactivity (-2 standard deviation of reference range) was found in 79 (53%, 95% confidence interval [CI]: 44-61%) patients, of whom 10 (6.7%, 95% CI: 3.3-12%) had more severe platelet dysfunction. In a multivariate model, only lyso-Gb1 levels were associated with the more severe platelet dysfunction. Fifty-four (49%) of 128 adult patients who completed the bleeding tendency questionnaire reported positive bleeding history. In a multivariate logistic model, older age (odds ratio [OR]: 1.05, 95% CI: 1.01-1.1) and low P-selectin reactivity (OR: 2.03, 95% CI: 1.25-3.35) were associated with more than one bleeding manifestation. CONCLUSION Flow cytometry enables the study of platelet function in thrombocytopenic GD patients. A platelet degranulation defect, but not αIIbβ3 integrin activation defect, is associated with clinical bleeding. In vivo increased CD63 expression may be related to GD-related inflammation.
Collapse
Affiliation(s)
- Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel.,Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mira Naamad
- Flow Cytometry Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Dafna Frydman
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Tama Dinur
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Roni Falk
- Flow Cytometry Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eti Broide
- Flow Cytometry Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, United States
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, United States
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Rajani HF, Shahidi S, Gomari MM. Protein and Antibody Engineering: Suppressing Degranulation of the Mast Cells and Type I Hypersensitivity Reaction. Curr Protein Pept Sci 2021; 21:831-841. [PMID: 32392111 DOI: 10.2174/1389203721666200511094717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/09/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
With an increase in atopic cases and owing to a significant role of mast cells in type I hypersensitivity, a therapeutic need to inhibit degranulation of mast cells has risen. Mast cells are notorious for IgE-mediated allergic response. Advancements have allowed researchers to improve clinical outcomes of already available therapies. Engineered peptides and antibodies can be easily manipulated to attain desired characteristics as per the biological environment. A number of these molecules are designed to target mast cells in order to regulate the release of histamine and other mediators, thereby controlling type I hypersensitivity response. The aim of this review paper is to highlight some of the significant molecules designed for the purpose.
Collapse
Affiliation(s)
- Huda Fatima Rajani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| | - Solmaz Shahidi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical
Sciences, Tehran, Iran
| |
Collapse
|
23
|
Tetraspanins: useful multifunction proteins for the possible design and development of small-molecule therapeutic tools. Drug Discov Today 2020; 26:56-68. [PMID: 33137483 DOI: 10.1016/j.drudis.2020.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Tetraspanins constitute a well-conserved superfamily of four-span small membrane proteins (TM4SF), with >30 members in humans, with important roles in numerous mechanisms of cell biology. Moreover, tetraspanins associate with either specific partner proteins or another tetraspanin, generating a network of interactions involved in cell and membrane compartmentalization and having a role in cellular development, proliferation, activation, motility, and membrane fusions. Therefore, tetraspanins are considered regulators of cellular signaling and are often depicted as 'molecular facilitators'. In view of these many physiological functions, it is likely that these molecules are important actors in pathological processes. In this review, we present the main characteristics of this superfamily, providing a more detailed description of some significant representatives and discuss their relevance as potential targets for the design and development of small-molecule therapeutics in different pathologies.
Collapse
|
24
|
Orinska Z, Hagemann PM, Halova I, Draber P. Tetraspanins in the regulation of mast cell function. Med Microbiol Immunol 2020; 209:531-543. [PMID: 32507938 PMCID: PMC7395004 DOI: 10.1007/s00430-020-00679-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are long-living immune cells highly specialized in the storage and release of different biologically active compounds and are involved in the regulation of innate and adaptive immunity. MC degranulation and replacement of MC granules are accompanied by active membrane remodelling. Tetraspanins represent an evolutionary conserved family of transmembrane proteins. By interacting with lipids and other membrane and intracellular proteins, they are involved in organisation of membrane protein complexes and act as "molecular facilitators" connecting extracellular and cytoplasmic signaling elements. MCs express different tetraspanins and MC degranulation is accompanied by changes in membrane organisation. Therefore, tetraspanins are very likely involved in the regulation of MC exocytosis and membrane reorganisation after degranulation. Antiviral response and production of exosomes are further aspects of MC function characterized by dynamic changes of membrane organization. In this review, we pay a particular attention to tetraspanin gene expression in different human and murine MC populations, discuss tetraspanin involvement in regulation of key MC signaling complexes, and analyze the potential contribution of tetraspanins to MC antiviral response and exosome production. In-depth knowledge of tetraspanin-mediated molecular mechanisms involved in different aspects of the regulation of MC response will be beneficial for patients with allergies, characterized by overwhelming MC reactions.
