1
|
Wang L, Li J, Xuan Y, Zhang J, Wang X, Hu W, Xiu L. Prospects for γδ T cells and chimeric antigen receptor γδ T cells in cancer immunotherapy. Front Immunol 2025; 16:1554541. [PMID: 40370457 PMCID: PMC12075525 DOI: 10.3389/fimmu.2025.1554541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
γδ T cells, a type of specialized T cell, differ from alpha-beta T cells due to the presence of γ and δ chain surface T cell receptors. These receptors allow them to directly recognize and bind antigenic molecules without the requirement of attachment to MHC or APC antigen presentation. Given their intrinsic properties and functional versatility, γδ T cells are under intensive investigation as carriers for chimeric antigen receptor (CAR) in the context of cancer therapy. In this regard, γδ CAR-T cells have demonstrated great potential to overcome the limitations of antigen recognition with the help of dual antigen identification mechanisms. However, there are still technological challenges that need to be addressed. This discussion focuses on the research status and future development prospects of γδ T cells and γδ CAR-T cells, aiming to provide valuable insights for the follow-up research and practical application of γδ CAR-T cells.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Neoplasms/therapy
- Neoplasms/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiaqi Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yaping Xuan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jinrui Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Xiu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
2
|
Biały S, Bogunia-Kubik K. Uncovering the mysteries of human gamma delta T cells: from origins to novel therapeutics. Front Immunol 2025; 16:1543454. [PMID: 40276509 PMCID: PMC12018481 DOI: 10.3389/fimmu.2025.1543454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Gamma delta (γδ) T cells represent a unique and distinct population of lymphocytes that bridge the innate and adaptive immune responses. This functional duality positions them as one of the pivotal elements in the evolution and development of the human body's defense mechanisms. This review aims to provide a comprehensive and in-depth overview of γδ T cells, covering their origins, development, classification, and functional roles in immunology. Special attention is given to their involvement in the pathogenesis of autoimmune and cancer-related diseases-areas that remain subjects of intensive research with many unanswered questions. Additionally, this article explores the therapeutic potential of γδ T cells, which hold promise as a novel approach to treating various difficult-to-manage diseases. The review also presents an analysis of the latest clinical studies utilizing γδ T cells, emphasizing their emerging role in modern medicine. The ultimate goal of this work is to offer a holistic perspective on the current state of research on γδ T cells and their prospective applications in immunotherapy and cancer treatment, highlighting their potential to become a groundbreaking tool in future medical interventions.
Collapse
Affiliation(s)
- Sylwia Biały
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of
Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | |
Collapse
|
3
|
Spencer BL, Nguyen DT, Marroquin SM, Gapin L, O’Brien RL, Doran KS. Characterization of the Cellular Immune Response to Group B Streptococcal Vaginal Colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635275. [PMID: 39975125 PMCID: PMC11838357 DOI: 10.1101/2025.01.29.635275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance. Methods Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization. Results We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization. Conclusions Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.
Collapse
Affiliation(s)
- Brady L. Spencer
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Dustin T. Nguyen
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Stephanie M. Marroquin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Laurent Gapin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Rebecca L. O’Brien
- National Jewish Health, Department of Biomedical Research, Denver, CO, USA
| | - Kelly S. Doran
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| |
Collapse
|
4
|
Ibraheem Y, Bayarsaikhan G, Macalinao ML, Kimura K, Yui K, Aoshi T, Inoue SI. γδ T cell-mediated activation of cDC1 orchestrates CD4 + Th1 cell priming in malaria. Front Immunol 2024; 15:1426316. [PMID: 39211036 PMCID: PMC11357926 DOI: 10.3389/fimmu.2024.1426316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
γδ T cells facilitate the CD4+ T helper 1 (Th1) cell response against Plasmodium infection by activating conventional dendritic cells (cDCs), although the underlying mechanism remains elusive. Our study revealed that γδ T cells promote the complete maturation and production of interleukin-12 and CXCR3-ligands specifically in type 1 cDCs (cDC1), with minimal impact on cDC2 and monocyte derived DCs (Mo-DCs). During the initial infection phase, γδ T cell activation and temporal accumulation in the splenic white pulp, alongside cDC1, occur via CCR7-signaling. Furthermore, cDC1/γδ T cell interactions in the white pulp are amplified through CXCR3 signaling in γδ T cells, optimizing Th1 cell priming by cDC1. We also demonstrated how transitional Th1 cells arise in the white pulp before establishing their presence in the red pulp as fully differentiated Th1 cells. Additionally, we elucidate the reciprocal activation between γδ T cells and cDC1s. These findings suggest that Th1 cell priming is orchestrated by this reciprocal activation in the splenic white pulp during the early phase of blood-stage Plasmodium infection.
Collapse
MESH Headings
- Th1 Cells/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Animals
- Mice
- Lymphocyte Activation/immunology
- Malaria/immunology
- Malaria/parasitology
- Mice, Inbred C57BL
- Receptors, CXCR3/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, CCR7/metabolism
- Receptors, CCR7/immunology
- Signal Transduction
- Spleen/immunology
- Cell Differentiation/immunology
- Female
Collapse
Affiliation(s)
- Yarob Ibraheem
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Kazumi Kimura
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Taiki Aoshi
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Department of Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
6
|
Huang J, Yang Q, Wang W, Huang J. CAR products from novel sources: a new avenue for the breakthrough in cancer immunotherapy. Front Immunol 2024; 15:1378739. [PMID: 38665921 PMCID: PMC11044028 DOI: 10.3389/fimmu.2024.1378739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed cancer immunotherapy. However, significant challenges limit its application beyond B cell-driven malignancies, including limited clinical efficacy, high toxicity, and complex autologous cell product manufacturing. Despite efforts to improve CAR T cell therapy outcomes, there is a growing interest in utilizing alternative immune cells to develop CAR cells. These immune cells offer several advantages, such as major histocompatibility complex (MHC)-independent function, tumor microenvironment (TME) modulation, and increased tissue infiltration capabilities. Currently, CAR products from various T cell subtypes, innate immune cells, hematopoietic progenitor cells, and even exosomes are being explored. These CAR products often show enhanced antitumor efficacy, diminished toxicity, and superior tumor penetration. With these benefits in mind, numerous clinical trials are underway to access the potential of these innovative CAR cells. This review aims to thoroughly examine the advantages, challenges, and existing insights on these new CAR products in cancer treatment.
