1
|
Pittet MJ, Di Pilato M, Garris C, Mempel TR. Dendritic cells as shepherds of T cell immunity in cancer. Immunity 2023; 56:2218-2230. [PMID: 37708889 PMCID: PMC10591862 DOI: 10.1016/j.immuni.2023.08.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
In cancer patients, dendritic cells (DCs) in tumor-draining lymph nodes can present antigens to naive T cells in ways that break immunological tolerance. The clonally expanded progeny of primed T cells are further regulated by DCs at tumor sites. Intratumoral DCs can both provide survival signals to and drive effector differentiation of incoming T cells, thereby locally enhancing antitumor immunity; however, the paucity of intratumoral DCs or their expression of immunoregulatory molecules often limits antitumor T cell responses. Here, we review the current understanding of DC-T cell interactions at both priming and effector sites of immune responses. We place emerging insights into DC functions in tumor immunity in the context of DC development, ontogeny, and functions in other settings and propose that DCs control at least two T cell-associated checkpoints of the cancer immunity cycle. Our understanding of both checkpoints has implications for the development of new approaches to cancer immunotherapy.
Collapse
Affiliation(s)
- Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne, Switzerland; AGORA Cancer Center, Swiss Cancer Center Leman, Lausanne, Switzerland; Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland.
| | - Mauro Di Pilato
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thorsten R Mempel
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA.
| |
Collapse
|
2
|
Tatsumi N, Kumamoto Y. Role of mouse dendritic cell subsets in priming naive CD4 T cells. Curr Opin Immunol 2023; 83:102352. [PMID: 37276821 PMCID: PMC10524374 DOI: 10.1016/j.coi.2023.102352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Conventional dendritic cells (cDCs) are potent antigen-presenting cells that consist of developmentally, phenotypically, and functionally distinct subsets. Following immunization, each subset of cDCs acquires the antigen and presents it to CD4T (CD4+ T (cells)) cells with distinct spatiotemporal kinetics in the secondary lymphoid organs, often causing multiple waves of antigen presentation to CD4T cells. Here, we review the current understanding of the kinetics of antigen presentation by each cDC subset and its functional consequences in priming naive CD4T cells, and discuss its implications in the differentiation of CD4T cells.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
3
|
Ozulumba T, Montalbine AN, Ortiz-Cárdenas JE, Pompano RR. New tools for immunologists: models of lymph node function from cells to tissues. Front Immunol 2023; 14:1183286. [PMID: 37234163 PMCID: PMC10206051 DOI: 10.3389/fimmu.2023.1183286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The lymph node is a highly structured organ that mediates the body's adaptive immune response to antigens and other foreign particles. Central to its function is the distinct spatial assortment of lymphocytes and stromal cells, as well as chemokines that drive the signaling cascades which underpin immune responses. Investigations of lymph node biology were historically explored in vivo in animal models, using technologies that were breakthroughs in their time such as immunofluorescence with monoclonal antibodies, genetic reporters, in vivo two-photon imaging, and, more recently spatial biology techniques. However, new approaches are needed to enable tests of cell behavior and spatiotemporal dynamics under well controlled experimental perturbation, particularly for human immunity. This review presents a suite of technologies, comprising in vitro, ex vivo and in silico models, developed to study the lymph node or its components. We discuss the use of these tools to model cell behaviors in increasing order of complexity, from cell motility, to cell-cell interactions, to organ-level functions such as vaccination. Next, we identify current challenges regarding cell sourcing and culture, real time measurements of lymph node behavior in vivo and tool development for analysis and control of engineered cultures. Finally, we propose new research directions and offer our perspective on the future of this rapidly growing field. We anticipate that this review will be especially beneficial to immunologists looking to expand their toolkit for probing lymph node structure and function.
Collapse
Affiliation(s)
- Tochukwu Ozulumba
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Alyssa N. Montalbine
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer E. Ortiz-Cárdenas
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia (UVA) Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
4
|
Schwarzenberg FL, Schütz P, Hammel JU, Riedel M, Bartl J, Bordbari S, Frank SC, Walkenfort B, Busse M, Herzen J, Lohr C, Wülfing C, Henne S. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array. Front Immunol 2022; 13:947961. [PMID: 36524111 PMCID: PMC9745095 DOI: 10.3389/fimmu.2022.947961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ's surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.
Collapse
Affiliation(s)
- Florian L. Schwarzenberg
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Paul Schütz
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Mirko Riedel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Jasmin Bartl
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Sharareh Bordbari
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Svea-Celina Frank
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Madleen Busse
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Julia Herzen
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Clemens Wülfing
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Stephan Henne
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Piacente F, Bottero M, Benzi A, Vigo T, Uccelli A, Bruzzone S, Ferrara G. Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23084352. [PMID: 35457169 PMCID: PMC9025744 DOI: 10.3390/ijms23084352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages, and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate relationship with other cells, playing a crucial role both in health and in neurological diseases. In this context, DCs are critical to orchestrating the immune response linking the innate and adaptive immune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step that drives the inflammatory response or the resolution of inflammation with the participation of different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their exact function in CNS disease is still debated. In this review, we will discuss modern concepts of DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently, inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs. Thus, a special focus will be dedicated to sirtuins’ role in DCs functions.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Marta Bottero
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genoa, Italy; (F.P.); (A.B.)
- Correspondence: ; Tel.: +39-(0)10-353-8150
| | - Giovanni Ferrara
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy; (M.B.); (T.V.); (A.U.); (G.F.)
| |
Collapse
|
6
|
Tatsumi N, Codrington AL, El-Fenej J, Phondge V, Kumamoto Y. Effective CD4 T cell priming requires repertoire scanning by CD301b + migratory cDC2 cells upon lymph node entry. Sci Immunol 2021; 6:eabg0336. [PMID: 34890253 DOI: 10.1126/sciimmunol.abg0336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Alicia L Codrington
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Varoon Phondge
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Bala N, McGurk AI, Zilch T, Rup AN, Carter EM, Leddon SA, Fowell DJ. T cell activation niches-Optimizing T cell effector function in inflamed and infected tissues. Immunol Rev 2021; 306:164-180. [PMID: 34859453 PMCID: PMC9218983 DOI: 10.1111/imr.13047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022]
Abstract
Successful immunity to infection, malignancy, and tissue damage requires the coordinated recruitment of numerous immune cell subsets to target tissues. Once within the target tissue, effector T cells rely on local chemotactic cues and structural cues from the tissue matrix to navigate the tissue, interact with antigen-presenting cells, and release effector cytokines. This highly dynamic process has been "caught on camera" in situ by intravital multiphoton imaging. Initial studies revealed a surprising randomness to the pattern of T cell migration through inflamed tissues, behavior thought to facilitate chance encounters with rare antigen-bearing cells. Subsequent tissue-wide visualization has uncovered a high degree of spatial preference when it comes to T cell activation. Here, we discuss the basic tenants of a successful effector T cell activation niche, taking cues from the dynamics of Tfh positioning in the lymph node germinal center. In peripheral tissues, steady-state microanatomical organization may direct the location of "pop-up" de novo activation niches, often observed as perivascular clusters, that support early effector T cell activation. These perivascular activation niches appear to be regulated by site-specific chemokines that coordinate the recruitment of dendritic cells and other innate cells for local T cell activation, survival, and optimized effector function.
