1
|
Cembellin-Prieto A, Luo Z, Kulaga H, Baumgarth N. B cells modulate lung antiviral inflammatory responses via the neurotransmitter acetylcholine. Nat Immunol 2025; 26:775-789. [PMID: 40263611 PMCID: PMC12043518 DOI: 10.1038/s41590-025-02124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
The rapid onset of innate immune defenses is critical for early control of viral replication in an infected host and yet it can also lead to irreversible tissue damage, especially in the respiratory tract. Sensitive regulators must exist that modulate inflammation, while controlling the infection. In the present study, we identified acetylcholine (ACh)-producing B cells as such early regulators. B cells are the most prevalent ACh-producing leukocyte population in the respiratory tract demonstrated with choline acetyltransferase (ChAT)-green fluorescent protein (GFP) reporter mice, both before and after infection with influenza A virus. Mice lacking ChAT in B cells, disabling their ability to generate ACh (ChatBKO), but not those lacking ChAT in T cells, significantly, selectively and directly suppressed α7-nicotinic-ACh receptor-expressing interstitial, but not alveolar, macrophage activation and their ability to secrete tumor necrosis factor (TNF), while better controlling virus replication at 1 d postinfection. Conversely, TNF blockade via monoclonal antibody treatment increased viral loads at that time. By day 10 of infection, ChatBKO mice showed increased local and systemic inflammation and reduced signs of lung epithelial repair despite similar viral loads and viral clearance. Thus, B cells are key participants of an immediate early regulatory cascade that controls lung tissue damage after viral infection, shifting the balance toward reduced inflammation at the cost of enhanced early viral replication.
Collapse
Affiliation(s)
- Antonio Cembellin-Prieto
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zheng Luo
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Heather Kulaga
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole Baumgarth
- Graduate Group in Immunology, University of California Davis, Davis, CA, USA.
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Lyme and Tickborne Diseases Research and Education Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Soe YM, Sim SL, Kumari S. Innate Immune Sensors and Cell Death-Frontiers Coordinating Homeostasis, Immunity, and Inflammation in Skin. Viruses 2025; 17:241. [PMID: 40006996 PMCID: PMC11861910 DOI: 10.3390/v17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In this review, we will focus on the following two key frontiers in the skin: innate immune sensors and cell death, as well as their cellular crosstalk in the context of skin homeostasis and inflammation. This review will highlight the recent advancements and mechanisms of how these pathways integrate signals and orchestrate skin immunity, focusing on inflammatory skin diseases and skin infections in mice and humans.
Collapse
Affiliation(s)
| | | | - Snehlata Kumari
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Woolloongabba, Brisbane, QLD 4102, Australia; (Y.M.S.); (S.L.S.)
| |
Collapse
|
3
|
Gao T, Kawabata Y, Kiyoshima T, Jimi E. Nuclear factor-κB p65 subunit determines the fate of aging epithelial cells. Biochem Biophys Res Commun 2024; 722:150143. [PMID: 38795451 DOI: 10.1016/j.bbrc.2024.150143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Nuclear factor (NF)-κB signaling is not only important for the immune and inflammatory responses but also for the normal development of epithelial cells, such as those in the skin and tooth. Here, we generated epithelial cell-specific p65-deficient (p65Δepi-/-) mice to analyze the roles of NF-κB signaling in epithelial cell developent. Notably, p65Δepi-/- mice exhibited no abnormalities in their appearance compared to the control (p65flox/flox) littermates. Furthermore, no major changes were observed in the skin, hair growth, and shape and color of the incisors and molars. However, 65 % of p65Δepi-/- mice exhibited corneal thickening after 8 weeks of age, and 30 % of p65Δepi-/- mice exhibited hair growth from the mandibular incisors around 24 weeks of age. No hair growth was observed at 36 and 42 weeks of age. However, micro-computed tomography images revealed a large cavity below the mandibular incisors extending to the root of the incisor. Histological analysis revealed that the cavity was occupied by a connective tissue containing hair-like structures with many dark brown granules that disappeared after melanin bleaching, confirming the presence of hair. Although inflammatory cells were also observed near the eruption site of the incisor teeth of p65Δepi-/- mice, no major disturbance was observed in the arrangement of enamel epithelial cells. Overall, these results highlight the role of p65 in the maintenance of epithelial cell homeostasis during aging.
Collapse
Affiliation(s)
- Tian Gao
- Laboratory of Molecular and Cellular Biochemistry, Japan
| | - Yuko Kawabata
- Laboratory of Molecular and Cellular Biochemistry, Japan; Section of Oral Neuroscience, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Lecomte K, Toniolo A, Hoste E. Cell death as an architect of adult skin stem cell niches. Cell Death Differ 2024; 31:957-969. [PMID: 38649745 PMCID: PMC11303411 DOI: 10.1038/s41418-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Our skin provides a physical and immunological barrier against dehydration and environmental insults ranging from microbial attacks, toxins and UV irradiation to wounding. Proper functioning of the skin barrier largely depends on the interplay between keratinocytes- the epithelial cells of the skin- and immune cells. Two spatially distinct populations of keratinocyte stem cells (SCs) maintain the epidermal barrier function and the hair follicle. These SCs are inherently long-lived, but cell death can occur within their niches and impacts their functionality. The default cell death programme in skin is apoptosis, an orderly and non-inflammatory suicide programme. However, recent findings are shedding light on the significance of various modes of regulated necrotic cell death, which are lytic and can provoke inflammation within the local skin environment. While the presence of dying cells was generally regarded as a mere consequence of inflammation, findings in various human dermatological conditions and experimental mouse models of aberrant cell death control demonstrated that cell death programmes in keratinocytes (KCs) can drive skin inflammation and even tumour initiation. When cells die, they need to be removed by phagocytosis and KCs can function as non-professional phagocytes of apoptotic cells with important implications for their SC capacities. It is becoming apparent that in conditions of heightened SC activity, distinct cell death modalities differentially impact the different skin SC populations in their local niches. Here, we describe how regulated cell death modalities functionally affect epidermal SC niches along with their relevance to injury repair, inflammatory skin disorders and cancer.
Collapse
Affiliation(s)
- Kim Lecomte
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Annagiada Toniolo
- VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
5
|
Baumgarth N, Prieto AC, Luo Z, Kulaga H. B cells modulate lung antiviral inflammatory responses via the neurotransmitter acetylcholine. RESEARCH SQUARE 2024:rs.3.rs-4421566. [PMID: 38978583 PMCID: PMC11230464 DOI: 10.21203/rs.3.rs-4421566/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The rapid onset of innate immune defenses is critical for early control of viral replication in an infected host, yet it can also lead to irreversible tissue damage, especially in the respiratory tract. Intricate regulatory mechanisms must exist that modulate inflammation, while controlling the infection. Here, B cells expressing choline acetyl transferase (ChAT), an enzyme required for production of the metabolite and neurotransmitter acetylcholine (ACh) are identified as such regulators of the immediate early response to influenza A virus. Lung tissue ChAT + B cells are shown to interact with a7 nicotinic Ach receptor-expressing lung interstitial macrophages in mice within 24h of infection to control their production of TNFa, shifting the balance towards reduced inflammation at the cost of enhanced viral replication. Thus, innate-stimulated B cells are key participants of an immediate-early regulatory cascade that controls lung tissue damage after viral infection.