Collapse
Affiliation(s)
| | | | - Wen Wang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Dong LW, Chen YY, Chen CC, Ma ZC, Fu J, Huang BL, Liu FJ, Liang DC, Sun DM, Lan C. Adenosine 2A receptor contributes to the facilitation of post-infectious irritable bowel syndrome by γδ T cells via the PKA/CREB/NF-κB signaling pathway. World J Gastroenterol 2023; 29:1475-1491. [PMID: 36998428 PMCID: PMC10044852 DOI: 10.3748/wjg.v29.i9.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Immunological dysfunction-induced low-grade inflammation is regarded as one of the predominant pathogenetic mechanisms in post-infectious irritable bowel syndrome (PI-IBS). γδ T cells play a crucial role in innate and adaptive immunity. Adenosine receptors expressed on the surface of γδ T cells participate in intestinal inflammation and immunity regulation. AIM To investigate the role of γδ T cell regulated by adenosine 2A receptor (A2AR) in PI-IBS. METHODS The PI-IBS mouse model has been established with Trichinella spiralis (T. spiralis) infection. The intestinal A2AR and A2AR in γδ T cells were detected by immunohistochemistry, and the inflammatory cytokines were measured by western blot. The role of A2AR on the isolated γδ T cells, including proliferation, apoptosis, and cytokine production, were evaluated in vitro. Their A2AR expression was measured by western blot and reverse transcription polymerase chain reaction (RT-PCR). The animals were administered with A2AR agonist, or A2AR antagonist. Besides, γδ T cells were also injected back into the animals, and the parameters described above were examined, as well as the clinical features. Furthermore, the A2AR-associated signaling pathway molecules were assessed by western blot and RT-PCR. RESULTS PI-IBS mice exhibited elevated ATP content and A2AR expression (P < 0.05), and suppression of A2AR enhanced PI-IBS clinical characteristics, indicated by the abdominal withdrawal reflex and colon transportation test. PI-IBS was associated with an increase in intestinal T cells, and cytokine levels of interleukin-1 (IL-1), IL-6, IL-17A, and interferon-α (IFN-α). Also, γδ T cells expressed A2AR in vitro and generated IL-1, IL-6, IL-17A, and IFN-α, which can be controlled by A2AR agonist and antagonist. Mechanistic studies demonstrated that the A2AR antagonist improved the function of γδ T cells through the PKA/CREB/NF-κB signaling pathway. CONCLUSION Our results revealed that A2AR contributes to the facilitation of PI-IBS by regulating the function of γδ T cells via the PKA/CREB/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Wei Dong
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Yi-Yao Chen
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Chao-Chao Chen
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zhi-Chao Ma
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Jiao Fu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bai-Li Huang
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Fu-Jin Liu
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Dong-Chun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - De-Ming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90033, United States
| | - Cheng Lan
- Department of Gastroenterology, Hainan General Hospital, Affiliated Hainan Hospital, Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
8
|
Qiu L, Zhang Y, Zeng X. The function of γδ T cells in humoral immune responses. Inflamm Res 2023; 72:747-755. [PMID: 36799949 DOI: 10.1007/s00011-023-01704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE The purpose of this review is to discuss the role of γδ T cells played in humoral immune responses. BACKGROUND The γδ T cell receptor (γδ TCR) recognizes antigens, including haptens and proteins, in an MHC-independent manner. The recognition of these antigens by γδ TCRs crosses antigen recognition by the B cell receptors (BCRs), suggesting that γδ T cells may be involved in the process of antigen recognition and activation of B cells. However, the role of γδ T cells in humoral immune responses is still less clear. METHODS The kinds of literature about the γδ T cell-B cell interaction were searched on PubMed with search terms, such as γδ T cells, antibody, B cell responses, antigen recognition, and infection. RESULTS Accumulating evidence indicates that γδ T cells, independent of αβ T cells, participate in multiple steps of humoral immunity, including B cell maturation, activation and differentiation, antibody production and class switching. Mechanically, γδ T cells affect B cell function by directly interacting with B cells, secreting cytokines, or modulating αβ T cells. CONCLUSION In this review, we summarize current knowledge on how γδ T cells take part in the humoral immune response, which may assist future vaccine design.
Collapse
Affiliation(s)
- Lingfeng Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
A Distinctive γδ T Cell Repertoire in NOD Mice Weakens Immune Regulation and Favors Diabetic Disease. Biomolecules 2022; 12:biom12101406. [PMID: 36291615 PMCID: PMC9599391 DOI: 10.3390/biom12101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Previous studies in mice and humans suggesting that γδ T cells play a role in the development of type 1 diabetes have been inconsistent and contradictory. We attempted to resolve this for the type 1 diabetes-prone NOD mice by characterizing their γδ T cell populations, and by investigating the functional contributions of particular γδ T cells subsets, using Vγ-gene targeted NOD mice. We found evidence that NOD Vγ4+ γδ T cells inhibit the development of diabetes, and that the process by which they do so involves IL-17 production and/or promotion of regulatory CD4+ αβ T cells (Tregs) in the pancreatic lymph nodes. In contrast, the NOD Vγ1+ cells promote diabetes development. Enhanced Vγ1+ cell numbers in NOD mice, in particular those biased to produce IFNγ, appear to favor diabetic disease. Within NOD mice deficient in particular γδ T cell subsets, we noted that changes in the abundance of non-targeted T cell types also occurred, which varied depending upon the γδ T cells that were missing. Our results indicate that while certain γδ T cell subsets inhibit the development of spontaneous type 1 diabetes, others exacerbate it, and they may do so via mechanisms that include altering the levels of other T cells.