Collapse
Affiliation(s)
- Noor Bala
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Alexander I McGurk
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Tiago Zilch
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anastasia N Rup
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Evan M Carter
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Scott A Leddon
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Deborah J Fowell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Acton SE, Onder L, Novkovic M, Martinez VG, Ludewig B. Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends Immunol 2021; 42:782-794. [PMID: 34362676 DOI: 10.1016/j.it.2021.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Fibroblastic reticular cells (FRCs) are a crucial part of the stromal cell infrastructure of secondary lymphoid organs (SLOs). Lymphoid organ fibroblasts form specialized niches for immune cell interactions and thereby govern lymphocyte activation and differentiation. Moreover, FRCs produce and ensheath a network of extracellular matrix (ECM) microfibers called the conduit system. FRC-generated conduits contribute to fluid and immune cell control by funneling fluids containing antigens and inflammatory mediators through the SLOs. We review recent progress in FRC biology that has advanced our understanding of immune cell functions and interactions. We discuss the intricate relationships between the cellular FRC and the fibrillar conduit networks, which together form the basis for efficient communication between immune cells and the tissues they survey.
Collapse
Affiliation(s)
- Sophie E Acton
- Stromal Immunology Group, Medical Research Council (MRC) Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mario Novkovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Victor G Martinez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
9
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|
10
|
Grant SM, Lou M, Yao L, Germain RN, Radtke AJ. The lymph node at a glance - how spatial organization optimizes the immune response. J Cell Sci 2020; 133:133/5/jcs241828. [PMID: 32144196 DOI: 10.1242/jcs.241828] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A hallmark of the mammalian immune system is its ability to respond efficiently to foreign antigens without eliciting an inappropriate response to self-antigens. Furthermore, a robust immune response requires the coordination of a diverse range of cells present at low frequencies within the host. This problem is solved, in part, by concentrating antigens, antigen-presenting cells and antigen-responsive cells in lymph nodes (LNs). Beyond housing these cell types in one location, LNs are highly organized structures consisting of pre-positioned cells within well-defined microanatomical niches. In this Cell Science at a Glance article and accompanying poster, we outline the key cellular populations and components of the LN microenvironment that are present at steady state and chronicle the dynamic changes in these elements following an immune response. This review highlights the LN as a staging ground for both innate and adaptive immune responses, while providing an elegant example of how structure informs function.
Collapse
Affiliation(s)
- Spencer M Grant
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Meng Lou
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Li Yao
- Science Education Department, Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| | - Andrea J Radtke
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Memorial Dr, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Abstract
Dendritic cells (DCs) can be viewed as translators between innate and adaptive immunity. They integrate signals derived from tissue infection or damage and present processed antigen from these sites to naive T cells in secondary lymphoid organs while also providing multiple soluble and surface-bound signals that help to guide T cell differentiation. DC-mediated tailoring of the appropriate T cell programme ensures a proper cascade of immune responses that adequately targets the insult. Recent advances in our understanding of the different types of DC subsets along with the cellular organization and orchestration of DC and lymphocyte positioning in secondary lymphoid organs over time has led to a clearer understanding of how the nature of the T cell response is shaped. This Review discusses how geographical organization and ordered sequences of cellular interactions in lymph nodes and the spleen regulate immunity.
Collapse
Affiliation(s)
- S C Eisenbarth
- Department of Laboratory Medicine, Immunobiology, Section of Allergy & Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Krishnaswamy JK, Alsén S, Yrlid U, Eisenbarth SC, Williams A. Determination of T Follicular Helper Cell Fate by Dendritic Cells. Front Immunol 2018; 9:2169. [PMID: 30319629 PMCID: PMC6170619 DOI: 10.3389/fimmu.2018.02169] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/03/2018] [Indexed: 01/02/2023] Open
Abstract
T follicular helper (Tfh) cells are a specialized subset of CD4+ T cells that collaborate with B cells to promote and regulate humoral responses. Unlike other CD4+ effector lineages, Tfh cells require interactions with both dendritic cells (DCs) and B cells to complete their differentiation. While numerous studies have assessed the potential of different DC subsets to support Tfh priming, the conclusions of these studies depend heavily on the model and method of immunization used. We propose that the location of different DC subsets within the lymph node (LN) and their access to antigen determine their potency in Tfh priming. Finally, we provide a three-step model that accounts for the ability of multiple DC subsets and related lineages to support the Tfh differentiation program.
Collapse
Affiliation(s)
| | - Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
13
|
Lucke M, Mottas I, Herbst T, Hotz C, Römer L, Schierling M, Herold HM, Slotta U, Spinetti T, Scheibel T, Winter G, Bourquin C, Engert J. Engineered hybrid spider silk particles as delivery system for peptide vaccines. Biomaterials 2018; 172:105-115. [PMID: 29723755 DOI: 10.1016/j.biomaterials.2018.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
Abstract
The generation of strong T-cell immunity is one of the main challenges for the development of successful vaccines against cancer and major infectious diseases. Here we have engineered spider silk particles as delivery system for a peptide-based vaccination that leads to effective priming of cytotoxic T-cells. The recombinant spider silk protein eADF4(C16) was fused to the antigenic peptide from ovalbumin, either without linker or with a cathepsin cleavable peptide linker. Particles prepared from the hybrid proteins were taken up by dendritic cells, which are essential for T-cell priming, and successfully activated cytotoxic T-cells, without signs of immunotoxicity or unspecific immunostimulatory activity. Upon subcutaneous injection in mice, the particles were taken up by dendritic cells and accumulated in the lymph nodes, where immune responses are generated. Particles from hybrid proteins containing a cathepsin-cleavable linker induced a strong antigen-specific proliferation of cytotoxic T-cells in vivo, even in the absence of a vaccine adjuvant. We thus demonstrate the efficacy of a new vaccine strategy using a protein-based all-in-one vaccination system, where spider silk particles serve as carriers with an incorporated peptide antigen. Our study further suggests that engineered spider silk-based vaccines are extremely stable, easy to manufacture, and readily customizable.
Collapse
Affiliation(s)
- Matthias Lucke
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-University Munich, Butenandtstrasse 5, 81377 Munich, Germany; Coriolis Pharma, Fraunhoferstrasse 18B, 82152 Planegg/Martinsried, Germany
| | - Inès Mottas
- Department of Medicine, Faculty of Science, University of Fribourg, Chemin Du Musée 5, 1700 Fribourg, Switzerland; Ecole de Pharmacie Genève-Lausanne, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Ecolede Pharmacie Genève-Lausanne, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Tina Herbst
- Department of Medicine, Faculty of Science, University of Fribourg, Chemin Du Musée 5, 1700 Fribourg, Switzerland
| | - Christian Hotz
- Department of Medicine, Faculty of Science, University of Fribourg, Chemin Du Musée 5, 1700 Fribourg, Switzerland
| | - Lin Römer
- AMSilk GmbH, Am Klopferspitz 19, 82152 Planegg/Martinsried, Germany
| | - Martina Schierling
- University of Bayreuth, Faculty of Engineering Science, Chair for Biomaterials, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Heike M Herold
- University of Bayreuth, Faculty of Engineering Science, Chair for Biomaterials, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Ute Slotta
- AMSilk GmbH, Am Klopferspitz 19, 82152 Planegg/Martinsried, Germany
| | - Thibaud Spinetti
- Department of Medicine, Faculty of Science, University of Fribourg, Chemin Du Musée 5, 1700 Fribourg, Switzerland
| | - Thomas Scheibel
- University of Bayreuth, Faculty of Engineering Science, Chair for Biomaterials, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-University Munich, Butenandtstrasse 5, 81377 Munich, Germany
| | - Carole Bourquin
- Department of Medicine, Faculty of Science, University of Fribourg, Chemin Du Musée 5, 1700 Fribourg, Switzerland; Ecole de Pharmacie Genève-Lausanne, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland; Ecolede Pharmacie Genève-Lausanne, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | - Julia Engert
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-University Munich, Butenandtstrasse 5, 81377 Munich, Germany.
