1
|
Lu C, Liu S, Gao M, Rubio J, Chatham WW, Hsu HC, Mountz JD. IL-4 alters TLR7-induced B cell developmental program in lupus. Clin Immunol 2025; 275:110472. [PMID: 40068727 DOI: 10.1016/j.clim.2025.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
TLR7 stimulation of T-bet+CD11c+IgD-CD27- double-negative 2 (DN2) B cells is crucial for autoantibody formation in systemic lupus erythematosus (SLE). Here, we show that administration of IL-4 for five weeks significantly reduced autoantibodies and T-bet+CD11c+ IgD- B cells in autoimmune BXD2 mice treated with R848, a TLR7 agonist. Single-cell transcriptomics analysis indicates that following two doses of in vivo administration, IL-4 redirected development toward follicular, CD23+ germinal center (GC), and DN4-like memory B cells compared to treatment with R848 alone. While IL-4 enhanced genes related to antigen processing and presentation, it also suppressed R848-induced Ki67+ GC B cells in vivo. In vitro stimulation of SLE patient B cells with a DN2 polarizing cocktail revealed that IL-4 reduced the expression of interferon response and DN2 signature genes, promoting a population of CD23+T-bet- DN4 B population. These findings suggest that developmental reprogramming by IL-4 counteracts TLR7-promoted DN2 and GC B cells in SLE.
Collapse
Affiliation(s)
- Changming Lu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Clinical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jose Rubio
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - W Winn Chatham
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Medicine Service, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Medicine Service, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
2
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Yu S, Xie J, Li PH, Chen Y, Tang IY, Lin X. Therapeutic potential of interleukin-17 neutralization in a novel humanized mouse model of Sjögren's disease. Pharmacol Res 2024; 210:107524. [PMID: 39617280 DOI: 10.1016/j.phrs.2024.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Sjögren's disease (SjD) is a chronic autoimmune disease, in which the immune system targets exocrine glands and leads to dryness symptoms. There is an increasing need to develop novel therapeutic approach as the treatment plan has not been changed in the past decade. However, findings in mouse model may not be directly applied in patients, given the substantial differences of immune system between human and mice. In the present study, using antigens derived from human salivary A-253 cells, we established experimental Sjögren's syndrome (ESS) in mice with human immune system (HIS). HIS-ESS mice exhibited key features of human disease, including salivary hypofunction, increased serum levels of autoantibodies and tissue destruction in the salivary glands. Phenotypic analysis revealed enhanced effector B and T cell subsets, including Th1, Th17 and T follicular helper (Tfh) cells in HIS-ESS mice, while multiplex imaging analysis suggested enlarged B cell follicles and expanded memory B cells. IL-17 neutralization therapy significantly ameliorated disease pathology at both acute and chronic stages, in which B cells were mainly affected, to the less extent Th1 and Tfh cells in HIS-ESS mice. Together, HIS-ESS mouse model highly recapitulated SjD features and immunopathogenesis, which may serve as a useful tool in drug screening and pre-clinical studies.
Collapse
Affiliation(s)
- Sulan Yu
- School of Chinese Medicine, the University of Hong Kong, Hong Kong
| | - Jing Xie
- School of Chinese Medicine, the University of Hong Kong, Hong Kong
| | - Philip Hei Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Yacun Chen
- School of Chinese Medicine, the University of Hong Kong, Hong Kong
| | - Iris Yanki Tang
- School of Chinese Medicine, the University of Hong Kong, Hong Kong
| | - Xiang Lin
- School of Chinese Medicine, the University of Hong Kong, Hong Kong; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Edner NM, Houghton LP, Ntavli E, Rees-Spear C, Petersone L, Wang C, Fabri A, Elfaki Y, Rueda Gonzalez A, Brown R, Kisand K, Peterson P, McCoy LE, Walker LSK. TIGIT +Tfh show poor B-helper function and negatively correlate with SARS-CoV-2 antibody titre. Front Immunol 2024; 15:1395684. [PMID: 38868776 PMCID: PMC11167088 DOI: 10.3389/fimmu.2024.1395684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Circulating follicular helper T cells (cTfh) can show phenotypic alterations in disease settings, including in the context of tissue-damaging autoimmune or anti-viral responses. Using severe COVID-19 as a paradigm of immune dysregulation, we have explored how cTfh phenotype relates to the titre and quality of antibody responses. Severe disease was associated with higher titres of neutralising S1 IgG and evidence of increased T cell activation. ICOS, CD38 and HLA-DR expressing cTfh correlated with serum S1 IgG titres and neutralising strength, and interestingly expression of TIGIT by cTfh showed a negative correlation. TIGIT+cTfh expressed increased IFNγ and decreased IL-17 compared to their TIGIT-cTfh counterparts, and showed reduced capacity to help B cells in vitro. Additionally, TIGIT+cTfh expressed lower levels of CD40L than TIGIT-cTfh, providing a potential explanation for their poor B-helper function. These data identify phenotypic changes in polyclonal cTfh that correlate with specific antibody responses and reveal TIGIT as a marker of cTfh with altered function.
Collapse
Affiliation(s)
- Natalie M. Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Luke P. Houghton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Elisavet Ntavli
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chunjing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Astrid Fabri
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Yassin Elfaki
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Andrea Rueda Gonzalez
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Laura E. McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
5
|
Sullivan KA, Chapman C, Lu L, Ashbrook DG, Wang Y, Alduraibi FK, Lu C, Sun CW, Liu S, Williams RW, Mountz JD, Hsu HC. Increased development of T-bet +CD11c + B cells predisposes to lupus in females: Analysis in BXD2 mouse and genetic crosses. Clin Immunol 2023; 257:109842. [PMID: 37981105 PMCID: PMC10799694 DOI: 10.1016/j.clim.2023.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Cardinal features of lupus include elevated B cell activation and autoantibody production with a female sex preponderance. We quantified interactions of sex and genetic variation on the development of autoimmune B-cell phenotypes and autoantibodies in the BXD2 murine model of lupus using a cohort of backcrossed progeny (BXD2 x C57BL/6J) x BXD2. Sex was the key factor leading to increased total IgG, IgG2b, and autoantibodies. The percentage of T-bet+CD11c+ IgD+ activated naive B cells (aNAV) was higher in females and was associated with increased T-bet+CD11c+ IgD- age-related B cells, Fas+GL7+ germinal center B cells, Cxcr5-Icos+ peripheral T-helper cells, and Cxcr5+Icos+ follicular T-helper cells. IFN-β was elevated in females. Variation in aNAV cells was mapped to Chr 7 in a locus that shows significant interactions between the female sex and heterozygous B/D variant. Our results suggest that activation of naive B cells forms the basis for the female-predominant development of autoantibodies in lupus-susceptible BXD2 mice.
Collapse
Affiliation(s)
- Kathryn A Sullivan
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey Chapman
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yong Wang
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fatima K Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Changming Lu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chao-Wang Sun
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shanrun Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Mountz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA
| | - Hui-Chen Hsu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, the University of Alabama at Birmingham, Birmingham, AL, USA; Research, Birmingham Veterans Affairs Health Care System, Birmingham, AL, USA.
| |
Collapse
|
6
|
Kastenschmidt JM, Sureshchandra S, Wagar LE. Leveraging human immune organoids for rational vaccine design. Trends Immunol 2023; 44:938-944. [PMID: 37940395 DOI: 10.1016/j.it.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Current influenza A and B virus (IABV) vaccines provide suboptimal protection and efforts are underway to develop a universal IABV vaccine. Blood neutralizing antibodies are the current gold standard for protection, but many processes that regulate human IABV-specific immunity occur in mucosal and lymphoid tissues. We need an improved mechanistic understanding of how immune cells respond within these tissues to advance our current (slow and expensive) vaccine testing model. We posit that advanced in vitro models of human adaptive immunity can bridge some of the gaps between vaccine design, animal models, and human clinical trials. Here, we highlight how they can be integrated into current practices and play a role in reverse translating the defined features of protective vaccines to rationally design new candidates.
Collapse
Affiliation(s)
- Jenna M Kastenschmidt
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA, 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA, 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA, 92617, USA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA, 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA, 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA, 92617, USA
| | - Lisa E Wagar
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA, 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA, 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA, 92617, USA.
| |
Collapse
|
7
|
Battaglia M, Sunshine AC, Luo W, Jin R, Stith A, Lindemann M, Miller LS, Sinha S, Wohlfert E, Garrett-Sinha LA. Ets1 and IL17RA cooperate to regulate autoimmune responses and skin immunity to Staphylococcus aureus. Front Immunol 2023; 14:1208200. [PMID: 37691956 PMCID: PMC10486983 DOI: 10.3389/fimmu.2023.1208200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alex C. Sunshine
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Wei Luo
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Richard Jin
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Alifa Stith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | | | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Shibata K, Motozono C, Nagae M, Shimizu T, Ishikawa E, Motooka D, Okuzaki D, Izumi Y, Takahashi M, Fujimori N, Wing JB, Hayano T, Asai Y, Bamba T, Ogawa Y, Furutani-Seiki M, Shirai M, Yamasaki S. Symbiotic bacteria-dependent expansion of MR1-reactive T cells causes autoimmunity in the absence of Bcl11b. Nat Commun 2022; 13:6948. [PMID: 36376329 PMCID: PMC9663695 DOI: 10.1038/s41467-022-34802-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
MHC class I-related protein 1 (MR1) is a metabolite-presenting molecule that restricts MR1-reactive T cells including mucosal-associated invariant T (MAIT) cells. In contrast to MAIT cells, the function of other MR1-restricted T cell subsets is largely unknown. Here, we report that mice in which a T cell-specific transcription factor, B-cell lymphoma/leukemia 11B (Bcl11b), was ablated in immature thymocytes (Bcl11b∆iThy mice) develop chronic inflammation. Bcl11b∆iThy mice lack conventional T cells and MAIT cells, whereas CD4+IL-18R+ αβ T cells expressing skewed Traj33 (Jα33)+ T cell receptors (TCR) accumulate in the periphery, which are necessary and sufficient for the pathogenesis. The disorders observed in Bcl11b∆iThy mice are ameliorated by MR1-deficiency, transfer of conventional T cells, or germ-free conditions. We further show the crystal structure of the TCR expressed by Traj33+ T cells expanded in Bcl11b∆iThy mice. Overall, we establish that MR1-reactive T cells have pathogenic potential.