Collapse
|
10
|
Rampoldi F, Donato E, Ullrich L, Deseke M, Janssen A, Demera A, Sandrock I, Bubke A, Juergens AL, Swallow M, Sparwasser T, Falk C, Tan L, Trumpp A, Prinz I. γδ T cells license immature B cells to produce a broad range of polyreactive antibodies. Cell Rep 2022; 39:110854. [PMID: 35613579 DOI: 10.1016/j.celrep.2022.110854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022] Open
Abstract
Immature autoreactive B cells are present in all healthy individuals, but it is unclear which signals are required for their maturation into antibody-producing cells. Inducible depletion of γδ T cells show that direct interaction between γδ T cells and immature B cells in the spleen support an "innate" transition to mature B cells with a broad range of antigen specificities. IL-4 production of γδ T cells and cell-to-cell contact via CD30L support B cell maturation and induce genes of the unfolded protein response and mTORC1 signaling. Eight days after in vivo depletion of γδ T cells, increased numbers of B cells are already stuck in the transitional phase and express increased levels of IgD and CD21. Absence of γδ T cells leads also to reduced levels of serum anti-nuclear autoantibodies, making γδ T cells an attractive target to treat autoimmunity.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Leon Ullrich
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Malte Deseke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anna-Lena Juergens
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| |
Collapse
|
11
|
Born WK, O'Brien RL. Becoming aware of γδ T cells. Adv Immunol 2022; 153:91-117. [PMID: 35469596 DOI: 10.1016/bs.ai.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The discovery that B cells and αβ T cells exist was predictable: These cells gave themselves away through their products and biological effects. In contrast, there was no reason to anticipate the existence of γδ T cells. Even the accidental discovery of a novel TCR-like gene (later named γ) that did not encode TCR α or β proteins did not immediately change this. TCR-like γ had no obvious function, and its early expression in the thymus encouraged speculation about a possible role in αβ T cell development. However, the identification of human PBL-derived cell-lines which expressed CD3 in complex with the TCR-like γ protein, but not the αβ TCR, first indicated that a second T cell-type might exist, and the TCR-like γ chain was observed to co-precipitate with another protein. Amid speculation about a possible second TCR, this potential dimeric partner was named δ. To determine if the δ protein was indeed TCR-like, we undertook to sequence it. Meanwhile, a fourth TCR-like gene was discovered and provisionally named x. TCR-like x had revealed itself through genomic rearrangements early in T cell development, and was an attractive candidate for the gene encoding δ. The observation that δ protein sequences matched the predicted amino acid sequences encoded by the x gene, as well as serological cross-reactivity, confirmed that the TCR-like x gene indeed encoded the δ protein. Thus, the γδ heterodimer was established as a second TCR, and the cells that express it (the γδ T cells) consequently represented a third lymphocyte-population with the potential of recognizing diverse antigens. Soon, it became clear that γδ T cells are widely distributed and conserved among the vertebrate species, implying biological importance. Consistently, early functional studies revealed their roles in host resistance to pathogens, tissue repair, immune regulation, metabolism, organ physiology and more. Albeit discovered late, γδ T cells have repeatedly proven to play a distinct and often critical immunological role, and now generate much interest.
Collapse
Affiliation(s)
- Willi K Born
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States.
| | - Rebecca L O'Brien
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, United States; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States
| |
Collapse
|
12
|
Xie H, Xie S, Wang M, Wei H, Huang H, Xie A, Li J, Fang C, Shi F, Yang Q, Qi Y, Yin Z, Wang X, Huang J. Properties and Roles of γδT Cells in Plasmodium yoelii nigeriensis NSM Infected C57BL/6 Mice. Front Cell Infect Microbiol 2022; 11:788546. [PMID: 35127555 PMCID: PMC8811364 DOI: 10.3389/fcimb.2021.788546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Many kinds of immune cells are involved in malaria infection. γδT cells represent a special type of immune cell between natural and adaptive immune cells that play critical roles in anti-parasite infection. Methods In this study, malaria infection model was constructed. Distribution of γδT cells in various immune organs and dynamic changes of γδT cells in the spleens of C57BL/6 mice after infection were detected by flow cytometry. And activation status of γδT cells was detected by flow cytometry. Then γδT cells in naive and infected mice were sorted and performed single-cell RNA sequencing (scRNA-seq). Finally, γδTCR KO mice model was constructed and the effect of γδT cell depletion on mouse T and B cell immunity against Plasmodium infection was explored. Results Here, splenic γδT cells were found to increase significantly on day 14 after Plasmodium yoelii nigeriensis NSM infection in C57BL/6 mice. Higher level of CD69, ICOS and PD-1, lower level of CD62L, and decreased IFN-γ producing after stimulation by PMA and ionomycin were found in γδT cells from infected mice, compared with naive mice. Moreover, 11 clusters were identified in γδT cells by scRNA-seq based t-SNE analysis. Cluster 4, 5, and 7 in γδT cells from infected mice were found the expression of numerous genes involved in immune response. In the same time, the GO enrichment analysis revealed that the marker genes in the infection group were involved in innate and adaptive immunity, pathway enrichment analysis identified the marker genes in the infected group shared many key signalling molecules with other cells or against pathogen infection. Furthermore, increased parasitaemia, decreased numbers of RBC and PLT, and increased numbers of WBC were found in the peripheral blood from γδTCR KO mice. Finally, lower IFN-γ and CD69 expressing CD4+ and CD8+ T cells, lower B cell percentage and numbers, and less CD69 expressing B cells were found in the spleen from γδTCR KO infected mice, and lower levels of IgG and IgM antibodies in the serum were also observed than WT mice. Conclusions Overall, this study demonstrates the diversity of γδT cells in the spleen of Plasmodium yoelii nigeriensis NSM infected C57BL/6 mice at both the protein and RNA levels, and suggests that the expansion of γδT cells in cluster 4, 5 and 7 could promote both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Hongyan Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xinhua Wang, ; Jun Huang,
| | - Jun Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xinhua Wang, ; Jun Huang,
| |
Collapse
|
13
|
Périz M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Best I, Pastor-Soplin S, Castell M, Massot-Cladera M. Influence of Consumption of Two Peruvian Cocoa Populations on Mucosal and Systemic Immune Response in an Allergic Asthma Rat Model. Nutrients 2022; 14:nu14030410. [PMID: 35276769 PMCID: PMC8840350 DOI: 10.3390/nu14030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022] Open
Abstract
Different cocoa populations have demonstrated a protective role in a rat model of allergic asthma by attenuating the immunoglobulin (Ig) E synthesis and partially protecting against anaphylactic response. The aim of this study was to ascertain the effect of diets containing two native Peruvian cocoa populations (“Amazonas Peru” or APC, and “Criollo de Montaña” or CMC) and an ordinary cocoa (OC) on the bronchial compartment and the systemic and mucosal immune system in the same rat model of allergic asthma. Among other variables, cells and IgA content in the bronchoalveolar lavage fluid (BALF) and serum anti-allergen antibody response were analyzed. The three cocoa populations prevented the increase of the serum specific IgG1 (T helper 2 isotype). The three cocoa diets decreased asthma-induced granulocyte increase in the BALF, which was mainly due to the reduction in the proportion of eosinophils. Moreover, both the OC and CMC diets were able to prevent the leukocyte infiltration caused by asthma induction in both the trachea and nasal cavity and decreased the IgA in both fecal and BALF samples. Overall, these results highlight the potential of different cocoa populations in the prevention of allergic asthma.