| |
Collapse
|
14
|
Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget 2018; 9:20165-20178. [PMID: 29732011 PMCID: PMC5929454 DOI: 10.18632/oncotarget.24957] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
Intravital microscopy (IVM) is a dynamic imaging modality that allows for the real time observation of biologic processes in vivo, including angiogenesis and immune cell interactions. In the setting of preclinical cancer models, IVM has facilitated an understanding of the tumor associated vasculature and the role of effector immune cells in the tumor microenvironment. Novel approaches to apply IVM to human malignancies have thus far focused on cancer diagnosis and tumor vessel characterization, but have the potential to provide advances in the field of personalized medicine by identifying individual patients who may respond to systemically delivered chemotherapeutic drugs or immunotherapeutic agents. In this review, we highlight the role that IVM has had in investigating tumor vasculature and the tumor microenvironment in preclinical studies and discuss its current and future applications to directly observe human tumors.
Collapse
|
15
|
Manches O, Muniz LR, Bhardwaj N. Dendritic Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Connor LM, Tang SC, Camberis M, Le Gros G, Ronchese F. Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo. THE JOURNAL OF IMMUNOLOGY 2014; 193:2709-17. [PMID: 25108019 DOI: 10.4049/jimmunol.1400374] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DC) are critical for the initiation of immune responses; however, their role in priming IL-4-producing Th2 cells in vivo is not fully understood. We used a model of intradermal injection with fluorescent-labeled, nonviable larvae from the helminth parasite nonviable Nippostrongylus brasiliensis L3 larvae (Nb), a strong inducer of Th2 responses, together with IL-4-GFP reporter mice that enable a sensitive detection of IL-4 production to examine the contribution of DC to the priming of IL-4-producing CD4(+) T cells in vivo. We found that parasite material is taken up by two distinct DC populations in draining lymph nodes: a mostly CD11c(int)MHC class II (MHCII)(hi)CD11b(+)Ly6C(-) dermal DC population and a CD11c(hi)MHCII(int)CD11b(+)Ly6C(+) monocyte-derived DC population. After Nb treatment, these two DC populations appeared in the draining lymph nodes in comparable numbers and with similar kinetics; however, treatment with pertussis toxin blocked the migration of dermal DC and the priming of IL-4-producing T cells, but only partially affected monocyte-derived DC numbers. In line with this observation, transfer of OVA-loaded CD11c(int)MHCII(hi) DC from Nb-treated mice into naive hosts could sensitize OVA-specific CD4(+) T cells to IL-4 production, whereas transfer of CD11c(int)MHCII(hi) DC from naive mice, or CD11c(hi)MHCII(int) DC from Nb-treated or naive mice, induced CD4(+) T cell expansion but no IL-4 production. Phenotypic analysis of Nb-loaded CD11c(int)MHCII(hi) DC revealed expression of programmed death ligand 2, CD301b, IFN regulatory factor 4, and moderate upregulation of OX40 ligand. However, thymic stromal lymphopoietin and OX40 ligand were not required for Th2 priming. Thus, our data suggest that appropriate stimuli can induce DC to express the unique signals sufficient to direct CD4(+) T cells to Th2 differentiation.
Collapse
Affiliation(s)
- Lisa M Connor
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Shiau-Choot Tang
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| |
Collapse
|
17
|
Kamath AT, Mastelic B, Christensen D, Rochat AF, Agger EM, Pinschewer DD, Andersen P, Lambert PH, Siegrist CA. Synchronization of dendritic cell activation and antigen exposure is required for the induction of Th1/Th17 responses. THE JOURNAL OF IMMUNOLOGY 2012; 188:4828-37. [PMID: 22504654 DOI: 10.4049/jimmunol.1103183] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The dendritic cell (DC) targeting/activation patterns required to elicit Th1/Th17 responses remain undefined. One postulated requirement was that of a physical linkage between Ags and immunomodulators. Accordingly, the separate same-site administration of Ag85B-ESAT-6 (hybrid-1 protein; H1), a mycobacterial fusion Ag, and the CAF01 liposome-based adjuvant induced similar Ab and weak Th2 responses as those of coformulated H1/CAF01 but failed to elicit Th1/Th17 responses. Yet, this separate same-site injection generated the same type and number of activated Ag(+)/adjuvant(+) DCs in the draining lymph nodes (LN) as that of protective H1/CAF01 immunization. Thus, targeting/activating the same DC population by Ag and adjuvant is not sufficient to elicit Th1/Th17 responses. To identify the determinants of Th1/Th17 adjuvanticity, in vivo tracking experiments using fluorescently labeled Ag and adjuvant identified that a separate same-site administration elicits an additional early Ag(+)/adjuvant(-) DC population with a nonactivated phenotype, resulting from the earlier targeting of LN DCs by H1 than by CAF01 molecules. This asynchronous targeting pattern was mimicked by the injection of free H1 prior to or with, but not after, H1/CAF01 or H1/CpG/ aluminum hydroxide immunization. The injection of soluble OVA similarly prevented the induction of Th1 responses by OVA/CAF01. Using adoptively transferred OT-2 cells, we show that the Ag targeting of LN DCs prior to their activation generates nonactivated Ag-pulsed DCs that recruit Ag-specific T cells, trigger their initial proliferation, but interfere with Th1 induction in a dose-dependent manner. Thus, the synchronization of DC targeting and activation is a critical determinant for Th1/Th17 adjuvanticity.
Collapse
Affiliation(s)
- Arun T Kamath
- World Health Organization Collaborating Center for Vaccinology and Neonatal Immunology, Department of Pathology-Immunology, Medical Faculty of the University of Geneva, Geneva 1211, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
St John AL, Chan CY, Staats HF, Leong KW, Abraham SN. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. NATURE MATERIALS 2012; 11:250-7. [PMID: 22266469 PMCID: PMC3749235 DOI: 10.1038/nmat3222] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/30/2011] [Indexed: 05/15/2023]
Abstract
Granules of mast cells (MCs) enhance adaptive immunity when, on activation, they are released as stable particles. Here we show that submicrometre particles modelled after MC granules augment immunity when used as adjuvants in vaccines. The synthetic particles, which consist of a carbohydrate backbone with encapsulated inflammatory mediators such as tumour necrosis factor, replicate attributes of MCs in vivo including the targeting of draining lymph nodes and the timed release of the encapsulated mediators. When used as an adjuvant during vaccination of mice with haemagglutinin from the influenza virus, the particles enhanced adaptive immune responses and increased survival of mice on lethal challenge. Furthermore, differential loading of the particles with the cytokine IL-12 directed the character of the response towards Th1 lymphocytes. The synthetic MC adjuvants replicate and enhance the functions of MCs during vaccination, and can be extended to polarize the resulting immunity.
Collapse
Affiliation(s)
- Ashley L St John
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue.