Collapse
|
6
|
Dainichi T, Matsumoto R, Sakurai K, Kabashima K. Necessary and sufficient factors of keratinocytes in psoriatic dermatitis. Front Immunol 2024; 15:1326219. [PMID: 38312837 PMCID: PMC10834637 DOI: 10.3389/fimmu.2024.1326219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kagawa University Faculty of Medicine, Miki-cho, Japan
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Sakurai
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (ASRL), A*STAR, Singapore, Singapore
| |
Collapse
|
7
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
8
|
Attri S, Kumar A, Kaur K, Kaur P, Punj S, Bedi N, Tuli HS, Arora S. Assessment of anti-psoriatic activity of bakuchiol-loaded solid lipid nanoparticles-based gel: design, characterization, and mechanistic insight via NF-kB signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2105-2125. [PMID: 36929274 DOI: 10.1007/s00210-023-02445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
The aim of the current study is to evaluate the anti-psoriatic potential of bakuchiol (Bak) loaded solid lipid nanoparticles (SLNs) via modulating inflammatory and oxidative pathways. Bak-loaded SLNs were prepared using hot homogenization method and characterized by various spectroscopic techniques. Bak-SLNs suspension was formulated into gel using Carbopol. Different in vivo assays were executed to explore the role of inflammatory markers and oxidative enzymes in psoriasis. DLS (dynamic light scattering) analysis showed suitable particle size, zeta potential, and polydispersity index (PDI) of developed formulation. TEM (transmission electron microscopy) reveal the spherical shape of Bak-SLNs particles. The release studies confirmed the sustained release of Bak-SLNs-based gel. UV-B-induced psoriatic Wistar rat model showed significant anti-psoriatic effect of Bak via regulating inflammatory markers (NF-kB, IL-6, IL-4, and IL-10) and levels of anti-oxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-S-transferase (GST). Furthermore, RT-qPCR analysis confirms that Bak downregulates the expression of inflammatory markers, while histology and immunohistology results also confirm the anti-psoriatic effect of Bak. The study indicates that Bak-loaded SLNs-based gel significantly downregulates the level of cytokines and interleukins involve in NF-kB signaling cascade; hence, it can prove to be a novel therapeutic approach to cure psoriasis.
Collapse
Affiliation(s)
- Shivani Attri
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ajay Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sanha Punj
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College (Deemed to be University), Ambala, Haryana, India
| | - Saroj Arora
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
9
|
Morin S, Bélanger S, Cortez Ghio S, Pouliot R. Eicosapentaenoic acid reduces the proportion of IL-17A-producing T cells in a 3D psoriatic skin model. J Lipid Res 2023; 64:100428. [PMID: 37597582 PMCID: PMC10509711 DOI: 10.1016/j.jlr.2023.100428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Psoriasis is a skin disease presenting as erythematous lesions with accentuated proliferation of epidermal keratinocytes, infiltration of leukocytes, and dysregulated lipid metabolism. T cells play essential roles in the disease. n-3 polyunsaturated fatty acids are anti-inflammatory metabolites, which exert an immunosuppressive effect on healthy T cells. However, the precise mechanistic processes of n-3 polyunsaturated fatty acids on T cells in psoriasis are still unrevealed. In this study, we aimed to evaluate the action of eicosapentaenoic acid (EPA) on T cells in a psoriatic skin model produced with T cells. A coculture of psoriatic keratinocytes and polarized T cells was prepared using culture media, which was either supplemented with 10 μM EPA or left unsupplemented. Healthy and psoriatic skin substitutes were produced according to the self-assembly method. In the coculture model, EPA reduced the proportion of IL-17A-positive cells, while increasing that of FOXP3-positive cells, suggesting an increase in the polarization of regulatory T cells. In the 3D psoriatic skin model, EPA normalized the proliferation of psoriatic keratinocytes and diminished the levels of IL-17A. The expression of the proteins of the signal transducer and activator of transcription was influenced following EPA supplementation with downregulation of the phosphorylation levels of signal transducer and activator of transcription 3 in the dermis. Finally, the NFκB signaling pathway was modified in the EPA-supplemented substitutes with an increase in Fas amounts. Ultimately, our results suggest that in this psoriatic model, EPA exerts its anti-inflammatory action by decreasing the proportion of IL-17A-producing T cells.
Collapse
Affiliation(s)
- Sophie Morin
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | - Sarah Bélanger
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada
| | | | - Roxane Pouliot
- Center for Research in Experimental Organogenesis of Laval University/LOEX, Regenerative Medicine Axis, CHU of Quebec/Laval University Research Center, Qu ebec, QC, Canada; Faculty of Pharmacy, Laval University, Quebec, QC, Canada.
| |
Collapse
|
10
|
Huang B, Hu G, Zong X, Yang S, He D, Gao X, Liu D. α-Cyperone protects dopaminergic neurons and inhibits neuroinflammation in LPS-induced Parkinson's disease rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway. Int Immunopharmacol 2023; 115:109698. [PMID: 36634417 DOI: 10.1016/j.intimp.2023.109698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Our previous study showed that α-Cyperone inhibited the inflammatory response triggered by activated microglia and protected dopaminergic neuron in in vitro cell model of Parkinson's disease (PD). It is unclear the effect of α-Cyperone in animal models of PD. In this study, our results indicated that α-Cyperone ameliorated motor dysfunction, protected dopaminergic neurons, and inhibited the reduction of dopamine and its metabolites in lipopolysaccharide (LPS)-induced PD rat model. Moreover, α-Cyperone suppressed the activation of microglia and the expression of neuroinflammatory factor (TNF-α, IL-6, IL-1β, iNOS, COX-2 and ROS). Furthermore, the molecular mechanism research revealed that α-Cyperone inhibited neuroinflammation and oxidative stress to exert protective effect in microglia by activating Nrf2/HO-1 and suppressing NF-κB signaling pathway. Moreover, α-Cyperone upregulated the expression of antioxidant enzymes (GCLC, GCLM and NQO1) in microglia. In conclusion, our study demonstrates α-Cyperone alleviates dopaminergic neurodegeneration by inhibiting neuroinflammation and oxidative stress in LPS-induced PD rat model via activating Nrf2/HO-1 and suppressing NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bingxu Huang
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China
| | - Guiqiu Hu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaofeng Zong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuo Yang
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China
| | - Dewei He
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China
| | - Xiyu Gao
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- Department of Laboratory Animals, College of Animal Science, Jilin University, Changchun, China.
| |
Collapse
|
11
|
Wang X, Yao Y, Li Y, Guo S, Li Y, Zhang G. Experimental study on the effect of luteolin on the proliferation, apoptosis and expression of inflammation-related mediators in lipopolysaccharide-induced keratinocytes. Int J Immunopathol Pharmacol 2023; 37:3946320231169175. [PMID: 37024790 PMCID: PMC10087617 DOI: 10.1177/03946320231169175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
OBJECTIVE This study aimed at exploring the effects of luteolin on psoriasis-like cell model proliferation, apoptosis regulation and the expression of inflammation-related mediators. METHODS A Cell Counting Kit-8 (CCK-8) assay was used to determine the survival rate of human immortalized keratinocytes (HaCaT cells) and normal human epidermal keratinocytes (NHEK cells) following stimulation with luteolin and lipopolysaccharide (LPS). Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to detect the protein and mRNA expressions of nuclear factor (NF)-κB p65 and interleukin (IL)-6 after LPS stimulation. Then a luteolin stimulation protocol (10 μmol/L, 24 h) was determined and a reasonable LPS stimulation concentration (20 μg/mL, 24 h) was chosen to establish the psoriasis cell model. Keratinocytes in luteolin pre-treatment and control groups were stimulated with 20 μg/mL LPS for 24 h, and the expressions of NF-κB p65 and IL-6 were detected by western blot and RT-qPCR. The apoptosis of HaCaT cells was detected by flow cytometry, and the enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of psoriasis-related inflammatory factors. RESULTS CCK-8 assay indicated that luteolin inhibited the proliferation of keratinocytes. LPS stimulated the proliferation of keratinocytes and upregulated the expression of NF-κB p65 and IL-6 in a concentration-dependent manner, and induced psoriasis-like changes. Furthermore, the protein and mRNA expression levels of NF-κB p65 and IL-6 were decreased in the luteolin pre-stimulation group (p < 0.05). Treatment with luteolin downregulated the expression of the LPS-induced inflammatory mediators in keratinocytes (p < 0.05). The flow cytometry results showed that luteolin induced HaCaT cells apoptosis. Finally, ELISA results demonstrated that luteolin inhibited the release of the IL-17, IL-23 and tumor necrosis factor α (TNF-α) in the pre-stimulation group (p < 0.05). CONCLUSION This study confirmed that luteolin can effectively relieve inflammatory mediators in LPS-induced keratinocyte models of psoriasis, which suggested the potential of luteolin in treating psoriasis.