Collapse
Affiliation(s)
- Marta Périz
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| | - Ivan Best
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 15842, Peru;
- Unidad de Investigación en Nutrición, Salud, Alimentos Funcionales y Nutracéuticos, Universidad San Ignacio de Loyola, Lima 15024, Peru
- Correspondence: (I.B.); (M.C.); Tel.: +34-93-402-4505 (M.C.)
| | - Santiago Pastor-Soplin
- Programa Cacao, Ingeniería Agroforestal, Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 15842, Peru;
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.B.); (M.C.); Tel.: +34-93-402-4505 (M.C.)
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.P.); (M.J.R.-L.); (F.J.P.-C.); (M.M.-C.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), UB, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
14
|
Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021; 13:6212. [PMID: 34944832 PMCID: PMC8699114 DOI: 10.3390/cancers13246212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.
Collapse
Affiliation(s)
- Susann Schönefeldt
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Tamara Wais
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland;
- iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| |
Collapse
|
15
|
Ullrich L, Lueder Y, Juergens AL, Wilharm A, Barros-Martins J, Bubke A, Demera A, Ikuta K, Patzer GE, Janssen A, Sandrock I, Prinz I, Rampoldi F. IL-4-Producing Vγ1 +/Vδ6 + γδ T Cells Sustain Germinal Center Reactions in Peyer's Patches of Mice. Front Immunol 2021; 12:729607. [PMID: 34804014 PMCID: PMC8600568 DOI: 10.3389/fimmu.2021.729607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The mucosal immune system is the first line of defense against pathogens. Germinal centers (GCs) in the Peyer's patches (PPs) of the small intestine are constantly generated through stimulation of the microbiota. In this study, we investigated the role of γδ T cells in the GC reactions in PPs. Most γδ T cells in PPs localized in the GCs and expressed a TCR composed of Vγ1 and Vδ6 chains. By using mice with partial and total γδ T cell deficiencies, we found that Vγ1+/Vδ6+ T cells can produce high amounts of IL-4, which drives the proliferation of GC B cells as well as the switch of GC B cells towards IgA. Therefore, we conclude that γδ T cells play a role in sustaining gut homeostasis and symbiosis via supporting the GC reactions in PPs.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/microbiology
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/microbiology
- Immunity, Mucosal
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Immunoglobulin Class Switching
- Interleukin-4/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Intraepithelial Lymphocytes/microbiology
- Lymphocyte Activation
- Lymphocyte Depletion
- Mice, Knockout
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Peyer's Patches/microbiology
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Salmonella Infections/immunology
- Salmonella Infections/metabolism
- Salmonella Infections/microbiology
- Salmonella typhimurium/immunology
- Salmonella typhimurium/pathogenicity
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Leon Ullrich
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Koichi Ikuta
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
16
|
He L, Xiao J, Song L, Zhou R, Rong Z, He W, Dai F. HVEM Promotes the Osteogenesis of allo-MSCs by Inhibiting the Secretion of IL-17 and IFN-γ in Vγ4T Cells. Front Immunol 2021; 12:689269. [PMID: 34248977 PMCID: PMC8261146 DOI: 10.3389/fimmu.2021.689269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Bone defects are a common orthopaedic concern, and an increasing number of tissue-engineered bones (TEBs) are used to repair bone defects. Allogeneic mesenchymal stem cells (allo-MSCs) are used as seed cells in many approaches to develop TEB constructs, but the immune response caused by allogeneic transplantation may lead to transplant failure. V gamma 4 T (Vγ4T) cells play an important role in mediating the immune response in the early stage after transplantation; therefore, we wanted to verify whether suppressing Vγ4T cells by herpesvirus entry mediator (HVEM)/B and T lymphocyte attenuator (BTLA) signalling can promote MSCs osteogenesis in the transplanted area. In vitro experiments showed that the osteogenic differentiation of MSCs and Vγ4T cells was weakened after co-culture, and an increase in interleukin-17 (IL-17) and interferon-γ (IFN-γ) levels was detected in the culture supernatant. HVEM-transfected MSCs (MSCs-HVEM) still exhibited osteogenic differentiation activity after co-culture with Vγ4T cells, and the levels of IL-17 and IFN-γ in the co-culture supernatant were significantly reduced. In vivo experiments revealed that inflammation in the transplanted area was reduced and osteogenic repair was enhanced after Vγ4T cells were removed. MSCs-HVEM can also consistently contribute to reduced inflammation in the transplanted area and enhanced bone repair in wild-type (WT) mice. Therefore, our experiments verified that HVEM can promote the osteogenesis of allo-MSCs by inhibiting IL-17 and IFN-γ secretion from Vγ4T cells.
Collapse
Affiliation(s)
- Lei He
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jun Xiao
- Special Service Recuperation Center of Rocket Army, Guangzhou, China
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Rui Zhou
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhigang Rong
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weifeng He
- State Key Laboratory of Trauma, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fei Dai
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Paredes JL, Fernandez-Ruiz R, Niewold TB. T Cells in Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:379-393. [PMID: 34215369 DOI: 10.1016/j.rdc.2021.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
T-cell dysregulation has been implicated in the loss of tolerance and overactivation of B cells in systemic lupus erythematosus (SLE). Recent studies have identified T-cell subsets and genetic, epigenetic, and environmental factors that contribute to pathogenic T-cell differentiation, as well as disease pathogenesis and clinical phenotypes in SLE. Many therapeutics targeting T-cell pathways are under development, and although many have not progressed in clinical trials, the recent approval of the calcineurin inhibitor voclosporin is encouraging. Further study of T-cell subsets and biomarkers of T-cell action may pave the way for specific targeting of pathogenic T-cell populations in SLE.