Collapse
Affiliation(s)
- Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.
| | | | | |
Collapse
|
20
|
Clement CC, Rotzschke O, Santambrogio L. The lymph as a pool of self-antigens. Trends Immunol 2011; 32:6-11. [PMID: 21123113 PMCID: PMC3052980 DOI: 10.1016/j.it.2010.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/07/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Prenodal lymph is generated from the interstitial fluid that surrounds organs, and thus contains products of organ metabolism and catabolism. New proteomic analyses of lymph have identified proteins and peptides that are derived from capillary extravasation and tissue-specific proteins. Many of these peptides are detected at nanomolar concentrations in the lymph before passage through a regional lymph node. Before entering the node and once inside, proteins and processed peptides are filtered from the lymph by circulating immature dendritic cells (DCs) or non-activated nodal antigen-presenting cells (APCs) (macrophages, B cells and immature DCs). Here, we suggest that this process ensures organ-specific self-antigens are displayed to circulating and nodal APCs, thus contributing to the maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Cristina C. Clement
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, 10461, USA
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #04-06, Immunos, 138648 Singapore
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, 10461, USA
| |
Collapse
|
21
|
Abstract
Protective immunity against a variety of infections depends on the amplification and differentiation of rare naïve antigen-specific CD4 and CD8 T cells. Recent evidence indicates that the clonotypic composition of the responding T-cell compartment has a critical role in the immune defense against pathogens. The present review compares and contrasts how naive CD4 and CD8 T cells recognize their cognate antigen, and discusses the factors that regulate the genesis and maintenance of the CD4 and CD8 T-cell receptor repertoire diversity.
Collapse
|
22
|
Naylor PH, Hernandez KE, Nixon AE, Brandwein HJ, Haas GP, Wang CY, Hadden JW. IRX-2 increases the T cell-specific immune response to protein/peptide vaccines. Vaccine 2010; 28:7054-62. [DOI: 10.1016/j.vaccine.2010.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
|
23
|
Bihl F, Pecheur J, Bréart B, Poupon G, Cazareth J, Julia V, Glaichenhaus N, Braud VM. Primed antigen-specific CD4+ T cells are required for NK cell activation in vivo upon Leishmania major infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:2174-81. [PMID: 20624944 DOI: 10.4049/jimmunol.1001486] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of NK cells to rapidly produce IFN-gamma is an important innate mechanism of resistance to many pathogens including Leishmania major. Molecular and cellular components involved in NK cell activation in vivo are still poorly defined, although a central role for dendritic cells has been described. In this study, we demonstrate that Ag-specific CD4(+) T cells are required to initiate NK cell activation early on in draining lymph nodes of L. major-infected mice. We show that early IFN-gamma secretion by NK cells is controlled by IL-2 and IL-12 and is dependent on CD40/CD40L interaction. These findings suggest that newly primed Ag-specific CD4(+) T cells could directly activate NK cells through the secretion of IL-2 but also indirectly through the regulation of IL-12 secretion by dendritic cells. Our results reveal an unappreciated role for Ag-specific CD4(+) T cells in the initiation of NK cell activation in vivo upon L. major infection and demonstrate bidirectional regulations between innate and adaptive immunity.
Collapse
Affiliation(s)
- Franck Bihl
- Centre National de la Recherche Scientifique/Université de Nice-Sophia Antipolis, Unité Mixte de Recherche 6097, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
de Goër de Herve MG, Dembele B, Vallée M, Herr F, Cariou A, Taoufik Y. Direct CD4 help provision following interaction of memory CD4 and CD8 T cells with distinct antigen-presenting dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:1028-36. [PMID: 20562265 DOI: 10.4049/jimmunol.0904209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence suggests that CD4 help is needed at the memory stage to mount effective secondary CD8 T cell responses. In this paper, we report that memory CD4 T cells can provide efficient help to memory CD8 T cells after interaction of the two lymphocytes with distinct dendritic cells. Provision of help to CD8 T cells required direct cell-cell contact and involved both IL-2 and CD40 ligation, within a CD4-CD8 T cell synapse. Thus, following antigenic interaction with APCs, activated memory CD4 and CD8 T cells appear to separate from their respective APCs before meeting each other for help provision, regardless of their Ag specificity. CD4 help for memory CD8 T cells therefore appears to be conditioned primarily not by Ag specificity but by activation status.
Collapse
Affiliation(s)
- Marie-Ghislaine de Goër de Herve
- Institut National de la Santé et de la Recherche Médicale U-1012, Université Paris-Sud, Faculté de Médecine, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | |
Collapse
|
25
|
Miloud T, Hämmerling GJ, Garbi N. Review of murine dendritic cells: types, location, and development. Methods Mol Biol 2010; 595:21-42. [PMID: 19941103 DOI: 10.1007/978-1-60761-421-0_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dendritic cells (DCs) are key coordinators of the immune response, governing the choice between tolerance and immunity. DCs are professional antigen-presenting cells capable of presenting antigen on MHC molecules and priming CD4 and CD8 T-cell responses. They form a heterogeneous group of cells based on phenotype, location, and function. In this review, murine DCs will be discussed regarding their function with special emphasis on their tissue distribution. Recent findings on DC homeostasis during cancer progression will be presented. Finally, the developmental pathways leading to DC differentiation from their precursors will be summarized.
Collapse
Affiliation(s)
- Tewfik Miloud
- Division of Molecular Immunology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | | | | |
Collapse
|
26
|
Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn's disease. Gastroenterology 2009; 137:1736-45. [PMID: 19632232 DOI: 10.1053/j.gastro.2009.07.049] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/24/2009] [Accepted: 07/16/2009] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Dendritic cells (DCs) possess the most potent ability to induce acquired immunity. However, their involvement in the pathogenesis of Crohn's disease (CD) has not yet been determined. We aimed to establish the immune status of mesenteric lymph nodes, the major gut-associated lymphoid tissue, and isolated DCs and determine their involvement in the pathogenesis of CD. METHODS CD4(+) T cells and DCs were isolated from mesenteric lymph nodes of CD, ulcerative colitis, and normal control. The immune status of CD4(+) T cells was analyzed by cytokine production and transcriptional profile. Surface phenotype of DCs was analyzed by flow cytometry. Cytokine production by myeloid DCs was analyzed by real-time polymerase chain reaction and exogenous bacterial stimulation. Immune stimulating activity of DCs was determined by mixed lymphocyte reaction. RESULTS In CD, mesenteric lymph node CD4(+) T cells produced higher amounts of interferon-gamma and interleukin (IL)-17 compared with ulcerative colitis and normal control, and this was dictated by increased T-bet and retinoic acid-related orphan receptor-gamma expression. Three subtypes of DCs, myeloid DC, plasmacytoid DC, and mature DC, were identified in all groups. When stimulated with exogenous bacterial derivative, myeloid DCs from CD produced a higher amount of IL-23 and a lower amount of IL-10. Myeloid DCs from CD induced stronger T helper cell (Th)1 immune response in mixed lymphocyte reaction compared with those from ulcerative colitis and normal control. CONCLUSIONS Our findings revealed that mesenteric lymph node is the key pathogenic location of CD elicited by the unique cytokine milieu produced by DCs leading to a dysregulated Th1/Th17 immune response.