Collapse
Affiliation(s)
- Kensuke Shibata
- grid.268397.10000 0001 0660 7960Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan ,grid.177174.30000 0001 2242 4849Department of Ophthalmology, Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan ,grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Chihiro Motozono
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.274841.c0000 0001 0660 6749Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0871 Japan
| | - Masamichi Nagae
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Takashi Shimizu
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Eri Ishikawa
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Daisuke Motooka
- grid.136593.b0000 0004 0373 3971Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971Single Cell Genomics, Human Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Yoshihiro Izumi
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Masatomo Takahashi
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Nao Fujimori
- grid.177174.30000 0001 2242 4849Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - James B. Wing
- grid.136593.b0000 0004 0373 3971Laboratory of Human Immunology (Single Cell Immunology), World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Takahide Hayano
- grid.268397.10000 0001 0660 7960Department of Systems Bioinformatics, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Yoshiyuki Asai
- grid.268397.10000 0001 0660 7960Department of Systems Bioinformatics, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Takeshi Bamba
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yoshihiro Ogawa
- grid.177174.30000 0001 2242 4849Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan ,grid.419082.60000 0004 1754 9200Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Tokyo, 100-0004 Japan ,grid.27476.300000 0001 0943 978XDepartment of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601 Japan
| | - Makoto Furutani-Seiki
- grid.268397.10000 0001 0660 7960Systems Biochemistry in Pathology and Regeneration, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Mutsunori Shirai
- grid.268397.10000 0001 0660 7960Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Sho Yamasaki
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.177174.30000 0001 2242 4849Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan ,grid.136304.30000 0004 0370 1101Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673 Japan
| |
Collapse
|
9
|
Grydziuszko E, Phelps A, Bruton K, Jordana M, Koenig JFE. Heterogeneity, subsets, and plasticity of T follicular helper cells in allergy. J Allergy Clin Immunol 2022; 150:990-998. [PMID: 36070826 DOI: 10.1016/j.jaci.2022.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Antibody responses are critical for protection against pathogens. However, diseases such as allergic rhinitis or food allergy result from aberrant production of IgE antibodies against otherwise innocuous environmental antigens. The production of allergen-specific IgE requires interaction between B cells and CD4+ T cells, and a granular understanding of these interactions is required to develop novel therapies for allergic disease. CD4+ T cells are exceptionally heterogeneous in their transcriptional, epigenetic, and proteomic profiles, which poses significant challenges when attempting to define subsets relevant to the study of allergy among a continuum of cells. Defining subsets such as the T follicular helper (TFH) cell cluster provides a shorthand to understand the functions of CD4+ T cells in antibody production and supports mechanistic experimentation for hypothesis-driven discovery. With a focus on allergic disease, this Rostrum article broadly discusses heterogeneity among CD4+ T cells and provides a rationale for subdividing TFH cells into both functional and cytokine-skewed subsets. Further, it highlights the plasticity demonstrated by TFH cells during the primary response and after recall, and it explores the possibility of harnessing this plasticity to reprogram immunity for therapeutic benefit in allergic disease.
Collapse
Affiliation(s)
- Emily Grydziuszko
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Joshua F E Koenig
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Tian M, Ma Y, Li T, Wu N, Li J, Jia H, Yan M, Wang W, Bian H, Tan X, Qi J. Functions of regulators of G protein signaling 16 in immunity, inflammation, and other diseases. Front Mol Biosci 2022; 9:962321. [PMID: 36120550 PMCID: PMC9478547 DOI: 10.3389/fmolb.2022.962321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) act as guanosine triphosphatase activating proteins to accelerate guanosine triphosphate hydrolysis of the G protein α subunit, leading to the termination of the G protein-coupled receptor (GPCR) downstream signaling pathway. RGS16, which is expressed in a number of cells and tissues, belongs to one of the small B/R4 subfamilies of RGS proteins and consists of a conserved RGS structural domain with short, disordered amino- and carboxy-terminal extensions and an α-helix that classically binds and de-activates heterotrimeric G proteins. However, with the deepening of research, it has been revealed that RGS16 protein not only regulates the classical GPCR pathway, but also affects immune, inflammatory, tumor and metabolic processes through other signaling pathways including the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Ras homolog family member A and stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 pathways. Additionally, the RGS16 protein may be involved in the Hepatitis B Virus -induced inflammatory response. Therefore, given the continuous expansion of knowledge regarding its role and mechanism, the structure, characteristics, regulatory mechanisms and known functions of the small RGS proteinRGS16 are reviewed in this paper to prepare for diagnosis, treatment, and prognostic evaluation of different diseases such as inflammation, tumor, and metabolic disorders and to better study its function in other diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Ma
- Zibo Central Hospital, Zibo, China
| | - Tao Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqi Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenwen Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| |
Collapse
|
11
|
T Cell-Intrinsic Interleukin 17 Receptor A Signaling Supports the Establishment of Chronic Murine Gammaherpesvirus 68 Infection. J Virol 2022; 96:e0063922. [PMID: 35758659 PMCID: PMC9327704 DOI: 10.1128/jvi.00639-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gammaherpesviruses, such as human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), are species-specific, ubiquitous pathogens that are associated with multiple cancers, including B cell lymphomas. These viruses have a natural tropism for B cells and usurp B cell differentiation to drive a unique and robust polyclonal germinal center response to establish a long-term latent reservoir in memory B cells. The robust polyclonal germinal center response driven by gammaherpesvirus infection increases the risk for B cell transformation. Unsurprisingly, many gammaherpesvirus cancers are derived from germinal center or post-germinal center B cells. The viral and host factors that influence the gammaherpesvirus-driven germinal center response are not clearly defined. We previously showed that host interleukin 17 receptor A (IL-17RA) signaling promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we found that T cell-intrinsic IL-17RA signaling recapitulates some proviral aspects of global IL-17RA signaling during MHV68 infection. Specifically, we found that T cell-intrinsic IL-17RA signaling supports the MHV68-driven germinal center response, the establishment of latency in the spleen, and viral reactivation in the spleen and peritoneal cavity. Our study unveils an unexpected finding where the T cell-specific IL-17RA signaling supports the establishment of a latent reservoir of a B cell-tropic gammaherpesvirus. IMPORTANCE Gammaherpesviruses, such as human EBV, establish lifelong infection in >95% of adults and are associated with B cell lymphomas. Gammaherpesviruses usurp the germinal center response to establish latent infection, and the germinal center B cells are thought to be the target of viral transformation. We previously found that global expression of IL-17RA promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we showed that T cell-intrinsic IL-17RA signaling is necessary to promote the MHV68-driven germinal center response by supporting CD4+ T follicular helper cell expansion. We also found that T cell-intrinsic IL-17RA signaling contributes to but is not solely responsible for the systemic proviral role of IL-17RA signaling, highlighting the multifaceted function of IL-17RA signaling during MHV68 infection.
Collapse
|
12
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Wu D, Poholek CH, Majumder S, Liu Q, Revu SK, Mohib K, Rothstein DM, McGeachy MJ. IL-17-dependent fibroblastic reticular cell training boosts tissue protective mucosal immunity through IL-10-producing B cells. Sci Immunol 2021; 6:eaao3669. [PMID: 34919443 PMCID: PMC8818277 DOI: 10.1126/sciimmunol.aao3669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prior experience of pathogen-associated stimuli reduces morbidity and mortality to newly encountered infections through innate immune training, which can be enhanced by childhood vaccination. Fibroblastic reticular cells (FRCs) are stromal cells in lymphoid organs that support lymphocyte localization and survival and modulate adaptive immune responses. IL-17 signaling is important for FRC metabolism and proliferation during inflammatory responses. Here, we show that FRC-intrinsic IL-17 signaling was required for protective antibody-mediated immunity to the gut bacterial pathogen Citrobacter rodentium. We asked whether prior activation of FRC through nonspecific inflammatory “training” of the gut would alter subsequent immune response to C. rodentium. Inflammatory training increased the number of activated FRC in mesenteric LN (MLN) and enhanced the antibody response to C. rodentium in an IL-17–dependent manner. FRC demonstrated cardinal features of innate immune training, including increased epigenetic markers of activation and increased metabolic response to infection. Enhanced responses were still evident 6 weeks after training. The kinetics of bacterial infection were not changed by inflammatory training, but colon inflammation was paradoxically reduced. Mechanistically, IL-10 production by activated B cells was required for colon protective effects of inflammatory training. Enhancing tissue protective B cell responses thus led to increased production of antibody and IL-10, allowing clearance of infection with reduced tissue inflammation. These data identify a new mode of immune training through FRC to modulate future adaptive responses and better preserve host health.
Collapse
Affiliation(s)
- Dongwen Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Catherine H Poholek
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
- Division of Pediatric Rheumatology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh PA, USA
| | - Saikat Majumder
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Qixing Liu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
- School of Medicine, Tsinghua University Beijing, China
| | - Shankar K Revu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh PA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh PA, USA
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
14
|
Hong H, Alduraibi F, Ponder D, Duck WL, Morrow CD, Foote JB, Schoeb TR, Fatima H, Elson CO, Hsu HC, Mountz JD. Host genetics but not commensal microbiota determines the initial development of systemic autoimmune disease in BXD2 mice. Arthritis Rheumatol 2021; 74:634-640. [PMID: 34725967 DOI: 10.1002/art.42008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To determine the extent of gut microbiome in influencing systemic autoimmunity, we generated germ-free (GF) BXD2 lupus mice, which otherwise develop spontaneous germinal centers (GCs) and high titers of serum autoantibodies. METHODS The GF status was confirmed by gut bacterial culture. The autoimmune phenotypes in 6- and 12-mo-old gnotobiotic GF BXD2 mice and specific pathogen-free (SPF) BXD2 mice were compared. Serum levels of autoantibody were measured using ELISA. Histologic sections of kidney and joints were evaluated. Flow cytometry was used to analyze GC and age-associated B cells (ABCs). CD4+ T cells were analyzed for PD-1+ ICOS+ activated T cells, follicular T-regulatory cells (Tfr, Foxp3+ CD25+ PD-1+ CXCR5+ ), and PMA/ionomycin stimulated IL-17A+ or interferon-gamma (IFN-&ip.gamma;)+ PD-1+ ICOS+ T cells. RESULTS At 6-mo of age, the GF status did not affect splenomegaly, GC B cells, ABCs or serum autoantibodies except for IgG anti-histone. GF BXD2 mice exhibited a significantly higher percent of Tfr cells, compared to the SPF counterpart. At 12-mo-old, however, there were significantly diminished IgG autoantibodies and a lower percent of GC B cells and ABCs in GF BXD2 mice. Following stimulation, PD-1+ ICOS+ CD4 T cells expressed significantly lower IL-17A but not IFN-&ip.gamma; in GF BXD2 mice, compared to SPF mice. Both SPF and GF BXD2 mice developed equivalent renal and joint disease with no significant differences in severity. CONCLUSION Our results suggest a model in which genetics play a dominant role in determining the initial development of autoimmunity. In contrast, gut microbiomes may regulate the persistence of certain aspects of systemic autoimmunity.