Collapse
Affiliation(s)
- Jacqueline L Paredes
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA; Division of Rheumatology, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
18
|
Olusola BA, Kabelitz D, Olaleye DO, Odaibo GN. Early HIV infection is associated with reduced proportions of gamma delta T subsets as well as high creatinine and urea levels. Scand J Immunol 2020; 91:e12868. [PMID: 32052490 PMCID: PMC7335456 DOI: 10.1111/sji.12868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/19/2019] [Accepted: 02/01/2020] [Indexed: 01/02/2023]
Abstract
Renal dysfunctions are major predictors of co-morbidities and mortality in HIV-infected individuals. Unconventional T cells have been shown to regulate kidney functions. However, there is dearth of information on the effect of HIV-associated nephropathies on γδ and DN T cells. It is also not clear whether γδ T cell perturbations observed during the early stages of HIV infection occur before immune activation. In this study, we investigated the relationship between creatinine and urea on the number of unconventional T cells in HIV-infected individuals at the early and chronic stages of infection. Persons in the chronic stage of infection were divided into treatment naïve and exposed groups. Treatment exposed individuals were further subdivided into groups with undetectable and detectable HIV-1RNA in their blood. Creatinine and urea levels were significantly higher among persons in the early HIV infection compared with the other groups. Proportions of γδ T, γδ + CD8, γδ + CD16 cells were also significantly reduced in the early stage of HIV infection (P < .01). Markers of immune activation, CD4 + HLA-DR and CD8 + HLA-DR, were also significantly reduced during early HIV infection (P < .01). Taken together, our findings suggest that high levels of renal markers as well as reduced proportions of gamma delta T cells are associated with the early stages of HIV infection. This event likely occurs before systemic immune activation reaches peak levels. This study provides evidence for the need for early HIV infection diagnosis and treatment.
Collapse
Affiliation(s)
- Babatunde A. Olusola
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Dieter Kabelitz
- Institute of Immunology, UKSH Campus Kiel,
Christian-Albrechts-University, Kiel, Germany
| | - David O. Olaleye
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| | - Georgina N. Odaibo
- Department of Virology, College of Medicine, University of
Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
19
|
Rampoldi F, Ullrich L, Prinz I. Revisiting the Interaction of γδ T-Cells and B-Cells. Cells 2020; 9:E743. [PMID: 32197382 PMCID: PMC7140609 DOI: 10.3390/cells9030743] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023] Open
Abstract
Right after the discovery of γδ T-cells in 1984, people started asking how γδ T-cells interact with other immune cells such as B-cells. Early reports showed that γδ T-cells are able to help B-cells to produce antibodies and to sustain the production of germinal centers. Interestingly, the presence of γδ T-cells seems to promote the generation of antibodies against "self" and less against challenging pathogens. More recently, these hypotheses were supported using γδ T-cell-deficient mouse strains, in different mouse models of systemic lupus erythematous, and after induction of epithelial cell damage. Together, these studies suggest that the link between γδ T-cells and the production of autoantibodies may be more relevant for the development of autoimmune diseases than generally acknowledged and thus targeting γδ T-cells could represent a new therapeutic strategy. In this review, we focus on what is known about the communication between γδ T-cells and B-cells, and we discuss the importance of this interaction in the context of autoimmunity.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (L.U.); (I.P.)
| | | | | |
Collapse
|
20
|
Edelblum K, Gustafsson K, Pennington DJ, Willcox BE, Ribot JC. Bordeaux 2018: Wine, Cheese, and γδ T Cells. Front Immunol 2019; 10:2544. [PMID: 31708934 PMCID: PMC6823204 DOI: 10.3389/fimmu.2019.02544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karen Edelblum
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Kenth Gustafsson
- Infection, Immunity and Inflammation Program, London, United Kingdom.,Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Daniel J Pennington
- Barts and the London School of Medicine, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Julie C Ribot
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Phalke SP, Huang Y, Rubtsova K, Getahun A, Sun D, Reinhardt RL, O’Brien RL, Born WK. γδ T cells shape memory-phenotype αβ T cell populations in non-immunized mice. PLoS One 2019; 14:e0218827. [PMID: 31237933 PMCID: PMC6592556 DOI: 10.1371/journal.pone.0218827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Size and composition of γδ T cell populations change dramatically with tissue location, during development, and in disease. Given the functional differentiation of γδ T cell subsets, such shifts might alter the impact of γδ T cells on the immune system. To test this concept, and to determine if γδ T cells can affect other immune cells prior to an immune response, we examined non-immunized mice derived from strains with different genetically induced deficiencies in γδ T cells, for secondary changes in their immune system. We previously saw extensive changes in pre-immune antibodies and B cell populations. Here, we report effects on αβ T cells. Similarly to the B cells, αβ T cells evidently experience the influence of γδ T cells at late stages of their pre-immune differentiation, as single-positive heat stable antigen-low thymocytes. Changes in these and in mature αβ T cells were most prominent with memory-phenotype cells, including both CD8+ and CD4+ populations. As previously observed with B cells, most of the effects on αβ T cells were dependent on IL-4. Unexpectedly, IL-4 seemed to be produced mainly by αβ T cells in the non-immunized mice, albeit strongly regulated by γδ T cells. Similarly to our findings with B cells, changes of αβ T cells were less pronounced in mice lacking all γδ T cells than in mice lacking only some, suggesting that the composition of the γδ T cell population determines the nature of the γδ-influence on the other pre-immune lymphocytes.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation/immunology
- Female
- Immunologic Memory
- Interleukin-4/biosynthesis
- Lymphopenia/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Swati Popat Phalke
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Yafei Huang
- Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kira Rubtsova
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Richard L. Reinhardt
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States of America
| | - Rebecca L. O’Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States of America
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
22
|
Passos LSA, Magalhães LMD, Soares RP, Marques AF, Alves MLR, Giunchetti RC, Nunes MDCP, Gollob KJ, Dutra WO. Activation of Human CD11b + B1 B-Cells by Trypanosoma cruzi-Derived Proteins Is Associated With Protective Immune Response in Human Chagas Disease. Front Immunol 2019; 9:3015. [PMID: 30662439 PMCID: PMC6328447 DOI: 10.3389/fimmu.2018.03015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023] Open
Abstract
B-cells mediate humoral adaptive immune response via the production of antibodies and cytokines, and by inducing T-cell activation. These functions can be attributed to distinct B-cell subpopulations. Infection with Trypanosoma cruzi, the causative agent of Chagas disease, induces a polyclonal B-cell activation and lytic antibody production, critical for controlling parasitemia. Individuals within the chronic phase of Chagas disease may remain in an asymptomatic form (indeterminate), or develop severe cardiomyopathy (cardiac form) that can lead to death. Currently, there is no effective vaccine to prevent Chagas disease, and no treatment to halt the development of the cardiomyopathy once it is installed. The pathology associated with cardiac Chagas disease is a result of an inflammatory reaction. Thus, discovering characteristics of the host's immune response that favor the maintenance of favorable heart function may unveil important immunotherapeutic targets. Given the importance of B cells in antibody production and parasite control, we investigated T. cruzi-derived antigenic fractions responsible for B-cell activation and whether frequencies and functional characteristics of B-cell subpopulations are associated with different clinical outcomes of human Chagas disease. We stimulated cells from indeterminate (I) and cardiac (C) Chagas patients, as well as non-infected individuals (NI), with T. cruzi-derived protein- (PRO), glycolipid- (GCL) and lipid (LIP)-enriched fractions and determined functional characteristics of B-cell subpopulations. Our results showed that the frequency of B-cells was similar amongst groups. PRO, but not GCL nor LIP, led to an increased frequency of B1 B-cells in I, but not C nor NI. Although stimulation with PRO induced higher TNF expression by B1 B-cells from C and I, as compared to NI, it induced expression of IL-10 in cells from I, but not C. Stimulation with PRO induced an increased frequency of the CD11b+ B1 B-cell subpopulation, which was associated with better cardiac function. Chagas patients displayed increased IgM production, and activation of gamma-delta T-cells, which have been associated with B1 B-cell function. Our data showed that PRO activates CD11b+ B1 B-cells, and that this activation is associated with a beneficial clinical status. These findings may have implications in designing new strategies focusing on B-cell activation to prevent Chagas disease cardiomyopathy.
