1
|
Patel D, Munhoz J, Goruk S, Tsai S, Richard C, Field CJ. Maternal diet supplementation with high-docosahexaenoic-acid canola oil, along with arachidonic acid, promotes immune system development in allergy-prone BALB/c mouse offspring at 3 weeks of age. Eur J Nutr 2023; 62:2399-2413. [PMID: 37106253 DOI: 10.1007/s00394-023-03160-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE To study the effects of feeding docosahexaenoic acid (DHA, derived from novel canola oil), with same amount of arachidonic acid (ARA), supplemented diet to lactating dams on the immune system development of suckled offspring using a T helper type-2 (Th2)-dominant BALB/c mouse. METHODS Dams received nutritionally complete control (no ARA or DHA) or DHA + ARA diet (1% DHA and 1% ARA of total fatty acids) from 5 days pre-parturition to the end of 3-week suckling period. After euthanization, relevant tissues were collected to study fatty acids, splenocyte phenotype and function (ex vivo cytokines with/without lipopolysaccharide (LPS, bacterial challenge) or phorbol myristate acetate + ionomycin (PMAi) stimulation). RESULTS Feeding dams a DHA diet significantly increased the mammary gland milk phospholipid concentration of DHA and ARA. This resulted in 60% higher DHA levels in splenocyte phospholipids of the pups although ARA levels showed no difference. In dams fed DHA diet, significantly higher proportion of CD27+ cytotoxic T cell (CTL) and CXCR3+ CCR6- Th (enriched in Th1) were observed than control, but there were no differences in the splenocyte function upon PMAi (non-specific lymphocyte stimulant) stimulation. Pups from DHA-fed dams showed significantly higher IL-1β, IFN-γ and TNF-α (inflammatory cytokines) by LPS-stimulated splenocytes. This may be due to higher proportion of CD86+ macrophages and B cells (all p's < 0.05) in these pups, which may influence T cell polarization. CONCLUSION Plant-based source of DHA in maternal diet resulted in higher ex vivo production of inflammatory cytokines by splenocytes due to change in their phenotype, and this can skew T cell towards Th1 response in a Th2-dominant BALB/c mouse.
Collapse
Affiliation(s)
- Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jaqueline Munhoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Khanfar E, Olasz K, Gajdócsi E, Jia X, Berki T, Balogh P, Boldizsár F. Splenectomy modulates the immune response but does not prevent joint inflammation in a mouse model of RA. Clin Exp Immunol 2022; 209:201-214. [PMID: 35576510 PMCID: PMC9390846 DOI: 10.1093/cei/uxac052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
The spleen is the largest secondary lymphoid organ which is involved in the development of B cells and also in systemic (auto)immune responses. Using the recombinant human G1 domain-induced arthritis (GIA) model in splenectomized and control BALB/c mice, we investigated the role of the spleen in the induction and pathogenesis of autoimmune arthritis. Splenectomized mice developed GIA with a similar clinical picture to the control group. However, we observed significant alterations in the humoral and cellular immune responses in splenectomized mice. In the sera of the splenectomized mice, we found lower pro-inflammatory cytokine and anti-rhG1 IgM levels, but higher IL-4, anti-rhG1 IgG1 and anti-CCP and RF antibodies. The arthritis induction in the splenectomized group was associated with a significant expansion of activated helper T cells and an increase in the proportion of the circulating B1 and marginal zone B cell subsets. Importantly, immunization of the splenectomized mice with rhG1 induced the formation of germinal centers in the inguinal- and mesenteric lymph nodes (i/mLNs) which showed an active immune response to rhG1. Finally, both B and T cells from the mLNs of the splenectomized mice showed decreased intracellular Ca2+ signaling than those of the control group. Collectively, these findings indicate that the presence of the spleen is not critical for the induction of GIA, and in its absence the autoimmune arthritis is most likely promoted through the compensatory activity of the i/mLNs. However, our data implies the immunological role of the spleen in arthritis which could be further assessed in human RA.
Collapse
Affiliation(s)
- Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Erzsébet Gajdócsi
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Xinkai Jia
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pécs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pécs, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Hungary
| |
Collapse
|
3
|
Patel SR, Lundgren TS, Baldwin WH, Cox C, Parker ET, Healey JF, Jajosky RP, Zerra PE, Josephson CD, Doering CB, Stowell SR, Meeks SL. Neutralizing Antibodies Against Factor VIII Can Occur Through a Non-Germinal Center Pathway. Front Immunol 2022; 13:880829. [PMID: 35634288 PMCID: PMC9132091 DOI: 10.3389/fimmu.2022.880829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Humoral immunity to factor VIII (FVIII) represents a significant challenge for the treatment of patients with hemophilia A. Current paradigms indicate that neutralizing antibodies against FVIII (inhibitors) occur through a classical CD4 T cell, germinal center (GC) dependent process. However, clinical observations suggest that the nature of the immune response to FVIII may differ between patients. While some patients produce persistent low or high inhibitor titers, others generate a transient response. Moreover, FVIII reactive memory B cells are only detectable in some patients with sustained inhibitor titers. The determinants regulating the type of immune response a patient develops, let alone how the immune response differs in these patients remains incompletely understood. One hypothesis is that polymorphisms within immunoregulatory genes alter the underlying immune response to FVIII, and thereby the inhibitor response. Consistent with this, studies report that inhibitor titers to FVIII differ in animals with the same F8 pathogenic variant but completely distinct backgrounds; though, how these genetic disparities affect the immune response to FVIII remains to be investigated. Given this, we sought to mechanistically dissect how genetics impact the underlying immune response to FVIII. In particular, as the risk of producing inhibitors is weakly associated with differences in HLA, we hypothesized that genetic factors other than HLA influence the immune response to FVIII and downstream inhibitor formation. Our data demonstrate that FVIII deficient mice encoding the same MHC and F8 variant produce disparate inhibitor titers, and that the type of inhibitor response formed associates with the ability to generate GCs. Interestingly, the formation of antibodies through a GC or non-GC pathway does not appear to be due to differences in CD4 T cell immunity, as the CD4 T cell response to an immunodominant epitope in FVIII was similar in these mice. These results indicate that genetics can impact the process by which inhibitors develop and may in part explain the apparent propensity of patients to form distinct inhibitor responses. Moreover, these data highlight an underappreciated immunological pathway of humoral immunity to FVIII and lay the groundwork for identification of biomarkers for the development of approaches to tolerize against FVIII.
Collapse
Affiliation(s)
- Seema R Patel
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Taran S Lundgren
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States.,Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, United States
| | - Wallace Hunter Baldwin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Ernest T Parker
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - John F Healey
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Ryan P Jajosky
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E Zerra
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States.,Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Cassandra D Josephson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shannon L Meeks
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta/Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Qi Z, Lan C, Xiaofang J, Juanjuan T, Cheng F, Ting H, Erxia S, Zi L. Inhibition of COX-2 ameliorates murine liver schistosomiasis japonica through splenic cellular immunoregulation. Parasit Vectors 2022; 15:144. [PMID: 35461268 PMCID: PMC9034617 DOI: 10.1186/s13071-022-05201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background We have reported the positive association of the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) axis with liver fibrosis induced by Schistosoma japonicum (Sj) infection, and TLR4 signaling controlled this axis. However, how COX-2 regulates immune response during Sj infection is still unclear. Methods Hematoxylin and eosin staining was used to evaluate the effect of the COX-2-specific inhibitor NS398 on liver granulomatous inflammation and fibrosis. Flow cytometry was used to explore the frequency and amount of different immune cell infiltration in the spleen during Sj infection. Results NS398 significantly reduced the size of liver granuloma, spleen, and mesenteric lymph node (MLN) and alleviated chronic granulomatous inflammation. Mechanically, this might be by decreasing the number of Sj-induced macrophages and T helper type 1 (Th1), Th2, T follicular helper (Tfh), T follicular regulatory (Tfr), and germinal center B (GC B) cells. There were no differences in the number of neutrophils, myeloid-derived suppressor cells, Th17 cells, regulatory T cells (Treg), or total B cells in the spleen of the mice with or without NS398 treatment. Conclusions COX-2/PGE2 inhibition may represent a potential therapeutic approach for schistosomiasis japonica through splenic cellular immunoregulation. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Zhang Qi
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Chen Lan
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Ji Xiaofang
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Tang Juanjuan
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Fu Cheng
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Huang Ting
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China.,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China
| | - Shen Erxia
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,Immunology Department, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Li Zi
- Sino‑French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong Province, China. .,The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Jung B, Park S, Kim E, Yoon H, Hahn TW. Salmonella Typhimurium lacking phoBR as a live vaccine candidate against poultry infection. Vet Microbiol 2022; 266:109342. [PMID: 35063827 DOI: 10.1016/j.vetmic.2022.109342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Salmonella enterica serovar Typhimurium, with a broad-host range, is a predominant cause of non-typhoidal Salmonella infection in humans, and the infectious source is highly associated with food animals, especially poultry. Considering the horizontal transmission of S. Typhimurium from farm animals to humans, vaccination has been strongly recommended in industrial animals. In an effort to eradicate S. Typhimurium in poultry farms, a live candidate vaccine strain lacking the phoBR genes, which encode the PhoB/PhoR two-component regulatory system responsible for cellular phosphate signaling, was evaluated in mice and chickens. Lack of the phoBR genes promoted overgrowth of intracellular Salmonella. However, notably, in BALB/c mouse models, the ΔphoBR mutant showed attenuated virulence and instead, provided protection against infection with virulent Salmonella, thereby clearing out Salmonella in the spleen and liver. Accordingly, immunization with the ΔphoBR mutant increased immunoglobulin (Ig)G and IgM antibody responses and also tended to increase the IgG2a/IgG1 ratio, which is indicative of T helper (Th)1-mediated cellular immunity. In chicken challenge models, immunization with the ΔphoBR mutant significantly boosted the production of IgG and IgM antibodies after the second vaccination. The vaccinated chickens ceased fecal shedding of challenged Salmonella earlier than the non-vaccinated ones and showed no Salmonella in their caecum and ileum. These results demonstrate the potential of the S. Typhimurium ΔphoBR mutant as a vaccine in chickens.