Collapse
Affiliation(s)
- Atsushi Sakuraba
- Division of Gastroenterology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
MGL2 Dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo. PLoS One 2009; 4:e5619. [PMID: 19440334 PMCID: PMC2680031 DOI: 10.1371/journal.pone.0005619] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/14/2009] [Indexed: 11/19/2022] Open
Abstract
Background Dendritic cells (DCs) are the most potent antigen-presenting cells in the mammalian immune system. In the skin, epidermal Langerhans cells (LCs) and dermal dendritic cells (DDCs) survey for invasive pathogens and present antigens to T cells after migration to the cutaneous lymph nodes (LNs). So far, functional and phenotypic differences between these two DC subsets remain unclear due to lack of markers to identify DDCs. Methodology/Principal Findings In the present report, we demonstrated that macrophage galactose-type C-type lectin (MGL) 2 was exclusively expressed in the DDC subset in the skin-to-LN immune system. In the skin, MGL2 was expressed on the majority (about 88%) of MHCII+CD11c+ cells in the dermis. In the cutaneous LN, MGL2 expression was restricted to B220−CD8αloCD11b+CD11c+MHCIIhi tissue-derived DC. MGL2+DDC migrated from the dermis into the draining LNs within 24 h after skin sensitization with FITC. Distinct from LCs, MGL2+DDCs localized near the high endothelial venules in the outer T cell cortex. In FITC-induced contact hypersensitivity (CHS), adoptive transfer of FITC+MGL2+DDCs, but not FITC+MGL2−DCs into naive mice resulted in the induction of FITC-specific ear swelling, indicating that DDCs played a key role in initiation of immune responses in the skin. Conclusions/Significance These results demonstrated the availability of MGL2 as a novel marker for DDCs and suggested the contribution of MGL2+ DDCs for initiating CHS.
Collapse
|
28
|
Pettini E, Ciabattini A, Pozzi G, Medaglini D. Adoptive transfer of transgenic T cells to study mucosal adjuvants. Methods 2009; 49:340-5. [PMID: 19409994 DOI: 10.1016/j.ymeth.2009.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/24/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022] Open
Abstract
The study of the initiation and regulation of T-cell responses to vaccine antigens is of primary importance in the rational design of mucosal adjuvants. The detection in vivo of T-cell priming following immunization can be performed by using the adoptive transfer model of naïve antigen-specific transgenic T cells into immunocompetent mice. In this work, we discuss the applications of this system for detecting in vivo the primary antigen-specific clonal expansion, the phenotype, and the effector function of transgenic T cells following mucosal immunization. OVA and the mucosal adjuvant CTB were used as a model vaccine formulation and administered by the nasal route to study T-cell priming. T helper and T cytotoxic primary proliferation and expression of activation and migration markers was observed both in draining and distal sites. This method proved to be a powerful tool to study the efficacy of mucosal adjuvants in enhancing T-cell priming.
Collapse
Affiliation(s)
- Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
Antigen presenting cells (APCs) are recognized as key initiators of adaptive immunity, particularly to pathogens, by eliciting a rapid and potent immune attack on infected cells. Amongst APCs, dendritic cells (DCs) are specially equipped to initiate and regulate immune responses in a manner that depends on signals they receive from microbes and their cellular environment. To achieve this, they are equipped with highly efficient mechanisms that allow them to detect pathogens, to capture, process and present antigens, and to activate and guide the differentiation of T cells into effector and memory cells. DCs can no longer be considered as a homogeneous cell type performing a single function, but are heterogeneous both in phenotype, function and dependence on inflammatory stimuli for their formation and responsiveness. Recent studies of DC subtypes have highlighted the contrasting roles of different professional APCs in activating divergent arms of the immune response towards pathogens. In this review, we discuss the progress that has been made in dissecting the attributes of different DC subsets that migrate into, or reside permanently, within lymphoid tissues and their putative roles in the induction of the anti-viral immune response.
Collapse
Affiliation(s)
- Gabrielle Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | | | | |
Collapse
|
31
|
Masson F, Mount AM, Wilson NS, Belz GT. Dendritic cells: driving the differentiation programme of T cells in viral infections. Immunol Cell Biol 2008; 86:333-42. [PMID: 18347609 DOI: 10.1038/icb.2008.15] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protective immunity against viral pathogens depends on the generation and maintenance of a small population of memory CD8(+) T cells. Successful memory cell generation begins with early interactions between naïve T cell and dendritic cells (DCs) within the inflammatory milieu of the secondary lymphoid tissues. Recent insights into the role of different populations of DCs, and kinetics of antigen presentation, during viral infections have helped to understand how DCs can shape the immune response. Here, we review the recent progress that has been made towards defining how specific DC subsets drive effector CD8(+) T-cell expansion and differentiation into memory cells. Further, we endeavour to examine how the molecular signals imparted by DCs coordinate to generate protective CD8(+) T-cell immunity.
Collapse
Affiliation(s)
- Frederick Masson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
32
|
Mount AM, Smith CM, Kupresanin F, Stoermer K, Heath WR, Belz GT. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation. PLoS One 2008; 3:e1691. [PMID: 18301768 PMCID: PMC2253497 DOI: 10.1371/journal.pone.0001691] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 01/30/2008] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8α DC play a prominent, and sometimes exclusive, role in driving amplification of CD8+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4+ and CD8+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8α DC populations in the amplification of CD8+ and CD4+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8+ T cells are dominated by presentation of antigen by CD8α DC but can involve non-CD8α DC. In contrast, CD4+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.
Collapse
Affiliation(s)
- Adele M. Mount
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Christopher M. Smith
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Fiona Kupresanin
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kristina Stoermer
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - William R. Heath
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gabrielle T. Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- *E-mail:
| |
Collapse
|
33
|
Kogan AN, von Andrian UH. Lymphocyte Trafficking. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
34
|
Wang HB, Ghiran I, Matthaei K, Weller PF. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:7585-92. [PMID: 18025204 PMCID: PMC2735454 DOI: 10.4049/jimmunol.179.11.7585] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of airway eosinophils, potentially pertinent to allergic diseases of the upper and lower airways, to function as professional APCs, those specifically able to elicit responses from unprimed, Ag-naive CD4(+) T cells has been uncertain. We investigated whether airway eosinophils are capable of initiating naive T cell responses in vivo. Eosinophils, isolated free of other APCs from the spleens of IL-5 transgenic mice, following culture with GM-CSF expressed MHC class II and the costimulatory proteins, CD40, CD80, and CD86. Eosinophils, incubated with OVA Ag in vitro, were instilled intratracheally into wild-type recipient mice that adoptively received i.v. infusions of OVA Ag-specific CD4(+) T cells from OVA TCR transgenic mice. OVA-exposed eosinophils elicited activation (CD69 expression), proliferation (BrdU incorporation), and IL-4, but not IFN-gamma, cytokine production by OVA-specific CD4(+) T cells in paratracheal lymph nodes (LN). Exposure of eosinophils to lysosomotropic NH(4)Cl, which inhibits Ag processing, blocked each of these eosinophil-mediated activation responses of CD4(+) T cells. By three-color fluorescence microscopy, OVA Ag-loaded eosinophil APCs were physically interacting with naive OVA-specific CD4(+) T cells in paratracheal LN after eosinophil airway instillation. Thus, recruited luminal airway eosinophils are distinct allergic "inflammatory" professional APCs able to activate primary CD4(+) T cell responses in regional LNs.