Collapse
Affiliation(s)
- Huixian Hong
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham.,Department of Cell, Developmental, and Integrative Biology, the University of Alabama at Birmingham
| | - Fatima Alduraibi
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham
| | - David Ponder
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham
| | - Wayne L Duck
- Division of Gastroenterology and Hepatology, Department of Medicine, the University of Alabama at Birmingham
| | - Casey D Morrow
- Department of Cell, Developmental, and Integrative Biology, the University of Alabama at Birmingham
| | - Jeremy B Foote
- Department of Microbiology, the University of Alabama at Birmingham
| | - Trenton R Schoeb
- Department of Genetics, Animal Resources Program, the University of Alabama at Birmingham
| | - Huma Fatima
- Department of Pathology, the University of Alabama at Birmingham
| | - Charles O Elson
- Division of Gastroenterology and Hepatology, Department of Medicine, the University of Alabama at Birmingham
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, the University of Alabama at Birmingham.,Birmingham VA Medical center
| |
Collapse
|
15
|
Zhu M, Yang H, Lu Y, Yang H, Tang Y, Li L, Zhu Y, Yuan J. Cardiac ectopic lymphoid follicle formation in viral myocarditis involving the regulation of podoplanin in Th17 cell differentiation. FASEB J 2021; 35:e21975. [PMID: 34618980 DOI: 10.1096/fj.202101050rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022]
Abstract
Autoimmunity contributes to the pathogenesis of viral myocarditis (VMC), which is characterized by the production of anti-heart autoantibodies (AHA) from lymphoid follicles. Recently, the formation of ectopic lymphoid follicles (ELFs) was reported in heart grafts. However, the existence and role of ELFs in myocardial tissues of VMC remain unclear. This study aimed to explore whether and how cardiac ELFs with germinal centers (GCs) could be generated during the development of VMC. We identified the existence of ELFs and explored the underlying mechanism. In a BALB/c mouse model of VMC, the dynamic myocardial infiltrations of lymphocytic aggregates and expressions of associated lymphorganogenic factors were investigated, accompanied by the detection of the production and location of myocardial AHA. The data indicated ELFs formation in myocardial tissues of VMC, and the number of ELFs was in accordance with the severity of VMC. Moreover, the functional ELFs with GCs were capable of facilitating the production of local AHA. Blocking IL-17 or podoplanin (PDPN) could inhibit cardiac ELFs generation, perhaps due to the negative regulation of PDPN neutralization in Th17 cell proliferation and differentiation. The presence of cardiac ELFs and AHA might offer new opportunities for stratification and early identification of VMC patients.
Collapse
Affiliation(s)
- Mingxin Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmin Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohan Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoxi Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
DiToro D, Basu R. Emerging Complexity in CD4 +T Lineage Programming and Its Implications in Colorectal Cancer. Front Immunol 2021; 12:694833. [PMID: 34489941 PMCID: PMC8417887 DOI: 10.3389/fimmu.2021.694833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The intestinal immune system has the difficult task of protecting a large environmentally exposed single layer of epithelium from pathogens without allowing inappropriate inflammatory responses. Unmitigated inflammation drives multiple pathologies, including the development of colorectal cancer. CD4+T cells mediate both the suppression and promotion of intestinal inflammation. They comprise an array of phenotypically and functionally distinct subsets tailored to a specific inflammatory context. This diversity of form and function is relevant to a broad array of pathologic and physiologic processes. The heterogeneity underlying both effector and regulatory T helper cell responses to colorectal cancer, and its impact on disease progression, is reviewed herein. Importantly, T cell responses are dynamic; they exhibit both quantitative and qualitative changes as the inflammatory context shifts. Recent evidence outlines the role of CD4+T cells in colorectal cancer responses and suggests possible mechanisms driving qualitative alterations in anti-cancer immune responses. The heterogeneity of T cells in colorectal cancer, as well as the manner and mechanism by which they change, offer an abundance of opportunities for more specific, and likely effective, interventional strategies.
Collapse
Affiliation(s)
- Daniel DiToro
- Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Ragon Institute of MGH MIT and Harvard, Cambridge, MA, United States
| | - Rajatava Basu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
17
|
Paquissi FC, Abensur H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne) 2021; 8:654912. [PMID: 34540858 PMCID: PMC8446428 DOI: 10.3389/fmed.2021.654912] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and hyperreactivity of the immune response at various levels, including hyperactivation of effector cell subtypes, autoantibodies production, immune complex formation, and deposition in tissues. The consequences of hyperreactivity to the self are systemic and local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of the most worrying manifestations of SLE, and most patients have this involvement at some point in the course of the disease. Among the effector cells involved, the Th17, a subtype of T helper cells (CD4+), has shown significant hyperactivation and participates in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main cytokines with receptors expressed in most renal cells, being involved in the activation of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include changes of the cytoskeleton with increased motility, decreased expression of health proteins, increased oxidative stress, and activation of the inflammasome and caspases resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis promotes the activation of profibrotic pathways such as increased TGF-β expression and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune cells, and the synthesis of growth factors and chemokines, which together result in granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The purpose of this work is to present the prognostic and immunopathologic role of the Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration as a potential immunotherapeutic target in this complication.
Collapse
Affiliation(s)
- Feliciano Chanana Paquissi
- Department of Medicine, Clínica Girassol, Luanda, Angola
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Abensur
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Eisenbarth SC, Baumjohann D, Craft J, Fazilleau N, Ma CS, Tangye SG, Vinuesa CG, Linterman MA. CD4 + T cells that help B cells - a proposal for uniform nomenclature. Trends Immunol 2021; 42:658-669. [PMID: 34244056 DOI: 10.1016/j.it.2021.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
T follicular helper (Tfh) cells cognately guide differentiation of antigen-primed B cells in secondary lymphoid tissues. 'Tfh-like' populations not expressing the canonical Tfh cell transcription factor BCL6 have also been described, which can aid particular aspects of B cell differentiation. Tfh and Tfh-like cells are essential for protective and pathological humoral immunity. These CD4+ T cells that help B cells are polarized to produce diverse combinations of cytokines and chemokine receptors and can be grouped into distinct subsets that promote antibodies of different isotype, affinity, and duration, according to the nature of immune challenge. However, unified nomenclature to describe the distinct functional Tfh and Tfh-like cells does not exist. While explicitly acknowledging cellular plasticity, we propose categorizing these cell states into three groups based on phenotype and function, paired with their anatomical site of action.
Collapse
Affiliation(s)
- Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 0652, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 0652, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT 0652, USA.
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 0652, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT 0652, USA
| | - Nicolas Fazilleau
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, 31024 Toulouse, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Carola G Vinuesa
- John Curtin School for Medical Research, Australian National University, Acton 2601, ACT, Australia
| | - Michelle A Linterman
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
19
|
Olatunde AC, Hale JS, Lamb TJ. Cytokine-skewed Tfh cells: functional consequences for B cell help. Trends Immunol 2021; 42:536-550. [PMID: 33972167 PMCID: PMC9107098 DOI: 10.1016/j.it.2021.04.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
CD4+ follicular helper T (Tfh) cells play a vital role in providing help for B cells undergoing selection and differentiation into activated antibody-secreting cells in mammalian germinal centers (GCs). Increasing evidence suggests that Tfh cells are a heterogeneous population that generates cytokine-skewed immune responses - a reflection of the microenvironment during differentiation. This has important ramifications for Tfh-mediated B cell help. Because Tfh subsets can have opposing effects on GC B cell responses, we discuss current findings regarding the differentiation and functions of cytokine-skewed Tfh cells in modulating GC B cell differentiation. Antibodies are important weapons against infectious diseases but can also be pathogenic mediators in some autoimmune conditions. Since cytokine-skewed Tfh cells can influence the magnitude and quality of the humoral response, we address the roles of cytokine-skewed Tfh cells in disease.
Collapse
Affiliation(s)
- Adesola C Olatunde
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - J Scott Hale
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA
| | - Tracey J Lamb
- Department of Pathology, University of Utah, 15 North Medical Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
20
|
Sarmiento Varón L, De Rosa J, Rodriguez R, Fernández PM, Billordo LA, Baz P, Beccaglia G, Spada N, Mendoza FT, Barberis CM, Vay C, Arabolaza ME, Paoli B, Arana EI. Role of Tonsillar Chronic Inflammation and Commensal Bacteria in the Pathogenesis of Pediatric OSA. Front Immunol 2021; 12:648064. [PMID: 33995367 PMCID: PMC8116894 DOI: 10.3389/fimmu.2021.648064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Immune responses at the boundary between the host and the world beyond are complex and mucosal tissue homeostasis relies on them. Obstructive sleep apnea (OSA) is a syndrome suffered by children with hypertrophied tonsils. We have previously demonstrated that these tonsils present a defective regulatory B cell (Breg) compartment. Here, we extend those findings by uncovering the crucial role of resident pro-inflammatory B and T cells in sustaining tonsillar hypertrophy and hyperplasia by producing TNFα and IL17, respectively, in ex vivo cultures. Additionally, we detected prominent levels of expression of CD1d by tonsillar stratified as well as reticular epithelium, which have not previously been reported. Furthermore, we evidenced the hypertrophy of germinal centers (GC) and the general hyperplasia of B lymphocytes within the tissue and the lumen of the crypts. Of note, such B cells resulted mainly (IgG/IgM)+ cells, with some IgA+ cells located marginally in the follicles. Finally, by combining bacterial culture from the tonsillar core and subsequent identification of the respective isolates, we determined the most prevalent species within the cohort of OSA patients. Although the isolated species are considered normal oropharyngeal commensals in children, we confirmed their capacity to breach the epithelial barrier. Our work sheds light on the pathological mechanism underlying OSA, highlighting the relevance taken by the host immune system when defining infection versus colonization, and opening alternatives of treatment.