Collapse
Affiliation(s)
- Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
6
|
Nam JH, Choi J, Monmai C, Rod-in W, Jang AY, You S, Park WJ. Immune-Enhancing Effects of Crude Polysaccharides from Korean Ginseng Berries on Spleens of Mice with Cyclophosphamide-Induced Immunosuppression. J Microbiol Biotechnol 2022; 32:256-262. [PMID: 34949747 PMCID: PMC9628850 DOI: 10.4014/jmb.2110.10021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Panax ginseng C. A. Meyer is well known as traditional herbal medicine, and ginseng berries are known to exhibit potential immune-enhancing functions. However, little is known about the in vivo immunomodulatory activity of Korean ginseng berries. In this study, crude Korean ginseng berries polysaccharides (GBP) were isolated and their immunomodulatory activities were investigated using cyclophosphamide (CY)-induced immunosuppressive BALB/c mice. In CY-treated mice, oral administration of GBP (50-500 mg/kg BW) remarkably increased their spleen sizes and spleen indices and activated NK cell activities. GBP also resulted in the proliferation of splenic lymphocytes (coordinating with ConA: plant mitogen which is known to stimulate T-cell or LPS: endotoxin which binds receptor complex in B cells to promote the secretion of pro-inflammatory cytokines) in a dose-dependent manner. In addition, GBP significantly stimulated mRNA expression levels of immune-associated genes including interleukin-1β (IL-1β), IL-2, IL-4, IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4), and cyclooxygenase-2 (COX-2) in CY-treated mice. These results indicate that GBP is involved in immune effects against CY-induced immunosuppression. Thus, GBP could be developed as an immunomodulation agent for medicinal or functional food application.
Collapse
Affiliation(s)
- Ju Hyun Nam
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - JeongUn Choi
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Chaiwat Monmai
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Weerawan Rod-in
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - A-yeong Jang
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - SangGuan You
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Corresponding author Phone: +82-33-640-2857 Fax: +82-33-640-2850 E-mail:
| |
Collapse
|
7
|
Alamri SS, Alluhaybi KA, Alhabbab RY, Basabrain M, Algaissi A, Almahboub S, Alfaleh MA, Abujamel TS, Abdulaal WH, ElAssouli MZ, Alharbi RH, Hassanain M, Hashem AM. Synthetic SARS-CoV-2 Spike-Based DNA Vaccine Elicits Robust and Long-Lasting Th1 Humoral and Cellular Immunity in Mice. Front Microbiol 2021; 12:727455. [PMID: 34557174 PMCID: PMC8454412 DOI: 10.3389/fmicb.2021.727455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. The spike (S) glycoprotein of severe acute respiratory syndrome-coronavirus (SARS-CoV-2) is a major immunogenic and protective protein and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2, denoted VIU-1005. The design was based on a codon-optimized coding sequence of a consensus full-length S glycoprotein. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models 4 weeks after three injections with 100 μg of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Such immunization induced long-lasting IgG and memory T cell responses in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower or fewer doses were able to elicit significantly high levels of Th1-biased systemic S-specific immune responses, as demonstrated by the significant levels of binding IgG antibodies, nAbs and IFN-γ, TNF and IL-2 cytokine production from memory CD8+ and CD4+ T cells in BALB/c mice. Furthermore, compared to intradermal needle injection, which failed to induce any significant immune response, intradermal needle-free immunization elicited a robust Th1-biased humoral response similar to that observed with intramuscular immunization. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting Th1-skewed humoral and cellular immunity in mice. Furthermore, we show that the use of a needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.
Collapse
Affiliation(s)
- Sawsan S. Alamri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A. Alluhaybi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Y. Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Basabrain
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia,Medical Research Center, Jazan University, Jazan, Saudi Arabia
| | - Sarah Almahboub
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,SaudiVax Ltd., Thuwal, Saudi Arabia
| | - Mohamed A. Alfaleh
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M-Zaki ElAssouli
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahaf H. Alharbi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazen Hassanain
- SaudiVax Ltd., Thuwal, Saudi Arabia,Department of Surgery, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Anwar M. Hashem,
| |
Collapse
|
8
|
Nakano Y, Kitagawa T, Osada Y, Tanaka T, Nishizawa S, Yamamoto J. 5-Aminolevulinic Acid Suppresses Prostaglandin E2 Production by Murine Macrophages and Enhances Macrophage Cytotoxicity Against Glioma. World Neurosurg 2019; 127:e669-e676. [DOI: 10.1016/j.wneu.2019.03.240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/25/2022]
|
9
|
Mouse-Derived Isograft (MDI) In Vivo Tumor Models I. Spontaneous sMDI Models: Characterization and Cancer Therapeutic Approaches. Cancers (Basel) 2019; 11:cancers11020244. [PMID: 30791466 PMCID: PMC6406567 DOI: 10.3390/cancers11020244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 01/05/2023] Open
Abstract
Syngeneic in vivo tumor models are valuable for the development and investigation of immune-modulating anti-cancer drugs. In the present study, we established a novel syngeneic in vivo model type named mouse-derived isografts (MDIs). Spontaneous MDIs (sMDIs) were obtained during a long-term observation period (more than one to two years) of naïve and untreated animals of various mouse strains (C3H/HeJ, CBA/J, DBA/2N, BALB/c, and C57BL/6N). Primary tumors or suspicious tissues were assessed macroscopically and re-transplanted in a PDX-like manner as small tumor pieces into sex-matched syngeneic animals. Nine outgrowing primary tumors were histologically characterized either as adenocarcinomas, histiocytic carcinomas, or lymphomas. Growth of the tumor pieces after re-transplantation displayed model heterogeneity. The adenocarcinoma sMDI model JA-0009 was further characterized by flow cytometry, RNA-sequencing, and efficacy studies. M2 macrophages were found to be the main tumor infiltrating leukocyte population, whereas only a few T cells were observed. JA-0009 showed limited sensitivity when treated with antibodies against inhibitory checkpoint molecules (anti-mPD-1 and anti-mCTLA-4), but high sensitivity to gemcitabine treatment. The generated sMDI are spontaneously occurring tumors of low passage number, propagated as tissue pieces in mice without any tissue culturing, and thus conserving the original tumor characteristics and intratumoral immune cell populations.
Collapse
|
10
|
Qi Q, Dong Z, Sun Y, Li S, Zhao Z. Protective Effect of Bergenin against Cyclophosphamide-Induced Immunosuppression by Immunomodulatory Effect and Antioxidation in Balb/c Mice. Molecules 2018; 23:E2668. [PMID: 30336565 PMCID: PMC6222609 DOI: 10.3390/molecules23102668] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
In this study, the aim was to investigate the effect of bergenin on immune function and antioxidation in cyclophosphamide (Cy)-induced immunosuppressed mice. Firstly, we estimated its effect on immune organs. Histological analysis and indexes of immune organs showed that cyclophosphamide exhibited spleen and thymus injury compared with the normal control, which was alleviated by bergenin. Secondly, bergenin also enhanced the humoral immune function through increasing the level of IgM and IgG in serum. Thirdly, bergenin also enhanced the cellular immune function. The results indicate that bergenin increased peritoneal macrophage functions, the proliferation of T and B lymphocytes, NK and CTL cell activities, and T (CD4⁺ and CD8⁺) lymphocyte subsets. Besides, bergenin also had the ability to modulate the Th1/Th2 balance. Moreover, bergenin prevented the Cy-induced decrease in numbers of peripheral RBC, WBC and platelets, providing supportive evidence for their anti-leukopenia activities. Finally, bergenin also reversed the Cy-induced decrease in the total antioxidant capacity including activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In conclusion, bergenin protected against Cy-induced adverse reactions by enhancing humoral and cellular immune functions and augmenting antioxidative activity and could be considered as a potential immunomodulatory agent.
Collapse
Affiliation(s)
- Qiuchen Qi
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Yueyue Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
| | - Siying Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China.
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan 250101, Shandong, China.
| |
Collapse
|
11
|
Kyriazis ID, Koutsoni OS, Aligiannis N, Karampetsou K, Skaltsounis AL, Dotsika E. The leishmanicidal activity of oleuropein is selectively regulated through inflammation- and oxidative stress-related genes. Parasit Vectors 2016; 9:441. [PMID: 27501956 PMCID: PMC4977900 DOI: 10.1186/s13071-016-1701-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/14/2016] [Indexed: 11/14/2022] Open
Abstract
Background Much research effort has been focused on investigating new compounds derived from low-cost sources, such as natural products, for treating leishmaniasis. Oleuropein derived from numerous plants, particularly from the olive tree, Olea europaea L. (Oleaceae), is a biophenol with many biological activities. Our previous findings showed that oleuropein exhibits leishmanicidal effects against three Leishmania spp. in vitro, and minimizes the parasite burden in L. donovani-infected BALB/c mice. The aim of the present study is to investigate the possible mechanism(s) that mediate this leishmanicidal activity. Methods We determined the efficacy of oleuropein in elevating ROS and NO production in L. donovani-infected J774A.1 macrophages and in explanted splenocytes and hepatocytes obtained from L. donovani-infected BALB/c mice. We also assessed the expression of genes that are related to inflammation, T-cell polarization and antioxidant defense, in splenocytes. Finally, we determined the ratios of specific IgG2a/IgG1 antibodies and DTH reactions in L. donovani-infected BALB/c mice treated with oleuropein. Results Oleuropein was able to elevate ROS production in both in vitro and in vivo models of visceral leishmaniasis and raised NO production in ex vivo cultures of splenocytes and hepatocytes. The extensive oxidative stress found in oleuropein-treated mice was obviated by the upregulation of the host’s antioxidant enzyme (mGCLC) and the simultaneous downregulation of the corresponding enzyme of the parasite (LdGCLC). Moreover, oleuropein was able to mount a significant Th1 polarization characterized by the expression of immune genes (IL-12β, IL-10, TGF-β1, IFN-γ) and transcription factors (Tbx21 and GATA3). Moreover, this immunomodulatory effect was also correlated with an inhibitory effect on IL-1β gene expression, rather than with the expression of IL-1α, IL-1rn and TNF-α. Furthermore, oleuropein-treated BALB/c mice mounted a delayed-type hypersensitivity (DTH) response and an elevated Leishmania-specific IgG2a/IgG1 ratio that clearly demonstrated an in vivo protective mechanism. Conclusion The ability of Oleuropein to promote a Th1 type immune response in L. donovani-infected BALB/c mice points towards the candidacy of this bioactive compound as an immunomodulatory agent that may complement therapeutic approaches to leishmaniasis.