Collapse
Affiliation(s)
- Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.
| | - Philipp M Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
25
|
Charrin S, Palmulli R, Billard M, Clay D, Boucheix C, Van Niel G, Rubinstein E. Rapid Isolation of Rare Isotype-Switched Hybridoma Variants: Application to the Generation of IgG2a and IgG2b MAb to CD63, a Late Endosome and Exosome Marker. Antibodies (Basel) 2020; 9:antib9030029. [PMID: 32630723 PMCID: PMC7551895 DOI: 10.3390/antib9030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
CD63, a member of the tetraspanin superfamily, is used as a marker of late endosomes and lysosome-related organelles, as well as a marker of exosomes. Here, we selected rare isotype variants of TS63 by sorting hybridoma cells on the basis of their high expression of surface immunoglobulins of the IgG2a and IgG2b subclass. Pure populations of cells secreting IgG2a and IgG2b variants of TS63 (referred to as TS63a and TS63b) were obtained using two rounds of cell sorting and one limited dilution cloning step. We validate that these new TS63 variants are suitable for co-labeling with mAb of the IgG1 subclass directed to other molecules, using anti mouse subclass antibodies, and for the labeling of exosomes through direct binding to protein A-coated gold particles. These mAbs will be useful to study the intracellular localization of various proteins and facilitate electron microscopy analysis of CD63 localization.
Collapse
Affiliation(s)
- Stéphanie Charrin
- Centre d’Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, 75013 Paris, France;
| | - Roberta Palmulli
- Centre National de la Recherche Scientifique, Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, UMR144, 75005 Paris, France;
| | - Martine Billard
- Modèles de cellules souches malignes et thérapeutiques, Inserm, Université Paris-Saclay, 94800 Villejuif, France; (M.B.); (C.B.)
| | - Denis Clay
- Inserm, Université Paris-Saclay, UMS44, F-94800 Villejuif, France;
| | - Claude Boucheix
- Modèles de cellules souches malignes et thérapeutiques, Inserm, Université Paris-Saclay, 94800 Villejuif, France; (M.B.); (C.B.)
| | - Guillaume Van Niel
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm, Université de Paris, U1266, F-75014 Paris, France;
| | - Eric Rubinstein
- Centre d’Immunologie et des Maladies Infectieuses, Inserm, CNRS, Sorbonne Université, CIMI-Paris, 75013 Paris, France;
- Correspondence: ; Tel.: +33-1-4077-9898
| |
Collapse
|
26
|
Abstract
Mast cells (MCs) are well known for their role in allergic conditions. This cell can be activated by various types of secretagogues, ranging from a small chemical to a huge protein. Mast cell activation by secretagogues triggers the increase in intracellular calcium (iCa2+) concentration, granule trafficking, and exocytosis. Activated mast cells release their intra-granular pre-stored mediator or the newly synthesized mediator in the exocytosis process, in the form of degranulation or secretion. There are at least three types of exocytosis in mast cells, which are suggested to contribute to the release of different mediators, i.e.,, piecemeal, kiss-and-run, and compound exocytosis. The status of mast cells, i.e., activated or resting, is often determined by measuring the concentration of the released mediator such as histamine or β-hexosaminidase. This review summarizes several mast cell components that have been and are generally used as mast cell activation indicator, from the classical histamine and β-hexosaminidase measurement, to eicosanoid and granule trafficking observation. Basic principle of the component determination is also explained with their specified research application and purpose. The information will help to predict the experiment results with a certain study design.
Collapse
Affiliation(s)
- Muhammad Novrizal Abdi Sahid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada , Yogyakarta, Indonesia.,Curcumin Research Center, Faculty of Pharmacy, Univeristas Gadjah Mada , Yogyakarta, Indonesia
| | - Takeshi Kiyoi
- Division of Analytical Bio-medicine, Advanced Research Support Center, Ehime University , Toon, Ehime, Japan
| |
Collapse
|
27
|
Plum T, Wang X, Rettel M, Krijgsveld J, Feyerabend TB, Rodewald HR. Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation. Immunity 2020; 52:404-416.e5. [DOI: 10.1016/j.immuni.2020.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/13/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
|
28
|
Kropp L, Jackson-Thompson B, Thomas LM, McDaniel D, Mitre E. Chronic infection with a tissue-invasive helminth attenuates sublethal anaphylaxis and reduces granularity and number of mast cells. Clin Exp Allergy 2020; 50:213-221. [PMID: 31834940 DOI: 10.1111/cea.13549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Immunoglobulin E (IgE)-mediated anaphylaxis is a potentially fatal condition in which allergy effector cells rapidly discharge pre-formed inflammatory mediators. Treatments that address the immune component of allergic anaphylaxis are inadequate. Helminths have been previously shown to suppress effector cell function; however, their ability to treat pre-existing allergy remains unclear. OBJECTIVE To evaluate the ability of chronic helminth infection to protect against anaphylaxis in previously sensitized mice. METHODS A sublethal model of anaphylaxis was used, in which BALB/c mice were sensitized by three intraperitoneal (i.p.) injections of OVA/alum. Temperature drop was then monitored after systemic OVA challenge in uninfected mice and in mice infected chronically with Litomosoides sigmodontis, a tissue-invasive filarial nematode. RESULTS Litomosoides sigmodontis-infected mice exhibited significantly lower serum levels of mMCP-1 and were less hypothermic at 30-minute post-challenge compared to uninfected OVA-challenged controls. Characterization of anaphylaxis revealed that FcԑR1 and mast cells were required for hypothermia and elevated serum mMCP-1. OVA-IgE and OVA-IgG1 serum levels were not significantly altered by L sigmodontis infection, and experiments with IL-10-/- mice demonstrated that IL-10 was not required for protection against anaphylaxis. However, peritoneal mast cell numbers were significantly lower in infected mice, and those that were present exhibited decreased granularity by flow cytometry and marked depletion of intracytoplasmic granules by light microscopy. Mast cells from infected mice had lower expression of the activation markers CD200R and CD63 and contained significantly lower basal stores of histamine. CONCLUSIONS Chronic L sigmodontis infection protects against anaphylaxis, likely due to reduction in mast cell numbers and depletion of pre-formed inflammatory mediators in remaining mast cells.