Collapse
Affiliation(s)
- Xinpei Wang
- Department of Dermatology, The First Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Yue Yao
- Department of Dermatology, The First Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Yexian Li
- Department of Dermatology, The First Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Shujing Guo
- Department of Dermatology, The First Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Yanjia Li
- Department of Dermatology, The First Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical
University, Shijiazhuang, China
- Candidate Branch of National Clinical
Research Center for Skin Diseases, Shijiazhuang, China
| |
Collapse
|
12
|
Cell death in skin function, inflammation, and disease. Biochem J 2022; 479:1621-1651. [PMID: 35929827 PMCID: PMC9444075 DOI: 10.1042/bcj20210606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Cell death is an essential process that plays a vital role in restoring and maintaining skin homeostasis. It supports recovery from acute injury and infection and regulates barrier function and immunity. Cell death can also provoke inflammatory responses. Loss of cell membrane integrity with lytic forms of cell death can incite inflammation due to the uncontrolled release of cell contents. Excessive or poorly regulated cell death is increasingly recognised as contributing to cutaneous inflammation. Therefore, drugs that inhibit cell death could be used therapeutically to treat certain inflammatory skin diseases. Programmes to develop such inhibitors are already underway. In this review, we outline the mechanisms of skin-associated cell death programmes; apoptosis, necroptosis, pyroptosis, NETosis, and the epidermal terminal differentiation programme, cornification. We discuss the evidence for their role in skin inflammation and disease and discuss therapeutic opportunities for targeting the cell death machinery.
Collapse
|
13
|
Anti-Inflammatory and Immunoregulatory Action of Sesquiterpene Lactones. Molecules 2022; 27:molecules27031142. [PMID: 35164406 PMCID: PMC8839508 DOI: 10.3390/molecules27031142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 01/21/2023] Open
Abstract
Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure–activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure–activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.
Collapse
|
14
|
Oliveira JT, Dakic V, Vitória G, Pedrosa CDS, Mendes M, Aragão LGH, Cardim-Pires TR, Lelièvre D, Furtado DR, Pinheiro RO, Foguel D, Breton L, Bouez C, De Vecchi R, Guimarães MZP, Rehen S. Oligomeric α-Synuclein induces skin degeneration in reconstructed human epidermis. Neurobiol Aging 2022; 113:108-117. [DOI: 10.1016/j.neurobiolaging.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
|
15
|
NF-κB1 Contributes to Imiquimod-Induced Psoriasis-Like Skin Inflammation by Inducing Vγ4 +Vδ4 +γδT17 Cells. J Invest Dermatol 2021; 142:1639-1649.e5. [PMID: 34774872 DOI: 10.1016/j.jid.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022]
Abstract
Recent studies have identified NF-κB1 as a new disease susceptibility gene for psoriasis. Although accumulating evidence has shown the importance of NF-κB signaling in various cell types in the pathogenesis of psoriasis, it remains unclear how NF-κB1 contributes to the pathogenesis of psoriasis. In this study, we examined psoriasis-like skin diseases induced by topical administration of imiquimod in Nf-κb1‒deficient (Nf-κb1-/-) mice and littermate wild-type (WT) mice. Compared with WT mice, Nf-κb1-/- mice exhibited attenuated skin inflammation. The numbers of Vγ4+Vδ4+γδT17 cells, which cause skin inflammation in this model, were significantly reduced in the skin and draining lymph nodes in imiquimod-treated Nf-κb1-/- mice. Nf-κb1 is preferentially phosphorylated in Vγ4+Vδ4+γδT17 cells in WT mice. In vitro proliferation of Vγ4+Vδ4+γδT17 cells but not conventional CD4+ T cells was significantly impaired in Nf-κb1-/- mice compared with that in WT mice. RNA-sequencing analyses revealed that the expression of E2 factor target genes was decreased in Vγ4+Vδ4+γδT cells by the absence of NF-κB1. Consistently, the cell cycle progression of Vγ4+Vδ4+γδT cells was reduced in Nf-κb1-/- mice compared with that in WT mice. These results suggest that Nf-κb1 plays a crucial role in the pathogenesis of imiquimod-induced psoriasis-like skin inflammation by promoting the proliferation of Vγ4+Vδ4+γδT17 cells.
Collapse
|
16
|
Liang X, Ou C, Zhuang J, Li J, Zhang F, Zhong Y, Chen Y. Interplay Between Skin Microbiota Dysbiosis and the Host Immune System in Psoriasis: Potential Pathogenesis. Front Immunol 2021; 12:764384. [PMID: 34733291 PMCID: PMC8558530 DOI: 10.3389/fimmu.2021.764384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a multifactorial immune-mediated disease. The highly effective and eligible treatment for psoriasis is limited, for its specific pathogenesis is incompletely elucidated. Skin microbiota is a research hotspot in the pathogenesis of immune-mediated inflammatory skin diseases nowadays, and it may have significant involvement in the provocation or exacerbation of psoriasis with broadly applicable prospects. It is postulated that skin microbiota alternation may interplay with innate immunity such as antimicrobial peptides and Toll-like receptors to stimulate T-cell populations, resulting in immune cascade responses and ultimately psoriasis. Achieving a thorough understanding of its underlying pathogenesis is crucial. Herein, we discuss the potential immunopathogenesis of psoriasis from the aspect of skin microbiota in an attempt to yield insights for novel therapeutic and preventive modalities for psoriasis.
Collapse
Affiliation(s)
- Xiaoqian Liang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Caixin Ou
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jiayi Zhuang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jinsheng Li
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Fangfei Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yuanqiu Zhong
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Brischetto C, Krieger K, Klotz C, Krahn I, Kunz S, Kolesnichenko M, Mucka P, Heuberger J, Scheidereit C, Schmidt-Ullrich R. NF-κB determines Paneth versus goblet cell fate decision in the small intestine. Development 2021; 148:273388. [PMID: 34751748 PMCID: PMC8627599 DOI: 10.1242/dev.199683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in ‘+4/+5’ secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF–κB functions in SI epithelial self-renewal, mice or SI crypt organoids (‘mini-guts’) with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal. Summary: The transcription factor NF-κB, together with downstream Wnt and Sox9, is required for Paneth and goblet cell fate decisions and for maintenance of the small intestinal stem cell niche.