Collapse
Affiliation(s)
- Ioannis D Kyriazis
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece.,VIVUS research and diagnostic center, 160 Konstanta str, Volos, Greece
| | - Olga S Koutsoni
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Kalliopi Karampetsou
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece.
| |
Collapse
|
12
|
Epigenetic regulations of inflammatory cyclooxygenase-derived prostanoids: molecular basis and pathophysiological consequences. Mediators Inflamm 2015; 2015:841097. [PMID: 25944989 PMCID: PMC4402557 DOI: 10.1155/2015/841097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022] Open
Abstract
The potential relevance of prostanoid signaling in immunity and immunological disorders, or disease susceptibility and individual variations in drug responses, is an important area for investigation. The deregulation of Cyclooxygenase- (COX-) derived prostanoids has been reported in several immunoinflammatory disorders such as asthma, rheumatoid arthritis, cancer, and autoimmune diseases. In addition to the environmental factors and the genetic background to diseases, epigenetic mechanisms involved in the fine regulation of prostanoid biosynthesis and/or receptor signaling appeared to be an additional level of complexity in the understanding of prostanoid biology and crucial in controlling the different components of the COX pathways. Epigenetic alterations targeting inflammatory components of prostanoid biosynthesis and signaling pathways may be important in the process of neoplasia, depending on the tissue microenvironment and target genes. Here, we focused on the epigenetic modifications of inflammatory prostanoids in physiological immune response and immunological disorders. We described how major prostanoids and their receptors can be functionally regulated epigenetically and consequently the impact of these processes in the pathogenesis inflammatory diseases and the development of therapeutic approaches that may have important clinical applications.
Collapse
|
13
|
Jiménez-Arellanes A, Luna-Herrera J, Cornejo-Garrido J, López-García S, Castro-Mussot ME, Meckes-Fischer M, Mata-Espinosa D, Marquina B, Torres J, Hernández-Pando R. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:258. [PMID: 24098949 PMCID: PMC3853017 DOI: 10.1186/1472-6882-13-258] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA). METHODS The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR. RESULTS The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals. CONCLUSION UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB.
Collapse
Affiliation(s)
- Adelina Jiménez-Arellanes
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, CMN Siglo XXI, IMSS, Ave Cuauhtémoc 330, Col. Doctores, México 06720 D.F, México
| | - Julieta Luna-Herrera
- Laboratorio de Inmunoquímica II, Depto. Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México 11340 D.F, México
| | - Jorge Cornejo-Garrido
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, CMN Siglo XXI, IMSS, Ave Cuauhtémoc 330, Col. Doctores, México 06720 D.F, México
| | - Sonia López-García
- Laboratorio de Inmunoquímica II, Depto. Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México 11340 D.F, México
| | - María Eugenia Castro-Mussot
- Laboratorio de Inmunoquímica II, Depto. Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México 11340 D.F, México
| | - Mariana Meckes-Fischer
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, CMN Siglo XXI, IMSS, Ave Cuauhtémoc 330, Col. Doctores, México 06720 D.F, México
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Secretaría de Salud, Vasco de Quiroga 15, Col. Sección XVI, Tlalpan 14000 D.F, México
| | - Brenda Marquina
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Secretaría de Salud, Vasco de Quiroga 15, Col. Sección XVI, Tlalpan 14000 D.F, México
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, CMN Siglo XXI, IMSS, Ave Cuauhtémoc 330, Col. Doctores, México 06720 D.F, México
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Secretaría de Salud, Vasco de Quiroga 15, Col. Sección XVI, Tlalpan 14000 D.F, México
| |
Collapse
|
14
|
The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683405. [PMID: 24024207 PMCID: PMC3762073 DOI: 10.1155/2013/683405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/21/2013] [Indexed: 12/20/2022]
Abstract
Prostanoids, including prostaglandins (PGs), thromboxanes (TXs), and prostacyclins, are synthesized from arachidonic acid (AA) by the action of Cyclooxygenase (COX) enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC)-natural killer (NK) reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.
Collapse
|
15
|
Reciprocal crosstalk between dendritic cells and natural killer cells under the effects of PGE2 in immunity and immunopathology. Cell Mol Immunol 2013; 10:213-21. [PMID: 23524652 DOI: 10.1038/cmi.2013.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The reciprocal activating crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The cytokine-producing capacity, Th-cell polarizing ability and chemokine expression, migration and stimulatory functions of DCs are regulated by activated NK cells. Conversely, the innate and effector functions of NK cells require close interactions with activated DCs. Cell membrane-associated molecules and soluble mediators, including cytokines and prostaglandins (PGs), contribute to the bidirectional crosstalk between DCs and NK cells. One of the most well-known and well-studied PGs is PGE2. Produced by many cell types, PGE2 has been shown to affect various aspects of the immune and inflammatory responses by acting on all components of the immune system. There is emerging evidence that PGE2 plays crucial roles in DC and NK cell biology. Several studies have shown that DCs are not only a source of PGE2, but also a target of its immunomodulatory action in normal immune response and during immune disorders. Although NK cells appear to be unable to produce PGE2, they are described as powerful PGE2-responding cells, as they express all PGE2 E-prostanoid (EP) receptors. Several NK cell functions (lysis, migration, proliferation, cytokine production) are influenced by PGE2. This review highlights the effects of PGE2 on DC-NK cell crosstalk and its subsequent impact on immune regulations in normal and immunopathological processes.
Collapse
|
16
|
Li H, Edin ML, Gruzdev A, Cheng J, Bradbury JA, Graves JP, DeGraff LM, Zeldin DC. Regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostaglandins Other Lipid Mediat 2012. [PMID: 23201570 DOI: 10.1016/j.prostaglandins.2012.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclooxygenases and their metabolites are important regulators of inflammatory responses and play critical roles in regulating the differentiation of T helper cell subsets in inflammatory diseases. In this review, we highlight new information on regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostanoids influence cytokine production by both antigen presenting cells and T cells to regulate the differentiation of naïve CD4(+) T cells to Th1, Th2 and Th17 cell phenotypes. Cyclooxygenases and PGE2 generally exacerbate Th2 and Th17 phenotypes, while suppressing Th1 differentiation. Thus, cycloxygenases may play a critical role in diseases that involve immune cell dysfunction. Targeting of cyclooxygenases and their eicosanoid products may represent a new approach for treatment of inflammatory diseases, tumors and autoimmune disorders.
Collapse
Affiliation(s)
- Hong Li
- Laboratory of Respiratory Biology, Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Xin H, Cartmell J, Bailey JJ, Dziadek S, Bundle DR, Cutler JE. Self-adjuvanting glycopeptide conjugate vaccine against disseminated candidiasis. PLoS One 2012; 7:e35106. [PMID: 22563378 PMCID: PMC3338514 DOI: 10.1371/journal.pone.0035106] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/08/2012] [Indexed: 12/01/2022] Open
Abstract
Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a major step forward in vaccine design against disseminated candidiasis.
Collapse
Affiliation(s)
- Hong Xin
- Department of Pediatrics, Louisiana State University Health Sciences Center and Research Institute for Children, Children's Hospital, New Orleans, Louisiana, United States of America.
| | | | | | | | | | | |
Collapse
|
18
|
Hebishima T, Matsumoto Y, Watanabe G, Soma GI, Kohchi C, Taya K, Hayashi Y, Hirota Y. Oral administration of immunopotentiator from Pantoea agglomerans 1 (IP-PA1) improves the survival of B16 melanoma-inoculated model mice. Exp Anim 2011; 60:101-9. [PMID: 21512265 DOI: 10.1538/expanim.60.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To investigate the usefulness of the immunopotentiator from Pantoea agglomerans 1 (IP-PA1) as a supportive drug in melanoma therapy, we analyzed the immunological effects of IP-PA1 on melanoma-inoculated model mice. Oral administration of IP-PA1 increased the serum levels of tumor necrosis factor (TNF)-α at 2 h after the administration and interferon (IFN)-γ and IL-12 at 12 h after the administration in naïve BALB/cCrSlc mice as evaluated by ELISA. IP-PA1 did not affect the proliferation of melanoma cells directly determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Combinatory treatment of IP-PA1 with doxorubicin for 9 days increased the serum levels of IFN-γ and IL-12 by 71.0 and 15.3%, respectively, compared to the treatment of doxorubicin alone in melanoma-bearing C57BL/6NCrSlc mice as evaluated by ELISA. It also increased the proportion of natural killer (NK) cells and the ratio of CD4(+) to CD8(+) T cells in the spleen from 6.1 ± 0.3 to 7.4 ± 0.5% and from 1.25 ± 0.03 to 1.38 ± 0.04, respectively, compared to the treatment of doxorubicin alone as analyzed by flow cytometry. The mean survival period of melanoma-bearing, doxorubicin treated mice was prolonged from 31.4 ± 7.1 to 35.3 ± 8.4, 51.1 ± 5.4, and 45.0 ± 8.4 days by combinatory treatment of IP-PA1 at the daily doses of 0.1, 0.5, and 1 mg/kg, respectively. In conclusion, the results of the present study suggest the usefulness of IP-PA1 as a supportive drug in melanoma therapy.