Collapse
Affiliation(s)
- Lindybeth Sarmiento Varón
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Javier De Rosa
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Raquel Rodriguez
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Allergy and Immunology Division, Clinical Hospital 'José de San Martín', UBA, Buenos Aires, Argentina
| | - Pablo M Fernández
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Department of Immunology, School of Medicine, UBA, Buenos Aires, Argentina
| | - L Ariel Billordo
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Plácida Baz
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Gladys Beccaglia
- Department of Pathology, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Nicolás Spada
- Department of Pathology, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - F Tatiana Mendoza
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - Claudia M Barberis
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - Carlos Vay
- Department of Clinical Biochemistry and Bacteriology, School of Pharmacy and Biochemistry, Clinical Hospital 'Jose de San Martín', UBA, Buenos Aires, Argentina
| | - M Elena Arabolaza
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Bibiana Paoli
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', Buenos Aires, Argentina
| | - Eloísa I Arana
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.,Department of Immunology, School of Medicine, UBA, Buenos Aires, Argentina
| |
Collapse
|
21
|
Papillion A, Ballesteros-Tato A. The Potential of Harnessing IL-2-Mediated Immunosuppression to Prevent Pathogenic B Cell Responses. Front Immunol 2021; 12:667342. [PMID: 33986755 PMCID: PMC8112607 DOI: 10.3389/fimmu.2021.667342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Immunosuppressive drugs can partially control Antibody (Ab)-dependent pathology. However, these therapeutic regimens must be maintained for the patient's lifetime, which is often associated with severe side effects. As research advances, our understanding of the cellular and molecular mechanisms underlying the development and maintenance of auto-reactive B cell responses has significantly advanced. As a result, novel immunotherapies aimed to restore immune tolerance and prevent disease progression in autoimmune patients are underway. In this regard, encouraging results from clinical and preclinical studies demonstrate that subcutaneous administration of low-doses of recombinant Interleukin-2 (r-IL2) has potent immunosuppressive effects in patients with autoimmune pathologies. Although the exact mechanism by which IL-2 induces immunosuppression remains unclear, the clinical benefits of the current IL-2-based immunotherapies are attributed to its effect on bolstering T regulatory (Treg) cells, which are known to suppress overactive immune responses. In addition to Tregs, however, rIL-2 also directly prevent the T follicular helper cells (Tfh), T helper 17 cells (Th17), and Double Negative (DN) T cell responses, which play critical roles in the development of autoimmune disorders and have the ability to help pathogenic B cells. Here we discuss the broader effects of rIL-2 immunotherapy and the potential of combining rIL-2 with other cytokine-based therapies to more efficiently target Tfh cells, Th17, and DN T cells and subsequently inhibit auto-antibody (ab) production in autoimmune patients.
Collapse
Affiliation(s)
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Abstract
Gammaherpesviruses establish lifelong infections in a majority of humans and are associated with B cell lymphomas. IL-17A is a host cytokine that plays a well-established role in the clearance of bacterial and fungal infections; however, the role of IL-17A in viral infections is poorly understood. Gammaherpesviruses establish lifelong infection and are associated with a variety of cancers, including B cell lymphomas. These viruses manipulate the B cell differentiation process to establish lifelong infection in memory B cells. Specifically, gammaherpesviruses infect naive B cells and promote entry of both infected and uninfected naive B cells into germinal centers, where the virus usurps rapid proliferation of germinal center B cells to exponentially increase its cellular latent reservoir. In addition to facilitating the establishment of latent infection, germinal center B cells are thought to be the target of viral transformation. In this study, we have uncovered a novel proviral role of host interleukin 17A (IL-17A), a well-established antibacterial and antifungal factor. Loss of IL-17A signaling attenuated the establishment of chronic gammaherpesvirus infection and gammaherpesvirus-driven germinal center response in a route of inoculation-dependent manner. Further, IL-17A treatment directly supported gammaherpesvirus reactivation and de novo lytic infection. This study is the first demonstration of a multifaceted proviral role of IL-17 signaling.
Collapse
|
23
|
Ashida S, Ochi H, Hamatani M, Fujii C, Kimura K, Okada Y, Hashi Y, Kawamura K, Ueno H, Takahashi R, Mizuno T, Kondo T. Immune Skew of Circulating Follicular Helper T Cells Associates With Myasthenia Gravis Severity. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e945. [PMID: 33436376 PMCID: PMC8105905 DOI: 10.1212/nxi.0000000000000945] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To clarify functional alterations of follicular helper T cells (Tfh) in myasthenia gravis (MG) because Tfh play important roles in helping B cells generate antibody-producing cells. METHODS A total of 24 immunotherapy-naive patients with anti-acetylcholine receptor (AchR) antibody-positive MG and 18 age-matched healthy subjects (HS) were enrolled. Samples from 6 patients were available for posttreatment analysis. Subsets of circulating Tfh (cTfh) and B cells were identified by flow cytometry analysis of surface molecules. Cytokine production by isolated cTfh subsets from 5 patients with MG and 5 HS was measured in vitro. Analysis was performed to examine the correlation between the frequency of cTfh subsets and that of plasmablasts and between cTfh subsets and the quantitative MG score. RESULTS cTfh increased with elevated expression of inducible T-cell costimulator (ICOS) in patients with MG. cTfh shifted to Th2 and Th17 over Th1 in MG. ICOShighcTfh produced significantly higher levels of interleukin (IL)-21, IL-4, and IL-17A than ICOSlow cTfh only in patients with MG. The frequency of cTfh within CD4 T cells was more closely associated with disease severity than the serum anti-AchR antibody titer and frequency of plasmablasts within B cells. Abnormalities of cTfh were improved after immunotherapy in parallel with clinical improvement. CONCLUSIONS Alternation of cTfh is a key feature in the development of MG and may become a biomarker for disease severity and therapeutic efficacy. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that the level of cTfh is associated with disease severity in patients with MG.
Collapse
Affiliation(s)
- Shinji Ashida
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Hirofumi Ochi
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Mio Hamatani
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Chihiro Fujii
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Kimitoshi Kimura
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Yoichiro Okada
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Yuichiro Hashi
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Kazuyuki Kawamura
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Hideki Ueno
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Toshiki Mizuno
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| | - Takayuki Kondo
- From the Department of Neurology (S.A., C.F., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Department of Geriatric Medicine and Neurology (H.O.), Ehime University Graduate School of Medicine, Toon; Department of Neurology (M.H., R.T.), Kyoto University Graduate School of Medicine; Department of Neurology (M.H., Y.O., Y.H., T.K.), Kansai Medical University Medical Center, Osaka, Japan; Brigham and Women's Hospital (K. Kimura), Harvard Medical School, Boston, MA; Department of Neurology (K. Kawamura), National Hospital Organization Minami Kyoto Hospital; and Department of Immunology (H.U.), Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
24
|
Gonçalves VS, Santos FDS, Dos Santos Junior AG, Piraine REA, Rodrigues PRC, Brasil CL, Conrad NL, Leite FPL. Recombinant bovine IL17A acts as an adjuvant for bovine herpesvirus vaccine. Res Vet Sci 2021; 136:185-191. [PMID: 33677208 DOI: 10.1016/j.rvsc.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/23/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
The Bovine herpes virus type 5 glycoprotein D (gD) is essential for viral penetration into host permissive cells. The Herpes virus gD glycoprotein has been used for bovine immunization, being efficient in reduction of viral replication, shedding and clinical signs, however sterilizing immunity is still not achieved. Recombinant subunit vaccines are, in general, poorly immunogenic requiring additional adjuvant components. Interleukin 17A (IL17A) is a pro-inflammatory cytokine produced by T helper 17 cells that mediate mucosal immunity. IL17 production during vaccine-induced immunity is a requirement for mucosal protection to several agents. In this study, we investigated the potential of a recombinant IL17A to act as an adjuvant for a recombinant BoHV-5 glycoprotein D vaccine in cattle. Three cattle groups were divided as: group 1) rgD5 + alumen + rIL-17A; 2) rgD5 + alumen; and 3) PBS + alumen. The cattle (3 per group) received two doses of their respective vaccines at an interval of 21 days. The group that received rIL17 in its vaccine formulation at the 7th day after the prime immunization had significant higher levels of specific rgD-IgG than the alumen group. Addition of rIL17 also led to a significant fold increase in specific anti-rgD IgG and neutralizing antibodies to the virus, respectively, when compared with the alumen group. Cells stimulated with rIL17A responded with IL17 transcription, as well IL2, IL4, IL10, IL15, Bcl6 and CXCR5. Our findings suggest that the rIL17A has adjuvant potential for use in vaccines against BoHV-5 as well as potentially other pathogens of cattle.
Collapse
Affiliation(s)
- Vitória Sequeira Gonçalves
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Renan Eugênio Araujo Piraine
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Carolina Litchina Brasil
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Neida Lucia Conrad
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Fábio Pereira Leivas Leite
- Núcleo de Biotecnologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
25
|
Hong H, Gao M, Wu Q, Yang P, Liu S, Li H, Burrows PD, Cua D, Chen JY, Hsu HC, Mountz JD. IL-23 Promotes a Coordinated B Cell Germinal Center Program for Class-Switch Recombination to IgG2b in BXD2 Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:346-358. [PMID: 32554431 DOI: 10.4049/jimmunol.2000280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
IL-23 promotes autoimmune disease, including Th17 CD4 T cell development and autoantibody production. In this study, we show that a deficiency of the p19 component of IL-23 in the autoimmune BXD2 (BXD2-p19-/- ) mouse leads to a shift of the follicular T helper cell program from follicular T helper (Tfh)-IL-17 to Tfh-IFN-γ. Although the germinal center (GC) size and the number of GC B cells remained the same, BXD2-p19-/- mice exhibited a lower class-switch recombination (CSR) in the GC B cells, leading to lower serum levels of IgG2b. Single-cell transcriptomics analysis of GC B cells revealed that whereas Ifngr1, Il21r, and Il4r genes exhibited a synchronized expression pattern with Cxcr5 and plasma cell program genes, Il17ra exhibited a synchronized expression pattern with Cxcr4 and GC program genes. Downregulation of Ighg2b in BXD2-p19-/- GC B cells was associated with decreased expression of CSR-related novel base excision repair genes that were otherwise predominantly expressed by Il17ra + GC B cells in BXD2 mice. Together, these results suggest that although IL-23 is dispensable for GC formation, it is essential to promote a population of Tfh-IL-17 cells. IL-23 acts indirectly on Il17ra + GC B cells to facilitate CSR-related base excision repair genes during the dark zone phase of GC B cell development.