Collapse
Affiliation(s)
- Cristina Brischetto
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Karsten Krieger
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Christian Klotz
- Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute (RKI), 13353 Berlin, Germany
| | - Inge Krahn
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Séverine Kunz
- CF Electron Microscopy, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Marina Kolesnichenko
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Patrick Mucka
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Julian Heuberger
- Signal Transduction in Development and Cancer, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany.,Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, 13353 Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| |
Collapse
|
18
|
Kumari S, Van TM, Preukschat D, Schuenke H, Basic M, Bleich A, Klein U, Pasparakis M. NF-κB inhibition in keratinocytes causes RIPK1-mediated necroptosis and skin inflammation. Life Sci Alliance 2021; 4:4/6/e202000956. [PMID: 33858959 PMCID: PMC8091601 DOI: 10.26508/lsa.202000956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
TNFR1 was found to cause skin inflammation in mice with epidermal keratinocyte-specific ablation of IKK2 or of both the NF-kB subunits RelA and cRel by triggering RIPK1-dependent, RIPK3-MLKL–mediated necroptosis of keratinocytes. Tumor necrosis factor receptor 1 (TNFR1) activates NF-κB–dependent pro-inflammatory gene expression, but also induces cell death by triggering apoptosis and necroptosis. Inhibition of inhibitor of NF-κB kinase (IKK)/NF-κB signaling in keratinocytes paradoxically unleashed spontaneous TNFR1-mediated skin inflammation in mice, but the underlying mechanisms remain poorly understood. Here, we show that TNFR1 causes skin inflammation in mice with epidermis-specific knockout of IKK2 by inducing receptor interacting protein kinase 1 (RIPK1)–dependent necroptosis, and to a lesser extent also apoptosis, of keratinocytes. Combined epidermis-specific ablation of the NF-κB subunits RelA and c-Rel also caused skin inflammation by inducing TNFR1-mediated keratinocyte necroptosis. Contrary to the currently established model that inhibition of NF-κB–dependent gene transcription causes RIPK1-independent cell death, keratinocyte necroptosis, and skin inflammation in mice with epidermis-specific RelA and c-Rel deficiency also depended on RIPK1 kinase activity. These results advance our understanding of the mechanisms regulating TNFR1-induced cell death and identify RIPK1-mediated necroptosis as a potent driver of skin inflammation.
Collapse
Affiliation(s)
- Snehlata Kumari
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Trieu-My Van
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Daniela Preukschat
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Hannah Schuenke
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Ulf Klein
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Worrell JC, Leslie J, Smith GR, Zaki MYW, Paish HL, Knox A, James ML, Cartwright TN, O'Reilly S, Kania G, Distler O, Distler JHW, Herrick AL, Jeziorska M, Borthwick LA, Fisher AJ, Mann J, Mann DA, Oakley F. cRel expression regulates distinct transcriptional and functional profiles driving fibroblast matrix production in systemic sclerosis. Rheumatology (Oxford) 2021; 59:3939-3951. [PMID: 32725139 DOI: 10.1093/rheumatology/keaa272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.
Collapse
Affiliation(s)
- Julie C Worrell
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Graham R Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne.,Biochemistry Department, Faculty of Pharmacy, Minia University, Egypt
| | - Hannah L Paish
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Michelle L James
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Tyrell N Cartwright
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Steven O'Reilly
- Department of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ariane L Herrick
- Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester
| | - Maria Jeziorska
- Division of Cardiovascular Sciences, University of Manchester, Manchester
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Andrew J Fisher
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne.,Institute of Transplantation, The Freeman Hospital, High Heaton, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| |
Collapse
|
20
|
Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients. J Dermatol Sci 2020; 101:49-57. [PMID: 33183906 DOI: 10.1016/j.jdermsci.2020.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. OBJECTIVES To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. METHODS Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we examined the putative functional implication of the most differentially regulated miRNA (miR-324-3p) in differentiation, proliferation and migration of cultured keratinocytes by qRT-PCR, immunofluorescence, and scratch assay. To explore the mechanisms underlying the effects of miR-324-3p, we used specific chemical inhibitors targeting pathways influenced by miR-324-3p. RESULT We provide a comprehensive assessment of the "miRNome" of normal and AGA follicular stem and progenitor cells. Differentially regulated miRNA signatures highlight several miRNA candidates including miRNA-324-3p as mis regulated in patient's stem cells. We find that miR-324-3p promotes differentiation and migration of cultured keratinocytes likely through the regulation of mitogen-activated protein kinase (MAPK) and transforming growth factor (TGF)-β signaling. Importantly, pharmacological inhibition of the TGF-β signaling pathway using Alk5i promotes hair shaft elongation in an organ-culture system. CONCLUSION Together, we offer a platform for understanding miRNA dynamic regulation in follicular stem and progenitor cells in baldness and highlight miR-324-3p as a promising target for its treatment.
Collapse
|
21
|
Perazzio SF, Allenspach EJ, Eklund KK, Varjosalo M, Shinohara MM, Torgerson TR, Seppänen MRJ. Behçet disease (BD) and BD-like clinical phenotypes: NF-κB pathway in mucosal ulcerating diseases. Scand J Immunol 2020; 92:e12973. [PMID: 32889730 DOI: 10.1111/sji.12973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Behçet's disease (BD) is a heterogeneous multi-organ disorder in search of a unified pathophysiological theory and classification. The disease frequently has overlapping features resembling other disease clusters, such as vasculitides, spondyloarthritides and thrombophilias with similar genetic risk variants, namely HLA-B*51, ERAP1, IL-10, IL-23R. Many of the BD manifestations, such as unprovoked recurrent episodes of inflammation and increased expression of IL-1, IL-6 and TNFα, overlap with those of the hereditary monogenic autoinflammatory syndromes, positioning BD at the crossroads between autoimmune and autoinflammatory syndromes. BD-like disease associates with various inborn errors of immunity, including familial Mediterranean fever, conditions related to dysregulated NF-κB activation (eg TNFAIP3, NFKB1, OTULIN, RELA, IKBKG) and either constitutional trisomy 8 or acquired trisomy 8 in myelodysplastic syndromes. We review here the recent advances in the immunopathology of BD, BD-like diseases and the NF-κB pathway suggesting new elements in the elusive BD etiopathogenesis.