Collapse
Affiliation(s)
- Takehisa Hebishima
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dong Q, Sugiura T, Toyohira Y, Yoshida Y, Yanagihara N, Karasaki Y. Stimulation of IFN-γ production by garlic lectin in mouse spleen cells: involvement of IL-12 via activation of p38 MAPK and ERK in macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:309-316. [PMID: 20724126 DOI: 10.1016/j.phymed.2010.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/22/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
Several lectins, present in beans and edible plant products, have immuno-potentiating and anti-tumor activities. We here report the effects of garlic lectin purified from garlic bulbs on the production of cytokines such as interleukin-12 (IL-12) and interferon-γ (IFN-γ) in the mouse. Garlic lectin induced IFN-γ production in spleen cells in a bell-shaped time (24-60 h)- and concentration (0.25-2.0 mg/ml)-dependent manner. The maximal enhancement was observed at 36 h with 0.5 mg/ml of garlic lectin. The stimulatory effect of garlic lectin on IFN-γ production was completely inhibited by both actinomycin D and cycloheximide, an inhibitor of ribosomal protein synthesis and DNA-dependent RNA polymerase, respectively, and was associated with an increase in IFN-γ mRNA level. Garlic lectin also induced IL-12 production in mouse peritoneal macrophages in a concentration (0.25-1.0 mg/ml)- and bell-shaped time (3-24 h)-dependent manner. The lectin increased the phosphorylation of extracellular signal-regulated kinases (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) in macrophages. Furthermore, specific pharmacological inhibitors of ERK kinase (U0126) and p38 MAPK (SB203580) also suppressed the production of IL-12 induced by garlic lectin. The present findings suggest that garlic lectin induces IL-12 production via activation of p38 MAPK and ERK in mouse macrophages, which, in turn, stimulates IFN-γ production through an increase in IFN-γ mRNA in the spleen cells.
Collapse
Affiliation(s)
- Qing Dong
- Department of Human Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Harizi H, Limem I, Gualde N. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs. Immunol Cell Biol 2010; 89:275-82. [PMID: 20697426 DOI: 10.1038/icb.2010.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).
Collapse
Affiliation(s)
- Hedi Harizi
- CNRS UMR 5540, Bordeaux, Université Bordeaux 2, Bordeaux, France.
| | | | | |
Collapse
|
21
|
Padol IT, Hunt RH. Association of myocardial infarctions with COX-2 inhibition may be related to immunomodulation towards a Th1 response resulting in atheromatous plaque instability: an evidence-based interpretation. Rheumatology (Oxford) 2009; 49:837-43. [DOI: 10.1093/rheumatology/kep225] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
22
|
Okamoto M, Van Stry M, Chung L, Koyanagi M, Sun X, Suzuki Y, Ohara O, Kitamura H, Hijikata A, Kubo M, Bix M. Mina, an Il4 repressor, controls T helper type 2 bias. Nat Immunol 2009; 10:872-9. [PMID: 19561615 DOI: 10.1038/ni.1747] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 05/06/2009] [Indexed: 12/15/2022]
Abstract
T helper type 2 (T(H)2) bias, which is the propensity of naive CD4(+) T cells to differentiate into interleukin 4 (IL-4)-secreting T(H)2 cells, is a genetic trait that affects susceptibility to infectious, autoimmune and allergic diseases. T(H)2 bias correlates with the amount of IL-4 initially secreted by newly activated helper T cells that feeds back positively through the pathway of the IL-4 receptor and the transcription factors STAT6 and GATA-3 to drive T(H)2 development. Here we identify Mina, a member of the jumonji C (JmjC) protein family, as a genetic determinant of T(H)2 bias. Mina specifically bound to and repressed the Il4 promoter. Mina overexpression in transgenic mice impaired Il4 expression, whereas its knockdown in primary CD4(+) T cells led to Il4 derepression. Our findings collectively provide mechanistic insight into an Il4-regulatory pathway that controls helper T cell differentiation and genetic variation in T(H)2 bias.
Collapse
Affiliation(s)
- Mariko Okamoto
- Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, McKenzie BS, Kastelein RA, Cua DJ, de Waal Malefyt R. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. ACTA ACUST UNITED AC 2009; 206:535-48. [PMID: 19273625 PMCID: PMC2699124 DOI: 10.1084/jem.20082293] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostaglandins, particularly prostaglandin E2 (PGE2), play an important role during inflammation. This is exemplified by the clinical use of cyclooxygenase 2 inhibitors, which interfere with PGE2 synthesis, as effective antiinflammatory drugs. Here, we show that PGE2 directly promotes differentiation and proinflammatory functions of human and murine IL-17–producing T helper (Th17) cells. In human purified naive T cells, PGE2 acts via prostaglandin receptor EP2- and EP4-mediated signaling and cyclic AMP pathways to up-regulate IL-23 and IL-1 receptor expression. Furthermore, PGE2 synergizes with IL-1β and IL-23 to drive retinoic acid receptor–related orphan receptor (ROR)-γt, IL-17, IL-17F, CCL20, and CCR6 expression, which is consistent with the reported Th17 phenotype. While enhancing Th17 cytokine expression mainly through EP2, PGE2 differentially regulates interferon (IFN)-γ production and inhibits production of the antiinflammatory cytokine IL-10 in Th17 cells predominantly through EP4. Furthermore, PGE2 is required for IL-17 production in the presence of antigen-presenting cells. Hence, the combination of inflammatory cytokines and noncytokine immunomodulators, such as PGE2, during differentiation and activation determines the ultimate phenotype of Th17 cells. These findings, together with the altered IL-12/IL-23 balance induced by PGE2 in dendritic cells, further highlight the crucial role of the inflammatory microenvironment in Th17 cell development and regulation.
Collapse
Affiliation(s)
- Katia Boniface
- Department of Immunology, Schering-Plough Biopharma, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stojanović M, Živković I, Inić-Kanada A, Petrušić V, Mićić M, Dimitrijević L. The context of tetanus toxoid application influences the outcome of antigen-specific and self-directed humoral immune response. Microbiol Immunol 2009; 53:89-100. [DOI: 10.1111/j.1348-0421.2008.00094.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Khayrullina T, Yen JH, Jing H, Ganea D. In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:721-35. [PMID: 18566439 DOI: 10.4049/jimmunol.181.1.721] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PGE2, an endogenous lipid mediator released in inflammatory conditions, affects both dendritic cell (DC) differentiation and maturation. Whereas the effect of PGE2 on fully differentiated DC was studied extensively, little is known about its effects on DC differentiation. In this study, we show that bone marrow-derived DC generated in the presence of PGE2 (DCp) acquire a proinflammatory profile; produce higher levels of proinflammatory cytokines/chemokines; express higher levels of MHC class II, costimulatory molecules, and TLRs; and exhibit increased activation of the NF-kappaB-signaling pathway. In addition, DCp exhibit a different IL-12/IL-23 profile than DC generated in the absence of PGE2. The low IL-12 and high IL-23 production in LPS-stimulated DCp is associated with the down-regulation of p35 and the up-regulation of p19 expression, respectively. In agreement with the DCp proinflammatory phenotype and especially with the altered IL-12/IL-23 balance which strongly favors IL-23, DCp also affect T cell differentiation. In contrast to DC which favor Th1 differentiation, DCp promote Th17 and inhibit Th1/Th2 differentiation, in vitro and in vivo. Previous in vivo studies indicated that PGE2 had a proinflammatory effect, especially in models of autoimmune diseases. Our results suggest that the proinflammatory effects of PGE2 could be mediated, at least partially, through effects on differentiating DC and subsequent alterations in CD4+ T cell differentiation, resulting in the preferential development of pathogenic autoimmune Th17 cells.
Collapse
Affiliation(s)
- Tanzilya Khayrullina
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
26
|
Suzue K, Kobayashi S, Takeuchi T, Suzuki M, Koyasu S. Critical role of dendritic cells in determining the Th1/Th2 balance upon Leishmania major infection. Int Immunol 2008; 20:337-43. [PMID: 18195051 DOI: 10.1093/intimm/dxm147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The onset of T(h)1 immunity is in part regulated by genetic background. To elucidate the cell type carrying critical factors determining the T(h)1 response, we employed Rag-2(-/-) mice on Leishmania major-susceptible BALB/c and -resistant B10.D2 backgrounds. By using bone marrow (BM) chimeras generated by the transplantation of B10.D2 BM cells into BALB/c-Rag-2(-/-) mice, and vice versa, it was shown that hematopoietic cells carry factors determining the disease outcome and T(h)1 response against L. major infection. B10.D2-Rag-2(-/-) mice reconstituted with BALB/c CD4(+) T cells exhibited a T(h)1 response and controlled L. major infection. Wild-type BALB/c mice inoculated with L. major-parasitized B10.D2-Rag-2(-/-) splenocytes also exhibited a T(h)1 response and a mild disease outcome, whereas such a T(h)1 response was not induced when CD11c(+) dendritic cells (DCs) were depleted from parasitized B10.D2-Rag-2(-/-) splenocytes. T(h)1 response was reconstituted by the addition of L. major-parasitized B10.D2 DCs but not L. major-parasitized BALB/c DCs to DC-depleted parasitized B10.D2-Rag-2(-/-) splenocytes. These results indicate that DCs determine the outcome of the disease upon L. major infection.