Collapse
Affiliation(s)
- Huixian Hong
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Min Gao
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL
| | - Qi Wu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - PingAr Yang
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shanrun Liu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Hao Li
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Cua
- Discovery Research, Merck Research Laboratory, Boston, MA; and
| | - Jake Y Chen
- Informatics Institute, the University of Alabama at Birmingham, Birmingham, AL
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - John D Mountz
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; .,Department of Medicine, Birmingham VA Medical center, Birmingham, AL
| |
Collapse
|
26
|
Bartsch YC, Eschweiler S, Leliavski A, Lunding HB, Wagt S, Petry J, Lilienthal GM, Rahmöller J, de Haan N, Hölscher A, Erapaneedi R, Giannou AD, Aly L, Sato R, de Neef LA, Winkler A, Braumann D, Hobusch J, Kuhnigk K, Krémer V, Steinhaus M, Blanchard V, Gemoll T, Habermann JK, Collin M, Salinas G, Manz RA, Fukuyama H, Korn T, Waisman A, Yogev N, Huber S, Rabe B, Rose-John S, Busch H, Berberich-Siebelt F, Hölscher C, Wuhrer M, Ehlers M. IgG Fc sialylation is regulated during the germinal center reaction following immunization with different adjuvants. J Allergy Clin Immunol 2020; 146:652-666.e11. [PMID: 32445838 DOI: 10.1016/j.jaci.2020.04.059] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Effector functions of IgG Abs are regulated by their Fc N-glycosylation pattern. IgG Fc glycans that lack galactose and terminal sialic acid residues correlate with the severity of inflammatory (auto)immune disorders and have also been linked to protection against viral infection and discussed in the context of vaccine-induced protection. In contrast, sialylated IgG Abs have shown immunosuppressive effects. OBJECTIVE We sought to investigate IgG glycosylation programming during the germinal center (GC) reaction following immunization of mice with a foreign protein antigen and different adjuvants. METHODS Mice were analyzed for GC T-cell, B-cell, and plasma cell responses, as well as for antigen-specific serum IgG subclass titers and Fc glycosylation patterns. RESULTS Different adjuvants induce distinct IgG+ GC B-cell responses with specific transcriptomes and expression levels of the α2,6-sialyltransferase responsible for IgG sialylation that correspond to distinct serum IgG Fc glycosylation patterns. Low IgG Fc sialylation programming in GC B cells was overall highly dependent on the Foxp3- follicular helper T (TFH) cell-inducing cytokine IL-6, here in particular induced by water-in-oil adjuvants and Mycobacterium tuberculosis. Furthermore, low IgG Fc sialylation programming was dependent on adjuvants that induced IL-27 receptor-dependent IFN-γ+ TFH1 cells, IL-6/IL-23-dependent IL-17A+ TFH17 cells, and high ratios of TFH cells to Foxp3+ follicular regulatory T cells. Here, the 2 latter were dependent on M tuberculosis and its cord factor. CONCLUSION This study's findings regarding adjuvant-dependent GC responses and IgG glycosylation programming may aid in the development of novel vaccination strategies to induce IgG Abs with both high affinity and defined Fc glycosylation patterns in the GC.
Collapse
Affiliation(s)
- Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Simon Eschweiler
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Hanna B Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Sander Wagt
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Department of Anesthesiology and Intensive Care, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Raghu Erapaneedi
- Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Anastasios D Giannou
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilian Aly
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Germany
| | - Ryota Sato
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Louise A de Neef
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - André Winkler
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Laboratory of Tolerance and Autoimmunity at the German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | - Dominique Braumann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Juliane Hobusch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Kyra Kuhnigk
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Vanessa Krémer
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Moritz Steinhaus
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Gabriela Salinas
- NGS-Integrative Genomics, Institute Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Germany; Munich Cluster for Systems Neurology, SyNergy, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nir Yogev
- Clinic and Polyclinic for Dermatology and Venerology, University Hospital Cologne, Cologne, Germany
| | - Samuel Huber
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rabe
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Friederike Berberich-Siebelt
- Institute for Pathology, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Center Borstel, Borstel, Germany; German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany; Laboratory of Tolerance and Autoimmunity at the German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany; Airway Research Center North, University of Lübeck, German Center for Lung Research, Lübeck, Germany.
| |
Collapse
|
27
|
Xue Q, Ma Y, Wang L, Shao H. T follicular helper cells are elevated in a rat model of autoimmune myocarditis. FEBS Open Bio 2020; 10:1304-1315. [PMID: 32416035 PMCID: PMC7327924 DOI: 10.1002/2211-5463.12894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 02/03/2023] Open
Abstract
Myocarditis is an inflammatory disease of the myocardium that is associated with immune dysfunction. Earlier studies have suggested that T helper 1/2 cell imbalance plays an important role in the development of myocarditis, but the role of T follicular helper (Tfh) cells in the development of autoimmune myocarditis has not previously been reported. Here, we investigated this involvement by using a rat model of experimental autoimmune myocarditis (EAM). Inflammatory cell infiltration, myocardial structure destruction and tissue necrosis were observed in EAM myocardial tissues, and the percentages of CD4+ CXCR5+ Tfh cells and CD19+ B cells were both significantly higher in spleen and myocardial tissues of the EAM model as compared with the control group. Furthermore, the expression levels of interleukin-21, CXCL13 and myosin antibody were significantly higher in the serum of rats with EAM compared with the control group on days 14 and 35 after immunization. Fourteen or 35 days after immunization, the expression levels of interleukin-21 and CXCL13 were both significantly higher in myocardial tissues of rats with EAM as compared with the control group. Our findings suggest that Tfh cell balance is disrupted during the pathological process of autoimmune myocarditis.
Collapse
Affiliation(s)
- Qi Xue
- Department of Cardiology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yuan Ma
- Department of Cardiology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Lihong Wang
- Department of Cardiology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Hong Shao
- Department of Cardiology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
28
|
Exploring the imbalance of circulating follicular helper CD4 + T cells in sarcoidosis patients. J Dermatol Sci 2020; 97:216-224. [PMID: 32063460 DOI: 10.1016/j.jdermsci.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sarcoidosis is a systemic granulomatous disease characterized by the combination of Th1 and Th17 responses. Recently, several arguments have suggested a potential involvement of B cells as well as T cells in the pathogenesis of sarcoidosis. Follicular helper CD4+ T (TFH) cells are specialized in interacting with and helping B cells, and play a crucial role in the formation of germinal centers. OBJECTIVE We sought to explore the status of TFH cells and investigate their possible pathogenic role in sarcoidosis. METHODS TFH cells and B cells in peripheral blood were examined by flow cytometry, and serum samples were studied by cytokine arrays. Immunohistochemistry was performed to check for the presence of TFH cells in sarcoidosis skin lesions. Gene expression in isolated TFH cells was analyzed by quantitative RT-PCR. RESULTS The proportion of circulating TFH cells was decreased. CD4+CXCR5+ TFH cells were observed in cutaneous lesions in sarcoidosis. Gene expression in circulating TFH cells and serum cytokine concentrations related to Th17 were increased in sarcoidosis patients. Gene expressions of B cell differentiation cytokines in TFH cells were not altered in sarcoidosis patients. CONCLUSION We herein describe a decrease of circulating TFH cells and their migration to affected tissues. Circulating TFH cells are one of the potential cell types capable of producing IL-17 and enhancing Th17 responses, and may promote the chronic inflammation. We could not demonstrate a direct linkage between the imbalance of TFH cells and abnormal B cell differentiation in sarcoidosis.
Collapse
|
29
|
The direct deleterious effect of Th17 cells in the nervous system compartment in multiple sclerosis and experimental autoimmune encephalomyelitis: one possible link between neuroinflammation and neurodegeneration. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
The processes of demyelination and neurodegeneration in the central nervous system (CNS) of multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE) are secondary to numerous pathophysiological mechanisms. One of the main cellular players is the Th17 lymphocyte. One of the major functions described for Th17 cells is the upregulation of pro-inflammatory cytokines, such as IL-17 at the level of peripheral and CNS inflammation. This review will focus on the newly described and unexpected, direct role played by the Th17 cells in the CNS of MS patients and EAE models. Th17 and their main cytokine, IL-17, are actively involved in the onset and maintenance of the immune cascade in the CNS compartment as Th17 were found to achieve brain-homing potential. Direct interaction of myelin oligodendrocyte glycoprotein - specific Th17 with the neuronal cells firstly induces demyelination and secondly, extensive axonal damage. The Th17 cells promote an inflammatory B cell response beyond the BBB through the presence of infiltrating Th follicles. Due to their role in preventing remyelination and direct neurotoxic effect, Th17 cells might stand for an important connection between neuroinflammation and neurodegeneration in a devastating disease like MS. The Th17 cell populations have different mechanisms of provoking an autoimmune attack not only in the periphery but also in the CNS of MS patients.
Collapse
|
30
|
Mountz JD, Hsu HC, Ballesteros-Tato A. Dysregulation of T Follicular Helper Cells in Lupus. THE JOURNAL OF IMMUNOLOGY 2020; 202:1649-1658. [PMID: 30833421 DOI: 10.4049/jimmunol.1801150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
Abstract
Although multiple and overlapping mechanisms are ultimately responsible for the immunopathology observed in patients with systemic lupus erythematosus, autoreactive Abs secreted by autoreactive plasma cells (PCs) are considered to play a critical role in disease progression and immunopathology. Given that PCs derive from the germinal centers (GC), long-term dysregulated GC reactions are often associated with the development of spontaneous autoantibody responses and immunopathology in systemic lupus erythematosus patients. In this review, we summarize the emerging evidence concerning the roles of T follicular helper cells in regulating pathogenic GC and autoreactive PC responses in lupus.
