1
|
Huber M, Brummer T. Enzyme Is the Name-Adapter Is the Game. Cells 2024; 13:1249. [PMID: 39120280 PMCID: PMC11311582 DOI: 10.3390/cells13151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, IMMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
McGee MC, August A, Huang W. TCR/ITK Signaling in Type 1 Regulatory T cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:115-124. [PMID: 33523446 DOI: 10.1007/978-981-15-6407-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 regulatory T (Tr1) cells can modulate inflammation through multiple direct and indirect molecular and cellular mechanisms and have demonstrated potential for anti-inflammatory therapies. Tr1 cells do not express the master transcription factor of conventional regulatory T cells, Foxp3, but express high levels of the immunomodulatory cytokine, IL-10. IL-2-inducible T-cell kinase (ITK) is conserved between mouse and human and is highly expressed in T cells. ITK signaling downstream of the T-cell receptor (TCR) is critical for T-cell subset differentiation and function. Upon activation by TCR, ITK is critical for Ras activation, leading to downstream activation of MAPKs and upregulation of IRF4, which further enable Tr1 cell differentiation and suppressive function. We summarize here the structure, signaling pathway, and function of ITK in T-cell lineage designation, with an emphasis on Tr1 cell development and function.
Collapse
Affiliation(s)
- Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA. .,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Andreotti AH, Joseph RE, Conley JM, Iwasa J, Berg LJ. Multidomain Control Over TEC Kinase Activation State Tunes the T Cell Response. Annu Rev Immunol 2019; 36:549-578. [PMID: 29677469 DOI: 10.1146/annurev-immunol-042617-053344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.
Collapse
Affiliation(s)
- Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA; ,
| | - James M Conley
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| | - Janet Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA;
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA; ,
| |
Collapse
|
4
|
IL-2 Inducible Kinase ITK is Critical for HIV-1 Infection of Jurkat T-cells. Sci Rep 2018; 8:3217. [PMID: 29453458 PMCID: PMC5816632 DOI: 10.1038/s41598-018-21344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/15/2018] [Indexed: 01/04/2023] Open
Abstract
Successful replication of Human immunodeficiency virus (HIV)-1 depends on the expression of various cellular host factors, such as the interleukin-2 inducible T-cell kinase (ITK), a member of the protein family of TEC-tyrosine kinases. ITK is selectively expressed in T-cells and coordinates signaling pathways downstream of the T-cell receptor and chemokine receptors, including PLC-1 activation, Ca2+-release, transcription factor mobilization, and actin rearrangements. The exact role of ITK during HIV-1 infection is still unknown. We analyzed the function of ITK during HIV-1 replication and showed that attachment, fusion of virions with the cell membrane and entry into Jurkat T-cells was inhibited when ITK was knocked down. In contrast, reverse transcription and provirus expression were not affected by ITK deficiency. Inhibited ITK expression did not affect the CXCR4 receptor on the cell surface, whereas CD4 and LFA-1 integrin levels were slightly enhanced in ITK knockdown cells and heparan sulfate (HS) expression was completely abolished in ITK depleted T-cells. However, neither HS expression nor other attachment factors could explain the impaired HIV-1 binding to ITK-deficient cells, which suggests that a more complex cellular process is influenced by ITK or that not yet discovered molecules contribute to restriction of HIV-1 binding and entry.
Collapse
|
5
|
Zhou Z, Wu S, Lai J, Shi Y, Qiu C, Chen Z, Wang Y, Gu X, Zhou J, Chen S. Identification of trunk mutations in gastric carcinoma: a case study. BMC Med Genomics 2017; 10:49. [PMID: 28716121 PMCID: PMC5520061 DOI: 10.1186/s12920-017-0285-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
Background Intratumor heterogeneity (ITH) poses an urgent challenge for cancer precision medicine because it can cause drug resistance against cancer target therapy and immunotherapy. The search for trunk mutations that are present in all cancer cells is therefore critical for each patient. Case presentation In this study, we aimed to evaluate the efficiency of multiregional sequencing for the identification of trunk mutations present in all regions of a tumor as a case study. We applied multiregional whole-exome sequencing (WES) to investigate the genetic heterogeneity and homogeneity of a case of gastric carcinoma. Approximately 83% of common missense mutations present in two samples and approximately 89% of common missense mutations present in three samples were trunk mutations. Notably, trunk mutations appeared to have higher variant allele frequencies (VAFs) than non-trunk mutations. Conclusions Our results indicate that small-scale multiregional sampling and subsequent screening of low VAF somatic mutations might be a cost-effective strategy for identifying the majority of trunk mutations in gastric carcinoma. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0285-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Shanshan Wu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Jun Lai
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Yuan Shi
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang, Hangzhou, 310058, China
| | - Chixiao Qiu
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Zhe Chen
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang, Hangzhou, 310058, China
| | - Yufeng Wang
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jie Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China.
| | - Shuqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China. .,International Center for Precision Medicine, Zhejiang California International NanoSystems Institute, Zhejiang, Hangzhou, 310058, China.
| |
Collapse
|
6
|
McKercher MA, Guan X, Tan Z, Wuttke DS. Multimodal Recognition of Diverse Peptides by the C-Terminal SH2 Domain of Phospholipase C-γ1 Protein. Biochemistry 2017; 56:2225-2237. [PMID: 28376302 DOI: 10.1021/acs.biochem.7b00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SH2 domains recognize phosphotyrosine (pY)-containing peptide ligands and play key roles in the regulation of receptor tyrosine kinase pathways. Each SH2 domain has individualized specificity, encoded in the amino acids neighboring the pY, for defined targets that convey their distinct functions. The C-terminal SH2 domain (PLCC) of the phospholipase C-γ1 full-length protein (PLCγ1) typically binds peptides containing small and hydrophobic amino acids adjacent to the pY, including a peptide derived from platelet-derived growth factor receptor B (PDGFRB) and an intraprotein recognition site (Y783 of PLCγ1) involved in the regulation of the protein's lipase activity. Remarkably, PLCC also recognizes unexpected peptides containing amino acids with polar or bulky side chains that deviate from this pattern. This versatility in recognition specificity may allow PLCγ1 to participate in diverse, previously unrecognized, signaling pathways in response to binding chemically dissimilar partners. We have used structural approaches, including nuclear magnetic resonance and X-ray crystallography, to elucidate the mechanisms of noncognate peptide binding to PLCC by ligands derived from receptor tyrosine kinase ErbB2 and from the insulin receptor. The high-resolution peptide-bound structures reveal that PLCC has a relatively static backbone but contains a chemically rich protein surface comprised of a combination of hydrophobic pockets and amino acids with charged side chains. We demonstrate that this expansive and chemically diverse PLCC interface, in addition to peptide conformational plasticity, permits PLCC to recognize specific noncognate peptide ligands with multimodal specificity.
Collapse
Affiliation(s)
- Marissa A McKercher
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Janssen WJM, Geluk HCA, Boes M. F-actin remodeling defects as revealed in primary immunodeficiency disorders. Clin Immunol 2016; 164:34-42. [PMID: 26802313 DOI: 10.1016/j.clim.2016.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of immune-related diseases. PIDs develop due to defects in gene-products that have consequences to immune cell function. A number of PID-proteins is involved in the remodeling of filamentous actin (f-actin) to support the generation of a contact zone between the antigen-specific T cell and antigen presenting cell (APC): the immunological synapse (IS). IS formation is the first step towards T-cell activation and essential for clonal expansion and acquisition of effector function. We here evaluated PIDs in which aberrant f-actin-driven IS formation may contribute to the PID disease phenotypes as seen in patients. We review examples of such contributions to PID phenotypes from literature, and highlight cases in which PID-proteins were evaluated for a role in f-actin polymerization and IS formation. We conclude with the proposition that patient groups might benefit from stratifying them in distinct functional groups in regard to their f-actin remodeling phenotypes in lymphocytes.