Collapse
Affiliation(s)
- Kazutomo Suzue
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | |
Collapse
|
27
|
Donofrio G, Herath S, Sartori C, Cavirani S, Flammini CF, Sheldon IM. Bovine herpesvirus 4 is tropic for bovine endometrial cells and modulates endocrine function. Reproduction 2007; 134:183-97. [PMID: 17641100 PMCID: PMC2740819 DOI: 10.1530/rep-07-0065] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bovine postpartum uterine disease, metritis, affects about 40% of animals and is widely considered to have a bacterial aetiology. Although the gamma-herpesvirus bovine herpesvirus 4 (BoHV-4) has been isolated from several outbreaks of metritis or abortion, the role of viruses in endometrial pathology and the mechanisms of viral infection of uterine cells are often ignored. The objectives of the present study were to explore the interaction, tropism and outcomes of BoHV-4 challenge of endometrial stromal and epithelial cells. Endometrial stromal and epithelial cells were purified and infected with a recombinant BoHV-4 carrying an enhanced green fluorescent protein (EGFP) expression cassette to monitor the establishment of infection. BoHV-4 efficiently infected both stromal and epithelial cells, causing a strong non-apoptotic cytopathic effect, associated with robust viral replication. The crucial step for the BoHV-4 endometriotropism appeared to be after viral entry as there was enhanced transactivation of the BoHV-4 immediate early 2 gene promoter following transient transfection into the endometrial cells. Infection with BoHV-4 increased cyclooxygenase 2 protein expression and prostaglandin estradiol secretion in endometrial stromal cells, but not epithelial cells. Bovine macrophages are persistently infected with BoHV-4, and co-culture with endometrial stromal cells reactivated BoHV-4 replication in the persistently infected macrophages, suggesting a symbiotic relationship between the cells and virus. In conclusion, the present study provides evidence of cellular and molecular mechanisms, supporting the concept that BoHV-4 is a pathogen associated with uterine disease.
Collapse
Affiliation(s)
- Gaetano Donofrio
- Dipartimento di Salute Animale, Sezione di Malattie Infettive, Facoltà di Medicina Veterinaria, via del Taglio 8, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Walmesley AJ, Zweiri J, Christmas SE, Watson AJM. Rofecoxib has Different Effects on Chemokine Production in Colorectal Cancer Cells and Tumor Immune Splenocytes. J Immunother 2007; 30:614-23. [PMID: 17667525 DOI: 10.1097/cji.0b013e31805ca039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclooxygenase-2 (COX-2) is overexpressed in colon tumors. Its main product is the immunosuppressive prostaglandin PGE2 that aids tumor immune escape. In this study, we analyzed mechanisms of action of the COX-2 inhibitor rofecoxib on the immune response to colorectal cancer in an animal model. The murine colorectal cancer cell line MC26, and splenocytes from BALB/c mice immune to irradiated MC26 cells, were incubated with rofecoxib or PGE2. In MC26 cells, 100 nM rofecoxib caused a complete abrogation of PGE2 production and inhibited cell proliferation. Splenocytes from tumor immune mice showed a 300% (P<0.01) increase in proliferation in response to irradiated MC26 cells, amplified to 450% (P<0.01) by 1 microM rofecoxib (n=3). MC26 cells incubated with 1 microM rofecoxib showed increased gene expression of CCL3, CCL5, and CCL20 (P<0.01). enzyme-linked immunosorbent assay tests also showed increased production of CCL5 and CCL20 (P<0.01). PGE2 reversed this effect causing a 40% reduction in chemokine gene expression (n=3). In contrast, splenocytes from naive BALB/c mice stimulated with irradiated MC26 cells had only a marginal chemokine response to rofecoxib. PGE2 caused a 50% down-regulation of CCL5 and CCL20 at the gene level (n=2) and 30% and 40% reduction of CCL3, CCL4, CCL5, and CCL20 at the protein level (n=2). Hence rofecoxib has a 2-fold effect upon the immune response to MC26 cells, by enhancing production of chemokines chemotactic for dendritic cells and also reducing PGE2-mediated inhibition of lymphoproliferation. Together, these may be sufficient for an effective TH1-mediated antitumor response. Rofecoxib may have potential as an addition to existing immunotherapy strategies.
Collapse
Affiliation(s)
- Alice J Walmesley
- School of Clinical Sciences, University of Liverpool, Crown St, Liverpool, UK
| | | | | | | |
Collapse
|
29
|
Kuroda E, Noguchi J, Doi T, Uematsu S, Akira S, Yamashita U. IL-3 is an important differentiation factor for the development of prostaglandin E2-producing macrophages between C57BL/6 and BALB/c mice. Eur J Immunol 2007; 37:2185-95. [PMID: 17628861 DOI: 10.1002/eji.200737041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously reported that peritoneal and splenic macrophages from Th2-dominant BALB/c mice produced higher amounts of prostaglandin (PG) E2 than cells from C57BL/6 mice. In this study, we investigated how macrophages from BALB/c mice acquire the ability of enhanced PGE2 production, using bone marrow-derived macrophages differentiated by M-CSF, GM-CSF or IL-3. There is no strain difference in PGE2 production by GM-CSF- and M-CSF-differentiated macrophages; however, IL-3-differentiated macrophages from BALB/c mice produced higher amounts of PGE2 and lower amounts of type I cytokines than cells from C57BL/6 mice. IL-3-differentiated macrophages from BALB/c mice expressed larger amounts of mRNA of membrane-bound (microsomal) PGE synthase-1 (mPGES-1). The amounts of PGE2 produced by macrophages were significantly reduced in mPGES-1-deficient mice, and these mice displayed enhanced Th1 responses after Propionibacterium acnes treatment compared with wild-type mice. Microarray analysis revealed 63 genes that are differentially expressed more than fivefold in macrophages between C57BL/6 and BALB/c mice. These results indicate that mPGES-1-mediated PGE2 produced by macrophages regulates immune responses, and IL-3 is an important factor for the differentiation of macrophages that produce higher amounts of PGE2 through mPGES-1 activity in BALB/c mice.
Collapse
Affiliation(s)
- Etsushi Kuroda
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Gold JR, Perkins GA, Erb HN, Ainsworth DM. Cytokine Profiles of Peripheral Blood Mononuclear Cells Isolated from Septic and Healthy Neonatal Foals. J Vet Intern Med 2007. [DOI: 10.1111/j.1939-1676.2007.tb02994.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
31
|
Serezani CH, Perrela JH, Russo M, Peters-Golden M, Jancar S. Leukotrienes are essential for the control of Leishmania amazonensis infection and contribute to strain variation in susceptibility. THE JOURNAL OF IMMUNOLOGY 2006; 177:3201-8. [PMID: 16920959 DOI: 10.4049/jimmunol.177.5.3201] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leukotrienes (LTs) are known to be produced by macrophages when challenged with Leishmania, but it is not known whether these lipid mediators play a role in host defense against this important protozoan parasite. In this study, we investigated the involvement of LTs in the in vitro and in vivo response to Leishmania amazonensis infection in susceptible (BALB/c) and resistant (C3H/HePAS) mice. Pharmacologic or genetic deficiency of LTs resulted in impaired leishmanicidal activity of peritoneal macrophages in vitro. In contrast, addition of LTB4 increased leishmanicidal activity and this effect was dependent on the BLT1 receptor. LTB4 augmented NO production in response to L. amazonensis challenge, and studies with a NO synthesis inhibitor revealed that NO was critical for the enhancement of macrophage leishmanicidal activity. Interestingly, macrophages from resistant mice produced higher levels of LTB4 upon L. amazonensis challenge than did those from susceptible mice. In vivo infection severity, as assessed by footpad swelling following s.c. promastigote inoculation, was increased when endogenous LT synthesis was abrogated either pharmacologically or genetically. Taken together, these results for the first time reveal an important role for LTB4 in the protective response to L. amazonensis, identify relevant leishmanicidal mechanisms, and suggest that genetic variation in LTB4 synthesis might influence resistance and susceptibility patterns to infection.
Collapse
Affiliation(s)
- Carlos H Serezani
- Department of Immunology, Institute of Biomedical Science IV, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
32
|
Blanco JCG, Boukhvalova MS, Hemming P, Ottolini MG, Prince GA. Prospects of antiviral and anti-inflammatory therapy for respiratory syncytial virus infection. Expert Rev Anti Infect Ther 2006; 3:945-55. [PMID: 16307507 DOI: 10.1586/14787210.3.6.945] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory syncytial virus is the leading viral cause of death in children less than 2 years of age, and is an increasing cause of morbidity and mortality in transplant patients and the elderly. Respiratory syncytial virus causes upper and lower respiratory tract infections, which can lead to severe bronchiolitis and pneumonia. High-risk groups for severe respiratory syncytial virus infection include infants with a history of premature birth with or without chronic lung disease, children with congenital heart disease, children with cystic fibrosis or chronic lung diseases, and immunosuppressed patients or patients with immunodeficiency. However, the majority of infants who have severe respiratory syncytial virus disease are born at full term and are otherwise healthy. It is unclear why children, the elderly and the immunosuppressed are at much higher risk for severe disease; however, a respiratory syncytial virus-induced immune pathologic mechanism has long been suspected. Attempts to develop a safe and effective vaccine against respiratory syncytial virus have failed. Antirespiratory syncytial virus immunotherapy, although effective prophylactically, does not provide any beneficial clinical outcome when administered therapeutically, indicating that respiratory syncytial virus-induced pathology is most likely the result of the inflammatory response to infection, rather than a direct viral cytopathic effect. Thus, a combined antiviral and anti-inflammatory therapy may represent the safest and most efficient treatment for acute respiratory syncytial virus infection. In this review, the current knowledge that has set the rationale for the development of such therapy is summarized.