Collapse
Affiliation(s)
- Livia Silva Araújo Passos
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil.,Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luísa Mourão Dias Magalhães
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil.,Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Pinto Soares
- Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Cellular and Molecular Parasitology, Instituto René Rachou, Fundação Oswaldo Cruz, FIOCRUZ, Belo Horizonte, Brazil
| | - Alexandre F Marques
- Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina Luiza Rodrigues Alves
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil.,Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria do Carmo Pereira Nunes
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth J Gollob
- Center for International Research, A.C.Camargo Cancer Center, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia Doenças Tropicais, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Instituto de Ciências Biológicas, Departamento de Morfologia, Belo Horizonte, Brazil.,Pós-graduação em Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia Doenças Tropicais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
McCallion O, Hester J, Issa F. Deciphering the Contribution of γδ T Cells to Outcomes in Transplantation. Transplantation 2018; 102:1983-1993. [PMID: 29994977 PMCID: PMC6215479 DOI: 10.1097/tp.0000000000002335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
γδ T cells are a subpopulation of lymphocytes expressing heterodimeric T-cell receptors composed of γ and δ chains. They are morphologically and functionally heterogeneous, innate yet also adaptive in behavior, and exhibit diverse activities spanning immunosurveillance, immunomodulation, and direct cytotoxicity. The specific responses of γδ T cells to allografts are yet to be fully elucidated with evidence of both detrimental and tolerogenic roles in different settings. Here we present an overview of γδ T-cell literature, consider ways in which their functional heterogeneity contributes to the outcomes after transplantation, and reflect on methods to harness their beneficial properties.
Collapse
Affiliation(s)
- Oliver McCallion
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research Immunology Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Sandrock I, Reinhardt A, Ravens S, Binz C, Wilharm A, Martins J, Oberdörfer L, Tan L, Lienenklaus S, Zhang B, Naumann R, Zhuang Y, Krueger A, Förster R, Prinz I. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing γδ T cells. J Exp Med 2018; 215:3006-3018. [PMID: 30455268 PMCID: PMC6279411 DOI: 10.1084/jem.20181439] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
The authors present a genetic mouse model for conditional depletion of γδ T cells, confirming the fetal origin and persistence of Tγδ17 cells. They show differential phenotypes after acute depletion versus constitutive γδ T cell deficiency in imiquimod-induced psoriasis. γδ T cells are highly conserved in jawed vertebrates, suggesting an essential role in the immune system. However, γδ T cell–deficient Tcrd−/− mice display surprisingly mild phenotypes. We hypothesized that the lack of γδ T cells in constitutive Tcrd−/− mice is functionally compensated by other lymphocytes taking over genuine γδ T cell functions. To test this, we generated a knock-in model for diphtheria toxin–mediated conditional γδ T cell depletion. In contrast to IFN-γ–producing γδ T cells, IL-17–producing γδ T cells (Tγδ17 cells) recovered inefficiently after depletion, and their niches were filled by expanding Th17 cells and ILC3s. Complementary genetic fate mapping further demonstrated that Tγδ17 cells are long-lived and persisting lymphocytes. Investigating the function of γδ T cells, conditional depletion but not constitutive deficiency protected from imiquimod-induced psoriasis. Together, we clarify that fetal thymus-derived Tγδ17 cells are nonredundant local effector cells in IL-17–driven skin pathology.
Collapse
Affiliation(s)
- Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Annika Reinhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christoph Binz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Joana Martins
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Linda Oberdörfer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Ronald Naumann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Inoue SI, Niikura M, Asahi H, Kawakami Y, Kobayashi F. γδ T cells modulate humoral immunity against Plasmodium berghei infection. Immunology 2018; 155:519-532. [PMID: 30144035 DOI: 10.1111/imm.12997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/22/2023] Open
Abstract
It is unclear whether γδ T cells are involved in humoral immunity against Plasmodium infection. Here, we show that B-cell-immunodeficient mice and γδ T-cell-deficient mice were incapable of protecting against Plasmodium berghei XAT parasites. γδ T-cell-deficient mice developed reduced levels of antigen-specific antibodies during the late phase of infection. The numbers of follicular helper T cells and germinal centre B cells in γδ T-cell-deficient mice were lower than in wild-type mice during the late phase of infection. Expression profiling of humoral immunity-related cytokines in γδ T cells showed that interleukin-21 (IL-21) and interferon-γ (IFN-γ) are increased during the early stage of infection. Furthermore, blockade of IL-21 and IFN-γ signalling during the early stage of infection led to reduction in follicular helper T cells and germinal centre B cells. γδ T-cell production of IL-21 and IFN-γ is crucial for the development and maintenance of follicular helper T cells and germinal centre B cells during the late phase of infection. Our data suggest that γδ T cells modulate humoral immunity against Plasmodium infection.
Collapse
Affiliation(s)
- Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroko Asahi
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasushi Kawakami
- Laboratory of Parasitology, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Fumie Kobayashi
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan.,Laboratory of Parasitology, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
26
|
γδ T cells control humoral immune response by inducing T follicular helper cell differentiation. Nat Commun 2018; 9:3151. [PMID: 30089795 PMCID: PMC6082880 DOI: 10.1038/s41467-018-05487-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023] Open
Abstract
γδ T cells have many known functions, including the regulation of antibody responses. However, how γδ T cells control humoral immunity remains elusive. Here we show that complete Freund's adjuvant (CFA), but not alum, immunization induces a subpopulation of CXCR5-expressing γδ T cells in the draining lymph nodes. TCRγδ+CXCR5+ cells present antigens to, and induce CXCR5 on, CD4 T cells by releasing Wnt ligands to initiate the T follicular helper (Tfh) cell program. Accordingly, TCRδ-/- mice have impaired germinal center formation, inefficient Tfh cell differentiation, and reduced serum levels of chicken ovalbumin (OVA)-specific antibodies after CFA/OVA immunization. In a mouse model of lupus, TCRδ-/- mice develop milder glomerulonephritis, consistent with decreased serum levels of lupus-related autoantibodies, when compared with wild type mice. Thus, modulation of the γδ T cell-dependent humoral immune response may provide a novel therapy approach for the treatment of antibody-mediated autoimmunity.