Collapse
Affiliation(s)
- W J M Janssen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - H C A Geluk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - M Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Deakin A, Duddy G, Wilson S, Harrison S, Latcham J, Fulleylove M, Fung S, Smith J, Pedrick M, McKevitt T, Felton L, Morley J, Quint D, Fattah D, Hayes B, Gough J, Solari R. Characterisation of a K390R ITK kinase dead transgenic mouse--implications for ITK as a therapeutic target. PLoS One 2014; 9:e107490. [PMID: 25250764 PMCID: PMC4174519 DOI: 10.1371/journal.pone.0107490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022] Open
Abstract
Interleukin-2 inducible tyrosine kinase (ITK) is expressed in T cells and plays a critical role in signalling through the T cell receptor. Evidence, mainly from knockout mice, has suggested that ITK plays a particularly important function in Th2 cells and this has prompted significant efforts to discover ITK inhibitors for the treatment of allergic disease. However, ITK is known to have functions outside of its kinase domain and in general kinase knockouts are often not good models for the behaviour of small molecule inhibitors. Consequently we have developed a transgenic mouse where the wild type Itk allele has been replaced by a kinase dead Itk allele containing an inactivating K390R point mutation (Itk-KD mice). We have characterised the immune phenotype of these naive mice and their responses to airway inflammation. Unlike Itk knockout (Itk−/−) mice, T-cells from Itk-KD mice can polymerise actin in response to CD3 activation. The lymph nodes from Itk-KD mice showed more prominent germinal centres than wild type mice and serum antibody levels were significantly abnormal. Unlike the Itk−/−, γδ T cells in the spleens of the Itk-KD mice had an impaired ability to secrete Th2 cytokines in response to anti-CD3 stimulation whilst the expression of ICOS was not significantly different to wild type. However ICOS expression is markedly increased on αβCD3+ cells from the spleens of naïve Itk-KD compared to WT mice. The Itk-KD mice were largely protected from inflammatory symptoms in an Ovalbumin model of airway inflammation. Consequently, our studies have revealed many similarities but some differences between Itk−/−and Itk-KD transgenic mice. The abnormal antibody response and enhanced ICOS expression on CD3+ cells has implications for the consideration of ITK as a therapeutic target.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Blotting, Western
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Enzyme Inhibitors/immunology
- Enzyme Inhibitors/therapeutic use
- Female
- Flow Cytometry
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Inducible T-Cell Co-Stimulator Protein/immunology
- Inducible T-Cell Co-Stimulator Protein/metabolism
- Lymphocyte Count
- Male
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Pneumonia/drug therapy
- Pneumonia/genetics
- Pneumonia/immunology
- Point Mutation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Angela Deakin
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Graham Duddy
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Steve Wilson
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Steve Harrison
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Judi Latcham
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Mick Fulleylove
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Sylvia Fung
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Jason Smith
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Mike Pedrick
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Tom McKevitt
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Leigh Felton
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Joanne Morley
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Diana Quint
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Dilniya Fattah
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Brian Hayes
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Jade Gough
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Roberto Solari
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Zhong Y, Johnson AJ, Byrd JC, Dubovsky JA. Targeting Interleukin-2-Inducible T-cell Kinase (ITK) in T-Cell Related Diseases. ACTA ACUST UNITED AC 2014; 2:1-11. [PMID: 27917390 DOI: 10.14304/surya.jpr.v2n6.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL2-inducible T-cell kinase (ITK), a member of the Tec family tyrosine kinases, is the predominant Tec kinase in T cells and natural killer (NK) cells mediating T cell receptor (TCR) and Fc receptor (Fc R) initiated signal transduction. ITK deficiency results in impaired T and NK cell functions, leading to various disorders including malignancies, inflammation, and autoimmune diseases. In this mini-review, the role of ITK in T cell signaling and the development of small molecule inhibitors of ITK for the treatment of T-cell related disorders is examined.
Collapse
Affiliation(s)
- Yiming Zhong
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| | - Jason A Dubovsky
- Division of Hematology, Department of Internal Medicine, The Ohio State University, 320 W. 10th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Prince AL, Watkin LB, Yin CC, Selin LK, Kang J, Schwartzberg PL, Berg LJ. Innate PLZF+CD4+ αβ T cells develop and expand in the absence of Itk. THE JOURNAL OF IMMUNOLOGY 2014; 193:673-87. [PMID: 24928994 DOI: 10.4049/jimmunol.1302058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
T cell development in the thymus produces multiple lineages of cells, including innate T cells. Studies in mice harboring alterations in TCR signaling proteins or transcriptional regulators have revealed an expanded population of CD4(+) innate T cells in the thymus that produce IL-4 and express the transcription factor promyelocytic leukemia zinc finger (PLZF). In these mice, IL-4 produced by the CD4(+)PLZF(+) T cell population leads to the conversion of conventional CD8(+) thymocytes into innate CD8(+) T cells resembling memory T cells expressing eomesodermin. The expression of PLZF, the signature invariant NKT cell transcription factor, in these innate CD4(+) T cells suggests that they might be a subset of αβ or γδ TCR(+) NKT cells or mucosal-associated invariant T (MAIT) cells. To address these possibilities, we characterized the CD4(+)PLZF(+) innate T cells in itk(-/-) mice. We show that itk(-/-) innate PLZF(+)CD4(+) T cells are not CD1d-dependent NKT cells, MR1-dependent MAIT cells, or γδ T cells. Furthermore, although the itk(-/-) innate PLZF(+)CD4(+) T cells express αβ TCRs, neither β2-microglobulin-dependent MHC class I nor any MHC class II molecules are required for their development. In contrast to invariant NKT cells and MAIT cells, this population has a highly diverse TCRα-chain repertoire. Analysis of peripheral tissues indicates that itk(-/-) innate PLZF(+)CD4(+) T cells preferentially home to spleen and mesenteric lymph nodes owing to increased expression of gut-homing receptors, and that their expansion is regulated by commensal gut flora. These data support the conclusion that itk(-/-) innate PLZF(+)CD4(+) T cells are a novel subset of innate T cells.
Collapse
Affiliation(s)
- Amanda L Prince
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Levi B Watkin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Catherine C Yin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
11
|
Babich A, Burkhardt JK. Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 2014; 256:80-94. [PMID: 24117814 DOI: 10.1111/imr.12123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) mobilization and cytoskeletal reorganization are key hallmarks of T-cell activation, and their interdependence has long been recognized. Recent advances in the field have elucidated the molecular pathways that underlie these events and have revealed several points of intersection. Ca(2+) signaling can be divided into two phases: initial events leading to release of Ca(2+) from endoplasmic reticulum stores, and a second phase involving STIM 1 (stromal interaction molecule 1) clustering and CRAC (calcium release activated calcium) channel activation. Cytoskeletal dynamics promote both phases. During the first phase, the actin cytoskeleton promotes mechanotransduction and serves as a dynamic scaffold for microcluster assembly. Proteins that drive actin polymerization such as WASp (Wiskott-Aldrich syndrome protein) and HS1 (hematopoietic lineage cell-specific protein 1) promote signaling through PLCγ1 (phospholipase Cγ1) and release of Ca(2+) from endoplasmic reticulum stores. During the second phase, the WAVE (WASP-family verprolin homologous protein) complex and the microtubule cytoskeleton promote STIM 1 clustering at sites of plasma membrane apposition, opening Orai channels. In addition, gross cell shape changes and organelle movements buffer local Ca(2+) levels, leading to sustained Ca(2+) mobilization. Conversely, elevated intracellular Ca(2+) activates cytoskeletal remodeling. This can occur indirectly, via calpain activity, and directly, via Ca(2+) -dependent cytoskeletal regulatory proteins such as myosin II and L-plastin. While it is true that the cytoskeleton regulates Ca(2+) responses and vice versa, interdependence between Ca(2+) and the cytoskeleton also encompasses signaling events that occur in parallel, downstream of shared intermediates. Inositol cleavage by PLCγ1 simultaneously triggers both endoplasmic reticulum store release and diacylglycerol-dependent microtubule organizing center reorientation, while depleting the pool of phosphatidylinositol-4,5-bisphosphate, an activator of multiple actin-regulatory proteins. The close interdependence of Ca(2+) signaling and cytoskeletal dynamics in T cells provides positive feedback mechanisms for T-cell activation and allows for finely tuned responses to extracellular cues.