Collapse
Affiliation(s)
- Jorge C G Blanco
- Virion Systems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA.
| | | | | | | | | |
Collapse
|
33
|
Tai HY, Tam MF, Chou H, Peng HJ, Su SN, Perng DW, Shen HD. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy 2006; 61:382-8. [PMID: 16436150 DOI: 10.1111/j.1398-9995.2005.00958.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Alkaline serine proteases from six prevalent airborne Penicillium and Aspergillus species have been identified as a group of major allergens (group 13). After entering human airways, the allergens are in initial contacts with respiratory epithelial cells. The purpose of this study is to investigate interactions between the Pen ch 13 allergen from P. chrysogenum and human lung epithelial cells. METHODS A549 cells, 16HBE14o- cells and primary cultures of human bronchial epithelial cells (HBEpC) were exposed to purified Pen ch 13 and mediators released into culture supernatants were assayed with enzyme-linked immunosorbent assay (ELISA) kits. Cleavage of occludin in 16HBE14o- cells was analysed by immunofluorescent staining of whole cells and immunoblot analysis of whole cell extracts. Fragments generated by incubating Pen ch 13 and a synthetic peptide carrying the occludin sequence were analysed by mass spectrometry. RESULTS Pen ch 13 induced productions of prostaglandin-E2 (PGE2), interleukin (IL)-8 and transforming growth factor (TGF)-beta1 by A549 cells, 16HBE14o- cells and primary cultures of HBEpC. The protease activity of Pen ch 13 is needed for the induction of PGE2 IL-8, TGF-beta1 and cyclo-oxygenase (COX)-2 expression. A tight junction protein occludin of 16HBE14o- cells can be cleaved by Pen ch 13 at Gln202 and Gln211 which are within the second extracellular domain of the protein. CONCLUSION Pen ch 13 may contribute to asthma by damaging the barrier formed by the airway epithelium and stimulating the release of mediators that orchestrate local immune responses and inflammatory process from HBEpC.
Collapse
Affiliation(s)
- H-Y Tai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Schneider JC, Card GL, Pfau JC, Holian A. Air pollution particulate SRM 1648 causes oxidative stress in RAW 264.7 macrophages leading to production of prostaglandin E2, a potential Th2 mediator. Inhal Toxicol 2006; 17:871-7. [PMID: 16282164 DOI: 10.1080/08958370500244498] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Particulates in air pollution have been strongly associated with asthma symptoms. These particulates are a conglomeration of many components, including metals, polyaromatic hydrocarbons, and lipopolysaccharide, that may cause oxidative stress upon uptake by alveolar macrophages. The objective of this study was to assess whether uptake of a model air particulate (SRM 1648) causes oxidative stress in macrophages resulting in the production of the eicosanoid mediator prostaglandin E(2) (PGE(2)) that might exacerbate asthma. SRM 1648 suspended in phosphate-buffered saline (PBS) was introduced into wells with plated RAW 264.7 monocyte/macrophages. Following incubation of SRM 1648 with RAW 264.7 macrophages, prostaglandin E(2) was measured by enzyme immunosorbent assay (EIA), and oxidative stress was assessed by the levels of intracellular reduced glutathione (GSH) as well as by the oxidation of dihydrodichlorofluorescein (H(2)DCFDA) to the fluorescent dichlorofluoresecein (DCF). The results indicated that SRM 1648 caused oxidative stress in RAW 264.7 macrophages, as shown by a compensatory increase in GSH levels in comparison to the controls of titanium dioxide and media alone. Prostaglandin E(2) levels significantly increased at the 3-, 6-, and 12-h time points. Introduction of GSH ester to buffer against oxidative stress was able to block the elevation of PGE(2). The data show that SRM 1648 causes oxidative stress in RAW 264.7 macrophages resulting in formation of the potential Th2 mediator prostaglandin E(2).
Collapse
Affiliation(s)
- Jordan C Schneider
- Center for Environmental Health Sciences, University of Montana, Department of Biomedical and Pharmaceutical Sciences, Missoula, Montana, USA.
| | | | | | | |
Collapse
|
35
|
Noguchi J, Kuroda E, Yamashita U. Strain difference of murine bone marrow-derived mast cell functions. J Leukoc Biol 2006; 78:605-11. [PMID: 16126842 DOI: 10.1189/jlb.1104676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mast cells play an important role for the induction and the expression of allergic responses. In this report, we studied the strain difference of bone marrow-derived murine mast cell (BMMC) functions in vitro. BMMC were induced by in vitro culture of bone marrow cells from BALB/c and C57BL/6 mice with interleukin (IL)-3 for 4 weeks, stimulated with immunoglobulin E antibody and antigen, and mediators and cytokines released in the culture supernatant were assayed. BMMC from C57BL/6 mice released a higher amount of granule-associated mediators, beta-hexosaminidase, and histamine than that from BALB/c mice. The expression of mRNA of histidine decarboxylase was higher in C57BL/6 mice. Conversely, the productions of newly synthesized mediators, prostaglandin D2 (PGD2), IL-6, and monocyte chemoattractant protein-1, and the mRNA expression of IL-5 were higher in BALB/c BMMC than C57BL/6 BMMC. Although mRNA and protein expression levels of cyclooxygenase-2 were equal in two strains, both expression levels of hematopoietic PGD synthase (hPGDS) were higher in BALB/c BMMC. Mast cells, freshly obtained from mice, also showed the same strain difference concerning the mediator release. These results indicate that the strain difference exists in mast cell functions in mice, and this difference can be considered to induce the susceptibility difference to allergic reactions in mouse strains.
Collapse
Affiliation(s)
- Junko Noguchi
- School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishiku, Kitakyushu 807-8555, Japan
| | | | | |
Collapse
|
36
|
Michelin MA, Silva JS, Cunha FQC. Inducible cyclooxygenase released prostaglandin mediates immunosuppression in acute phase of experimental Trypanosoma cruzi infection. Exp Parasitol 2005; 111:71-9. [PMID: 16009364 DOI: 10.1016/j.exppara.2005.05.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 05/05/2005] [Accepted: 05/09/2005] [Indexed: 01/04/2023]
Abstract
We investigated the possible role of prostaglandins produced by COX-2 in the immunosuppression observed during Trypanosoma cruzi infection. Con-A-stimulated splenocytes isolated from mice on days 5, 10, and 15 of infection released large amounts of PGE2 and this release was inhibited by the treatment of animals with sodium salicylate or meloxicam. The treatment of the animals with these drugs enhanced the release of IL-2 by splenocytes from T. cruzi-infected animals and significantly reduced the blood parasitemia and delayed the mortality of the infected mice. Furthermore, the release of TNF-alpha, IFN-gamma, IL-4, and IL-10 by Con-A-stimulated splenocytes obtained from infected mice on days 5, 10, and 15 of the infection was significantly inhibited by treatment of the animals with salicylate or meloxicam. In conclusion, the results suggest that the prostaglandins produced mainly by COX-2 mediate the immunosuppression observed in the acute phase of T. cruzi infection.
Collapse
Affiliation(s)
- M A Michelin
- Department of Biological Sciences, Immunology, Federal School of Medicine, Uberaba, MG, Brazil.
| | | | | |
Collapse
|
37
|
Miyazawa K, Aso H, Honda M, Kido T, Minashima T, Kanaya T, Watanabe K, Ohwada S, Rose MT, Yamaguchi T. Identification of bovine dendritic cell phenotype from bovine peripheral blood. Res Vet Sci 2005; 81:40-5. [PMID: 16253299 DOI: 10.1016/j.rvsc.2005.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/08/2005] [Accepted: 09/01/2005] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells, which initiate primary immune responses and also play an important role in the generation of peripheral tolerance. There is no reliable method established for the isolation of bovine peripheral blood DCs, and furthermore, the phenotypes and the functions of bovine DCs are still not fully clear. In the present study, we have attempted to identify bovine peripheral blood DCs by negative-selection. In bovine peripheral blood mononuclear cells (PBMC), we have newly characterized the phenotype of DCs, which is CD11c+/CD172a+. These cells display features of myeloid type DCs. In the thymic medulla, CD11c+/CD172a+ cells were also present and CD1+/CD172a+ cells were additionally detected as a population of DCs. The data suggest that one of the bovine DCs phenotypes from PBMC is derived from myeloid lineages lacking a CD1 molecule, which then drift to several tissues, and that they then may express a CD1 molecule upon their functional differentiation.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, 981-8555 Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Richardson JY, Ottolini MG, Pletneva L, Boukhvalova M, Zhang S, Vogel SN, Prince GA, Blanco JCG. Respiratory syncytial virus (RSV) infection induces cyclooxygenase 2: a potential target for RSV therapy. THE JOURNAL OF IMMUNOLOGY 2005; 174:4356-64. [PMID: 15778400 DOI: 10.4049/jimmunol.174.7.4356] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclooxygenases (COXs) are rate-limiting enzymes that initiate the conversion of arachidonic acid to prostanoids. COX-2 is the inducible isoform that is up-regulated by proinflammatory agents, initiating many prostanoid-mediated pathological aspects of inflammation. The roles of cyclooxygenases and their products, PGs, have not been evaluated during respiratory syncytial virus (RSV) infection. In this study we demonstrate that COX-2 is induced by RSV infection of human lung alveolar epithelial cells with the concomitant production of PGs. COX-2 induction was dependent on the dose of virus and the time postinfection. PG production was inhibited preferentially by NS-398, a COX-2-specific inhibitor, and indomethacin, a pan-COX inhibitor, but not by SC-560, a COX-1-specific inhibitor. In vivo, COX-2 mRNA expression and protein production were strongly induced in the lungs and cells derived from bronchioalveolar lavage of cotton rats infected with RSV. The pattern of COX-2 expression in vivo in lungs is cyclical, with a final peak on day 5 that correlates with maximal histopathology. Treatment of cotton rats with indomethacin significantly mitigated lung histopathology produced by RSV. The studies described in this study provide the first evidence that COX-2 is a potential therapeutic target in RSV-induced disease.
Collapse
Affiliation(s)
- Joann Y Richardson
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Noverr MC, Falkowski NR, McDonald RA, McKenzie AN, Huffnagle GB. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun 2005; 73:30-8. [PMID: 15618138 PMCID: PMC538952 DOI: 10.1128/iai.73.1.30-38.2005] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lending support to the hygiene hypothesis, epidemiological studies have demonstrated that allergic disease correlates with widespread use of antibiotics and alterations in fecal microbiota ("microflora"). Antibiotics also lead to overgrowth of the yeast Candida albicans, which can secrete potent prostaglandin-like immune response modulators, from the microbiota. We have recently developed a mouse model of antibiotic-induced gastrointestinal microbiota disruption that is characterized by stable increases in levels of gastrointestinal enteric bacteria and Candida. Using this model, we have previously demonstrated that microbiota disruption can drive the development of a CD4 T-cell-mediated airway allergic response to mold spore challenge in immunocompetent C57BL/6 mice without previous systemic antigen priming. The studies presented here address important questions concerning the universality of the model. To investigate the role of host genetics, we tested BALB/c mice. As with C57BL/6 mice, microbiota disruption promoted the development of an allergic response in the lungs of BALB/c mice upon subsequent challenge with mold spores. In addition, this allergic response required interleukin-13 (IL-13) (the response was absent in IL-13(-/-) mice). To investigate the role of antigen, we subjected mice with disrupted microbiota to intranasal challenge with ovalbumin (OVA). In the absence of systemic priming, only mice with altered microbiota developed airway allergic responses to OVA. The studies presented here demonstrate that the effects of microbiota disruption are largely independent of host genetics and the nature of the antigen and that IL-13 is required for the airway allergic response that follows microbiota disruption.