Collapse
|
27
|
Chen Q, Wen K, Lv A, Liu M, Ni K, Xiang Z, Liu Y, Tu W. Human Vγ9Vδ2-T Cells Synergize CD4 + T Follicular Helper Cells to Produce Influenza Virus-Specific Antibody. Front Immunol 2018; 9:599. [PMID: 29670614 PMCID: PMC5893649 DOI: 10.3389/fimmu.2018.00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/09/2018] [Indexed: 01/09/2023] Open
Abstract
Human Vγ9Vδ2-T cells recognize nonpeptidic antigens and exert effector functions against microorganisms and tumors, but little is known about their roles in humoral immune response against influenza virus infection. Herein, in the coculture of autologous human B cells, dendritic cells and/or naïve CD4 T cells, and Vγ9Vδ2-T cells, we demonstrated that Vγ9Vδ2-T cells could facilitate H9N2 influenza virus-specific IgG and IgM productions in a CD4 T cell-dependent manner. Vγ9Vδ2-T cells promoted the differentiation of CXCR5+PD1+CD4+ T follicular helper (Tfh) cells, CD19+IgD−CD38++ plasma cells (PCs), and drove B cell proliferation as well as immunoglobulin class switching. Interestingly, Vγ9Vδ2-T cells acquired Tfh-associated molecules such as CXCR5, PD1, CD40L, and ICOS during influenza virus stimulation, especially in the presence of CD4 T cells. Moreover, Vγ9Vδ2-T cells promoted CD4 T cells to secrete IL-13 and IL-21, and neutralizing IL-13 and IL-21 significantly reduced the number of CD19+IgD−CD38++ PCs. Using humanized mice, we further demonstrated that Vγ9Vδ2-T cells could synergize CD4 T cells to produce influenza virus-specific antibody. Our findings provide a greater scope for Vγ9Vδ2-T cells in adaptive immunity, especially for the Tfh development and humoral immune responses against influenza virus infection.
Collapse
Affiliation(s)
- Qingyun Chen
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kun Wen
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Aizhen Lv
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ke Ni
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
28
|
Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med 2018; 16:3. [PMID: 29316940 PMCID: PMC5761189 DOI: 10.1186/s12967-017-1378-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/30/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND γδ T cells are a distinct subgroup of T cells containing T cell receptors (TCRs) γ and TCR δ chains with diverse structural and functional heterogeneity. As a bridge between the innate and adaptive immune systems, γδ T cells participate in various immune responses during cancer progression. Because of their direct/indirect antitumor cytotoxicity and strong cytokine production ability, the use of γδ T cells in cancer immunotherapy has received a lot of attention over the past decade. MAIN TEXT Despite the promising potential of γδ T cells, the efficacy of γδ T cell immunotherapy is limited, with an average response ratio of only 21%. In addition, research over the past 2 years has shown that γδ T cells could also promote cancer progression by inhibiting antitumor responses, and enhancing cancer angiogenesis. As a result, γδ T cells have a dual effect and can therefore be considered as being both "friends" and "foes" of cancer. In order to solve the sub-optimal efficiency problem of γδ T cell immunotherapy, we review recent observations regarding the antitumor and protumor activities of major structural and functional subsets of human γδ T cells, describing how these subsets are activated and polarized, and how these events relate to subsequent effects in cancer immunity. A mixture of both antitumor or protumor γδ T cells used in adoptive immunotherapy, coupled with the fact that γδ T cells can be polarized from antitumor cells to protumor cells appear to be the likely reasons for the mild efficacy seen with γδ T cells. CONCLUSION The future holds the promise of depleting the specific protumor γδ T cell subgroup before therapy, choosing multi-immunocyte adoptive therapy, modifying the cytokine balance in the cancer microenvironment, and using a combination of γδ T cells adoptive immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yijing Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
29
|
Camps-Bossacoma M, Massot-Cladera M, Abril-Gil M, Franch A, Pérez-Cano FJ, Castell M. Cocoa Diet and Antibody Immune Response in Preclinical Studies. Front Nutr 2017; 4:28. [PMID: 28702458 PMCID: PMC5484773 DOI: 10.3389/fnut.2017.00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system's functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig) G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status.
Collapse
Affiliation(s)
- Mariona Camps-Bossacoma
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Malen Massot-Cladera
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Angels Franch
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Faculty of Pharmacy and Food Science, Department of Biochemistry and Physiology, Section of Physiology, University of Barcelona, Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
30
|
Saito T, Yano M, Ohki Y, Tomura M, Nakano N. Occludin Expression in Epidermal γδ T Cells in Response to Epidermal Stress Causes Them To Migrate into Draining Lymph Nodes. THE JOURNAL OF IMMUNOLOGY 2017; 199:62-71. [PMID: 28566372 DOI: 10.4049/jimmunol.1600848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/04/2017] [Indexed: 11/19/2022]
Abstract
Epidermal γδ T cells that reside in the front line of the skin play a pivotal role in stress immune surveillance. However, it is not clear whether these cells are involved in further induction of immune responses after they are activated in dysregulated epidermis. In this study, we found that activated γδ T cells expressed occludin and migrated into draining lymph nodes in an occludin-dependent manner. Epidermal γδ T cells in occludin-deficient mice exhibited impairments in morphology changes and motility, although they expressed activation markers at levels comparable to those in wild-type cells. Occludin deficiency weakened the induction of allergen-induced contact hypersensitivity, primarily as the result of the impaired migration of epidermal γδ T cells. Thus, occludin expression by epidermal γδ T cells upon activation in response to epidermal stress allows them to move, which could be important for augmentation of immune responses via collaboration with other cells.