Collapse
Affiliation(s)
- Alexander Babich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
He F, Yao H, Xiao Z, Han J, Zou J, Liu Z. Inhibition of IL-2 inducible T-cell kinase alleviates T-cell activation and murine myocardial inflammation associated with CVB3 infection. Mol Immunol 2014; 59:30-8. [PMID: 24462896 DOI: 10.1016/j.molimm.2013.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Coxsackievirus B3 (CVB3) infection causes myocarditis, pancreatitis, and aseptic meningitis. Targeting antigen-specific T cell reactions might be a promising way to alleviate the inflammatory response induced by CVB3 infection. IL-2-inducible T-cell kinase (ITK), a member of Tec kinase family expressed mainly in T cells, plays an important role in the activation of T cells. The role of ITK in viral myocarditis induced by CVB3 has not been documented. METHODOLOGY In this study, we inhibited the ITK expression in Jurkat cells, primary human peripheral blood mononuclear cells (PBMC), and mouse splenocytes by ITK-specific siRNA. The inhibition efficiently suppressed cell proliferation (P<0.05) and T-cell related cytokine secretion (P<0.05). In order to inhibit ITK in vivo, the pGCSIL plasmid containing short hairpin RNAs targeting ITK was constructed and transduced into mice infected with CVB3. ITK-inhibited mice showed reduced cell proliferation (3, 5, and 7 days post-challenge, P<0.05) as well as CD4+ and CD8+ T cells (5 days post-challenge, P<0.05). The altered production of inflammatory cytokines alleviated pathologic heart damage and improved mice survival rate (P<0.05). CONCLUSION ITK played an important role in the T cell development and represented a new target for the modulation of T-cell-mediated inflammatory response by CVB3 infection.
Collapse
Affiliation(s)
- Feng He
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hailan Yao
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zonghui Xiao
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jisheng Han
- Medical Department, Aerospace 731 Hospital, Beijing 100074, China
| | - Jizhen Zou
- Pathology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhewei Liu
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
13
|
Klieger Y, Almogi-Hazan O, Ish-Shalom E, Pato A, Pauker MH, Barda-Saad M, Wang L, Baniyash M. Unique ζ-chain motifs mediate a direct TCR-actin linkage critical for immunological synapse formation and T-cell activation. Eur J Immunol 2013; 44:58-68. [PMID: 24185712 DOI: 10.1002/eji.201243099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 09/10/2013] [Accepted: 10/01/2013] [Indexed: 11/07/2022]
Abstract
TCR-mediated activation induces receptor microclusters that evolve to a defined immune synapse (IS). Many studies showed that actin polymerization and remodeling, which create a scaffold critical to IS formation and stabilization, are TCR mediated. However, the mechanisms controlling simultaneous TCR and actin dynamic rearrangement in the IS are yet not fully understood. Herein, we identify two novel TCR ζ-chain motifs, mediating the TCR's direct interaction with actin and inducing actin bundling. While T cells expressing the ζ-chain mutated in these motifs lack cytoskeleton (actin) associated (cska)-TCRs, they express normal levels of non-cska and surface TCRs as cells expressing wild-type ζ-chain. However, such mutant cells are unable to display activation-dependent TCR clustering, IS formation, expression of CD25/CD69 activation markers, or produce/secrete cytokine, effects also seen in the corresponding APCs. We are the first to show a direct TCR-actin linkage, providing the missing gap linking between TCR-mediated Ag recognition, specific cytoskeleton orientation toward the T-cell-APC interacting pole and long-lived IS maintenance.
Collapse
Affiliation(s)
- Yair Klieger
- The Lautenberg Center for General and Tumor Immunology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Regulation of immune responsiveness in vivo by disrupting an early T-cell signaling event using a cell-permeable peptide. PLoS One 2013; 8:e63645. [PMID: 23667652 PMCID: PMC3646824 DOI: 10.1371/journal.pone.0063645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/04/2013] [Indexed: 01/21/2023] Open
Abstract
The inducible T cell kinase (ITK) regulates type 2 (Th2) cytokines that provide defense against certain parasitic and bacterial infections and are involved in the pathogenesis of lung inflammation such as allergic asthma. Activation of ITK requires the interaction of its SH3 domain with the poly-proline region of its signaling partner, the SH2 domain containing leukocyte phosphoprotein of 76 kilodaltons (SLP-76). The specific disruption of the ITK-SH3/SLP-76 poly-proline interaction in vitro by a cell-permeable competitive inhibitor peptide (R9-QQP) interferes with the activation of ITK and the transduction of its cellular functions in T lymphocytes. In the present investigation, we assessed the effects of R9-QQP treatment on the induction of an in vivo immune response as represented by lung inflammation in a murine model of allergic asthma. We found that mice treated with R9-QQP and sensitized and challenged with the surrogate allergen ovalbumin (OVA) display significant inhibition of lung inflammation in a peptide-specific manner. Thus, parameters of the allergic response, such as airway hyper-responsiveness, suppression of inflammatory cell infiltration, reduction of bronchial mucus accumulation, and production of relevant cytokines from draining lymph nodes were significantly suppressed. These findings represent the first demonstration of the biological significance of the interaction between ITK and SLP-76 in the induction of an immune response in a whole animal model and specifically underscore the significance of the ITK-SH3 domain interaction with the poly-proline region of SLP-76 in the development of an inflammatory response. Furthermore, the experimental approach of intracellular peptide-mediated inhibition might be applicable to the study of other important intracellular interactions thus providing a paradigm for dissecting signal transduction pathways.
Collapse
|
15
|
The zinc-binding region of IL-2 inducible T cell kinase (Itk) is required for interaction with Gα13 and activation of serum response factor. Int J Biochem Cell Biol 2013; 45:1074-82. [PMID: 23454662 DOI: 10.1016/j.biocel.2013.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/04/2013] [Accepted: 02/18/2013] [Indexed: 11/20/2022]
Abstract
Tec family kinases play critical roles in the activation of immune cells. In particular, Itk is important for the activation of T cells via the T cell Receptor (TcR), however, molecules that cooperate with Itk to activate downstream targets remain little explored. Here we show that Itk interacts with the heterotrimeric G-protein α subunit Gα13 during TcR triggering. This interaction requires membrane localization of both partners, and is partially dependent on GDP- and GTP-bound states of Gα13. Furthermore, we find that Itk interacts with Gα13 via the zinc binding regions within its Tec homology domain. The interaction between Itk and Gα13 also results in tyrosine phosphorylation of Gα13, however this is not required for the interaction. Itk enhances Gα13 mediated activation of serum response factor (SRF) transcriptional activity dependent on its ability to interact with Gα13, but its kinase activity is not required to enhance SRF activity. These data reveal a new pathway regulated by Itk in cells, and suggest cross talk between Itk and G-protein signaling downstream of the TcR.
Collapse
|
16
|
Affiliation(s)
- Jean-Damien Charrier
- Chemistry Department at Vertex Pharmaceuticals (Europe) Ltd, 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, UK
| | - Ronald MA Knegtel
- Chemistry Department at Vertex Pharmaceuticals (Europe) Ltd, 86-88 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RW, UK
| |
Collapse
|
17
|
Schiralli Lester GM, Akiyama H, Evans E, Singh J, Gummuluru S, Henderson AJ. Interleukin 2-inducible T cell kinase (ITK) facilitates efficient egress of HIV-1 by coordinating Gag distribution and actin organization. Virology 2013; 436:235-43. [PMID: 23260110 PMCID: PMC3598624 DOI: 10.1016/j.virol.2012.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/18/2012] [Accepted: 11/25/2012] [Indexed: 12/18/2022]
Abstract
Interleukin 2-inducible T cell kinase (ITK) influences T cell signaling by coordinating actin polymerization and polarization as well as recruitment of kinases and adapter proteins. ITK regulates multiple steps of HIV-1 replication, including virion assembly and release. Fluorescent microscopy was used to examine the functional interactions between ITK and HIV-1 Gag during viral particle release. ITK and Gag colocalized at the plasma membrane and were concentrated at sites of F-actin accumulation and membrane lipid rafts in HIV-1 infected T cells. There was polarized staining of ITK, Gag, and actin towards sites of T cell conjugates. Small molecule inhibitors of ITK disrupted F-actin capping, perturbed Gag-ITK colocalization, inhibited virus like particle release, and reduced HIV replication in primary human CD4+ T cells. These data provide insight as to how ITK influences HIV-1 replication and suggest that targeting host factors that regulate HIV-1 egress provides an innovative strategy for controlling HIV infection.