Collapse
Affiliation(s)
- Hai-Bin Wang
- Divisions of Allergy and Inflammation and Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Ionita Ghiran
- Divisions of Allergy and Inflammation and Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Klaus Matthaei
- Gene Targeting Laboratory, Division of Molecular Bioscience, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Peter F. Weller
- Divisions of Allergy and Inflammation and Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
35
|
Flügel A, Odoardi F, Nosov M, Kawakami N. Autoaggressive effector T cells in the course of experimental autoimmune encephalomyelitis visualized in the light of two-photon microscopy. J Neuroimmunol 2007; 191:86-97. [PMID: 17976745 DOI: 10.1016/j.jneuroim.2007.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Two photon microscopy (TPM) recently emerged as optical tool for the visualization of immune processes hundreds of micrometers deep in living tissue and organs. Here we summarize recent work on exploiting this technology to study brain antigen specific T cells. These cells are the cause of Experimental Autoimmune Encephalomyelitis (EAE) an autoimmune disease model of Multiple Sclerosis. TPM studies elucidated the dynamics of the autoaggressive effector T cells in peripheral immune milieus during preclinical EAE, where the cells become reprogrammed to enter their target organ. These studies revealed an unexpectedly lively locomotion behavior of the cells interrupted only by short-lasting contacts with the local immune stroma. Live T cell behavior was furthermore studied within the acutely inflamed CNS. Two distinct migratory patterns of the T cells were found: the majority of cells (60-70%) moved fast and seemingly unhindered through the compact CNS parenchyma. The motility of the other cell fraction was highly confined. The cells swung around a fixed cell pole forming long-lasting contacts to putative local antigen presenting cells.
Collapse
|
36
|
Abstract
Dendritic cells (DCs) are antigen (Ag)-presenting cells (APCs) characterized by a unique capacity to stimulate naive T cells and initiate primary immune responses. Recent studies suggest that DCs also play critical roles in the induction of central and peripheral immunological tolerance, regulate the types of T cell immune responses, and function as sentinels in innate immunity against microbes. The diverse functions of DCs in immune regulation depend on the heterogeneity of DC subsets and their functional plasticity. Here we review recent progress in our understanding of the nature and classification of DCs.
Collapse
Affiliation(s)
- Katsuaki Sato
- Laboratory for Dendritic Cell Immunobiology, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Kanagawa, Japan.
| | | |
Collapse
|
37
|
Fischer UB, Jacovetty EL, Medeiros RB, Goudy BD, Zell T, Swanson JB, Lorenz E, Shimizu Y, Miller MJ, Khoruts A, Ingulli E. MHC class II deprivation impairs CD4 T cell motility and responsiveness to antigen-bearing dendritic cells in vivo. Proc Natl Acad Sci U S A 2007; 104:7181-6. [PMID: 17435166 PMCID: PMC1855382 DOI: 10.1073/pnas.0608299104] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The role continuous contact with self-peptide/MHC molecules (self ligands) in the periphery plays in the function of mature T cells remains unclear. Here, we elucidate a role for MHC class II molecules in T cell trafficking and antigen responsiveness in vivo. We find that naïve CD4 T cells deprived of MHC class II molecules demonstrate a progressive and profound defect in motility (measured by real-time two-photon imaging) and that these cells have a decreased ability to interact with limiting numbers of cognate antigen-bearing dendritic cells, but they do not demonstrate a defect in their responsiveness to direct stimulation with anti-CD3 monoclonal antibody. Using GST fusion proteins, we show that MHC class II availability promotes basal activation of Rap1 and Rac1 but does not alter the basal activity of Ras. We propose that tonic T cell receptor signaling from self-ligand stimulation is required to maintain a basal state of activation of small guanosine triphosphatases critical for normal T cell motility and that T cell motility is critical for the antigen receptivity of naïve CD4 T cells. These studies suggest a role for continuous self-ligand stimulation in the periphery for the maintenance and function of mature naïve CD4 T cells.
Collapse
Affiliation(s)
| | | | - Ricardo B. Medeiros
- *Center for Immunology and
- Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455; and
| | | | | | | | | | - Yoji Shimizu
- *Center for Immunology and
- Laboratory Medicine and Pathology, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455; and
| | - Mark J. Miller
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110-1093
| | | | - Elizabeth Ingulli
- *Center for Immunology and
- Departments of Pediatrics
- To whom correspondence should be sent at the present address:
Department of Pediatrics, University of California at San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA 92093. E-mail:
| |
Collapse
|
38
|
McKenzie EJ, Taylor PR, Stillion RJ, Lucas AD, Harris J, Gordon S, Martinez-Pomares L. Mannose Receptor Expression and Function Define a New Population of Murine Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:4975-83. [PMID: 17404279 DOI: 10.4049/jimmunol.178.8.4975] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vitro the mannose receptor (MR) mediates Ag internalization by dendritic cells (DC) and favors the presentation of mannosylated ligands to T cells. However, in vivo MR seems to play a role not in Ag presentation but in the homeostatic clearance of endogenous ligands, which could have the secondary benefit of reducing the levels of endogenous Ag available for presentation to the adaptive immune system. We have now observed that while MR(+) cells are consistently absent from T cell areas of spleen and mesenteric lymph nodes (LN), peripheral LN of untreated adult mice contain a minor population of MR(+)MHCII(+) in the paracortex. This novel MR(+) cell population can be readily identified by flow cytometry and express markers characteristic of DC. Furthermore, these MR(+) DC-like cells located in T cell areas can be targeted with MR ligands (anti-MR mAb). Numbers of MR(+)MHCII(+) cells in the paracortex are increased upon stimulation of the innate immune system and, accordingly, the amount of anti-MR mAb reaching MR(+)MHCII(+) cells in T cell areas is dramatically enhanced under these conditions. Our results indicate that the MR can act as an Ag-acquisition system in a DC subpopulation restricted to lymphoid organs draining the periphery. Moreover, the effect of TLR agonists on the numbers of these MR(+) DC suggests that the immunogenicity of MR ligands could be under the control of innate stimulation. In accordance with these observations, ligands highly specific for the MR elicit enhanced humoral responses in vivo only when administered in combination with endotoxin.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antigen Presentation
- Dendritic Cells/physiology
- Flow Cytometry
- Immunity, Innate
- Immunization
- Immunoglobulin G/biosynthesis
- Lectins, C-Type/analysis
- Lectins, C-Type/immunology
- Lectins, C-Type/physiology
- Lipopolysaccharides/pharmacology
- Mannose Receptor
- Mannose-Binding Lectins/analysis
- Mannose-Binding Lectins/immunology
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Rats
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Skin/cytology
Collapse
Affiliation(s)
- Emma J McKenzie
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Pape KA, Catron DM, Itano AA, Jenkins MK. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 2007; 26:491-502. [PMID: 17379546 DOI: 10.1016/j.immuni.2007.02.011] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 12/28/2022]
Abstract
The initial step in a humoral immune response involves the acquisition of antigens by B cells via surface immunoglobulin. Surprisingly, anatomic studies indicate that lymph-borne proteins do not have access to the follicles where naive B cells reside. Thus, it is unclear how B cells acquire antigens that drain to lymph nodes. By tracking a fluorescent antigen and a peptide:MHC II complex derived from it, we show that antigen-specific B cells residing in the follicles acquire antigen within minutes of injection, first in the region closest to the subcapsular sinus where lymph enters the lymph node. Antigen acquisition, presentation, and subsequent T cell-dependent activation did not require B cell migration through the T cell area or exposure to dendritic cells. These results indicate that the humoral response is initiated as soluble antigens diffuse directly from lymph in the subcapsular sinus to be acquired by antigen-specific B cells in the underlying follicles.