Collapse
Affiliation(s)
- Takahito Saito
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Michihiro Yano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Yutaro Ohki
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| | - Michio Tomura
- Department of Pharmaceutical Sciences, Osaka Ohtani University, Osaka 584-8541, Japan
| | - Naoko Nakano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; and
| |
Collapse
|
31
|
Londono-Renteria B, Marinez-Angarita JC, Troupin A, Colpitts TM. Role of Mast Cells in Dengue Virus Pathogenesis. DNA Cell Biol 2017; 36:423-427. [PMID: 28486041 DOI: 10.1089/dna.2017.3765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dengue is currently regarded as the most common arthropod-borne viral disease in tropical and subtropical areas, with an estimated 50-100 million infections occurring each year. Nearly all patients experience a self-limiting clinical course; however, the illness ranges from undifferentiated fever to severe hemorrhagic fever with or without shock syndrome complications. There are several immune cells associated with the pathogenesis of dengue virus (DENV) infection and systemic spread, including dendritic cells, macrophages, and mast cells (MCs). MCs are widely recognized for their immune functions and as cellular regulators of vascular integrity in human skin. Furthermore, these cells are able to detect DENV, which results in activation and degranulation of potent vasoactive mediators prestored in the granules. These mediators can act directly on vascular endothelium, increasing permeability and inducing vascular leakage. This review is designed to present an insight into the role of MCs during DENV infection and the dual functions in immune protection and contribution to the most severe forms of dengue.
Collapse
Affiliation(s)
| | | | - Andrea Troupin
- 3 Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, South Carolina
| | - Tonya M Colpitts
- 3 Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, South Carolina
| |
Collapse
|
32
|
Abstract
γδ T cells constitute the third arm of a tripartite adaptive immune system in jawed vertebrates, besides αβ T cells and B cells. Like the other two lymphocyte-types, they express diverse antigen receptors, capable of specific ligand recognition. Functionally, γδ T cells represent a system of differentiated subsets, sometimes engaged in cross-regulation, which ultimately determines their effect on other components of the immune system, including B cells and antibodies. γδ T cells are capable of providing help to B cells in antibody production. More recently it became clear that γδ T cells influence B cell differentiation during the peripheral stages of B cell development, control levels of circulating immunoglobulin (all subclasses), and affect production of autoantibodies. Because of this relationship between γδ T cells and B cells, the extensive variation of γδ T cells among human individuals might be expected to modulate their humoral responsiveness.
Collapse
Affiliation(s)
- Willi K Born
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States.
| | - Yafei Huang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - R Lee Reinhardt
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| | - Hua Huang
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| | - Deming Sun
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rebecca L O'Brien
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| |
Collapse
|
33
|
Gratzinger D, Jaffe ES, Chadburn A, Chan JKC, de Jong D, Goodlad JR, Said J, Natkunam Y. Primary/Congenital Immunodeficiency: 2015 SH/EAHP Workshop Report-Part 5. Am J Clin Pathol 2017; 147:204-216. [PMID: 28395106 PMCID: PMC6248572 DOI: 10.1093/ajcp/aqw215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The 2015 Workshop of the Society for Hematopathology/European Association for Haematopathology aimed to review primary immunodeficiency and related lymphoproliferations. METHODS Primary immunodeficiencies were divided into immune dysregulation, DNA repair defects, low immunoglobulins, and combined immunodeficiencies. RESULTS Autoimmune lymphoproliferative syndrome (ALPS) is a prototypical immune dysregulation-type immunodeficiency, with defects in T-cell signaling or apoptosis, expansion of T-cell subsets, and predisposition to hemophagocytic lymphohistiocytosis. DNA repair defects directly predispose to malignancy. Low immunoglobulin immunodeficiencies such as common variable immunodeficiency (CVID) have underlying T-cell repertoire abnormalities predisposing to autoimmunity and B-cell lymphoproliferations. The full spectrum of B-cell lymphoproliferative disorders occurs in primary immunodeficiency. CONCLUSIONS Lymphoproliferations in primary immunodeficiency mirror those in other immunodeficiency settings, with monomorphic B- and sometimes T lymphoproliferative disorders enriched in DNA repair defects. Distinctive T-cell subset expansions in ALPS, CVID, and related entities can mimic lymphoma, and recognition of double-negative T-cell or cytotoxic T-cell expansions is key to avoid overdiagnosis.
Collapse
Affiliation(s)
- Dita Gratzinger
- From the Stanford University School of Medicine, Stanford, CA
| | | | - Amy Chadburn
- Weill Medical College of Cornell University, New York, NY
| | | | - Daphne de Jong
- VU University Medical Center, Amsterdam, the Netherlands
| | | | - Jonathan Said
- University of California Los Angeles Medical Center, Los Angeles
| | | |
Collapse
|
34
|
Tuero I, Venzon D, Robert-Guroff M. Mucosal and Systemic γδ+ T Cells Associated with Control of Simian Immunodeficiency Virus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:4686-4695. [PMID: 27815422 DOI: 10.4049/jimmunol.1600579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
γδ T cells act as a first line of defense against invading pathogens. However, despite their abundance in mucosal tissue, little information is available about their functionality in this compartment in the context of HIV/SIV infection. In this study, we evaluated the frequency, phenotype, and functionality of Vδ1 and Vδ2 T cells from blood, rectum, and the female reproductive tract (FRT) of rhesus macaques to determine whether these cells contribute to control of SIV infection. No alteration in the peripheral Vδ1/Vδ2 ratio in SIV-infected macaques was observed. However, CD8+ and CD4+CD8+ Vδ1 T cells were expanded along with upregulation of NKG2D, CD107, and granzyme B, suggesting cytotoxic function. In contrast, Vδ2 T cells showed a reduced ability to produce the inflammatory cytokine IFN-γ. In the FRT of SIV+ macaques, Vδ1 and Vδ2 showed comparable levels across vaginal, ectocervical, and endocervical tissues; however, endocervical Vδ2 T cells showed higher inflammatory profiles than the two other regions. No sex difference was seen in the rectal Vδ1/Vδ2 ratio. Several peripheral Vδ1 and/or Vδ2 T cell subpopulations expressing IFN-γ and/or NKG2D were positively correlated with decreased plasma viremia. Notably, Vδ2 CD8+ T cells of the endocervix were negatively correlated with chronic viremia. Overall, our results suggest that a robust Vδ1 and Vδ2 T cell response in blood and the FRT of SIV-infected macaques contribute to control of viremia.
Collapse
Affiliation(s)
- Iskra Tuero
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
35
|
Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model. Nutrients 2016; 8:242. [PMID: 27120615 PMCID: PMC4848710 DOI: 10.3390/nu8040242] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/13/2016] [Indexed: 01/10/2023] Open
Abstract
Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.
Collapse
|