Collapse
Affiliation(s)
- Gillian M. Schiralli Lester
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, EBRC 648, Boston, MA 02118, United States
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Erica Evans
- Celgene Avilomics Research, Bedford, MA, United States
| | | | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Andrew J. Henderson
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, EBRC 648, Boston, MA 02118, United States
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
18
|
August A, Ragin MJ. Regulation of T-cell responses and disease by tec kinase Itk. Int Rev Immunol 2012; 31:155-65. [PMID: 22449075 DOI: 10.3109/08830185.2012.668981] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Itk is a member of the Tec family tyrosine kinases involved in T-cell receptor signaling. The authors review the background and most recent findings of the role of Itk T-cell activation and development of αβ T cells. They also discuss the role of Itk in development of nonconventional T cells, including CD8(+) innate memory phenotype T cells, different γδ T-cell populations, and invariant NKT cells. They close by reviewing the regulation of T helper differentiation and cytokine secretion, the immune response to infectious disease, and diseases such as allergic asthma and atopic dermatitis by Itk.
Collapse
Affiliation(s)
- Avery August
- Department of Microbiology & Immunology, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
19
|
Boucheron N, Ellmeier W. The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. Int Rev Immunol 2012; 31:133-54. [DOI: 10.3109/08830185.2012.664798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Singleton KL, Gosh M, Dandekar RD, Au-Yeung BB, Ksionda O, Tybulewicz VLJ, Altman A, Fowell DJ, Wülfing C. Itk controls the spatiotemporal organization of T cell activation. Sci Signal 2012; 4:ra66. [PMID: 21971040 DOI: 10.1126/scisignal.2001821] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During T cell activation by antigen-presenting cells (APCs), the diverse spatiotemporal organization of components of T cell signaling pathways modulates the efficiency of activation. Here, we found that loss of the tyrosine kinase interleukin-2 (IL-2)-inducible T cell kinase (Itk) in mice altered the spatiotemporal distributions of 14 of 16 sensors of T cell signaling molecules in the region of the interface between the T cell and the APC, which reduced the segregation of signaling intermediates into distinct spatiotemporal patterns. Activation of the Rho family guanosine triphosphatase Cdc42 at the center of the cell-cell interface was impaired, although the total cellular amount of active Cdc42 remained intact. The defect in Cdc42 localization resulted in impaired actin accumulation at the T cell-APC interface in Itk-deficient T cells. Reconstitution of cells with active Cdc42 that was specifically directed to the center of the interface restored actin accumulation in Itk-deficient T cells. Itk also controlled the central localization of the guanine nucleotide exchange factor SLAT [Switch-associated protein 70 (SWAP-70)-like adaptor of T cells], which may contribute to the activation of Cdc42 at the center of the interface. Together, these data illustrate how control of the spatiotemporal organization of T cell signaling controls critical aspects of T cell function.
Collapse
Affiliation(s)
- Kentner L Singleton
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Qi Q, Kannan AK, August A. Structure and function of Tec family kinase Itk. Biomol Concepts 2011; 2:223-32. [PMID: 25962031 DOI: 10.1515/bmc.2011.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/11/2011] [Indexed: 11/15/2022] Open
Abstract
Itk is a member of the Tec family of kinases that is expressed predominantly in T cells. Itk regulates the T cell receptor signaling pathway to modulate T cell development and T helper cell differentiation, particularly Th2 differentiation. Itk is also important for the development and function of iNKT cells. In this review we discuss current progress on our understanding of the structure, activation and signaling pathway of Itk, in addition to inhibitors that have been developed, which target this kinase. We also place in context the function of Itk, available inhibitors and potential use in treating disease.
Collapse
|
22
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
23
|
Abstract
Second messenger molecules relay, amplify, and diversify cell surface receptor signals. Two important examples are phosphorylated D-myo-inositol derivatives, such as phosphoinositide lipids within cellular membranes, and soluble inositol phosphates. Here, we review how phosphoinositide metabolism generates multiple second messengers with important roles in T-cell development and function. They include soluble inositol(1,4,5)trisphosphate, long known for its Ca(2+)-mobilizing function, and phosphatidylinositol(3,4,5)trisphosphate, whose generation by phosphoinositide 3-kinase and turnover by the phosphatases PTEN and SHIP control a key "hub" of TCR signaling. More recent studies unveiled important second messenger functions for diacylglycerol, phosphatidic acid, and soluble inositol(1,3,4,5)tetrakisphosphate (IP(4)) in immune cells. Inositol(1,3,4,5)tetrakisphosphate acts as a soluble phosphatidylinositol(3,4,5)trisphosphate analog to control protein membrane recruitment. We propose that phosphoinositide lipids and soluble inositol phosphates (IPs) can act as complementary partners whose interplay could have broadly important roles in cellular signaling.
Collapse
Affiliation(s)
- Yina H Huang
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
24
|
Qi Q, Xia M, Bai Y, Yu S, Cantorna M, August A. Interleukin-2-inducible T cell kinase (Itk) network edge dependence for the maturation of iNKT cell. J Biol Chem 2010; 286:138-46. [PMID: 21036902 DOI: 10.1074/jbc.m110.148205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of innate T lymphocytes that are selected by CD1d. They have diverse immune regulatory functions via the rapid production of interferon-γ (IFN-γ) and interleukin-4 (IL-4). In the absence of signaling nodes Itk and Txk, Tec family non-receptor tyrosine kinases, mice exhibit a significant block in iNKT cell development. We now show here that although the Itk node is required for iNKT cell maturation, the kinase domain edge of Itk is not required for continued maturation iNKT cells in the thymus compared with Itk-null mice. This rescue is dependent on the expression of the Txk node. Furthermore, this kinase domain independent edge rescue correlates with the increased expression of the transcription factors T-bet, the IL-2/IL-15 receptor β chain CD122, and suppression of eomesodermin expression. By contrast, α-galactosyl ceramide induced cytokine secretion is dependent on the kinase domain edge of Itk. These findings indicate that the Itk node uses a kinase domain independent edge, a scaffolding function, in the signaling pathway leading to the maturation of iNKT cells. Furthermore, the findings indicate that phosphorylation of substrates by the Itk node is only partially required for maturation of iNKT cells, while functional activation of iNKT cells is dependent on the kinase domain/activity edge of Itk.
Collapse
Affiliation(s)
- Qian Qi
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ishida M, Itsukaichi T, Kobayashi D, Kikuchi H. Alteration of the PKC theta-Vav1 complex and phosphorylation of Vav1 in TCDD-induced apoptosis in the lymphoblastic T cell line, L-MAT. Toxicology 2010; 275:72-8. [PMID: 20561557 DOI: 10.1016/j.tox.2010.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/05/2010] [Accepted: 06/08/2010] [Indexed: 01/22/2023]
Abstract
We have previously reported that protein kinase C (PKC) theta (theta) and protein tyrosine kinase are involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced apoptosis of L-MAT, a human lymphoblastic T cell line. In the current report, we show that Vav1, a GDP/GTP exchange factor for Rho-like small GTPases, could be detected by Western blotting in the membrane fraction of L-MAT cells after TCDD treatment and was precipitated by incubating with an antibody against PKC theta. Furthermore, the degree of phosphorylation of Vav1, which can be detected using the phosphotyrosine-specific antibody PY-20 or 4G10, is significantly increased after treatment with TCDD. In addition, pretreatment of the cells with genistein, a protein tyrosine kinase inhibitor, abolished the phosphorylation of Vav1 and inhibited the apoptosis. These results suggest that TCDD treatment may activate an unidentified protein tyrosine kinase. Accordingly we hypothesize that this kinase phosphorylates Vav1, following which phosphorylated Vav1 may translocate to the membrane with PKC theta. Finally, PKC theta may mediate the transfer of the apoptotic signal to downstream components.