Collapse
Affiliation(s)
- Kathryn A Pape
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
40
|
Ding D, Mehta H, McCune WJ, Kaplan MJ. Aberrant Phenotype and Function of Myeloid Dendritic Cells in Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2006; 177:5878-89. [PMID: 17056512 DOI: 10.4049/jimmunol.177.9.5878] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by a systemic autoimmune response with profound and diverse T cell changes. Dendritic cells (DCs) are important orchestrators of immune responses and have an important role in the regulation of T cell function. The objective of this study was to determine whether myeloid DCs from individuals with SLE display abnormalities in phenotype and promote abnormal T cell function. Monocyte-derived DCs and freshly isolated peripheral blood myeloid DCs from lupus patients displayed an abnormal phenotype characterized by accelerated differentiation, maturation, and secretion of proinflammatory cytokines. These abnormalities were characterized by higher expression of the DC differentiation marker CD1a, the maturation markers CD86, CD80, and HLA-DR, and the proinflammatory cytokine IL-8. In addition, SLE patients displayed selective down-regulation of the maturation marker CD83 and had abnormal responses to maturation stimuli. These abnormalities have functional relevance, as SLE DCs were able to significantly increase proliferation and activation of allogeneic T cells when compared with control DCs. We conclude that myeloid DCs from SLE patients display significant changes in phenotype which promote aberrant T cell function and could contribute to the pathogenesis of SLE and organ damage.
Collapse
Affiliation(s)
- Dacheng Ding
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
41
|
Serre K, Giraudo L, Siret C, Leserman L, Machy P. CD4 T cell help is required for primary CD8 T cell responses to vesicular antigen delivered to dendritic cellsin vivo. Eur J Immunol 2006; 36:1386-97. [PMID: 16673447 DOI: 10.1002/eji.200526193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Insight into the mechanisms by which dendritic cells (DC) present exogenous antigen to T cells is of major importance in the design of vaccines. We examined the effectiveness of free antigen as well as antigen with lipopolysaccharide, emulsified in complete Freund's adjuvant, and antigen encapsulated in liposomes in activating adoptively transferred antigen-specific CD4 and CD8 T cells. When contained in liposomes, 100- to 1000-fold lower antigen amounts were as efficient in inducing proliferation and effector functions of CD4 and CD8 T cells in draining lymph nodes as other antigen forms. CD11c(+)/CD11b(+)/CD205(mod)/CD8alpha(-) DC that captured liposomes were activated and presented this form of antigen in an MHC class I- and class II-restricted manner. CD4 T cells differentiated into Th1 and Th2 effector cells. Primary expansion and cytotoxic activity of CD8 T cells were CD4 T cell-dependent and required the transporter associated with antigen processing (TAP). Finally, adoptively transferred CD4 and CD8 T cells were not deleted after primary immunization and rapidly responded to a secondary immunization with antigen-containing liposomes. In conclusion, encapsulation of antigen in liposomes is an efficient way of delivering antigen to DC for priming of both CD4 and CD8 T cell responses. Importantly, primary CD8 T cell responses were CD4 T cell-dependent.
Collapse
Affiliation(s)
- Karine Serre
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, France
| | | | | | | | | |
Collapse
|
42
|
Mattei F, Schiavoni G, Borghi P, Venditti M, Canini I, Sestili P, Pietraforte I, Morse HC, Ramoni C, Belardelli F, Gabriele L. ICSBP/IRF-8 differentially regulates antigen uptake during dendritic-cell development and affects antigen presentation to CD4+ T cells. Blood 2006; 108:609-17. [PMID: 16569763 DOI: 10.1182/blood-2005-11-4490] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interferon consensus sequence-binding protein (ICSBP)/interferon regulatory factor 8 (IRF-8) is a transcription factor that plays critical roles in the differentiation of defined dendritic-cell (DC) populations and in the immune response to many pathogens. In this study, we show that splenic DCs (s-DCs) from ICSBP(-/-) mice are markedly defective in their ability to capture and to present exogenous antigens (Ags) to naive CD4(+) T lymphocytes. We found that CD8alpha(+) DCs and, to a lesser extent, CD8alpha(-) DCs from ICSBP(-/-) mice are impaired at internalizing Ags, either through a receptor-mediated pathway or by macropinocytosis, in spite of having a more immature phenotype than their wild-type (WT) counterparts. These features reflected a greatly impaired ability of ICSBP(-/-) s-DCs to present injected soluble ovalbumin (OVA) to OVA-specific CD4(+) T cells in vivo. Conversely, bone marrow (BM)-derived DCs from ICSBP(-/-) mice, in keeping with their immature phenotype, exhibited higher endocytic activity than WT cells. However, Ag-loaded ICSBP(-/-) BM-DCs were defective in priming Ag-specific CD4(+) T lymphocytes and failed to induce a contact hypersensitivity (CHS) response when injected into competent WT hosts. Together, these results indicate that, throughout the developmental program of DCs, ICSBP differentially controls Ag uptake and MHC class II (MHC-II) presentation affecting both functions only in differentiated peripheral DCs.
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nayak BP, Sailaja G, Jabbar AM. Augmenting the immunogenicity of DNA vaccines: role of plasmid-encoded Flt-3 ligand, as a molecular adjuvant in genetic vaccination. Virology 2006; 348:277-88. [PMID: 16563456 DOI: 10.1016/j.virol.2006.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 12/22/2022]
Abstract
In this study, we have taken advantage of the unique property of a potent dendritic cell (DC) growth factor, Flt-3 ligand (FL), which could act as a vaccine adjuvant. Accordingly, a single injection of plasmid DNA coding for soluble FL (FLex) was shown to induce large numbers of DCs in various tissue compartments and was critical for generating high frequencies of antigen-specific (HIV gp120 and LCMV NP) immune responses in mice. Interestingly, this enhanced level of immune response is strictly dependent on the co-delivery (i.m.) of the DNA vaccines and hFLex DNA to mice harboring large numbers of DCs. The high frequencies of antigen-specific CD8(+) T cells were largely associated with the expansion phase of DCs in vivo. However, DC expansion and immune enhancement have not reciprocally maintained a linear correlation, suggesting that other factors, cytokines/chemokines, which have the potential to modulate the microenvironment of DCs, could influence immunological outcome in this vaccination modality.
Collapse
Affiliation(s)
- Bishnu P Nayak
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
44
|
Ling C, Sandor M, Suresh M, Fabry Z. Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J Neurosci 2006; 26:731-41. [PMID: 16421293 PMCID: PMC6675378 DOI: 10.1523/jneurosci.3502-05.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
T-cell recruitment into the brain is critical in inflammatory and autoimmune diseases of the CNS. We use intracerebral antigen microinjection and tetramer technology to track antigen-specific CD8+ T-cells in the CNS and to clarify the contribution of antigen deposition or traumatic injury to the accumulation of T-cells in the brain. We demonstrate that, after intracerebral microinjection of ovalbumin, ovalbumin-specific CD8+ T-cells expand systemically and then migrate into the brain where they complete additional proliferation cycles. T-cells in the brain are activated and respond to in vitro secondary antigen challenge. CD8+ T-cells accumulate and persist in sites of antigen in the brain without replenishment from the periphery. Persistent survival of CD8+ T-cells at sites of cognate antigen is significantly reduced by blocking CD154 molecules. A small traumatic injury itself does not lead to recruitment of CD8+ T-cells into the brain but attracts activated antigen-specific CD8+ T-cells from cognate antigen injection sites. This process is presumably antigen independent and cannot be inhibited by blocking CD154 molecules. These data show that activated antigen-specific CD8+ T-cells accumulate in the CNS at both cognate antigen-containing and traumatic injury sites after intracerebral antigen delivery. The accumulation of activated antigen-specific T-cells at traumatic injury sites, in addition to antigen-containing areas, could amplify local inflammatory processes in the CNS. Combination therapies in neuroinflammatory diseases to block both of these processes should be considered.