Collapse
Affiliation(s)
- Laura Kropp
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Belinda Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Louis Michael Thomas
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dennis McDaniel
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
29
|
Bansode RR, Randolph PD, Plundrich NJ, Lila MA, Williams LL. Peanut protein-polyphenol aggregate complexation suppresses allergic sensitization to peanut by reducing peanut-specific IgE in C3H/HeJ mice. Food Chem 2019; 299:125025. [DOI: 10.1016/j.foodchem.2019.125025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 02/01/2023]
|
30
|
Flow Cytometry-Based Characterization of Mast Cells in Human Atherosclerosis. Cells 2019; 8:cells8040334. [PMID: 30970663 PMCID: PMC6523866 DOI: 10.3390/cells8040334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
The presence of mast cells in human atherosclerotic plaques has been associated with adverse cardiovascular events. Mast cell activation, through the classical antigen sensitized-IgE binding to their characteristic Fcε-receptor, causes the release of their cytoplasmic granules. These granules are filled with neutral proteases such as tryptase, but also with histamine and pro-inflammatory mediators. Mast cells accumulate in high numbers within human atherosclerotic tissue, particularly in the shoulder region of the plaque. These findings are largely based on immunohistochemistry, which does not allow for the extensive characterization of these mast cells and of the local mast cell activation mechanisms. In this study, we thus aimed to develop a new flow-cytometry based methodology in order to analyze mast cells in human atherosclerosis. We enzymatically digested 22 human plaque samples, collected after femoral and carotid endarterectomy surgery, after which we prepared a single cell suspension for flow cytometry. We were able to identify a specific mast cell population expressing both CD117 and the FcεR, and observed that most of the intraplaque mast cells were activated based on their CD63 protein expression. Furthermore, most of the activated mast cells had IgE fragments bound on their surface, while another fraction showed IgE-independent activation. In conclusion, we are able to distinguish a clear mast cell population in human atherosclerotic plaques, and this study establishes a strong relationship between the presence of IgE and the activation of mast cells in advanced atherosclerosis. Our data pave the way for potential therapeutic intervention through targeting IgE-mediated actions in human atherosclerosis.
Collapse
|
31
|
Abstract
Receptors recognizing the Fc-part of immunoglobulins (FcR) are important in the engagement of phagocytes with opsonized micro-organisms, but they also play a major role in the pathogenesis of chronic inflammatory diseases. Different FcRs are specifically recognizing and binding the different classes of immunoglobulins, transmitting different signals into the cell. The function of IgG (FcγR's) and IgA (FcαR) recognizing receptors is controlled by cellular signals evoked by activation of heterologous receptors in a process generally referred to as inside-out control. This concept is clearly described for the regulation of integrin receptors. Inside-out control can be achieved at different levels by modulation of: (i) receptor affinity, (ii) receptor avidity/valency, (iii) interaction with signaling chains, (iv) interaction with other receptors and (v) localization in functionally different membrane domains. The inside-out control of FcRs is an interesting target for novel therapy by therapeutical antibodies as it can potentiate or decrease the functionality of the response to the antibodies depending on the mechanisms of the diseases they are applied for.
Collapse
Affiliation(s)
- Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
32
|
Kritikou E, van der Heijden T, Swart M, van Duijn J, Slütter B, Wezel A, Smeets HJ, Maffia P, Kuiper J, Bot I. Hypercholesterolemia Induces a Mast Cell-CD4 + T Cell Interaction in Atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1531-1539. [PMID: 30683705 DOI: 10.4049/jimmunol.1800648] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
Abstract
Mast cells (MCs) are potent innate immune cells that aggravate atherosclerosis through the release of proinflammatory mediators inside atherosclerotic plaques. Similarly, CD4+ T cells are constituents of the adaptive immune response and accumulate within the plaques following lipid-specific activation by APCs. Recently it has been proposed that these two cell types can interact in a direct manner. However, no indication of such an interaction has been investigated in the context of atherosclerosis. In our study, we aimed to examine whether MCs can act as APCs in atherosclerosis, thereby modulating CD4+ T cell responses. We observed that MCs increased their MHC class II expression under hyperlipidemic conditions both in vivo and in vitro. Furthermore, we showed that MCs can present Ags in vivo via MHC class II molecules. Serum from high-fat diet-fed mice also enhanced the expression of the costimulatory molecule CD86 on cultured MCs, whereas OVA peptide-loaded MCs increased OT-II CD4+ T cell proliferation in vitro. The aortic CD4+ and TH1 cell content of atherosclerotic mice that lack MCs was reduced as compared with their wild-type counterparts. Importantly, we identified MCs that express HLA-DR in advanced human atheromata, indicating that these cells are capable of Ag presentation within human atherosclerotic plaques. Therefore, in this artice, we show that MCs may directly modulate adaptive immunity by acting as APCs in atherosclerosis.