Collapse
Affiliation(s)
- Masato Ishida
- Division of Cell Technology, Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan. onigiri
| | | | | | | |
Collapse
|
26
|
Abstract
In vitro data have suggested that activation of the inducible T-cell kinase (ITK) requires an interaction with the adaptor protein SLP-76. One means for this interaction involves binding of the ITK SH3 domain to the polyproline-rich (PR) region of SLP-76. However, the biological significance of this association in live cells and the consequences of its disruption have not been demonstrated. Here, we utilized a polyarginine-rich, cell-permeable peptide that represents the portion of the SLP-76 PR region that interacts with the ITK SH3 domain as a competitive inhibitor to disrupt the association between ITK and SLP-76 in live cells. We demonstrate that treatment of cells with this peptide, by either in vitro incubation or intraperitoneal injection of the peptide in mice, inhibits the T-cell receptor (TCR)-induced association between ITK and SLP-76, recruitment and transphosphorylation of ITK, actin polarization at the T-cell contact site, and expression of Th2 cytokines. The inhibition is specific, as indicated by lack of effects by the polyarginine vehicle alone or a scrambled sequence of the cargo peptide. In view of the role of ITK as a regulator of Th2 cytokine expression, the data underscore the significance of ITK as a target for pharmacological intervention.
Collapse
|
27
|
Carrizosa E, Gomez TS, Labno CM, Klos Dehring DA, Liu X, Freedman BD, Billadeau DD, Burkhardt JK. Hematopoietic lineage cell-specific protein 1 is recruited to the immunological synapse by IL-2-inducible T cell kinase and regulates phospholipase Cgamma1 Microcluster dynamics during T cell spreading. THE JOURNAL OF IMMUNOLOGY 2009; 183:7352-61. [PMID: 19917685 DOI: 10.4049/jimmunol.0900973] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Productive T cell activation requires efficient reorganization of the actin cytoskeleton. We showed previously that the actin-regulatory protein, hematopoietic lineage cell-specific protein 1 (HS1), is required for the stabilization of F-actin and Vav1 at the immunological synapse and for efficient calcium responses. The Tec family kinase IL-2-inducible T cell kinase (Itk) regulates similar aspects of T cell activation, suggesting that these proteins act in the same pathway. Using video microscopy, we show that T cells lacking Itk or HS1 exhibited similar defects in actin responses, extending unstable lamellipodial protrusions upon TCR stimulation. HS1 and Itk could be coimmunoprecipitated from T cell lysates, and GST-pulldown studies showed that Itk's Src homology 2 domain binds directly to two phosphotyrosines in HS1. In the absence of Itk, or in T cells overexpressing an Itk Src homology 2 domain mutant, HS1 failed to localize to the immunological synapse, indicating that Itk serves to recruit HS1 to sites of TCR engagement. Because Itk is required for phospholipase C (PLC)gamma1 phosphorylation and calcium store release, we examined the calcium signaling pathway in HS1(-/-) T cells in greater detail. In response to TCR engagement, T cells lacking HS1 exhibited diminished calcium store release, but TCR-dependent PLCgamma1 phosphorylation was intact, indicating that HS1's role in calcium signaling is distinct from that of Itk. HS1-deficient T cells exhibited defective cytoskeletal association of PLCgamma1 and altered formation of PLCgamma1 microclusters. We conclude that HS1 functions as an effector of Itk in the T cell actin-regulatory pathway, and directs the spatial organization of PLCgamma1 signaling complexes.
Collapse
Affiliation(s)
- Esteban Carrizosa
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sahu N, August A. ITK inhibitors in inflammation and immune-mediated disorders. Curr Top Med Chem 2009; 9:690-703. [PMID: 19689375 DOI: 10.2174/156802609789044443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2-inducible T cell kinase (ITK) is a non-receptor tyrosine kinase expressed in T cells, NKT cells and mast cells which plays a crucial role in regulating the T cell receptor (TCR), CD28, CD2, chemokine receptor CXCR4, and FcepsilonR-mediated signaling pathways. In T cells, ITK is an important mediator for actin reorganization, activation of PLCgamma, mobilization of calcium, and activation of the NFAT transcription factor. ITK plays an important role in the secretion of IL-2, but more critically, also has a pivotal role in the secretion of Th2 cytokines, IL-4, IL-5 and IL-13. As such, ITK has been shown to regulate the development of effective Th2 response during allergic asthma as well as infections of parasitic worms. This ability of ITK to regulate Th2 responses, along with its pattern of expression, has led to the proposal that it would represent an excellent target for Th2-mediated inflammation. We discuss here the possibilities and pitfalls of targeting ITK for inflammatory disorders.
Collapse
Affiliation(s)
- Nisebita Sahu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
29
|
Readinger JA, Mueller KL, Venegas AM, Horai R, Schwartzberg PL. Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev 2009; 228:93-114. [PMID: 19290923 DOI: 10.1111/j.1600-065x.2008.00757.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of non-receptor tyrosine kinases consists of five members: Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Although their functions are probably best understood in antigen receptor signaling, where they participate in the phosphorylation and regulation of phospholipase C-gamma (PLC-gamma), it is now appreciated that these kinases contribute to signaling from many receptors and that they participate in multiple downstream pathways, including regulation of the actin cytoskeleton. In T cells, three Tec kinases are expressed, Itk, Rlk/Txk, and Tec. Itk is expressed at highest amounts and plays the major role in regulating signaling from the T-cell receptor. Recent studies provide evidence that these kinases contribute to multiple aspects of T-cell biology and have unique roles in T-cell development that have revealed new insight into the regulation of conventional and innate T-cell development. We review new findings on the Tec kinases with a focus on their roles in T-cell development and mature T-cell differentiation.
Collapse
Affiliation(s)
- Julie A Readinger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
30
|
Severin A, Joseph RE, Boyken S, Fulton DB, Andreotti AH. Proline isomerization preorganizes the Itk SH2 domain for binding to the Itk SH3 domain. J Mol Biol 2009; 387:726-43. [PMID: 19361414 PMCID: PMC2810249 DOI: 10.1016/j.jmb.2009.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 01/17/2023]
Abstract
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.
Collapse
Affiliation(s)
- Andrew Severin
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| | - Raji E. Joseph
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| | - Scott Boyken
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| | - D. Bruce Fulton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010
| |
Collapse
|
31
|
Raberger J, Boucheron N, Sakaguchi S, Penninger JM, Ellmeier W. Impaired T-cell development in the absence of Vav1 and Itk. Eur J Immunol 2009; 38:3530-42. [PMID: 19009524 DOI: 10.1002/eji.200838388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vav1 and the Tec family kinase Itk act in similar T-cell activation pathways. Both molecules interact with members of the Cbl family of E3 ubiquitin ligases, and signaling defects in Vav1(-/-) T cells are rescued upon deletion of Cbl-b. In this study we investigate the relation between Itk and Cbl-b or Vav1 by generating Itk/Cbl-b and Itk/Vav1 double-deficient mice. Deletion of Cbl-b in Itk(-/-) CD4(+) T cells restored proliferation and partially IL-2 production, and also led to a variable rescue of IL-4 production. Thus, Itk and Vav1 act mechanistically similarly in peripheral T cells, since the defects in Itk(-/-) T cells, as in Vav1(-/-) T cells, are rescued if cells are released from the negative regulation mediated by Cbl-b. In addition, only few peripheral CD4(+) and CD8(+) T cells were present in Vav1(-/-)Itk(-/-) mice due to severely impaired thymocyte differentiation. Vav1(-/-)Itk(-/-) thymocyte numbers were strongly reduced compared with WT, Itk(-/-) or Vav1(-/-) mice, and double-positive thymocytes displayed increased cell death and impaired positive selection. Therefore, our data also reveal that the combined activity of Vav1 and Itk is required for proper T-cell development and the generation of the peripheral T-cell pool.
Collapse
Affiliation(s)
- Julia Raberger
- Division of Immunobiology, Institute of Immunology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
32
|
Sahu N, Mueller C, Fischer A, August A. Differential sensitivity to Itk kinase signals for T helper 2 cytokine production and chemokine-mediated migration. THE JOURNAL OF IMMUNOLOGY 2008; 180:3833-8. [PMID: 18322190 DOI: 10.4049/jimmunol.180.6.3833] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allergic asthma is dependent on chemokine-mediated Th2 cell migration and Th2 cytokine secretion into the lungs. The inducible T cell tyrosine kinase Itk regulates the production of Th2 cytokines as well as migration in response to chemokine gradients. Mice lacking Itk are resistant to developing allergic asthma. However, the role of kinase activity of Itk in the development of this disease is unclear. In addition, whether distinct Itk-derived signals lead to T cell migration and secretion of Th2 cytokines is also unknown. Using transgenic mice specifically lacking Itk kinase activity, we show that active kinase signaling is required for control of Th2 responses and development of allergic asthma. Moreover, dominant suppression of kinase Itk activity led to normal Th2 responses, but significantly reduced chemokine-mediated migration, resulting in prevention of allergic asthma. These observations indicate that signals required for Th2 responses and migration are differentially sensitive to Itk activity. Manipulation of Itk's activity can thus provide a new strategy to treat allergic asthma by differentially affecting migration of T cells into the lungs, leaving Th2 responses intact.