Collapse
Affiliation(s)
- Mairi C Noverr
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0642, USA
| | | | | | | | | |
Collapse
|
40
|
Donnelly S, O'Neill SM, Sekiya M, Mulcahy G, Dalton JP. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect Immun 2005; 73:166-73. [PMID: 15618151 PMCID: PMC538930 DOI: 10.1128/iai.73.1.166-173.2005] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/23/2004] [Accepted: 08/25/2004] [Indexed: 11/20/2022] Open
Abstract
Alternatively activated macrophages (AAMphi) are primarily associated with the chronic stages of parasitic infections and the development of a polarized Th2 response. We have shown that Fasciola hepatica infection of BALB/c mice induces a polarized Th2 response during both the latent and chronic stage of disease. The activation status of macrophages was analyzed in this model of helminth infection by evaluating the expression of genetic markers of alternative activation, namely, Fizz1, Ym1, and Arg1. AAMphi were recruited to the peritoneum of mice within 24 h of F. hepatica infection and after intraperitoneal injection of parasite excretory-secretory (ES) products. Administration of a recombinant antioxidant thioredoxin peroxidase (TPx), which is contained within the ES products, also induced the recruitment of AAMphi to the peritoneum. In vitro studies showed that this recombinant TPx directly converts RAW 264.7 macrophages to an alternatively activated phenotype characterized by the production of high levels of interleukin-10 (IL-10), prostaglandin E(2), corresponding with low levels of IL-12. Our data suggest that the Th2 responses induced by the helminth F. hepatica are mediated through the secretion of molecules, one of which is TPx, that induce the recruitment and alternative activation of macrophages.
Collapse
Affiliation(s)
- Sheila Donnelly
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Westbourne St., Gore Hill, Sydney, NSW 2065, Australia.
| | | | | | | | | |
Collapse
|
41
|
Ray N, Bisher ME, Enquist LW. Cyclooxygenase-1 and -2 are required for production of infectious pseudorabies virus. J Virol 2004; 78:12964-74. [PMID: 15542648 PMCID: PMC525029 DOI: 10.1128/jvi.78.23.12964-12974.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have recently shown that cyclooxygenase-2 (COX-2) transcription is markedly induced after herpes simplex virus type 1 and pseudorabies virus (PRV) infections of rat embryonic fibroblast (REF) cells (N. Ray and L. W. Enquist, J. Virol. 78:3489-3501, 2004). For this study, we investigated the role of cyclooxygenase induction in the replication and growth of PRV. We demonstrate here a concordant increase in COX-2 mRNA and protein levels after the infection of REF cells. Inhibitors blocking the activity of cyclooxygenases caused a dramatic reduction in PRV growth. Viral growth could be restored if prostaglandin E(2), the final product of COX-2 activity, was added simultaneously with the COX inhibitors. Immediate-early protein IE180, major capsid protein VP5, and glycoprotein expression were slightly reduced in the presence of COX-2 inhibitors, but expression of the early protein EP0 was not affected by COX inhibition. Viral DNA replication was marginally reduced in the presence of a COX-1/2 inhibitor, but there was no defect in viral DNA cleavage. Electron microscopy analysis revealed an increased number of unusual empty capsid structures in the nuclei of cells infected with PRV in the presence of a COX-1/2 inhibitor. These capsid structures shared some characteristics with procapsids but had a novel appearance by negative staining. Our data establish a role for COX-1 and COX-2 in facilitating the efficient growth and replication of PRV in primary cells.
Collapse
Affiliation(s)
- Neelanjana Ray
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
42
|
Pechová J, Kopecký J, Salát J. Effect of tick salivary gland extract on the cytokine production by mouse epidermal cells. Folia Parasitol (Praha) 2004. [DOI: 10.14411/fp.2004.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Newton CA, Lu T, Nazian SJ, Perkins I, Friedman H, Klein TW. The THC-induced suppression of Th1 polarization in response to Legionella pneumophila infection is not mediated by increases in corticosterone and PGE2. J Leukoc Biol 2004; 76:854-61. [PMID: 15258190 DOI: 10.1189/jlb.0304184] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
T helper cell type 1 (Th1)-polarizing cytokines are induced by Legionella pneumophila infection and are suppressed by pretreatment with marijuana cannabinoids (CB). Glucocorticoids and prostaglandin E2(PGE2) are also reported to suppress Th1 polarization and are induced by Delta9-tetrahydrocannabinol (THC), so their role in the suppression of polarizing cytokines was examined. Injection of L. pneumophila or THC alone into BALB/c mice induced a rapid and transient rise in serum corticosterone (CS), and the injection of both agents significantly augmented the CS response, demonstrating that THC increased CS in Legionella-infected mice. Pretreatment with the CB receptor 1 (CB1) antagonist SR141716A had no effect on the THC-induced CS response, but CB2 antagonist (SR144528) treatment increased the CS response. To see if increased CS contributed to the down-regulation of Th1 cytokines, mice were pretreated with the steroid antagonist RU486 before THC injection and Legionella infection. The results showed that RU486 did not attenuate the THC-induced suppression of serum interleukin (IL)-12 or interferon-gamma (IFN-gamma). In addition to CS, THC injection increased urinary PGE2 metabolites, and the CB1 antagonist attenuated this increase. Although L. pneumophila infection increased urinary PGE2, THC pretreatment did not enhance this response; in addition, treatment with the cyclooxygenase inhibitor, indomethacin, did not block the THC-induced suppression of IL-12 and IFN-gamma. These results suggest that the elevation of CS and PGE2 does not account for the THC-induced attenuation of the Th1 cytokine response, and it is concluded that other suppressive mediators are induced by THC or that the drug acts directly on immune cells to suppress cytokine production.
Collapse
Affiliation(s)
- Catherine A Newton
- Department of Medical Microbiology and Immunology, University of South Florida, College of Medicine, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
44
|
Walker W, Rotondo D. Prostaglandin E2 is a potent regulator of interleukin-12- and interleukin-18-induced natural killer cell interferon-gamma synthesis. Immunology 2004; 111:298-305. [PMID: 15009430 PMCID: PMC1782426 DOI: 10.1111/j.1365-2567.2004.01810.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synthesis of interferon (IFN)-gamma by natural killer (NK) cells is an important pro-inflammatory event with interleukin (IL)-12 and IL-18 playing major inductive roles. However, other temporal events are likely to regulate such processes and as prostaglandin E2 (PGE2) is ubiquitous during inflammation this study tested the hypothesis that PGE2 was capable of directly modulating cytokine-induced NK cell IFN-gamma synthesis in the absence of other immune cells. Using homogeneous NK cell lines to establish direct effects, PGE2 (0.1-1 micro m) was found to suppress NK cell IFN-gamma synthesis and antagonized the potent synergistic IFN-gamma-inducing effects of IL-12 and IL-18. The actions of PGE2 were mimicked by synthetic PGE2 analogues including misoprostol and butaprost. The selective EP2 receptor agonist butaprost, but not the EP1/EP3 agonist sulprostone, suppressed IFN-gamma synthesis and exclusively competed with PGE2 for receptor binding on NK cells. Further analysis showed that PGE2 did not modulate IL-12 receptor mRNA expression and the effects of PGE2 could be mimicked by the phosphodiesterase inhibitor 3-iosobutyl-1-methylxanthine. The absence of demonstrable receptor modulation coupled with the observed suppression of IFN-gamma synthesis by both EP2 receptor-selective agonists and IBMX suggest that PGE2 acts directly on NK cells via EP2 receptors with its downstream effects on cAMP metabolism. This conclusion is further supported by findings that PGE2 and its analogues consistently elevated levels of cAMP in NK cells. The ability of PGE2 to antagonize the potent inductive signal provided by the combination of IL-12 and IL-18 supports the concept that PGE2 may play an important role in limiting innate inflammatory processes in vivo through direct suppression of NK cell IFN-gamma synthesis.
Collapse
Affiliation(s)
- William Walker
- Experimental Medicine Unit, Swansea Clinical School, University of Wales-Swansea, Swansea SA2 8PP, Wales, UK.
| | | |
Collapse
|
45
|
Klein TW, Newton C, Larsen K, Chou J, Perkins I, Lu L, Nong L, Friedman H. Cannabinoid receptors and T helper cells. J Neuroimmunol 2004; 147:91-4. [PMID: 14741435 DOI: 10.1016/j.jneuroim.2003.10.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have reported that injection of marijuana cannabinoids, such as Delta(9)-tetrahydrocannabinol (THC), into mice, followed by infection with Legionella pneumophila (Lp), suppresses the development of cell-mediated immunity T helper 1 (Th1) activity. These effects are accompanied by suppression of interleukin (IL)-12 and interferon (IFN) gamma production and enhancement of IL-4 production suggesting THC-induced T helper cell biasing. In the current report, other T helper cell biasing mechanisms were studied. Mice were injected with THC followed 18 h later by a challenge infection with Lp. Two-hour post-infection, spleens were removed and analyzed for mRNA to either IL-12Rbeta2 or GATA3 gene products. The results showed that THC suppressed IL-12Rbeta2 but increased GATA3. Receptor antagonists for CB1 (SR141716A, SR1) and CB2 (SR144528, SR2) were also injected to analyze the involvement of cannabinoid receptors. It was determined that SR1 attenuated the THC suppression of IL-12Rbeta2, while SR2 attenuated the increase in GATA3 mRNA. These results suggest that THC suppresses Th1 biasing activity such as IL-12Rbeta2 by a CB1 mediated mechanism and enhances the Th2 biasing activity, GATA3, by a CB2 mechanism. This dichotomy of receptor involvement might result from differential expression and/or signaling function of CB1 and CB2 on Th1 and Th2 cells.