Collapse
Affiliation(s)
- Sandro F Perazzio
- Seattle Children's Research Institute, University of Washington and Center for Immunity and Immunotherapies, Seattle, WA, USA.,Division of Rheumatology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Eric J Allenspach
- Seattle Children's Research Institute, University of Washington and Center for Immunity and Immunotherapies, Seattle, WA, USA
| | - Kari K Eklund
- Division of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Markku Varjosalo
- Division of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland.,Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Michi M Shinohara
- Divisions of Dermatology and Dermatopathology, University of Washington, Seattle, WA, USA
| | | | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents and Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Prieux R, Eeman M, Rothen-Rutishauser B, Valacchi G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol In Vitro 2019; 62:104664. [PMID: 31669394 DOI: 10.1016/j.tiv.2019.104664] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Cigarette smoke stands among the most toxic environmental pollutants and is composed of thousands of chemicals including polycyclic aromatic hydrocarbons (PAHs). Despite restrict cigarette smoking ban in indoor or some outdoor locations, the risk of non-smokers to be exposed to environmental cigarette smoke is not yet eliminated. Beside the well-known effects of cigarette smoke to the respiratory and cardiovascular systems, a growing literature has shown during the last 3 decades its noxious effects also on cutaneous tissues. Being the largest organ as well as the interface between the outer environment and the body, human skin acts as a natural shield which is continuously exposed to harmful exogenous agents. Thus, a prolonged and/or repetitive exposure to significant levels of toxic smoke pollutants may have detrimental effects on the cutaneous tissue by disrupting the epidermal barrier function and by exacerbating inflammatory skin disorders (i.e. psoriasis, atopic dermatitis). With the development of very complex skin tissue models and sophisticated cigarette smoke exposure systems it has become important to better understand the toxicity pathways induced by smoke pollutants in more realistic laboratory conditions to find solutions for counteracting their effects. This review provides an update on the skin models currently available to study cigarette smoke exposure and the known pathways involved in cutaneous toxicity. In addition, the article will briefly cover the inflammatory skin pathologies potentially induced and/or exacerbated by cigarette smoke exposure.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marc Eeman
- Home & Personal Care, Dow Silicones Belgium, Seneffe, Belgium
| | | | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, North Carolina State University, Kannapolis, United States; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
23
|
Liu C, Tate T, Batourina E, Truschel ST, Potter S, Adam M, Xiang T, Picard M, Reiley M, Schneider K, Tamargo M, Lu C, Chen X, He J, Kim H, Mendelsohn CL. Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells. Nat Commun 2019; 10:4589. [PMID: 31597917 PMCID: PMC6785552 DOI: 10.1038/s41467-019-12332-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
The urothelium is an epithelial barrier lining the bladder that protects against infection, fluid exchange and damage from toxins. The nuclear receptor Pparg promotes urothelial differentiation in vitro, and Pparg mutations are associated with bladder cancer. However, the function of Pparg in the healthy urothelium is unknown. Here we show that Pparg is critical in urothelial cells for mitochondrial biogenesis, cellular differentiation and regulation of inflammation in response to urinary tract infection (UTI). Superficial cells, which are critical for maintaining the urothelial barrier, fail to mature in Pparg mutants and basal cells undergo squamous-like differentiation. Pparg mutants display persistent inflammation after UTI, and Nf-KB, which is transiently activated in response to infection in the wild type urothelium, persists for months. Our observations suggest that in addition to its known roles in adipogegnesis and macrophage differentiation, that Pparg-dependent transcription plays a role in the urothelium controlling mitochondrial function development and regeneration.
Collapse
Affiliation(s)
- Chang Liu
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Tiffany Tate
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Ekatherina Batourina
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Steven T Truschel
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Tina Xiang
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Martin Picard
- Department of Psychiatry and Neurology, Columbia University, New York, NY, 10032, USA
| | - Maia Reiley
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
- Department of Surgery, Ascension/St. John Providence, 16001 West Nine Mile Road, Southfield, MI, 48075, USA
| | - Kerry Schneider
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
- College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Manuel Tamargo
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Jing He
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Hyunwoo Kim
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Cathy Lee Mendelsohn
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Sakurai K, Dainichi T, Garcet S, Tsuchiya S, Yamamoto Y, Kitoh A, Honda T, Nomura T, Egawa G, Otsuka A, Nakajima S, Matsumoto R, Nakano Y, Otsuka M, Iwakura Y, Grinberg-Bleyer Y, Ghosh S, Sugimoto Y, Guttman-Yassky E, Krueger JG, Kabashima K. Cutaneous p38 mitogen-activated protein kinase activation triggers psoriatic dermatitis. J Allergy Clin Immunol 2019; 144:1036-1049. [DOI: 10.1016/j.jaci.2019.06.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023]
|
25
|
Popescu M, Cabrera-Martinez B, Winslow GM. TNF-α Contributes to Lymphoid Tissue Disorganization and Germinal Center B Cell Suppression during Intracellular Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2415-2424. [PMID: 31570507 DOI: 10.4049/jimmunol.1900484] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Bacterial, parasitic, and viral infections are well-known causes of lymphoid tissue disorganization, although the factors, both host and/or pathogen derived, that mediate these changes are largely unknown. Ehrlichia muris infection in mice causes a loss of germinal center (GC) B cells that is accompanied by the generation of extrafollicular T-bet+ CD11c+ plasmablasts and IgM memory B cells. We addressed a possible role for TNF-α in this process because this cytokine has been shown to regulate GC development. Ablation of TNF-α during infection resulted in an 8-fold expansion of GL7+ CD38lo CD95+ GC B cells, and a 2.5- and 5-fold expansion of CD138+ plasmablasts and T-bet+ memory cells, respectively. These changes were accompanied by a reduction in splenomegaly, more organized T and B cell zones, and an improved response to Ag challenge. CXCL13, the ligand for CXCR5, was detected at 6-fold higher levels following infection but was much reduced following TNF-α ablation, suggesting that CXCL13 dysregulation also contributes to loss of lymphoid tissue organization. T follicular helper cells, which also underwent expansion in infected TNF-α--deficient mice, may also have contributed to the expansion of T-bet+ B cells, as the latter are known to require T cell help. Our findings contrast with previously described roles for TNF-α in GCs and reveal how host-pathogen interactions can induce profound changes in cytokine and chemokine production that can alter lymphoid tissue organization, GC B cell development, and extrafollicular T-bet+ B cell generation.
Collapse
Affiliation(s)
- Maria Popescu
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| | - Berenice Cabrera-Martinez
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| |
Collapse
|
26
|
Fiod Riccio BV, Fonseca-Santos B, Colerato Ferrari P, Chorilli M. Characteristics, Biological Properties and Analytical Methods of Trans-Resveratrol: A Review. Crit Rev Anal Chem 2019; 50:339-358. [PMID: 31353930 DOI: 10.1080/10408347.2019.1637242] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trans-resveratrol (TR) is the biological active isomer of resveratrol and the one responsible for therapeutic effects; both molecules are non-flavonoid phenolics of the stilbenes class found mainly in berries and red grapes. TR biological properties lie in modulation of various enzymatic classes. It is a promising candidate to novel drugs due its applications in pharmaceutical and cosmetic industries, such as anticarcinogenic, antidiabetic, antiacne, antioxidant, anti-inflammatory, neuroprotective, and photoprotector agent. It has effects on bone metabolism, gastrointestinal tract, eyes, kidneys, and in obesity treatment as well. Nevertheless, its low solubility in water and other polar solvents may be a hindrance to its therapeutic effects. Various strategies been developed to overcome these issues, such as the drug delivery systems. The present study performed a research about methods to identify TR and RESV in several samples (raw materials, wines, food supplements, drug delivery systems, and blood plasma). Most of the studies tend to analyze TR and RESV by high performance liquid chromatography (HPLC) coupled with different detectors, even so, there are reports of the use of capillary electrophoresis, electron spin resonance, gas chromatography, near-infrared luminescence, UV-Vis spectrophotometer, and vibrational spectrophotometry, for this purpose. Thus, the review evaluates the biological activity of TR and demonstrates the currently used analytical methods for its quantification in different matrices.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Fonseca-Santos