Collapse
Affiliation(s)
- Eva Kritikou
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands;
| | - Thomas van der Heijden
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Maarten Swart
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center Westeinde, 2501 CK The Hague, the Netherlands
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center Westeinde, 2501 CK The Hague, the Netherlands
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; and.,Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| |
Collapse
|
33
|
Mast Cells as Drivers of Disease and Therapeutic Targets. Trends Immunol 2018; 39:151-162. [DOI: 10.1016/j.it.2017.10.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
34
|
Matsuba S, Yabe-Wada T, Takeda K, Sato T, Suyama M, Takai T, Kikuchi T, Nukiwa T, Nakamura A. Identification of Secretory Leukoprotease Inhibitor As an Endogenous Negative Regulator in Allergic Effector Cells. Front Immunol 2017; 8:1538. [PMID: 29181004 PMCID: PMC5693852 DOI: 10.3389/fimmu.2017.01538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Mast cells, basophils, and eosinophils are central effectors in allergic inflammatory disorders. These cells secrete abundant serine proteases as well as chemical mediators and cytokines; however, the expression profiles and functions of their endogenous inhibitors remain elusive. We found that murine secretory leukoprotease inhibitor (SLPI) is expressed in basophils and eosinophils but in not in mast cells. SLPI-deficient (Slpi−/−) basophils produce more cytokines than wild-type mice after IgE stimulation. Although the deletion of SLPI in basophils did not affect the release of chemical mediators upon IgE stimulation, the enzymatic activity of the serine protease tryptase was increased in Slpi−/− basophils. Mice transferred with Slpi−/− basophils were highly sensitive to IgE-mediated chronic allergic inflammation. Eosinophils lacking SLPI showed greater interleukin-6 secretion and invasive activity upon lipopolysaccharide stimulation, and the expression of matrix metalloproteinase-9 by these eosinophils was increased without stimulation. The absence of SLPI increases JNK1 phosphorylation at the steady state, and augments the serine phosphorylation of JNK1-downstream ETS transcriptional factor Elk-1 in eosinophils upon stimulation. Of note, SLPI interacts with a scaffold protein, JNK-interacting protein 3 (JIP3), that constitutively binds to the cytoplasmic domain of toll-like receptor (TLR) 4, suggesting that SLPI controls Elk-1 activation via binding to JIP3 in eosinophils. Mice transferred with Slpi−/− eosinophils showed the exacerbation of chitin-induced allergic inflammation. These findings showed that SLPI is a negative regulator in allergic effector cells and suggested a novel inhibitory role of SLPI in the TLR4 signaling pathways.
Collapse
Affiliation(s)
- Shintaro Matsuba
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, Japan
| | - Toshiki Yabe-Wada
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, Japan
| | - Kazuya Takeda
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihiro Nukiwa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
35
|
Bulfone-Paus S, Nilsson G, Draber P, Blank U, Levi-Schaffer F. Positive and Negative Signals in Mast Cell Activation. Trends Immunol 2017; 38:657-667. [DOI: 10.1016/j.it.2017.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 01/05/2023]
|
36
|
Jiao WH, Cheng BH, Shi GH, Chen GD, Gu BB, Zhou YJ, Hong LL, Yang F, Liu ZQ, Qiu SQ, Liu ZG, Yang PC, Lin HW. Dysivillosins A-D, Unusual Anti-allergic Meroterpenoids from the Marine Sponge Dysidea villosa. Sci Rep 2017; 7:8947. [PMID: 28827521 PMCID: PMC5567184 DOI: 10.1038/s41598-017-04021-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/08/2017] [Indexed: 11/28/2022] Open
Abstract
Four unusual meroterpenoids, dysivillosins A–D (1–4), were isolated from an organic extract of the marine sponge Dysidea villosa collected from the South China Sea. Their planar structures were determined by 1D and 2D NMR and HRESIMS techniques, while the relative and absolute configurations were elucidated by NOESY experiments and comparison between the calculated and experimental ECD spectra. To the best of our knowledge, dysivillosins A–D are the first examples of terpene-polyketide-pyridine hybrid metabolites from the nature. Anti-allergic activity evaluation showed that compounds 1–4 potently inhibited the release of β-hexosaminidase, a marker of degranulation, in a dose-dependent manner with IC50 values of 8.2–19.9 μM. Additionally, the four meroterpenoids could downregulate the production of lipid mediator leukotrienes B4 (LTB4) and pro-inflammatory cytokine interleukin-4 (IL-4) in the antigen-stimulated RBL-2H3 mast cells. Further biological investigations revealed that dysivillosin A (1) could suppress the phosphorylation of Syk and PLCγ1 in IgE/FcɛRI/Syk signaling pathway, which resulted in the inhibition of degranulation and the downregulation of LTB4 and IL-4 production in mast cells.