Collapse
Affiliation(s)
- Thomas W Klein
- Department of Medical Microbiology and Immunology, University of South Florida, 12901 Bruce Downs Boulevard, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yamaki K, Uchida H, Harada Y, Yanagisawa R, Takano H, Hayashi H, Mori Y, Yoshino S. Effect of the nonsteroidal anti-inflammatory drug indomethacin on Th1 and Th2 immune responses in mice. J Pharm Sci 2003; 92:1723-9. [PMID: 12884258 DOI: 10.1002/jps.10380] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study was undertaken to study the effect of the nonsteroidal anti-inflammatory drug indomethacin on Th1 and Th2 immune responses. For this study, mice were immunized by s.c. injection of ovalbumin (OVA) emulsified with complete Freund's adjuvant into the base of the tail (day 0). Varying doses of indomethacin were orally administrated daily from days 0 to 20. On day 21, anti-OVA IgG2a and interferon-gamma as an indicator of Th1 responses and anti-OVA IgG1 and interleukin-10 as that of Th2 responses were measured. The results showed that treatment with indomethacin was followed by decreases in OVA-specific IgG and proliferation of spleen cells to the antigen. Indomethacin inhibited both Th1 and Th2 responses, although the nonsteroidal anti-inflammatory drug suppressed the former more effectively than the latter. Administration of indomethacin resulted in suppression of antigen (OVA)-induced arthritis that was associated with inhibition of anti-OVA IgG2a but not IgG1 production. These results suggest that nonsteroidal anti-inflammatory drugs may downregulate Th1 and, to a lesser extent, Th2 immune responses.
Collapse
Affiliation(s)
- Kouya Yamaki
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Józefowski S, Bobek M, Marcinkiewicz J. Exogenous but not endogenous prostanoids regulate cytokine secretion from murine bone marrow dendritic cells: EP2, DP, and IP but not EP1, EP3, and FP prostanoid receptors are involved. Int Immunopharmacol 2003; 3:865-78. [PMID: 12781703 DOI: 10.1016/s1567-5769(03)00072-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Murine bone marrow-derived dendritic cells (DC), stimulated with lipopolysaccharide (LPS) and/or LPS+interferon-gamma (IFN-gamma), secrete a variety of inflammatory mediators which may modulate their functions. We have examined the potential for exogenous prostanoids, acting in a paracrine fashion, and endogenous prostanoids, acting in an autocrine fashion, to regulate secretion of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), IL-10, and IL-12 in DC. In order to identify receptors mediating these effects, DC were treated in vitro with receptor-selective prostanoids. Agonists of cyclic AMP-elevating receptors, namely, prostaglandin E(2) (PGE(2)), butaprost (EP(2) receptor), iloprost (IP receptor), and BW245C (DP receptor), dose-dependently inhibited the release of IL-6, TNF-alpha, and IL-12 and enhanced the release of IL-10 from LPS-stimulated DC, with TNF-alpha secretion being the most strongly affected. In contrast, 15-deoxy-Delta(12,14)-PGJ(2)-an activator of nuclear peroxisome proliferator-activated receptor-gamma (PPAR-gamma) receptors-inhibited release of all tested cytokines. Exogenous prostanoids, cyclic AMP-elevating analogs, lost their ability to modulate cytokine release in cells pre-incubated for 4 h with LPS, indicating that prostanoids may affect DC functions during initial phases of LPS stimulation only. Sulprostone and (+)-fluprostenol failed to modulate any of responses tested, suggesting lack of involvement/expression of EP(1), EP(3), and FP receptors in DC activation. In order to examine the role of endogenous prostanoids, DC were treated with inhibitors of cyclooxygenases (COX). At concentrations that completely blocked PGE(2) release, neither indomethacin (nonselective inhibitor) nor rofecoxib (COX-2-selective inhibitor) influenced cytokine release from LPS-stimulated DC. Thus, cytokine release from LPS-stimulated DC does not seem to be autoregulated by endogenous prostanoids, whereas in vivo regulatory function may be fulfilled in a paracrine manner by PGD(2), PGE(2), and PGI(2) released from neighboring cells.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Cell Survival/drug effects
- Cyclic AMP/physiology
- Cyclooxygenase 2
- Cyclooxygenase 2 Inhibitors
- Cyclooxygenase Inhibitors/pharmacology
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dinoprostone/metabolism
- Enzyme-Linked Immunosorbent Assay
- Indicators and Reagents
- Interferon-gamma/pharmacology
- Interleukin-10/biosynthesis
- Interleukin-12/biosynthesis
- Interleukin-6/biosynthesis
- Isoenzymes/biosynthesis
- Mice
- Mice, Inbred BALB C
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Prostaglandins/pharmacology
- RNA, Messenger/biosynthesis
- Receptors, Epoprostenol/drug effects
- Receptors, Immunologic
- Receptors, Prostaglandin/drug effects
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Stimulation, Chemical
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, 18 Czysta Street, 31-121, Cracow, Poland
| | | | | |
Collapse
|
48
|
Harizi H, Grosset C, Gualde N. Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol 2003; 73:756-63. [PMID: 12773508 DOI: 10.1189/jlb.1002483] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have reported previously that PGE(2) inhibits dendritic cells (DC) functions. Because E prostanoid receptor (EPR) subtypes involved in this action are unknown, expression and functions of these receptors were examined in DC. Western blot and flow cytometry analyses showed that all EPRs were coexpressed in DC. In a dose-dependent manner, lipopolysaccharide (LPS) enhanced EP(2)R/EP(4)R but not EP(1)R/EP(3)R expressions. NS-398, a cyclooxygenase (COX)-2-selective inhibitor, suppressed LPS-enhanced EP(2)R/EP(4)R expression, suggesting that COX-2-issued prostaglandin E(2) (PGE(2)) modulates DC function through stimulation of specific EPR subtypes. Using selective agonists, we found that butaprost, an EP(2)R agonist, and PGE(1) alcohol, an EP(2)R and EP(2)R/EP(4)R agonist, inhibited major histocompatibility complex class II expression and enhanced interleukin-10 production from DC. However, no effect was observed with sulprostone and 17-phenyl-omega-trinor-PGE(2), selective agonists for EP(1)R and EP(1)R/EP(3)R, respectively. Treatment of DC with dibutyryl cyclic adenosine monophosphate (cAMP), an analog of cAMP, mimics PGE(2)-induced, inhibitory effects. Taken together, our data demonstrate that EP(2)R/EP(4)R are efficient for mediating PGE(2)-induced modulation of DC functions.
Collapse
MESH Headings
- Animals
- Bucladesine/pharmacology
- Cells, Cultured
- Cytokines/biosynthesis
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dinoprostone/pharmacology
- Female
- Hematopoietic Stem Cells/physiology
- Histocompatibility Antigens Class II/metabolism
- Lymphocyte Culture Test, Mixed
- Mice
- Mice, Inbred C57BL
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
Collapse
Affiliation(s)
- Hedi Harizi
- Laboratoire d'Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5540, Université de Bordeaux 2, Cedex, France.
| | | | | |
Collapse
|
49
|
Smith KJ, Skelton H. Acute onset of neutrophilic dermatosis in patients after therapy with a COX-2-specific inhibitor. Int J Dermatol 2003; 42:389-93. [PMID: 12755981 DOI: 10.1046/j.1365-4362.2003.01830.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kathleen J Smith
- Departments of Dermatology and Pathology, University of Alabama, Birmingham, Alabama 35294-0009, USA
| | | |
Collapse
|
50
|
Smyth GP, Stapleton PP, Barden CB, Mestre JR, Freeman TA, Duff MD, Maddali S, Yan Z, Daly JM. Renal cell carcinoma induces prostaglandin E2 and T-helper type 2 cytokine production in peripheral blood mononuclear cells. Ann Surg Oncol 2003; 10:455-62. [PMID: 12734096 DOI: 10.1245/aso.2003.06.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Patients with renal cell carcinoma (RCC) do not develop an effective antitumor immune response, despite significant infiltration by lymphocytes. Tumor production of immunosuppressive factors may account for this failure. The object of this study was to investigate the production of immunosuppressive mediators, especially prostaglandin E(2) (PGE(2)), by RCC. METHODS Peripheral blood mononuclear cells (PBMC) were cocultured with conditioned medium (CM) from human RCC cell lines in the presence or absence of NS-398, a selective cyclooxygenase 2 (COX-2) inhibitor. Supernatants were analyzed for levels of PGE(2), interleukin (IL)-10, IL-6, IL-2, interferon-gamma, and IL-12. The effects of RCC CM on PBMC proliferation were also examined. The expression of basal and stimulated COX-2 messenger RNA in the cell lines was assessed by reverse transcriptase-polymerase chain reaction. RESULTS RCC CM significantly increased PGE(2) production by PBMC. T-helper type 2 (Th2) cytokine production was also significantly increased. Th1 cytokines were unchanged or decreased. RCC CM increased proliferation of PBMC. Coculture with NS-398 reduced PBMC PGE(2) production to below control levels and significantly decreased IL-6 production and PBMC proliferation. NS-398 had no effect on cellular production of IL-10 or Th1 cytokines. CONCLUSIONS Human RCC inhibits the host antitumor immune response by promoting PGE(2) production and Th2 cytokines in PBMC. Selective inhibition of COX-2 may have a role in abrogating this effect.
Collapse
Affiliation(s)
- Gordon P Smyth
- Department of Surgery, Weill Medical College of Cornell University/New York Presbyterian Hospital, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|