Collapse
Affiliation(s)
- Changying Ling
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
45
|
Santana MA, Esquivel-Guadarrama F. Cell biology of T cell activation and differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 250:217-74. [PMID: 16861067 DOI: 10.1016/s0074-7696(06)50006-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
T cells are major components of the adaptive immune system. They can differentiate into two different populations of effector cells-type one and type two-and may also become tolerant. T cells respond to immune challenges by interacting with antigen-presenting cells of the innate immune system. These latter cells can identify the nature of any immune challenge and initiate adaptive immune responses. Dendritic cells are the most important antigen-presenting cells in the body. The T cell recognizes both peptides associated with MHC molecules on the antigen-presenting cells and also other molecules in a complex structure known as an immunological synapse. The nature of the antigen, the cytokine environment, and other molecules on the dendritic cell surface instruct the T cells as to the response required. A better understanding of the biology of T cell responses offers the prospect of more effective therapeutic interventions.
Collapse
Affiliation(s)
- María Angélica Santana
- Faculty of Sciences, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
46
|
Kwon YJ, James E, Shastri N, Fréchet JMJ. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci U S A 2005; 102:18264-8. [PMID: 16344458 PMCID: PMC1317987 DOI: 10.1073/pnas.0509541102] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activating the immune system to trigger a specific response is a major challenge in vaccine development. In particular, activating sufficient cytotoxic T lymphocyte-mediated cellular immunity, which is crucial for the treatment of many diseases including cancer and AIDS, has proven to be especially challenging. In this study, antigens were encapsulated in acid-degradable polymeric particle carriers to cascade cytotoxic T lymphocyte activation. To target dendritic cells, the most potent antigen-presenting cells, the particle carriers, were further conjugated with monoclonal antibodies. A series of ex vivo and in vivo studies have shown increased receptor-mediated uptake of antibody-conjugated particles by dendritic cells as well as migration of particle-carrying dendritic cells to lymph nodes and stimulation of naïve T cells leading to enhanced cellular immune response as confirmed by specific cell lysis and IFN-gamma secretion.
Collapse
Affiliation(s)
- Young Jik Kwon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
47
|
Sant AJ, Chaves FA, Jenks SA, Richards KA, Menges P, Weaver JM, Lazarski CA. The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol Rev 2005; 207:261-78. [PMID: 16181342 DOI: 10.1111/j.0105-2896.2005.00307.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunodominance refers to the restricted antigen specificity of T cells detected in the immune response after immunization with complex antigens. Despite the presence of many potential peptide epitopes within these immunogens, the elicited T-cell response apparently focuses on a very limited number of peptides. Over the last two decades, a number of distinct explanations have been put forth to explain this very restricted specificity of T cells, many of which suggest that endosomal antigen processing restricts the array of peptides available to recruit CD4 T cells. In this review, we present evidence from our laboratory that suggest that immunodominance in CD4 T-cell responses is primarily due to an intrinsic property of the peptide:class II complexes. The intrinsic kinetic stability of peptide:class II complexes controls DM editing within the antigen-presenting cells and thus the initial epitope density on priming dendritic cells. Additionally, we hypothesize that peptides that possess high kinetic stability interactions with class II molecules display persistence at the cell surface over time and will more efficiently promote T-cell signaling and differentiation than competing, lower-stability peptides contained within the antigen. We discuss this model in the context of the existing data in the field of immunodominance.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Germain RN, Castellino F, Chieppa M, Egen JG, Huang AYC, Koo LY, Qi H. An extended vision for dynamic high-resolution intravital immune imaging. Semin Immunol 2005; 17:431-41. [PMID: 16216522 PMCID: PMC1462950 DOI: 10.1016/j.smim.2005.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The past few years have seen the application of confocal and especially two-photon microscopy to the dynamic high-resolution imaging of lymphocytes and antigen presenting cells within organs such as lymph nodes and thymus. After summarizing some of the published results obtained to date using these methods, we describe our view of how this technology will develop and be applied in the near future. This includes its extension to a wide variety of non-lymphoid tissues, to the tracking of functional responses in addition to migratory behavior, to the analysis of molecular events previously studied only in vitro, to dissection of the interplay between hematopoietic and stromal elements, to visualization of a wider array of cell types including neutrophils, macrophages, NK cells, NKT cells and others, and to the interaction of the host with infectious agents. Reaching these goals will depend on a combination of new tools for genetic manipulations, novel fluorescent reporters, enhanced instrumentation, and better surgical techniques for the extended imaging of live animals. The end result will be a new level of understanding of how orchestrated cell movement and interaction contribute to the physiological and pathological activities of the immune system.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bldg. 10 Rm. 11N311, 10 Center Dr. MSC-1892 Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Pozzi LAM, Maciaszek JW, Rock KL. Both Dendritic Cells and Macrophages Can Stimulate Naive CD8 T Cells In Vivo to Proliferate, Develop Effector Function, and Differentiate into Memory Cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:2071-81. [PMID: 16081773 DOI: 10.4049/jimmunol.175.4.2071] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The generation of T cell immunity requires the acquisition and presentation of Ag on bone marrow-derived APCs. Dendritic cells (DC) are believed to be the most potent bone marrow-derived APCs, and the only ones that can stimulate naive T cells to productively respond to Ags. Because macrophages (Mphi) are bone marrow-derived APCs that are also found in tissues and lymphoid organs, can acquire and present Ag, and can express costimulatory molecules, we have investigated their potential to stimulate primary T cell responses in vivo. We find that both injected Mphi and DCs can migrate from peripheral tissues or blood into lymphoid organs. Moreover, injection of peptide-pulsed Mphi or DCs into mice stimulates CD8 T cells to proliferate, express effector functions including cytokine production and cytolysis, and differentiate into long-lived memory cells. Mphi and DCs stimulate T cells directly without requiring cross-presentation of Ag on host APCs. Therefore, more than one type of bone marrow-derived APC has the potential to prime T cell immunity. In contrast, another bone marrow-derived cell, the T lymphocyte, although capable of presenting Ag and homing to the T cell areas of lymphoid organs, is unable to stimulate primary responses. Because Mphi can be very abundant cells, especially at sites of infection and inflammation, they have the potential to play an important role in immune surveillance and the initiation of T cell immunity.
Collapse
Affiliation(s)
- Lu-Ann M Pozzi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
50
|
Hochweller K, Anderton SM. Kinetics of costimulatory molecule expression by T cells and dendritic cells during the induction of tolerance versus immunity in vivo. Eur J Immunol 2005; 35:1086-96. [PMID: 15756642 DOI: 10.1002/eji.200425891] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Steady-state dendritic cells (DC) present peptide-MHC complexes to T cells in a tolerogenic manner, presumably because of deficient costimulation. However, it is clear that the path to tolerance involves initial T cell activation, suggesting that the deficit may lie in late-acting costimulatory molecules. With this in mind we have investigated the kinetics of expression of several costimulatory pairs on DC and OVA-reactive T cells after i.v. injection of mice with peptide and LPS (immunity), or peptide alone (tolerance). We find that T cells up-regulate CD154, OX40, RANKL and PD-1 whether they are destined for tolerance or immunity, although there are some differences in the levels and length of expression. In contrast, when analyzing DC, we found that up-regulation of CD80, CD86, CD40, RANK and PDL-1 occurred only when peptide was co-administered with LPS. These data give a picture of the T cell looking for costimulatory cues that are not forthcoming when pMHC is presented by steady-state DC, leading to tolerance. However, we did see a strong and rapid up-regulation of RANKL on T cells that occurred specifically when peptide was given in the absence of LPS, suggesting a possible positive signal influencing the decision between tolerance and immunity.
Collapse
Affiliation(s)
- Kristin Hochweller
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|