Collapse
Affiliation(s)
- Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bao-Hui Cheng
- Shenzhen Key Laboratory of ENT, Longgang ENT hospital & Institute of ENT, Shenzhen, 518172, China
| | - Guo-Hua Shi
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Bin-Bin Gu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong-Jun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li-Li Hong
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhi-Qiang Liu
- Shenzhen Key Laboratory of ENT, Longgang ENT hospital & Institute of ENT, Shenzhen, 518172, China
| | - Shu-Qi Qiu
- Shenzhen Key Laboratory of ENT, Longgang ENT hospital & Institute of ENT, Shenzhen, 518172, China
| | - Zhi-Gang Liu
- Shenzhen Key Laboratory of ENT, Longgang ENT hospital & Institute of ENT, Shenzhen, 518172, China.,Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Ping-Chang Yang
- Shenzhen Key Laboratory of ENT, Longgang ENT hospital & Institute of ENT, Shenzhen, 518172, China. .,Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518060, China.
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
37
|
Yin Y, Bai Y, Olivera A, Desai A, Metcalfe DD. An optimized protocol for the generation and functional analysis of human mast cells from CD34 + enriched cell populations. J Immunol Methods 2017. [PMID: 28629733 DOI: 10.1016/j.jim.2017.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The culture of mast cells from human tissues such a cord blood, peripheral blood or bone marrow aspirates has advanced our understanding of human mast cells (huMC) degranulation, mediator production and response to pharmacologic agents. However, existing methods for huMC culture tend to be laborious and expensive. Combining technical approaches from several of these protocols, we designed a simplified and more cost effective approach to the culture of mast cells from human cell populations including peripheral blood and cryopreserved cells from lymphocytapheresis. On average, we reduced by 30-50 fold the amount of culture media compared to our previously reported method, while the total MC number generated by this method (2.46±0.63×106 vs. 2.4±0.28×106, respectively, from 1.0×108 lymphocytapheresis or peripheral blood mononuclear blood cells [PBMCs]) was similar to our previous method (2.36±0.70×106), resulting in significant budgetary savings. In addition, we compared the yield of huMCs with or without IL-3 added to early cultures in the presence of stem cell factor (SCF) and interlukin-6 (IL-6) and found that the total MC number generated, while higher with IL-3 in the culture, did not reach statistical significance, suggesting that IL-3, often recommended in the culture of huMCs, is not absolutely required. We then performed a functional analysis by flow cytometry using standard methods and which maximized the data we could obtain from cultured cells. We believe these approaches will allow more laboratories to culture and examine huMC behavior going forward.
Collapse
Affiliation(s)
- Yuzhi Yin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yun Bai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Pi J, Huang L, Yang F, Jiang J, Jin H, Liu J, Su X, Wu A, Cai H, Yang P, Cai J. Atomic force microscopy study of ionomycin-induced degranulation in RBL-2H3 cells. SCANNING 2016; 38:525-534. [PMID: 26840764 DOI: 10.1002/sca.21291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Mast cell degranulation is the typical anaphylaxis process of mast cells associated with the release of cytokines, eicosanoids and their secretory granules, which play very important roles in the allergic inflammatory response of the human body upon anaphylactogen stimulation. The calcium ionophore ionomycin is widely used as a degranulation induction agent for mast cell degranulation studies. In the present work, ionomycin-induced degranulation of RBL-2H3 basophilic leukemia cell line cells was investigated in vitro by high resolution atomic force microscopy (AFM). Ionomycin, which could increase the intracellular free Ca2+ level and β-Hexosaminidase release, was found to induce the formation of a kind of peculiar vesicles in the cytoplasm area of RBL-2H3 cells. Those vesicles induced by ionomycin would desintegrate to release a larger amount of granules surrounding RBL-2H3 cells by the controlling of F-actin. These results provide the precise morphological information of ionomycin-induced mast cell degranulation at nanoscale, which could benefit our understanding of ionomycin-induced mast cell anaphylaxis model and also validate the applicability of AFM for the detection of allergic inflammatory response in mast cells. SCANNING 38:525-534, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Lufen Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Fen Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jinhuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jianxin Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- Department of Pharmacology, Hunan University of Medicine, Huaihua, China