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
27
|
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog 2019; 58:1571-1580. [PMID: 31286584 DOI: 10.1002/mc.23081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Andrea L George
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Nozomi Sakakibara
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Kanwal Mahmood
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Michael A Moses
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Wendy C Weinberg
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
28
|
Sahlol NY, Mostafa MS, Madkour LAEF, Salama DM. Low TNFAIP3 expression in psoriatic skin promotes disease susceptibility and severity. PLoS One 2019; 14:e0217352. [PMID: 31120955 PMCID: PMC6532901 DOI: 10.1371/journal.pone.0217352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Psoriasis vulgaris is a systemic disorder with an underlying immune dysregulation that predisposes to inflammatory skin lesions. Meanwhile, tumor necrosis factor alpha-induced protein 3 (TNFAIP3) has been described as a protective molecule against the deleterious effects of uncontrolled inflammation. In this study, we compared the expression levels of TNFAIP3 in blood and psoriatic skin biopsies from psoriatic patients versus those in normal individuals. Additionally, the levels of TNFAIP3 protein in psoriatic skin biopsies were compared to those in normal individuals. Thirty psoriatic patients and 30 healthy participants (control group) were enrolled. The expression levels of TNFAIP3 in blood and skin were measured by quantitative reverse transcription PCR, while the skin levels of TNFAIP3 protein were measured by western blot. Psoriatic patients showed significantly lower expression levels of TNFAIP3 in psoriatic skin and blood (P< 0.001) as well as of TNFAIP3 protein in psoriatic skin (P< 0.001) compared to controls. A significant lower expression of TNFAIP3 and TNFAIP3 protein in psoriatic skin was detected in moderate/severe cases compared to mild cases (P = 0.004 and 0.003 respectively). Moreover, a significant negative correlation was found between TNFAIP3 mRNA in psoriatic tissue and psoriasis area severity index values (rs = -0.382, P-value = 0.037). In conclusion, TNFAIP3 may serve as a predictive and prognostic biomarker in psoriatic patients. Enhancing the expression and/or function of TNFAIP3 in the affected cell type may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Nahla Yassin Sahlol
- Department of Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Salah Mostafa
- Department of Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
29
|
Dainichi T, Matsumoto R, Mostafa A, Kabashima K. Immune Control by TRAF6-Mediated Pathways of Epithelial Cells in the EIME (Epithelial Immune Microenvironment). Front Immunol 2019; 10:1107. [PMID: 31156649 PMCID: PMC6532024 DOI: 10.3389/fimmu.2019.01107] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
In the protective responses of epithelial tissues, not only immune cells but also non-immune cells directly respond to external agents. Epithelial cells can be involved in the organization of immune responses through two phases. First, the exogenous harmful agents trigger the primary responses of the epithelial cells leading to various types of immune cell activation. Second, cytokines produced by the immune cells that are activated directly by the external agents and indirectly by the epithelial cell products elicit the secondary responses giving rise to further propagation of immune responses. TRAF6 is a ubiquitin E3 ligase, which intermediates between various types of receptors for exogenous agents or endogenous mediators and activation of subsequent transcriptional responses via NF-kappaB and MAPK pathways. TRAF6 ubiquitously participates in many protective responses in immune and non-immune cells. Particularly, epithelial TRAF6 has an essential role in the primary and secondary responses via driving type 17 response in psoriatic inflammation of the skin. Consistently, many psoriasis susceptibility genes encode the TRAF6 signaling players, such as ACT1 (TRAF3IP2), A20 (TNFAIP3), ABIN1 (TNIP1), IL-36Ra (IL36RN), IkappaBzeta (NFKBIZ), and CARD14. Herein, we describe the principal functions of TRAF6, especially in terms of positive and regulatory immune controls by interaction between immune cells and epithelial cells. In addition, we discuss how TRAF6 in the epithelial cells can organize the differentiation of immune responses and drive inflammatory loops in the epithelial immune microenvironment, which is termed EIME.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Dermatology, Beni-Suef University, Beni-Suef, Egypt
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| |
Collapse
|
30
|
Devos M, Mogilenko DA, Fleury S, Gilbert B, Becquart C, Quemener S, Dehondt H, Tougaard P, Staels B, Bachert C, Vandenabeele P, Van Loo G, Staumont-Salle D, Declercq W, Dombrowicz D. Keratinocyte Expression of A20/TNFAIP3 Controls Skin Inflammation Associated with Atopic Dermatitis and Psoriasis. J Invest Dermatol 2019; 139:135-145. [DOI: 10.1016/j.jid.2018.06.191] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/23/2022]
|
31
|
Dainichi T, Kitoh A, Otsuka A, Nakajima S, Nomura T, Kaplan DH, Kabashima K. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol 2018; 19:1286-1298. [PMID: 30446754 DOI: 10.1038/s41590-018-0256-2] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022]
Abstract
The skin provides both a physical barrier and an immunologic barrier to external threats. The protective machinery of the skin has evolved to provide situation-specific responses to eliminate pathogens and to provide protection against physical dangers. Dysregulation of this machinery can give rise to the initiation and propagation of inflammatory loops in the epithelial microenvironment that result in inflammatory skin diseases in susceptible people. A defective barrier and microbial dysbiosis drive an interleukin 4 (IL-4) loop that underlies atopic dermatitis, while in psoriasis, disordered keratinocyte signaling and predisposition to type 17 responses drive a pathogenic IL-17 loop. Here we discuss the pathogenesis of atopic dermatitis and psoriasis in terms of the epithelial immune microenvironment-the microbiota, keratinocytes and sensory nerves-and the resulting inflammatory loops.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daniel H Kaplan
- Department of Dermatology and Department of Immunology, Cutaneous Biology Research Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.
| |
Collapse
|
32
|
Matsumoto R, Dainichi T, Tsuchiya S, Nomura T, Kitoh A, Hayden MS, Ishii KJ, Tanaka M, Honda T, Egawa G, Otsuka A, Nakajima S, Sakurai K, Nakano Y, Kobayashi T, Sugimoto Y, Kabashima K. Epithelial TRAF6 drives IL-17-mediated psoriatic inflammation. JCI Insight 2018; 3:121175. [PMID: 30089718 DOI: 10.1172/jci.insight.121175] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022] Open
Abstract
Epithelial cells are the first line of defense against external dangers, and contribute to induction of adaptive immunity including Th17 responses. However, it is unclear whether specific epithelial signaling pathways are essential for the development of robust IL-17-mediated immune responses. In mice, the development of psoriatic inflammation induced by imiquimod required keratinocyte TRAF6. Conditional deletion of TRAF6 in keratinocytes abrogated dendritic cell activation, IL-23 production, and IL-17 production by γδ T cells at the imiquimod-treated sites. In contrast, hapten-induced contact hypersensitivity and papain-induced IgE production were not affected by loss of TRAF6. Loss of psoriatic inflammation was not solely due to defective imiquimod sensing, as subcutaneous administration of IL-23 restored IL-17 production but did not reconstitute psoriatic pathology in the mutant animals. Thus, TRAF6 was required for the full development of IL-17-mediated inflammation. Therefore, epithelial TRAF6 signaling plays an essential role in both triggering and propagating IL-17-mediated psoriatic inflammation.