Collapse
Affiliation(s)
- John D Mountz
- Division of Clinical Immunology and Rheumatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and .,Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233
| | - Hui-Chen Hsu
- Division of Clinical Immunology and Rheumatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Andre Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
31
|
Afroz S, Shama, Battu S, Matin S, Solouki S, Elmore JP, Minhas G, Huang W, August A, Khan N. Amino acid starvation enhances vaccine efficacy by augmenting neutralizing antibody production. Sci Signal 2019; 12:12/607/eaav4717. [PMID: 31719173 DOI: 10.1126/scisignal.aav4717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific reduction in the intake of proteins or amino acids (AAs) offers enormous health benefits, including increased life span, protection against age-associated disorders, and improved metabolic fitness and immunity. Cells respond to conditions of AA starvation by activating the amino acid starvation response (AAR). Here, we showed that mimicking AAR with halofuginone (HF) enhanced the magnitude and affinity of neutralizing, antigen-specific antibody responses in mice immunized with dengue virus envelope domain III protein (DENVrEDIII), a potent vaccine candidate against DENV. HF enhanced the formation of germinal centers (GCs) and increased the production of the cytokine IL-10 in the secondary lymphoid organs of vaccinated mice. Furthermore, HF promoted the transcription of genes associated with memory B cell formation and maintenance and maturation of GCs in the draining lymph nodes of vaccinated mice. The increased abundance of IL-10 in HF-preconditioned mice correlated with enhanced GC responses and may promote the establishment of long-lived plasma cells that secrete antigen-specific, high-affinity antibodies. Thus, these data suggest that mimetics of AA starvation could provide an alternative strategy to augment the efficacy of vaccines against dengue and other infectious diseases.
Collapse
Affiliation(s)
- Sumbul Afroz
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shama
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Srikanth Battu
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Shaikh Matin
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Sabrina Solouki
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gillipsie Minhas
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nooruddin Khan
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046 Telangana, India.
| |
Collapse
|
32
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
33
|
Zhang J, Liu W, Wen B, Xie T, Tang P, Hu Y, Huang L, Jin K, Zhang P, Liu Z, Niu L, Qu X. Circulating CXCR3 + Tfh cells positively correlate with neutralizing antibody responses in HCV-infected patients. Sci Rep 2019; 9:10090. [PMID: 31300682 PMCID: PMC6626020 DOI: 10.1038/s41598-019-46533-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Circulating T follicular helper (cTfh) cells have been identified as counterparts of germinal center Tfh (GC Tfh) cells in humans and can support T-dependent B cell maturation and antibody production in vitro. However, the role of cTfh cells in neutralizing antibody (nAb) responses in HCV infection remains unclear. Here, we characterized the phenotype and function of cTfh cells and demonstrated the associations of cTfh cells and their subsets with nAb responses in HCV infection. A total of 38 HCV-infected individuals and 28 healthy controls were enrolled from a pool of injection drug users. The frequency and function of blood Tfh cells were analyzed by flow cytometry. The titers and breadths of serum nAbs were measured using HCV pseudo-particle neutralization assays. Herein, we report several key observations. First, HCV infection skewed cTfh toward CXCR3+ cTfh cell differentiation. Second, the frequency of CXCR3+ cTfh cells positively correlated with HCV nAb titers and breadths. Third, CXCR3+ cTfh cells showed higher expression of Tfh-associated molecules (PD-1, ICOS, IL-21, Bcl-6) compared with CXCR3− cTfh cells from individuals with HCV infection. Coculture of cTfh cells and autologous memory B cells in vitro indicated that CXCR3+ cTfh cells show a superior ability to support HCV E2-specific B cell expansion compared with CXCR3− cTfh cells from individuals with HCV infection. HCV infection skews cTfh cells toward CXCR3-biased Tfh cell differentiation, which positively correlates with the magnitude and breadth of the HCV nAb response. It is our hope that these findings will provide insights for the rational design of a nAb-based HCV vaccine.
Collapse
Affiliation(s)
- Jian Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Wenpei Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China.,Affiliated The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, 423000, China
| | - Bo Wen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ting Xie
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ping Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Liyan Huang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Kun Jin
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ping Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ziyan Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Ling Niu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China
| | - Xiaowang Qu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, 423000, China. .,Affiliated The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, 423000, China.
| |
Collapse
|
34
|
Liu T, Yang Q, Cao YJ, Yuan WM, Lei AH, Zhou P, Zhou W, Liu YD, Shi MH, Yang Q, Tang JY, Wang HK, Zhang H, Yu Y, Zhou J. Cyclooxygenase-1 Regulates the Development of Follicular Th Cells via Prostaglandin E 2. THE JOURNAL OF IMMUNOLOGY 2019; 203:864-872. [PMID: 31243090 DOI: 10.4049/jimmunol.1801674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/07/2019] [Indexed: 11/19/2022]
Abstract
Cyclooxygenase (COX)-1, one of the critical enzymes required for the conversion of arachidonic acid to PGs, has been demonstrated to play an important role not only in the cardiovascular system but also in the immune system. COX-1 has been found to regulate early B cell differentiation, germinal center formation, and Ab production of B cells. However, the underlying mechanisms of COX-1-mediated B cell activation remains not fully understood. In this study, we reported that COX-1 is a potential regulator for the development of follicular Th (TFH) cells. COX-1-deficient (COX-1-/- ) mice displayed a significant reduction of TFH cells upon influenza infection or immunization with keyhole limpet hemocyanin, which led to a severe impairment of germinal center responses. We further demonstrated that COX-1-derived PGE2, via binding with its receptors EP2/EP4, represents the underlying mechanism. The administration of EP2/EP4 agonists or PGE2 almost completely rescued the defective TFH cell generation in COX-1-/- mice. Taken together, our observations indicate that COX-1 plays an important role in the development of TFH cells.
Collapse
Affiliation(s)
- Ting Liu
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Jiao Cao
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China
| | - Wei-Ming Yuan
- Department of Neonatology, Guangzhou Women and Children's Medical Centre, Guangzhou 510623, China
| | - Ai-Hua Lei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Pan Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Centre, Guangzhou 510623, China
| | - Yong-Dong Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mao-Hua Shi
- First People's Hospital of Foshan, Foshan 528000, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jin-Yi Tang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Hai-Kun Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China; .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
35
|
Majumder S, Amatya N, Revu S, Jawale CV, Wu D, Rittenhouse N, Menk A, Kupul S, Du F, Raphael I, Bhattacharjee A, Siebenlist U, Hand TW, Delgoffe GM, Poholek AC, Gaffen SL, Biswas PS, McGeachy MJ. IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat Immunol 2019; 20:534-545. [PMID: 30962593 DOI: 10.1038/s41590-019-0367-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023]
Abstract
Lymph-node (LN) stromal cell populations expand during the inflammation that accompanies T cell activation. Interleukin-17 (IL-17)-producing helper T cells (TH17 cells) promote inflammation through the induction of cytokines and chemokines in peripheral tissues. We demonstrate a critical requirement for IL-17 in the proliferation of LN and splenic stromal cells, particularly fibroblastic reticular cells (FRCs), during experimental autoimmune encephalomyelitis and colitis. Without signaling via the IL-17 receptor, activated FRCs underwent cell cycle arrest and apoptosis, accompanied by signs of nutrient stress in vivo. IL-17 signaling in FRCs was not required for the development of TH17 cells, but failed FRC proliferation impaired germinal center formation and antigen-specific antibody production. Induction of the transcriptional co-activator IκBζ via IL-17 signaling mediated increased glucose uptake and expression of the gene Cpt1a, encoding CPT1A, a rate-limiting enzyme of mitochondrial fatty acid oxidation. Hence, IL-17 produced by locally differentiating TH17 cells is an important driver of the activation of inflamed LN stromal cells, through metabolic reprogramming required to support proliferation and survival.
Collapse
Affiliation(s)
- Saikat Majumder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nilesh Amatya
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shankar Revu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chetan V Jawale
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongwen Wu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ashley Menk
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Saran Kupul
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Du
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ulrich Siebenlist
- Immune Activation Section, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Timothy W Hand
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah L Gaffen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha S Biswas
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mandy J McGeachy
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Corneth OBJ, Schaper F, Luk F, Asmawidjaja PS, Mus AMC, Horst G, Heeringa P, Hendriks RW, Westra J, Lubberts E. Lack of IL-17 Receptor A signaling aggravates lymphoproliferation in C57BL/6 lpr mice. Sci Rep 2019; 9:4032. [PMID: 30858513 PMCID: PMC6412096 DOI: 10.1038/s41598-019-39483-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/15/2018] [Indexed: 01/07/2023] Open
Abstract
Defects in Fas function correlate with susceptibility to systemic autoimmune diseases like autoimmune lymphoproliferative syndrome (ALPS) and systemic lupus erythematosus (SLE). C57BL/6 lpr (B6/lpr) mice are used as an animal model of ALPS and develop a mild SLE phenotype. Involvement of interleukin-17A (IL-17A) has been suggested in both phenotypes. Since IL-17 receptor A is part of the signaling pathway of many IL-17 family members we investigated the role of IL-17 receptor signaling in disease development in mice with a B6/lpr background. B6/lpr mice were crossed with IL-17 receptor A deficient (IL-17RA KO) mice and followed over time for disease development. IL-17RA KO/lpr mice presented with significantly enhanced lymphoproliferation compared with B6/lpr mice, which was characterized by dramatic lymphadenomegaly/splenomegaly and increased lymphocyte numbers, expansion of double-negative (DN) T-cells and enhanced plasma cell formation. However, the SLE phenotype was not enhanced, as anti-nuclear antibody (ANA) titers and induction of glomerulonephritis were not different. In contrast, levels of High Mobility Group Box 1 (HMGB1) and anti-HMGB1 autoantibodies were significantly increased in IL-17RA KO/lpr mice compared to B6/lpr mice. These data show that lack of IL-17RA signaling aggravates the lymphoproliferative phenotype in B6/lpr mice but does not affect the SLE phenotype.