| | - Xiaohui Su
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Anguo Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Huaihong Cai
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Peihui Yang
- Department of Pharmacology, Hunan University of Medicine, Huaihua, China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Singh J, Shah R, Singh D. Targeting mast cells: Uncovering prolific therapeutic role in myriad diseases. Int Immunopharmacol 2016; 40:362-384. [PMID: 27694038 DOI: 10.1016/j.intimp.2016.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023]
Abstract
The mast cells are integral part of immune system and they have pleiotropic physiological functions in our body. Any type of abnormal stimuli causes the mast cells receptors to spur the otherwise innocuous mast cells to degranulate and release inflammatory mediators like histamine, cytokines, chemokines and prostaglandins. These mediators are involved in various diseases like allergy, asthma, mastocytosis, cardiovascular disorders, etc. Herein, we describe the receptors involved in degranulation of mast cells and are broadly divided into four categories: G-protein coupled receptors, ligand gated ion channels, immunoreceptors and pattern recognition receptors. Although, activation of pattern recognition receptors do not cause mast cell degranulation, but result in cytokines production. Degranulation itself is a complex process involving cascade of events like membrane fusion events and various proteins like VAMP, Syntaxins, DOCK5, SNAP-23, MARCKS. Furthermore, we described these mast cell receptors antagonists or agonists useful in treatment of myriad diseases. Like, omalizumab anti-IgE antibody is highly effective in asthma, allergic disorders treatment and recently mechanistic insight of IgE uncovered; matrix mettaloprotease inhibitor marimistat is under phase III trial for inflammation, muscular dystrophy diseases; ZPL-389 (H4 receptor antagonist) is in Phase 2a Clinical Trial for atopic dermatitis and psoriasis; JNJ3851868 an oral H4 receptor antagonist is in phase II clinical development for asthma, rheumatoid arthritis. Therefore, research is still in inchoate stage to uncover mast cell biology, mast cell receptors, their therapeutic role in myriad diseases.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
40
|
Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids. Sci Rep 2016; 6:31172. [PMID: 27539050 PMCID: PMC4990884 DOI: 10.1038/srep31172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the transfer of biomolecules between cells. To elucidate the intercellular transfer fate of EVs in vivo, we generated a new transgenic (Tg) rat model using green fluorescent protein (GFP)-tagged human CD63. CD63 protein is highly enriched on EV membranes via trafficking into late endosomes and is often used as an EV marker. The new Tg rat line in which human CD63-GFP is under control of the CAG promoter exhibited high expression of GFP in various body tissues. Exogenous human CD63-GFP was detected on EVs isolated from three body fluids of the Tg rats: blood serum, breast milk and amniotic fluid. In vitro culture allowed transfer of serum-derived CD63-GFP EVs into recipient rat embryonic fibroblasts, where the EVs localized in endocytic organelles. These results suggested that this Tg rat model should provide significant information for understanding the intercellular transfer and/or mother-child transfer of EVs in vivo.
Collapse
|
41
|
Halova I, Draber P. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case. Front Cell Dev Biol 2016; 4:43. [PMID: 27243007 PMCID: PMC4861716 DOI: 10.3389/fcell.2016.00043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
42
|
Metcalfe DD, Pawankar R, Ackerman SJ, Akin C, Clayton F, Falcone FH, Gleich GJ, Irani AM, Johansson MW, Klion AD, Leiferman KM, Levi-Schaffer F, Nilsson G, Okayama Y, Prussin C, Schroeder JT, Schwartz LB, Simon HU, Walls AF, Triggiani M. Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organ J 2016; 9:7. [PMID: 26904159 PMCID: PMC4751725 DOI: 10.1186/s40413-016-0094-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
Abstract
Biomarkers of disease activity have come into wide use in the study of mechanisms of human disease and in clinical medicine to both diagnose and predict disease course; as well as to monitor response to therapeutic intervention. Here we review biomarkers of the involvement of mast cells, basophils, and eosinophils in human allergic inflammation. Included are surface markers of cell activation as well as specific products of these inflammatory cells that implicate specific cell types in the inflammatory process and are of possible value in clinical research as well as within decisions made in the practice of allergy-immunology.