Collapse
Affiliation(s)
- Nisebita Sahu
- Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
33
|
Hu J, Sahu N, Walsh E, August A. Memory phenotype CD8+ T cells with innate function selectively develop in the absence of active Itk. Eur J Immunol 2007; 37:2892-9. [PMID: 17724684 PMCID: PMC2770953 DOI: 10.1002/eji.200737311] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cells with a memory-like phenotype and possessing innate immune function have been previously identified as CD8(+)CD44(hi) cells. These cells rapidly secrete IFN-gamma upon stimulation with IL-12/IL-18 and are involved in innate responses to infection with Listeria monocytogenes. The signals regulating these cells are unclear. The Tec kinase Itk regulates T cell activation and we report here that a majority of the CD8(+) T cells in Itk null mice have a phenotype of CD44(hi) similar to memory-like innate T cells. These cells are observed in mice carrying an Itk mutant lacking the kinase domain, indicating that active Tec kinase signaling suppresses their presence. These cells carry preformed message for and are able to rapidly produce IFN-gamma upon stimulation in vitro with IL-12/IL-18, and endow Itk null mice the ability to effectively respond to infection with L. monocytogenes or exposure to lipopolysaccharides by secretion of IFN-gamma. Transfer of these cells rescues the ability of IFN-gamma null mice to reduce bacterial burden following L. monocytogenes infection, indicating that these cells are functional CD8(+)CD44(hi) T cells previously detected in vivo. These results indicate that active signals from Tec kinases regulate the development of memory-like CD8(+) T cells with innate function.
Collapse
Affiliation(s)
- Jianfang Hu
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
- Immunology & Infectious Disease Graduate Program, The Pennsylvania State University, University Park, PA 16802
| | - Nisebita Sahu
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Elizabeth Walsh
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA 16802
| | - Avery August
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
34
|
Nolz JC, Fernandez-Zapico ME, Billadeau DD. TCR/CD28-stimulated actin dynamics are required for NFAT1-mediated transcription of c-rel leading to CD28 response element activation. THE JOURNAL OF IMMUNOLOGY 2007; 179:1104-12. [PMID: 17617603 DOI: 10.4049/jimmunol.179.2.1104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TCR/CD28 engagement triggers the initiation of a variety of signal transduction pathways that lead to changes in gene transcription. Although reorganization of the actin cytoskeleton is required for T cell activation, the molecular pathways controlled by the actin cytoskeleton are ill defined. To this end, we analyzed TCR/CD28-stimulated signaling pathways in cytochalasin D-treated T cells to determine the cytoskeletal requirements for T cell activation. Cytochalasin D treatment impaired T cell activation by causing a reduction in TCR/CD28-mediated calcium flux, and blocked activation of two regulatory elements within the IL-2 promoter, NFAT/AP-1 and CD28RE/AP. Treatment had no effect on signaling leading to the activation of either AP-1 or NF-kappaB. Significantly, we found that NFAT1 is required for optimal c-rel up-regulation in response to TCR/CD28 stimulation. In fact, NFAT1 could be detected bound at the c-rel promoter in response to TCR/CD28 stimulation, and targeting of NFAT1 using RNA interference in human CD4(+) T cells abrogated c-rel transcription. Overall, these findings establish that disrupting actin cytoskeletal dynamics impairs TCR/CD28-mediated calcium flux required for NFAT1-mediated c-rel transcription and, thus, activation of the CD28RE/AP.
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Immunology, Mayo Clinic College of Medicine, MN 55905, USA
| | | | | |
Collapse
|
35
|
Gomez-Rodriguez J, Readinger JA, Viorritto IC, Mueller KL, Houghtling RA, Schwartzberg PL. Tec kinases, actin, and cell adhesion. Immunol Rev 2007; 218:45-64. [PMID: 17624943 DOI: 10.1111/j.1600-065x.2007.00534.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Tec family non-receptor tyrosine kinases have been recognized for their roles in the regulation of phospholipase C-gamma and Ca(2+) mobilization downstream from antigen receptors on lymphocytes. Recent data, however, show that the Tec family kinase interleukin-2-inducible T-cell kinase (Itk) also participates in pathways regulating the actin cytoskeleton and 'inside-out' signaling to integrins downstream from the T-cell antigen receptor. Data suggest that Itk may function in a kinase-independent fashion to regulate proper recruitment of the Vav1 guanine nucleotide exchange factor. By enhancing actin cytoskeleton reorganization, recruitment of signaling molecules to the immune synapse, and integrin clustering in response to both antigen and chemokine receptors, the Tec kinases serve as modulators or amplifiers that can increase the duration of T-cell signaling and regulate T-cell functional responses.
Collapse
Affiliation(s)
- Julio Gomez-Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
36
|
Brown K, Cheetham GMT. Crystal structures and inhibitors of proteins involved in IL-2 release and T cell signaling. VITAMINS AND HORMONES 2006; 74:31-59. [PMID: 17027510 DOI: 10.1016/s0083-6729(06)74002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Kieron Brown
- Vertex Pharmaceuticals (Europe) Ltd., Abingdon Oxfordshire OX14 4RY, United Kingdom
| | | |
Collapse
|
37
|
Kosaka Y, Felices M, Berg LJ. Itk and Th2 responses: action but no reaction. Trends Immunol 2006; 27:453-60. [PMID: 16931156 DOI: 10.1016/j.it.2006.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/14/2006] [Accepted: 08/09/2006] [Indexed: 01/16/2023]
Abstract
The Tec family tyrosine kinase, Itk, was initially characterized as a crucial component of T-cell receptor signaling pathways resulting in phospholipase C-gamma1 activation and actin polymerization. In 1999, a seminal report by Fowell, Locksley and colleagues demonstrated that, in CD4+ T cells, Itk-dependent signals are differentially required for T-helper (Th)2 versus Th1 differentiation and effector function. These findings launched a series of in vitro and in vivo studies addressing the molecular defects of Itk-/- CD4+ T cells, and the impaired immune responses of intact Itk-deficient mice. While demonstrating a bias against Th2 differentiation, overall these experiments have indicated that the most significant failing is an inability of Itk-/- CD4+ T cells to produce Th2 cytokines in a recall response, rather than an absolute defect in Th2 differentiation by T cells lacking Itk. In this review, we discuss the pathways by which Itk might impact the differentiation of Th cells.
Collapse
Affiliation(s)
- Yoko Kosaka
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
38
|
Au-Yeung BB, Katzman SD, Fowell DJ. Cutting edge: Itk-dependent signals required for CD4+ T cells to exert, but not gain, Th2 effector function. THE JOURNAL OF IMMUNOLOGY 2006; 176:3895-9. [PMID: 16547221 DOI: 10.4049/jimmunol.176.7.3895] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR signals for the release of CD4 effector function are poorly understood. Itk plays an essential role in Th2, but not Th1, responses. However, when Itk is required during Th2 development is unclear. We followed the fate of Itk-deficient T cells during Th2 development in vitro and in vivo using an IL-4/GFP reporter. Surprisingly, a similar frequency of itk(-/-) CD4(+) cells differentiated and committed to the Th2 lineage as wild-type cells. However, Itk-deficient Th2 cells failed to exert effector function upon TCR triggering. Loss of function was marked by defective transcriptional enhancement of Th2 cytokines and GATA3. IL-4 production in itk(-/-) Th2s could be rescued by the expression of kinase-active Itk. Thus, Itk is necessary for the release, but not gain, of Th2 function. We suggest that the liberation of effector function is tightly controlled through qualitative changes in TCR signals, facilitating postdifferentiation regulation of cytokine responses.