Collapse
Affiliation(s)
- Reiko Matsumoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Matthew S Hayden
- Section of Dermatology, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mayuri Tanaka
- Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Sakurai
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuri Nakano
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Kumamoto University Faculty of Life Sciences, Kumamoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| |
Collapse
|
33
|
Kondylis V, Kumari S, Vlantis K, Pasparakis M. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation. Immunol Rev 2018; 277:113-127. [PMID: 28462531 DOI: 10.1111/imr.12550] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
Regulated cell death pathways have important functions in host defense and tissue homeostasis. Studies in genetic mouse models provided evidence that cell death could cause inflammation in different tissues. Inhibition of RIPK3-MLKL-dependent necroptosis by FADD and caspase-8 was identified as a key mechanism preventing inflammation in epithelial barriers. Moreover, the interplay between IKK/NF-κB and RIPK1 signaling was recognized as a critical determinant of tissue homeostasis and inflammation. NEMO was shown to regulate RIPK1 kinase activity-mediated apoptosis by NF-κB-dependent and -independent functions, which are critical for averting chronic tissue injury and inflammation in the intestine and the liver. In addition, RIPK1 was shown to exhibit kinase activity-independent functions that are essential for preventing cell death, maintaining tissue architecture and inhibiting inflammation. In the intestine, RIPK1 acts as a scaffold to prevent epithelial cell apoptosis and preserve tissue integrity. In the skin, RIPK1 functions via its RHIM to counteract ZBP1/DAI-dependent activation of RIPK3-MLKL-dependent necroptosis and inflammation. Collectively, these studies provided evidence that the regulation of cell death signaling plays an important role in the maintenance of tissue homeostasis, and suggested that cell death could be causally involved in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Snehlata Kumari
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Katerina Vlantis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Al-Shobaili HA, Farhan J, Zafar U, Rasheed Z. Functional role of human interleukin-32 and nuclear transcription factor-kB in patients with psoriasis and psoriatic arthritis. Int J Health Sci (Qassim) 2018; 12:29-34. [PMID: 29896069 PMCID: PMC5969786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Inflammation and its associated cell signaling events have been well documented in psoriasis and psoriatic arthritis. However, the potential for interleukin (IL)-32 and its associated signaling to provoke an inflammatory response or to contribute in the pathogenesis of psoriasis or psoriatic arthritis are still in early phase. This study determined the role of IL-32 and nuclear transcription factor (NF)-κB in patients with plaque psoriasis and psoriatic arthritis. METHODS Levels of IL-32 were determined in the plasma samples of patients with plaque psoriasis, psoriatic arthritis, and normal healthy subjects by human IL-32-specific Sandwich enzyme-linked immunosorbent assays. To investigate the role of a transcription factor in these patients, activated NF-κBp65 levels were determined in the peripheral blood mononuclear cells (PBMCs) by highly sensitive NF-κB transcription factor kit. RESULTS The levels of IL-32 in the plasma samples of plaque psoriasis or psoriatic arthritis patients were found to be significantly higher as compared with the levels of IL-32 present in the normal human plasma samples (P < 0.01). Levels of activated NF-κB were also found higher in plaque psoriasis or psoriatic arthritic patients as compared with the PBMCs of healthy humans (P < 0.05). CONCLUSIONS This study shows the role of IL-32 and NF-κB in plaque psoriasis and psoriatic arthritic patients. Results indicate that IL-32 and NF-κB promote inflammation in patients with psoriasis and psoriatic arthritis. Disruption of IL-32 or NF-κB signaling event might provide a novel target for the management of plaque psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Hani A. Al-Shobaili
- Department of Dermatology, College of Medicine, Qassim University, Buraidah, KSA
| | - Jalees Farhan
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, KSA
| | - Uzma Zafar
- Department of Pathology, College of Medicine, Qassim University, Buraidah, KSA
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, KSA,Address for correspondence: Zafar Rasheed, Department of Medical Biochemistry, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, KSA. E-mail:
| |
Collapse
|
35
|
Kirkley KS, Walton KD, Duncan C, Tjalkens RB. Spontaneous Development of Cutaneous Squamous Cell Carcinoma in Mice with Cell-specific Deletion of Inhibitor of κB Kinase 2. Comp Med 2017; 67:407-415. [PMID: 28935002 PMCID: PMC5621568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/27/2016] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
The deletion of NFκB in epithelial tissues by using skin-specific promoters can cause both tumor formation and severe inflammatory dermatitis, indicating that this signaling pathway is important for the maintenance of immune homeostasis in epithelial tissues. In the present study, we crossed mice transgenic for loxP-Ikbk2 and human Gfap-cre to selectively delete IKK2 in CNS astrocytes. Unexpectedly, a subset of mice developed severe and progressive skin lesions marked by hyperplasia, hyperkeratosis, dysplasia, inflammation, and neoplasia with a subset of lesions diagnosed as squamous cell carcinoma (SCC). The development of lesions was monitored over a 3.5-y period and over 4 filial generations. Average age of onset of was 4 mo of age with 19.5% of mice affected with frequency increasing in progressive generations. Lesion development appeared to correlate not only with unintended IKK2 deletion in GFAP expressing cells of the epidermis, but also with increased expression of TNF in lesioned skin. The skins changes described in these animals are similar to those in transgenic mice with an epidermis-specific deletion of NFκB and thus represents another genetic mouse model that can be used to study the role of NFκB signaling in regulating the development of SCC.
Collapse
Affiliation(s)
- Kelly S Kirkley
- Departments of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Kelly D Walton
- Departments of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Colleen Duncan
- Departments of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Ronald B Tjalkens
- Departments of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado;,
| |
Collapse
|
36
|
Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson's disease and animal models of the disease. Prog Neurobiol 2017; 155:57-75. [PMID: 27107797 PMCID: PMC5073045 DOI: 10.1016/j.pneurobio.2016.04.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Over the last decade the important concept has emerged that microglia, similar to other tissue macrophages, assume different phenotypes and serve several effector functions, generating the theory that activated microglia can be organized by their pro-inflammatory or anti-inflammatory and repairing functions. Importantly, microglia exist in a heterogenous population and their phenotypes are not permanently polarized into two categories; they exist along a continuum where they acquire different profiles based on their local environment. In Parkinson's disease (PD), neuroinflammation and microglia activation are considered neuropathological hallmarks, however their precise role in relation to disease progression is not clear, yet represent a critical challenge in the search of disease-modifying strategies. This review will critically address current knowledge on the activation states of microglia as well as microglial phenotypes found in PD and in animal models of PD, focusing on the expression of surface molecules as well as pro-inflammatory and anti-inflammatory cytokine production during the disease process. While human studies have reported an elevation of both pro- or anti-inflammatory markers in the serum and CSF of PD patients, animal models have provided insights on dynamic changes of microglia phenotypes in relation to disease progression especially prior to the development of motor deficits. We also review recent evidence of malfunction at multiple steps of NFκB signaling that may have a causal interrelationship with pathological microglia activation in animal models of PD. Finally, we discuss the immune-modifying strategies that have been explored regarding mechanisms of chronic microglial activation.
Collapse
Affiliation(s)
- Valerie Joers
- Department of Physiology, Emory University, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Malú G Tansey
- Department of Physiology, Emory University, Atlanta, GA, United States.