Collapse
Affiliation(s)
- Dean D. Metcalfe
- />Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ruby Pawankar
- />Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Steven J. Ackerman
- />Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, IL USA
| | - Cem Akin
- />Harvard Medical School, Brigham and Women’s Hospital, Boston, MA USA
| | - Frederic Clayton
- />Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT USA
| | - Franco H. Falcone
- />The School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Gerald J. Gleich
- />Department of Dermatology, University of Utah, School of Medicine, Salt Lake City, UT USA
| | - Anne-Marie Irani
- />Virginia Commonwealth University, Children’s Hospital of Richmond, Richmond, VA USA
| | - Mats W. Johansson
- />Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI USA
| | - Amy D. Klion
- />Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | | | | | - Gunnar Nilsson
- />Clinical Immunology and Allergy, Department of Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Yoshimichi Okayama
- />Allergy and Immunology Group, Research Institute of Medical Science, Nihon University Graduate School of Medicine, Tokyo, Japan
| | - Calman Prussin
- />Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - John T. Schroeder
- />Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | - Hans-Uwe Simon
- />University of Bern, Institute of Pharmacology, Bern, Switzerland
| | - Andrew F. Walls
- />Southampton General Hospital, Immunopharmacology Group, Southampton, Hampshire UK
| | - Massimo Triggiani
- />Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| |
Collapse
|
43
|
Efergan A, Azouz NP, Klein O, Noguchi K, Rothenberg ME, Fukuda M, Sagi-Eisenberg R. Rab12 Regulates Retrograde Transport of Mast Cell Secretory Granules by Interacting with the RILP-Dynein Complex. THE JOURNAL OF IMMUNOLOGY 2016; 196:1091-101. [PMID: 26740112 DOI: 10.4049/jimmunol.1500731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
Abstract
Secretory granule (SG) transport is a critical step in regulated exocytosis including degranulation of activated mast cells. The latter process results in the release of multiple inflammatory mediators that play key roles in innate immunity, as well as in allergic responses. In this study, we identified the small GTPase Rab12 as a novel regulator of mast cell SG transport, and we provide mechanistic insights into its mode of action. We show that Rab12 is activated in a stimulus-dependent fashion and promotes microtubule-dependent retrograde transport of the SGs in the activated cells. We also show that this minus end transport of the SGs is mediated by the RILP-dynein complex and identify RILP as a novel effector of Rab12. Finally, we show that Rab12 negatively regulates mast cell degranulation. Taken together, our results identify Rab12 as a novel regulator of mast cell responses and disclose for the first time, to our knowledge, the mechanism of retrograde transport of the mast cell SGs.
Collapse
Affiliation(s)
- Adi Efergan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nurit P Azouz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Kenta Noguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; and
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; and
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
44
|
Narantsogt G, Min A, Nam YH, Lee YA, Kim KA, Agvaandaram G, Dorjsuren T, El-Benna J, Shin MH. Activation of MAPK Is Required for ROS Generation and Exocytosis in HMC-1 Cells Induced by Trichomonas vaginalis-Derived Secretory Products. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:597-603. [PMID: 26537039 PMCID: PMC4635837 DOI: 10.3347/kjp.2015.53.5.597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/05/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023]
Abstract
Trichomonas vaginalis is a flagellated protozoan parasite that causes vaginitis and cervicitis in women and asymptomatic urethritis and prostatitis in men. Mast cells have been reported to be predominant in vaginal smears and vaginal walls of patients infected with T. vaginalis. Mitogen-activated protein kinase (MAPK), activated by various stimuli, have been shown to regulate the transcriptional activity of various cytokine genes in mast cells. In this study, we investigated whether MAPK is involved in ROS generation and exocytotic degranulation in HMC-1 cells induced by T. vaginalis-derived secretory products (TvSP). We found that TvSP induces the activation of MAPK and NADPH oxidase in HMC-1 cells. Stimulation with TvSP induced phosphorylation of MAPK and p47phox in HMC-1 cells. Stimulation with TvSP also induced up-regulation of CD63, a marker for exocytosis, along the surfaces of human mast cells. Pretreatment with MAPK inhibitors strongly inhibited TvSP-induced ROS generation and exocytotic degranulation. Finally, our results suggest that TvSP induces intracellular ROS generation and exocytotic degranulation in HMC-1 via MAPK signaling.
Collapse
Affiliation(s)
- Giimaa Narantsogt
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.,Department of Basic Science, School of Pharmacy and Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Arim Min
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young Hee Nam
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young Ah Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Gurbadam Agvaandaram
- Department of Basic Science, School of Pharmacy and Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Temuulen Dorjsuren
- Department of Basic Science, School of Pharmacy and Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Jamel El-Benna
- DR-CNRS Centre de Recherche Biomedical, INSERM U773, Universite Paris & Denis Diderot, Paris, France
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
45
|
Abdala-Valencia H, Bryce PJ, Schleimer RP, Wechsler JB, Loffredo LF, Cook-Mills JM, Hsu CL, Berdnikovs S. Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1377-87. [PMID: 26136426 DOI: 10.4049/jimmunol.1302874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/02/2015] [Indexed: 11/19/2022]
Abstract