Collapse
Affiliation(s)
- Odilia B J Corneth
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fleur Schaper
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Franka Luk
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Patrick S Asmawidjaja
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Adriana M C Mus
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerda Horst
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Faliti CE, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, Pellegrini G, De Ponte Conti B, Rossi RL, Idzko M, Mazza EMC, Bicciato S, Traggiai E, Meroni PL, Grassi F. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med 2019; 216:317-336. [PMID: 30655308 PMCID: PMC6363434 DOI: 10.1084/jem.20171976] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 10/22/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023] Open
Abstract
T follicular helper cells promote the generation of protective antibodies, but can also foster pathogenic antibodies. The ATP-gated P2X7 receptor selectively limits the expansion of Tfh cells that amplify self-reactive antibodies in systemic lupus erythematosus. Altered control of T follicular helper (Tfh) cells can lead to generation of autoantibodies and autoimmune manifestations. Signaling pathways that selectively limit pathogenic responses without affecting the protective function of Tfh cells are unknown. Here we show that the ATP-gated ionotropic P2X7 receptor restricts the expansion of aberrant Tfh cells and the generation of self-reactive antibodies in experimental murine lupus, but its activity is dispensable for the expansion of antigen-specific Tfh cells during vaccination. P2X7 stimulation promotes caspase-mediated pyroptosis of Tfh cells and controls the development of pathogenic ICOS+ IFN-γ–secreting cells. Circulating Tfh cells from patients with systemic lupus erythematosus (SLE) but not primary antiphospholipid syndrome (PAPS), a nonlupus systemic autoimmune disease, were hyporesponsive to P2X7 stimulation and resistant to P2X7-mediated inhibition of cytokine-driven expansion. These data point to the P2X7 receptor as a checkpoint regulator of Tfh cells; thus, restoring P2X7 activity in SLE patients could selectively limit the progressive amplification of pathogenic autoantibodies, which deteriorate patients’ conditions.
Collapse
Affiliation(s)
- Caterina E Faliti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roberta Gualtierotti
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy.,Lupus Clinic, IASST-Istituto Gaetano Pini, Milan, Italy
| | - Elsa Rottoli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Gerosa
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy.,Lupus Clinic, IASST-Istituto Gaetano Pini, Milan, Italy
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrea Romagnani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Riccardo L Rossi
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Marco Idzko
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Emilia M C Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Pier Luigi Meroni
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy .,Lupus Clinic, IASST-Istituto Gaetano Pini, Milan, Italy.,Istituto Auxologico Italiano, Milan, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland .,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| |
Collapse
|
38
|
Francis IP, Islam EA, Gower AC, Shaik-Dasthagirisaheb YB, Gray-Owen SD, Wetzler LM. Murine host response to Neisseria gonorrhoeae upper genital tract infection reveals a common transcriptional signature, plus distinct inflammatory responses that vary between reproductive cycle phases. BMC Genomics 2018; 19:627. [PMID: 30134832 PMCID: PMC6106831 DOI: 10.1186/s12864-018-5000-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023] Open
Abstract
Background The emergence of fully antimicrobial resistant Neisseria gonorrhoeae has led global public health agencies to identify a critical need for next generation anti-gonococcal pharmaceuticals. The development and success of these compounds will rely upon valid pre-clinical models of gonorrhoeae infection. We recently developed and reported the first model of upper genital tract gonococcal infection. During initial characterization, we observed significant reproductive cycle-based variation in infection outcome. When uterine infection occurred in the diestrus phase, there was significantly greater pathology than during estrus phase. The aim of this study was to evaluate transcriptional profiles of infected uterine tissue from mice in either estrus or diestrus phase in order to elucidate possible mechanisms for these differences. Results Genes and biological pathways with phase-independent induction during infection showed a chemokine dominant cytokine response to Neisseria gonorrhoeae. Despite general induction being phase-independent, this common anti-gonococcal response demonstrated greater induction during diestrus phase infection. Greater activity of granulocyte adhesion and diapedesis regulators during diestrus infection, particularly in chemokines and diapedesis regulators, was also shown. In addition to a greater induction of the common anti-gonococcal response, Gene Set Enrichment Analysis identified a diestrus-specific induction of type-1 interferon signaling pathways. Conclusions This transcriptional analysis of murine uterine gonococcal infection during distinct points in the natural reproductive cycle provided evidence for a common anti-gonococcal response characterized by significant induction of granulocyte chemokine expression and high proinflammatory mediators. The basic biology of this host response to N. gonorrhoeae in estrus and diestrus is similar at the pathway level but varies drastically in magnitude. Overlaying this, we observed type-1 interferon induction specifically in diestrus infection where greater pathology is observed. This supports recent work suggesting this pathway has a significant, possibly host-detrimental, function in gonococcal infection. Together these findings lay the groundwork for further examination of the role of interferons in gonococcal infection. Additionally, this work enables the implementation of the diestrus uterine infection model using the newly characterized host response as a marker of pathology and its prevention as a correlate of candidate vaccine efficacy and ability to protect against the devastating consequences of N. gonorrhoeae-associated sequelae. Electronic supplementary material The online version of this article (10.1186/s12864-018-5000-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian P Francis
- Department of Microbiology, Boston University School of Medicine, 72 E. Concord St., Room L504, Boston, MA, 02118, USA
| | - Epshita A Islam
- Department of Molecular Genetics, University of Toronto, Room 4383, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, 715 Albany St. E-727, Boston, MA, 02118, USA
| | | | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Room 4383, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Lee M Wetzler
- Department of Medicine, Boston University School of Medicine, 715 Albany St. E-113, Boston, MA, 02118, USA. .,Department of Microbiology, Boston University School of Medicine, 72 E. Concord St., Room L504, Boston, MA, 02118, USA.
| |
Collapse
|
39
|
McKelvey KJ, Millier MJ, Doyle TC, Stamp LK, Highton J, Hessian PA. Co-expression of CD21L and IL17A defines a subset of rheumatoid synovia, characterised by large lymphoid aggregates and high inflammation. PLoS One 2018; 13:e0202135. [PMID: 30114200 PMCID: PMC6095528 DOI: 10.1371/journal.pone.0202135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To determine whether the expression of IL17A and CD21L genes in inflamed rheumatoid synovia is associated with the neogenesis of ectopic lymphoid follicle-like structures (ELS), and if this aids the stratification of rheumatoid inflammation and thereby distinguishes patients with rheumatoid arthritis that might be responsive to specific targeted biologic therapies. METHODS Expression of IL17A and CD21L genes was assessed by RT-PCR, qRT-PCR and dPCR in synovia from 54 patients with rheumatoid arthritis. A subset of synovia (n = 30) was assessed by immunohistology for the presence of CD20+ B-lymphocytes and size of CD20+ B-lymphocyte aggregates as indicated by maximum radial cell count. The molecular profiles of six IL17A+/CD21L+ and six IL17A-/CD21L- synovia were determined by complementary DNA microarray analysis. RESULTS By RT-PCR, 26% of synovia expressed IL17A and 52% expressed CD21L. This provided the basis for distinguishing four subgroups of rheumatoid synovia: IL17A+/CD21L+ (18.5% of synovia), IL17A+/CD21L- (7.5%), IL17A-/CD21L+ (33.3%) and IL17A-/CD21L- (40.7%). While the subgroups did not predict clinical outcome measures, comparisons between the synovial subgroups revealed the IL17A+/CD21L+ subgroup had significantly larger CD20+ B-lymphocyte aggregates (P = 0.007) and a gene expression profile skewed toward B-cell- and antibody-mediated immunity. In contrast, genes associated with bone and cartilage remodelling were prominent in IL17A-/CD21L- synovia. CONCLUSIONS Rheumatoid synovia can be subdivided on the basis of IL17A and CD21L gene expression. Ensuing molecular subgroups do not predict clinical outcome for patients but highlight high inflammation and the predominance of B-lymphocyte mediated mechanisms operating in IL17A+/CD21L+ synovia. This may provide a rationale for more refined therapeutic selection due to the distinct molecular profiles associated with IL17A+/CD21L+ and IL17A-/CD21L- rheumatoid synovia.
Collapse
Affiliation(s)
- Kelly J. McKelvey
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Melanie J. Millier
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Terence C. Doyle
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lisa K. Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - John Highton
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paul A. Hessian
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Fazilleau N, Aloulou M. Several Follicular Regulatory T Cell Subsets With Distinct Phenotype and Function Emerge During Germinal Center Reactions. Front Immunol 2018; 9:1792. [PMID: 30150980 PMCID: PMC6100207 DOI: 10.3389/fimmu.2018.01792] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022] Open
Abstract
An efficient B cell immunity requires a dynamic equilibrium between positive and negative signals. In germinal centers (GCs), T follicular helper cells are supposed to be the positive regulator while T follicular regulatory (Tfr) cells were assigned to be the negative regulators. Indeed, Tfr cells are considered as a homogenous cell population dedicated to dampen the GC extent. Moreover, Tfr cells prevent autoimmunity since their dysregulation leads to production of self-reactive antibodies (Ab). However, a growing corpus of evidence has revealed additional and unexpected functions for Tfr cells in the regulation of B cell responses. This review provides an overview of the Tfr cell contribution and presents Tfr cell proprieties in the context of vaccination.