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
37
|
Li W, Wu X, Xu X, Wang W, Song S, Liang K, Yang M, Guo L, Zhao Y, Li R. Coenzyme Q10 Suppresses TNF-α-Induced Inflammatory Reaction In Vitro and Attenuates Severity of Dermatitis in Mice. Inflammation 2016; 39:281-289. [PMID: 26341816 DOI: 10.1007/s10753-015-0248-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Anti-oxidant coenzyme Q10 (Co-Q10) is commonly used in clinic. Recently, Co-Q10 was reported to antagonize TNF-α-induced inflammation and play a protective role in various inflammatory conditions. However, its role in dermatitis is unknown. Herein, RAW264.7 macrophage cell line was cultured with stimulation of TNF-α, and administration of Co-Q10 alleviated TNF-α-mediated inflammatory reaction in vitro. Furthermore, oxazolone-induced dermatitis mice model was established, and treatment of Co-Q10 markedly attenuated dermatitis phenotype in this mice model. Moreover, the protective role of Co-Q10 in vitro and in dermatitis was probably due to its repression on NF-κB signaling. Collectively, Co-Q10 may represent a potential molecular target for prevention and treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaojuan Wu
- Department of Pathology and Physiopathology, Shandong University Medical School, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiangling Xu
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Wenhan Wang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Sijia Song
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ke Liang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Min Yang
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Linlin Guo
- Department of Pathology and Physiopathology, Shandong University Medical School, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yunpeng Zhao
- Department of Orthopaedics, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| | - Ruifeng Li
- Department of Pathology and Physiopathology, Shandong University Medical School, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
38
|
Schroder WA, Anraku I, Le TT, Hirata TDC, Nakaya HI, Major L, Ellis JJ, Suhrbier A. SerpinB2 Deficiency Results in a Stratum Corneum Defect and Increased Sensitivity to Topically Applied Inflammatory Agents. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1511-23. [PMID: 27109612 DOI: 10.1016/j.ajpath.2016.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/21/2016] [Accepted: 02/18/2016] [Indexed: 01/17/2023]
Abstract
SerpinB2 (plasminogen activator inhibitor type 2) is constitutively expressed at high levels by differentiating keratinocytes in mice and humans; however, the physiological function of keratinocyte SerpinB2 remains unclear. Herein, we show that SerpinB2(-/-) mice are more susceptible to contact dermatitis after topical application of dinitrofluorobenzene, and show enhanced inflammatory lesions after topical applications of phorbol ester. Untreated SerpinB2(-/-) mice showed no overt changes in epithelial structure, and we were unable to find evidence for a role for keratinocyte SerpinB2 in regulating immunity, apoptosis, IL-1β production, proteasomal activity, or wound healing. Instead, the phenotype was associated with impaired skin barrier function and a defective stratum corneum, with SerpinB2(-/-) mice showing increased transepidermal water loss, increased overt loss of stratum corneum in inflammatory lesions, and impaired stratum corneum thickening after phorbol ester treatment. Immunoblotting suggested that SerpinB2 (cross-linked into the cornified envelope) is present in the stratum corneum and retains the ability to form covalent inhibitory complexes with urokinase. Data suggest that the function of keratinocyte SerpinB2 is protection of the stratum corneum from proteolysis via inhibition of urokinase, thereby maintaining the integrity and barrier function of the stratum corneum, particularly during times of skin inflammation. Implications for studies involving genetically modified mice treated with topical agents and human dermatological conditions, such as contact dermatitis, are discussed.
Collapse
Affiliation(s)
- Wayne A Schroder
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Itaru Anraku
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thuy T Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thiago D C Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lee Major
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jonathan J Ellis
- University of Queensland Diamantina Institute, Translation Research Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
39
|
Lorenz VN, Schön MP, Seitz CS. c-Rel in Epidermal Homeostasis: A Spotlight on c-Rel in Cell Cycle Regulation. J Invest Dermatol 2016; 136:1090-1096. [PMID: 27032306 DOI: 10.1016/j.jid.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Abstract
To maintain proper skin barrier function, epidermal homeostasis requires a subtly governed balance of proliferating and differentiating keratinocytes. While differentiation takes place in the suprabasal layers, proliferation, including mitosis, is usually restricted to the basal layer. Only recently identified as an important regulator of epidermal homeostasis, c-Rel, an NF-κB transcription factor subunit, affects the viability and proliferation of epidermal keratinocytes. In human keratinocytes, decreased expression of c-Rel causes a plethora of dysregulated cellular functions including impaired cell viability, increased apoptosis, and abnormalities during mitosis and cell cycle regulation. On the other hand, c-Rel shows aberrant expression in many epidermal tumors. Here, in the context of its role in different cell types and compared with other NF-κB subunits, we discuss the putative function of c-Rel as a regulator of epidermal homeostasis and mitotic progression. In addition, implications for disease pathophysiology with perturbed c-Rel function and abnormal homeostasis, such as epidermal carcinogenesis, will be discussed.
Collapse
Affiliation(s)
- Verena N Lorenz
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany.
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| | - Cornelia S Seitz
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| |
Collapse
|
40
|
Huang RY, Li L, Wang MJ, Chen XM, Huang QC, Lu CJ. An Exploration of the Role of MicroRNAs in Psoriasis: A Systematic Review of the Literature. Medicine (Baltimore) 2015; 94:e2030. [PMID: 26559308 PMCID: PMC4912302 DOI: 10.1097/md.0000000000002030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Psoriasis is recently characterized by a specific microRNAs (miRNAs) expression profile, which guides the researchers' efforts to explore the therapeutic targets and objective biomarkers that reflect the diagnosis and disease activity in clinical use for psoriasis.The paper presents a state-of-the-art review of expression and function of miRNAs in psoriasis along with its clinical implications.We analyzed all literature searched by keywords "microRNA" and "psoriasis" in PubMed (Medline) from inception up to July 2015, and the references in the literature searched were also considered.Relevant literature was chosen according to the objective of this review. Relevant literature was searched by 3 independent investigators, and experts in the field of miRNAs and psoriasis were involved in analyzing process.We included any study in which role of miRNAs in psoriasis was examined in relation to disease pathogenesis, diagnosis, and treatment.The specific miRNAs profile has been identified from human psoriatic skin, blood, and hair samples. It is found that genetic polymorphisms related to some of specific miRNAs, miR-146a for example, are associated with psoriasis susceptibility. Key roles of several unique miRNAs, such as miR-203 and miR-125b, in inflammatory responses and immune dysfunction, as well as hyperproliferative disorders of psoriatic lesions have been revealed. Moreover, circulating miRNAs detected from blood samples have a potential of clinic application to be the biomarkers of diagnosis, prognosis, and treatment responses. Additionally, a new layer of regulatory mechanisms mediated by miRNAs is to some extent revealed in pathogenesis of psoriasis.The dramatically altered mRNA expression profiles are displayed in psoriasis, and some of these may become disease markers and therapeutic targets. Herein, this work underscores the potential importance of miRNAs to diagnosis, prognosis, and treatment of psoriasis. However, further study in this field is worth doing in the future, as the exact roles of miRNAs in psoriasis have not been fully elucidated.Systematic review registration number is not registered.
Collapse
Affiliation(s)
- Run-Yue Huang
- From the Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) (RYH, XMC, QCH, CJL); and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China (RYH, LL, MJW, XMC, CJL)
| | | | | | | | | | | |
Collapse
|
41
|
Inoue N, Dainichi T, Fujisawa A, Nakano H, Sawamura D, Kabashima K. CARD14Glu138 mutation in familial pityriasis rubra pilaris does not warrant differentiation from familial psoriasis. J Dermatol 2015; 43:187-9. [DOI: 10.1111/1346-8138.13008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 05/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Nana Inoue
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Teruki Dainichi
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Akihiro Fujisawa
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Hajime Nakano
- Department of Dermatology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Daisuke Sawamura
- Department of Dermatology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Kenji Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| |
Collapse
|
42
|
Cross Talk between Proliferative, Angiogenic, and Cellular Mechanisms Orchestred by HIF-1α in Psoriasis. Mediators Inflamm 2015; 2015:607363. [PMID: 26136626 PMCID: PMC4475568 DOI: 10.1155/2015/607363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/21/2015] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease where the altered regulation in angiogenesis, inflammation, and proliferation of keratinocytes are the possible causes of the disease, and the transcription factor “hypoxia-inducible factor 1-alpha” (HIF-1α) is involved in the homeostasis of these three biological phenomena. In this review, the role of HIF-1α in the cross talk between the cytokines and cells of the immunological system involved in the pathogenesis of psoriasis is discussed.
Collapse
|