Mast cells are critical in the pathogenesis of allergic disease due to the release of preformed and newly synthesized mediators, yet the mechanisms controlling mast cell activation are not well understood. Members of the tetraspanin family are recently emerging as modulators of FcεRI-mediated mast cell activation; however, mechanistic understanding of their function is currently lacking. The tetraspanin CD151 is a poorly understood member of this family and is specifically induced on mouse and human mast cells upon FcεRI aggregation but its functional effects are unknown. In this study, we show that CD151 deficiency significantly exacerbates the IgE-mediated late phase inflammation in a murine model of passive cutaneous anaphylaxis. Ex vivo, FcεRI stimulation of bone marrow-derived mast cells from CD151(-/-) mice resulted in significantly enhanced expression of proinflammatory cytokines IL-4, IL-13, and TNF-α compared with wild-type controls. However, FcεRI-induced mast cell degranulation was unaffected. At the molecular signaling level, CD151 selectively regulated IgE-induced activation of ERK1/2 and PI3K, associated with cytokine production, but had no effect on the phospholipase Cγ1 signaling, associated with degranulation. Collectively, our data indicate that CD151 exerts negative regulation over IgE-induced late phase responses and cytokine production in mast cells.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Paul J Bryce
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Joshua B Wechsler
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lucas F Loffredo
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Joan M Cook-Mills
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Chia-Lin Hsu
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
46
|
de Winde CM, Zuidscherwoude M, Vasaturo A, van der Schaaf A, Figdor CG, van Spriel AB. Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs. Histochem Cell Biol 2015; 144:133-46. [PMID: 25952155 PMCID: PMC4522275 DOI: 10.1007/s00418-015-1326-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Multispectral imaging is a novel microscopy technique that combines imaging with spectroscopy to obtain both quantitative expression data and tissue distribution of different cellular markers. Tetraspanins CD37 and CD53 are four-transmembrane proteins involved in cellular and humoral immune responses. However, comprehensive immunohistochemical analyses of CD37 and CD53 in human lymphoid organs have not been performed so far. We investigated CD37 and CD53 protein expression on primary human immune cell subsets in blood and in primary and secondary lymphoid organs. Both tetraspanins were prominently expressed on antigen-presenting cells, with highest expression of CD37 on B lymphocytes. Analysis of subcellular distribution showed presence of both tetraspanins on the plasma membrane and on endosomes. In addition, CD53 was also present on lysosomes. Quantitative analysis of expression and localization of CD37 and CD53 on lymphocytes within lymphoid tissues by multispectral imaging revealed high expression of both tetraspanins on CD20+ cells in B cell follicles in human spleen and appendix. CD3+ T cells within splenic T cell zones expressed lower levels of CD37 and CD53 compared to T cells in the red pulp of human spleen. B cells in human bone marrow highly expressed CD37, whereas the expression of CD53 was low. In conclusion, we demonstrate differential expression of CD37 and CD53 on primary human immune cells, their subcellular localization and their quantitative distribution in human lymphoid organs. This study provides a solid basis for better insight into the function of tetraspanins in the human immune response.
Collapse
Affiliation(s)
- Charlotte M. de Winde
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Angela Vasaturo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Alie van der Schaaf
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| | - Annemiek B. van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein-Zuid 26, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
47
|
Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nat Commun 2015; 6:6119. [PMID: 25648980 DOI: 10.1038/ncomms7119] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/17/2014] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptor 7 (TLR7) senses microbial-derived RNA but can also potentially respond to self-derived RNA. To prevent autoimmune responses, TLR7 is thought to localize in endolysosomes. Contrary to this view, we show here that TLR7 is present on the cell surface of immune cells and that TLR7 responses can be inhibited by an anti-TLR7 antibody. The anti-TLR7 antibody is internalized with TLR7 and accumulates in endolysosomes as an immune complex. TLR7 responses in dendritic cells, macrophages and B cells are all inhibited by the anti-TLR7 antibody. Furthermore, the anti-TLR7 antibody inhibits in vivo cytokine production induced by a TLR7 ligand. Spontaneous TLR7 activation in Unc93b1(D34A/D34A) mice causes lethal inflammation. Progressive inflammation such as splenomegaly, thrombocytopenia and chronic active hepatitis are ameliorated by anti-TLR7 antibody treatment. These results demonstrate that cell surface TLR7 is a promising target for therapeutic intervention in autoimmune diseases.
Collapse
|
48
|
Barbosa MD, Smith DD. Channeling postmarketing patient data into pharmaceutical regulatory systems. Drug Discov Today 2014; 19:1897-912. [DOI: 10.1016/j.drudis.2014.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/24/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022]
|
49
|
Nigorikawa K, Hazeki K, Guo Y, Hazeki O. Involvement of class II phosphoinositide 3-kinase α-isoform in antigen-induced degranulation in RBL-2H3 cells. PLoS One 2014; 9:e111698. [PMID: 25357130 PMCID: PMC4214793 DOI: 10.1371/journal.pone.0111698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022] Open
Abstract
In this study, we present findings that suggest that PI3K-C2α, a member of the class II phosphoinositide 3-kinase (PI3K) subfamily, regulates the process of FcεRI-triggered degranulation. RBL-2H3 cells were transfected with shRNA targeting PI3K-C2α. The knockdown impaired the FcεRI-induced release of a lysosome enzyme, β-hexosaminidase, without affecting the intracellular Ca2+ mobilization. The release of mRFP-tagged neuropeptide-Y, a reporter for the regulated exocytosis, was also decreased in the PI3K-C2α-deficient cells. The release was increased significantly by the expression of the siRNA-resistant version of PI3K-C2α. In wild-type cells, FcεRI stimulation induced the formation of large vesicles, which were associated with CD63, a marker protein of secretory granules. On the vesicles, the existence of PI3K-C2α and PtdIns(3,4)P2 was observed. These results indicated that PI3K-C2α and its product PtdIns(3,4)P2 may play roles in the secretory process.
Collapse
Affiliation(s)
- Kiyomi Nigorikawa
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Kaoru Hazeki
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ying Guo
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Osamu Hazeki
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
50
|
|