Collapse
Affiliation(s)
- Byron B Au-Yeung
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, NY 14642, USA
| | | | | |
Collapse
|
39
|
Hao S, Qi Q, Hu J, August A. A kinase independent function for Tec kinase ITK in regulating antigen receptor induced serum response factor activation. FEBS Lett 2006; 580:2691-7. [PMID: 16631752 DOI: 10.1016/j.febslet.2006.04.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 04/09/2006] [Accepted: 04/11/2006] [Indexed: 11/19/2022]
Abstract
The Tec family kinases are critical downstream regulators of antigen receptor signals in lymphocytes. As kinases, they act on critical substrates to regulate signals such as calcium increase leading to activation of transcription factors such as NFAT, NFkappaB and SRF. We now show here that ITK, a member of the Tec family of tyrosine kinases, has a kinase independent function. Mutants of ITK that lack kinase activity or a kinase domain can rescue cells lacking Tec family kinases for antigen receptor induced SRF activation, but not for NFAT, AP-1 or NFkappaB activation. Furthermore, expression of these mutants in WT cells enhanced SRF activation. This kinase independent function required the SH2 domain since a mutant lacking both the kinase and SH2 domains was much less effective at rescuing SRF activation. This kinase-deleted mutant could partially rescue ERK activation, and interact with multiple tyrosine phosphorylated proteins during antigen receptor signaling, suggesting that ITK uses a scaffolding function that regulates signals leading to specific regulation of SRF activation.
Collapse
Affiliation(s)
- Shengli Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, 115 Henning Building, University Park, 16802, USA
| | | | | | | |
Collapse
|
40
|
Finkelstein LD, Shimizu Y, Schwartzberg PL. Tec Kinases Regulate TCR-Mediated Recruitment of Signaling Molecules and Integrin-Dependent Cell Adhesion. THE JOURNAL OF IMMUNOLOGY 2005; 175:5923-30. [PMID: 16237085 DOI: 10.4049/jimmunol.175.9.5923] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells deficient in the Tec kinases Itk or Itk and Rlk exhibit defective TCR-stimulated proliferation, IL-2 production, and activation of phospholipase C-gamma. Evidence also implicates Tec kinases in actin cytoskeleton regulation, which is necessary for cell adhesion and formation of the immune synapse in T lymphocytes. In this study we show that Tec kinases are required for TCR-mediated up-regulation of adhesion via the LFA-1 integrin. We also demonstrate that the defect in adhesion is associated with defective clustering of LFA-1 and talin at the site of interaction of Rlk-/-Itk-/- and Itk-/- T cells with anti-TCR-coated beads. Defective recruitment of Vav1, protein kinase Ctheta, and Pyk2 was also observed in Rlk-/-Itk-/- and Itk-/- T cells. Stimulation with ICAM-2 in conjunction with anti-TCR-coated beads enhanced polarization of Vav1, protein kinase Ctheta, and Pyk2 in wild-type cells, demonstrating a role for integrins in potentiating the recruitment of signaling molecules in T cells. Increased recruitment of signaling molecules was most pronounced under conditions of low TCR stimulation. Under these suboptimal TCR stimulation conditions, ICAM-2 could also enhance the recruitment of signaling molecules in Itk-/-, but not Rlk-/-Itk-/- T cells. Thus, Tec kinases play key roles in regulating TCR-mediated polarization of integrins and signaling molecules to the site of TCR stimulation as well as the up-regulation of integrin adhesion.
Collapse
Affiliation(s)
- Lisa D Finkelstein
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Schwartzberg PL, Finkelstein LD, Readinger JA. TEC-family kinases: regulators of T-helper-cell differentiation. Nat Rev Immunol 2005; 5:284-95. [PMID: 15803148 DOI: 10.1038/nri1591] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The TEC-family protein tyrosine kinases ITK, RLK and TEC have been identified as key components of T-cell-receptor signalling that contribute to the regulation of phospholipase C-gamma, the mobilization of Ca(2+) and the activation of mitogen-activated protein kinases. Recent data also show that TEC kinases contribute to T-cell-receptor-driven actin reorganization and cell polarization, which are required for productive T-cell activation. Functional studies have implicated TEC kinases as important mediators of pathways that control the differentiation of CD4(+) T helper cells. Here, we review studies of signalling pathways that involve TEC kinases and how these pathways might contribute to the regulation of T-helper-cell differentiation and function.
Collapse
Affiliation(s)
- Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, 4A38/49 Convent Drive, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
42
|
Abstract
The Tec family tyrosine kinases are now recognized as important mediators of antigen receptor signaling in lymphocytes. Three members of this family, Itk, Rlk, and Tec, are expressed in T cells and activated in response to T cell receptor (TCR) engagement. Although initial studies demonstrated a role for these proteins in TCR-mediated activation of phospholipase C-gamma, recent data indicate that Tec family kinases also regulate actin cytoskeletal reorganization and cellular adhesion following TCR stimulation. In addition, Tec family kinases are activated downstream of G protein-coupled chemokine receptors, where they play parallel roles in the regulation of Rho GTPases, cell polarization, adhesion, and migration. In all these systems, however, Tec family kinases are not essential signaling components, but instead function to modulate or amplify signaling pathways. Although they quantitatively reduce proximal signaling, mutations that eliminate Tec family kinases in T cells nonetheless qualitatively alter T cell development and differentiation.
Collapse
Affiliation(s)
- Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | |
Collapse
|
43
|
Dombroski D, Houghtling RA, Labno CM, Precht P, Takesono A, Caplen NJ, Billadeau DD, Wange RL, Burkhardt JK, Schwartzberg PL. Kinase-independent functions for Itk in TCR-induced regulation of Vav and the actin cytoskeleton. THE JOURNAL OF IMMUNOLOGY 2005; 174:1385-92. [PMID: 15661896 DOI: 10.4049/jimmunol.174.3.1385] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Tec family kinase Itk is an important regulator of Ca(2+) mobilization and is required for in vivo responses to Th2-inducing agents. Recent data also implicate Itk in TCR-induced regulation of the actin cytoskeleton. We have evaluated the requirements for Itk function in TCR-induced actin polarization. Reduction of Itk expression via small interfering RNA treatment of the Jurkat human T lymphoma cell line or human peripheral blood T cells disrupted TCR-induced actin polarization, a defect that correlated with decreased recruitment of the Vav guanine nucleotide exchange factor to the site of Ag contact. Vav localization and actin polarization could be rescued by re-expression of either wild-type or kinase-inactive murine Itk but not by Itk containing mutations affecting the pleckstrin homology or Src homology 2 domains. Additionally, we find that Itk is constitutively associated with Vav. Loss of Itk expression did not alter gross patterns of Vav tyrosine phosphorylation but appeared to disrupt the interactions of Vav with SLP-76. Expression of membrane-targeted Vav, Vav-CAAX, can rescue the small interfering RNA to Itk-induced phenotype, implicating the alteration in Vav localization as directly contributing to the actin polarization defect. These data suggest a kinase-independent scaffolding function for Itk in the regulation of Vav localization and TCR-induced actin polarization.
Collapse
Affiliation(s)
- Derek Dombroski
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Finkelstein LD, Schwartzberg PL. Tec kinases: shaping T-cell activation through actin. Trends Cell Biol 2005; 14:443-51. [PMID: 15308211 DOI: 10.1016/j.tcb.2003.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following stimulation, T cells undergo marked actin-dependent changes in shape that are required for productive cellular interactions and movement during immune responses. Reorganization of the actin cytoskeletal is also necessary for the formation of an immunological synapse - the convergence of several signaling molecules at the plasma membrane that occurs after effective T-cell receptor (TCR) signaling. Much emerging evidence indicates that the Tec family of tyrosine kinases has a role in actin cytoskeleton reorganization. Specifically, T cells that lack or express mutant versions of the Tec kinase Itk show impaired TCR-induced actin polymerization, cell polarization and regulation of the signaling events involved in cytoskeletal reorganization. These data, as well as other findings, support roles for Tec kinases in actin cytoskeleton regulation.