Collapse
Affiliation(s)
- Nicolas Fazilleau
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM U1043, Toulouse, France.,CNRS UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Meryem Aloulou
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM U1043, Toulouse, France.,CNRS UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
41
|
Raju S, Kometani K, Kurosaki T, Shaw AS, Egawa T. The adaptor molecule CD2AP in CD4 T cells modulates differentiation of follicular helper T cells during chronic LCMV infection. PLoS Pathog 2018; 14:e1007053. [PMID: 29734372 PMCID: PMC5957453 DOI: 10.1371/journal.ppat.1007053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
CD4 T cell-mediated help to CD8 T cells and B cells is a critical arm of the adaptive immune system required for control of pathogen infection. CD4 T cells express cytokines and co-stimulatory molecules that support a sustained CD8 T cell response and also enhance generation of protective antibody by germinal center B cells. However, the molecular components that modulate CD4 T cell functions in response to viral infection or vaccine are incompletely understood. Here we demonstrate that inactivation of the signaling adaptor CD2-associated protein (CD2AP) promotes CD4 T cell differentiation towards the follicular helper lineage, leading to enhanced control of viral infection by augmented germinal center response in chronic lymphocytic choriomeningitis virus (LCMV) infection. The enhanced follicular helper differentiation is associated with extended duration of TCR signaling and enhanced cytokine production of CD2AP-deficient CD4 T cells specifically under TH1 conditions, while neither prolonged TCR signaling nor enhanced follicular helper differentiation was observed under conditions that induce other helper effector subsets. Despite the structural similarity between CD2AP and the closely related adaptor protein CIN85, we observed defective antibody-mediated control of chronic LCMV infection in mice lacking CIN85 in T cells, suggesting non-overlapping and potentially antagonistic roles for CD2AP and CIN85. These results suggest that tuning of TCR signaling by targeting CD2AP improves protective antibody responses in viral infection. Enhancing the production of protective antibodies in response to infection or vaccine is critically important for host protection. However, we have only limited knowledge about molecular targets to enhance functions of CD4 helper T cells that are essential for antibody affinity maturation and class switching. In this work, we found that inhibiting the function of the adaptor molecule CD2AP results in enhanced antibody responses and improved protection of mice from chronic infection by LCMV. Mice lacking CD2AP specifically in T cells showed enhanced CD4 T cell differentiation towards the follicular helper subset, which is a critical regulator of antibody responses, and generated more germinal center B cells leading to production of mutated, protective antibodies. This effect was specific to CD4 T cells in type-I immune responses, associated with viral infection, while deletion of CD2AP had little impact on CD4 T cells in type-II immune responses or CD8 T cells. Our results thus suggest that CD2AP can be a specific target to enhance antiviral protective immunity during viral infection or vaccination.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Andrey S. Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN-γ. Nat Commun 2018; 9:1628. [PMID: 29691398 PMCID: PMC5915532 DOI: 10.1038/s41467-018-04063-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 03/30/2018] [Indexed: 01/14/2023] Open
Abstract
Germinal centers (GC) are important sites for high-affinity and long-lived antibody induction. Tight regulation of GC responses is critical for maintaining self-tolerance. Here, we show that Galectin-3 (Gal-3) is involved in GC development. Compared with WT mice, Gal-3 KO mice have more GC B cells and T follicular helper cells, increased percentages of antibody-secreting cells and higher concentrations of immunoglobulins and IFN-γ in serum, and develop a lupus-like disease. IFN-γ blockade in Gal-3 KO mice reduces spontaneous GC formation, class-switch recombination, autoantibody production and renal pathology, demonstrating that IFN-γ overproduction sustains autoimmunity. The results from chimeric mice show that intrinsic Gal-3 signaling in B cells controls spontaneous GC formation. Taken together, our data provide evidence that Gal-3 acts directly on B cells to regulate GC responses via IFN-γ and implicate the potential of Gal-3 as a therapeutic target in autoimmunity. Germinal center (GC) is where B cells interact with other immune cells for optimal induction of antibody responses. Here the authors show that galectin-3 regulates GC development by modulating interferon-γ and B cell-intrinsic signaling, such that galectin-3 deficiency mice exhibit lupus-like autoimmune symptoms.
Collapse
|
43
|
Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots GG, Förster R, Bernhardt G. Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Front Immunol 2018; 9:714. [PMID: 29686684 PMCID: PMC5900012 DOI: 10.3389/fimmu.2018.00714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Follicular helper (TFH) and regulatory (TFR) cells are critical players in managing germinal center (GC) reactions that accomplish effective humoral immune responses. Transcriptome analyses were done comparing gene regulation of TFH and TFR cells isolated from Peyer’s Patches (PP) and immunized peripheral lymph nodes (pLNs) revealing many regulatory patterns common to all follicular cells. However, in contrast to TFH cells, the upregulation or downregulation of many genes was attenuated substantially in pLN TFR cells when compared to those of PP. Additionally, PP but not pLN TFR cells were largely unresponsive to IL2 and expressed Il4 as well as Il21. Together with fundamental differences in gene expression that were found between cells of both compartments this emphasizes specific adaptations of follicular T cell functions to their micro-milieu. Moreover, although GL7 expression distinguishes matured follicular T cells, GL7+ as well as GL7− cells are present in the GC.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Quinn JL, Kumar G, Agasing A, Ko RM, Axtell RC. Role of TFH Cells in Promoting T Helper 17-Induced Neuroinflammation. Front Immunol 2018. [PMID: 29535739 PMCID: PMC5835081 DOI: 10.3389/fimmu.2018.00382] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Both T cells and B cells are implicated in the pathology of multiple sclerosis (MS), but how these cells cooperate to drive disease remains unclear. Recent studies using experimental autoimmune encephalomyelitis (EAE) demonstrated that the TH17 pathway is correlated with increased numbers of ectopic B-cell follicles in the central nervous system (CNS). As follicular T helper (TFH) cells are regulators of B cell responses, we sought to examine the role of TFH cells in EAE induced by the transfer of myelin-specific TH17 cells (TH17-EAE). In this study, we first confirmed previous reports that B-cells are a major cell type infiltrating the CNS during TH17-EAE. In addition, we found that B cells contribute to the severity of TH17-EAE. Class-switched B-cells in the CNS were positively correlated with disease and, strikingly, the severity TH17-EAE was diminished in B cell deficient mice. We next focused on the role TFH cells play in TH17-EAE. We found substantial numbers of CXCR5+PD1+CD4+ TFH cells in the CNS tissue of TH17-EAE mice and that at the peak of disease, the number of infiltrating TFHs was correlated with the number of infiltrating B-cells. Using congenic CD45.1+ donor mice and CD45.2+ recipient mice, we determined that the TFH cells were recipient-derived, whereas IL-17+ cells were donor-derived. We assessed whether myelin-specific TFH cells are capable of inducing EAE in recipient mice and found that transferring TFH cells failed to induce EAE. Finally, we tested the effects of blocking TFH trafficking in TH17-EAE using an antagonistic antibody against CXCL13, the chemokine ligand for CXCR5 on TFH cells. We found anti-CXCL13 treatment significantly reduced TH17-EAE disease. This treatment blocked CD4+ T cells from entering the CNS, but had no effect on infiltration of B cells. Strikingly, this antibody treatment had no measurable effect on TH17 disease in B cell-deficient mice. These data demonstrate that infiltrating TFH cells are a key cell type that contributes to an inflammatory B cell response in TH17-EAE and provide evidence for targeting TFH cells as a treatment for neuro-autoimmune diseases like MS.
Collapse
Affiliation(s)
- James L Quinn
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Gaurav Kumar
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Agnieshka Agasing
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Rose M Ko
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Robert C Axtell
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
45
|
Mountz JD. Editorial: STATus of STAT3 in Psoriatic Arthritis. Arthritis Rheumatol 2018; 70:801-804. [PMID: 29439293 DOI: 10.1002/art.40445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/06/2018] [Indexed: 02/02/2023]
|
46
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
47
|
Li W, Sivakumar R, Titov AA, Choi SC, Morel L. Metabolic Factors that Contribute to Lupus Pathogenesis. Crit Rev Immunol 2017; 36:75-98. [PMID: 27480903 DOI: 10.1615/critrevimmunol.2016017164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which organ damage is mediated by pathogenic autoantibodies directed against nucleic acids and protein complexes. Studies in SLE patients and in mouse models of lupus have implicated virtually every cell type in the immune system in the induction or amplification of the autoimmune response as well as the promotion of an inflammatory environment that aggravates tissue injury. Here, we review the contribution of CD4+ T cells, B cells, and myeloid cells to lupus pathogenesis and then discuss alterations in the metabolism of these cells that may contribute to disease, given the recent advances in the field of immunometabolism.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610; Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ramya Sivakumar
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Anton A Titov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
48
|
|
49
|
Functional and Transcriptomic Characterization of Peritoneal Immune-Modulation by Addition of Alanyl-Glutamine to Dialysis Fluid. Sci Rep 2017; 7:6229. [PMID: 28740213 PMCID: PMC5524796 DOI: 10.1038/s41598-017-05872-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023] Open
Abstract
Peritonitis remains a major cause of morbidity and mortality during chronic peritoneal dialysis (PD). Glucose-based PD fluids reduce immunological defenses in the peritoneal cavity. Low concentrations of peritoneal extracellular glutamine during PD may contribute to this immune deficit. For these reasons we have developed a clinical assay to measure the function of the immune-competent cells in PD effluent from PD patients. We then applied this assay to test the impact on peritoneal immune-competence of PD fluid supplementation with alanyl-glutamine (AlaGln) in 6 patients in an open-label, randomized, crossover pilot trial (EudraCT 2012-004004-36), and related the functional results to transcriptome changes in PD effluent cells. Ex-vivo stimulation of PD effluent peritoneal cells increased release of interleukin (IL) 6 and tumor necrosis factor (TNF) α. Both IL-6 and TNF-α were lower at 1 h than at 4 h of the peritoneal equilibration test but the reductions in cytokine release were attenuated in AlaGln-supplemented samples. AlaGln-supplemented samples exhibited priming of IL-6-related pathways and downregulation of TNF-α upstream elements. Results from measurement of cytokine release and transcriptome analysis in this pilot clinical study support the conclusion that suppression of PD effluent cell immune function in human subjects by standard PD fluid is attenuated by AlaGln supplementation.
Collapse
|
50
|
Ghosh D, Brown SL, Stumhofer JS. IL-17 Promotes Differentiation of Splenic LSK - Lymphoid Progenitors into B Cells following Plasmodium yoelii Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:1783-1795. [PMID: 28733485 DOI: 10.4049/jimmunol.1601972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/28/2017] [Indexed: 01/01/2023]
Abstract
Lineage-Sca-1+c-Kit- (LSK-) cells are a lymphoid progenitor population that expands in the spleen and preferentially differentiates into mature B cells in response to Plasmodium yoelii infection in mice. Furthermore, LSK- derived B cells can subsequently contribute to the ongoing immune response through the generation of parasite-specific Ab-secreting cells, as well as germinal center and memory B cells. However, the factors that promote their differentiation into B cells in the spleen postinfection are not defined. In this article, we show that LSK- cells produce the cytokine IL-17 in response to Plasmodium infection. Using Il-17ra-/- mice, IL-17R signaling in cells other than LSK- cells was found to support their differentiation into B cells. Moreover, primary splenic stromal cells grown in the presence of IL-17 enhanced the production of CXCL12, a chemokine associated with B cell development in the bone marrow, by a population of IL-17RA-expressing podoplanin+CD31- stromal cells, a profile associated with fibroblastic reticular cells. Subsequent blockade of CXCL12 in vitro reduced differentiation of LSK- cells into B cells, supporting a direct role for this chemokine in this process. Immunofluorescence indicated that podoplanin+ stromal cells in the red pulp were the primary producers of CXCL12 after P. yoelii infection. Furthermore, podoplanin staining on stromal cells was more diffuse, and CXCL12 staining was dramatically reduced in Il-17ra-/- mice postinfection. Together, these results identify a distinct pathway that supports lymphoid development in the spleen during acute Plasmodium infection.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Susie L Brown
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|