Collapse
Affiliation(s)
- Lisa D Finkelstein
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
45
|
Abstract
Phosphoinositide 3-kinase (PI3K) activation is essential for lymphocyte proliferation driven by receptors for antigen, costimulatory ligands and cytokines. The lipid products of PI3K contribute to the assembly of membrane-associated signaling complexes by promoting recruitment of selected proteins from the cytoplasm. Many proteins possess domains that are able to bind selectively to PI3K products. Different 'PI3K effector' proteins are coupled to distinct biological responses, depending on cell type and on the receptor that is engaged. In B cells and T cells, Tec-family tyrosine kinases and Akt serine/threonine kinases are emerging as crucial mediators of proliferation and survival signals downstream of PI3K. Of particular interest is recent evidence that PI3K signaling controls increases in lymphocyte size and metabolic activity that accompany cell cycle progression.
Collapse
Affiliation(s)
- David A Fruman
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3242 McGaugh Hall, Irvine, California 92697-3900, USA.
| |
Collapse
|
46
|
Puthier D, Joly F, Irla M, Saade M, Victorero G, Loriod B, Nguyen C. A General Survey of Thymocyte Differentiation by Transcriptional Analysis of Knockout Mouse Models. THE JOURNAL OF IMMUNOLOGY 2004; 173:6109-18. [PMID: 15528347 DOI: 10.4049/jimmunol.173.10.6109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The thymus is the primary site of T cell lymphopoiesis. To undergo proper differentiation, developing T cells follow a well-ordered genetic program that strictly depends on the heterogeneous and highly specialized thymic microenvironment. In this study, we used microarray technology to extensively describe transcriptional events regulating alphabeta T cell fate. To get an integrated view of these processes, both whole thymi from genetically engineered mice together with purified thymocytes were analyzed. Using mice exhibiting various transcriptional perturbations and developmental blockades, we performed a transcriptional microdissection of the organ. Multiple signatures covering both cortical and medullary stroma as well as various thymocyte maturation intermediates were clearly defined. Beyond the definition of histological and functional signatures (proliferation, rearrangement), we provide the first evidence that such an approach may also highlight the complex cross-talk events that occur between maturing T cells and stroma. Our data constitute a useful integrated resource describing the main gene networks set up during thymocyte development and a first step toward a more systematic transcriptional analysis of genetically modified mice.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Line, Transformed
- Cell Proliferation
- DNA Helicases
- Gene Expression Profiling/methods
- Gene Rearrangement, T-Lymphocyte
- Genes, T-Cell Receptor alpha/genetics
- Leukemia P388
- Mice
- Mice, Inbred C57BL
- Mice, Knockout/genetics
- Mice, Knockout/immunology
- Models, Animal
- Multigene Family/immunology
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Oligonucleotide Array Sequence Analysis/methods
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Receptor, Notch1
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Interleukin-2/biosynthesis
- Stromal Cells/immunology
- Stromal Cells/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription Factor RelB
- Transcription Factors/biosynthesis
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Denis Puthier
- Technologies Avancées pour le Génome et la Clinique/ERM 206, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Anvari B, Torres JH, McIntyre BW. Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers. JOURNAL OF BIOMEDICAL OPTICS 2004; 9:865-872. [PMID: 15447007 DOI: 10.1117/1.1778178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
T-lymphocytes are responsible for cell-mediated immunity, and recognize antigens on target cells (e.g., tumor cells, virus-infected cells) and antigen presenting cells (e.g., macrophages, dendritic cells). While mechanical forces applied to a cell surface can produce alterations in the cytoskeletal structure, leading to global structural rearrangements and changes in the intracellular biochemistry and gene expression, it remains unknown if local mechanical forces acting at the lymphocyte-antigen interaction site play any role in lymphocyte activation following antigen recognition. In this study we investigate the effect of such forces induced by optical tweezers on the lymphocyte's morphological response. We brought optically trapped polystyrene beads, coated with a specific antibody against a clonotypic epitope of the T-cell receptors (TCRs), in contact with individual lymphocytes and applied mechanical forces at the TCR-antibody interaction site. Although bead size was a factor, simple bead contact tended to induce formation of pseudopodia that appeared randomly over the cell's surface, while application of tangential forces at the interaction site redirected pseudopodia formation toward that site and promoted endocytosis activity. We propose that local forces play a key role in the initial lymphocyte adhesion to antigen-bearing cells, and may be implicated in antigen-specific motility, transendothelial migration, and tissue homing to sites of inflammation.
Collapse
Affiliation(s)
- Bahman Anvari
- Rice University, Department of Bioengineering, MS-142, P.O. Box 1892, Houston, Texas 77251-1892, USA.
| | | | | |
Collapse
|
48
|
Takesono A, Horai R, Mandai M, Dombroski D, Schwartzberg PL. Requirement for Tec kinases in chemokine-induced migration and activation of Cdc42 and Rac. Curr Biol 2004; 14:917-22. [PMID: 15186750 DOI: 10.1016/j.cub.2004.04.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 03/09/2004] [Accepted: 03/30/2004] [Indexed: 11/29/2022]
Abstract
Cell polarization and migration in response to chemokines is essential for proper development of the immune system and activation of immune responses. Recent studies of chemokine signaling have revealed a critical role for PI3-Kinase, which is required for polarized membrane association of pleckstrin homology (PH) domain-containing proteins and activation of Rho family GTPases that are essential for cell polarization and actin reorganization. Additional data argue that tyrosine kinases are also important for chemokine-induced Rac activation. However, how and which kinases participate in these pathways remain unclear. We demonstrate here that the Tec kinases Itk and Rlk play an important role in chemokine signaling in T lymphocytes. Chemokine stimulation induced transient membrane association of Itk and phosphorylation of both Itk and Rlk, and purified T cells from Rlk(-/-)Itk(-/-) mice exhibited defective migration to multiple chemokines in vitro and decreased homing to lymph nodes upon transfer to wt mice. Expression of a dominant-negative Itk impaired SDF-1alpha-induced migration, cell polarization, and activation of Rac and Cdc42. Thus, Tec kinases are critical components of signaling pathways required for actin polarization downstream from both antigen and chemokine receptors in T cells.
Collapse
Affiliation(s)
- Aya Takesono
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
49
|
Garçon F, Bismuth G, Isnardon D, Olive D, Nunès JA. Tec Kinase Migrates to the T Cell-APC Interface Independently of Its Pleckstrin Homology Domain. THE JOURNAL OF IMMUNOLOGY 2004; 173:770-5. [PMID: 15240663 DOI: 10.4049/jimmunol.173.2.770] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tec is the prototypical member of the Tec tyrosine kinases family, which plays an important role in T cell signaling. We show in this study that Tec translocates to the immunological synapse when a T cell contacts a dendritic cell. Surprisingly, the presence of the pleckstrin homology (PH) domain of Tec is not required for this accumulation, and despite a strong activation of 3'-phosphorylated phosphoinositide lipids synthesis during the synapse formation, the Tec PH domain is not redistributed to the T cell plasma membrane. In contrast, we demonstrate that an active Src homology 3 domain is absolutely required, underlining the essential role played by this part of the molecule in the recruitment and/or stabilization of Tec at the immunological synapse. Our results nevertheless suggest that the PH domain controls the kinase activity of the molecule in vivo. We finally demonstrate that the two domains are necessary to trigger transcriptional events following Ag presentation. These data support a model in which the plasma membrane recruitment of the PH-containing protein Tec is not dependent on the production of 3'-phosphorylated phosphoinositide lipids by the PI3K, but rather on an intact Src homology 3 domain.
Collapse
Affiliation(s)
- Fabien Garçon
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 599, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
50
|
Cannons JL, Schwartzberg PL. Fine-tuning lymphocyte regulation: what’s new with tyrosine kinases and phosphatases? Curr Opin Immunol 2004; 16:296-303. [PMID: 15134778 DOI: 10.1016/j.coi.2004.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the basic mechanisms of lymphocyte signaling have been established, recent studies have provided new insights into how fine-tuning the regulation of tyrosine kinases and phosphatases contributes to the delicate balance required for appropriate lymphocyte activation. Recent studies include new work on the roles of the immune synapse in regulating T-cell receptor signaling, the discovery of new functions for the Src-family kinase Fyn and the Tec kinase Itk, particularly in regulation of the actin cytoskeleton, and new insights into positive and negative feedback mechanisms in antigen receptor signaling.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, 49/4A38, 49 Convent Drive, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|