1
|
Yang J, Wang Q, Wang Z, Zhang Y, Liu Q, Yang D. Edwardsiella piscicida infection-induced tryptophan-kynurenine metabolic pathway impairs Th17 cells to drive intestinal inflammation in teleost. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110425. [PMID: 40383498 DOI: 10.1016/j.fsi.2025.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Enteric pathogens exacerbate intestinal inflammation by disrupting microbiota-host metabolic interactions. While T helper 17 (Th17) cells are critical for maintaining intestinal homeostasis, the mechanisms through which enteric pathogens manipulate the function of Th17 cells to drive inflammation remain poorly understood. In this study, we established an immersion infection model using Edwardsiella piscicida in turbot (Scophthalmus maximus) to investigate the mechanism about enteric pathogen-induced intestinal inflammation, and found that E. piscicida infection significantly impairs the function of intestinal Th17 cells. By analyzing changes in the intestinal microbiota and metabolites, we observed a marked increase in the abundance of Proteobacteria phylum, which positively correlated with elevated levels of tryptophan-kynurenine (Trp-Kyn) pathway metabolites. Further investigation revealed that the enhanced Trp-Kyn pathway inhibits the function of intestinal Th17 cells. Importantly, pharmacological inhibition of the Trp-Kyn pathway could restore the function of Th17 cells and alleviate the infection-induced intestinal inflammation. Taken together, these findings uncover a critical link between microbiota-mediated tryptophan metabolism and Th17 cell's dysregulation during enteric pathogen infection in teleost, which provide novel insights into the metabolic reprogramming of host immunity and to identify potential therapeutic targets for mitigating intestinal inflammation.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory for Aquatic Animal Diseases of MOA, Shanghai, 201400, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory for Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory for Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
2
|
Wang Y, Wu W, Zeng F, Meng X, Peng M, Wang J, Chen Z, Liu W. The role of kynurenine pathway metabolism mediated by exercise in the microbial-gut-brain axis in Alzheimer's disease. Exp Neurol 2025; 384:115070. [PMID: 39603488 DOI: 10.1016/j.expneurol.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
In recent years, the role of the microbiome-gut-brain axis in the pathogenesis of Alzheimer's disease (AD) has garnered increasing attention. Specifically, tryptophan metabolism via the kynurenine pathway (KP) plays a crucial regulatory role in this axis. This study reviews how exercise regulates the microbiome-gut-brain axis by influencing kynurenine pathway metabolism, thereby exerting resistance against AD. This paper also discusses how exercise positively impacts AD via the microbiome-gut-brain axis by modulating the endocrine, autonomic nervous, and immune systems. Although the specific mechanisms are not fully understood, research indicates that exercise may optimize tryptophan metabolism by promoting the growth of beneficial microbiota and inhibiting harmful microbiota, producing substances that are beneficial to the nervous system and combating AD. The aim of this review is to provide new perspectives and potential intervention strategies for the prevention and treatment of AD by exploring the links between exercise, KP and the gut-brain axis.
Collapse
Affiliation(s)
- Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
3
|
Tani-Ichi S, Ikuta K. γδ intraepithelial lymphocytes acquire the ability to produce IFN-γ in a different time course than αβ intraepithelial lymphocytes. Int Immunol 2024; 36:653-661. [PMID: 38835285 DOI: 10.1093/intimm/dxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
An age-dependent increase in interferon (IFN)-γ expression by intestinal intraepithelial lymphocytes (IELs) contributes to the acquisition of resistance to infection by pathogens. However, how IELs acquire the ability to produce IFN-γ remains to be elucidated. Here, we report that IELs in the small intestine acquire the ability to rapidly produce IFN-γ at two distinct life stages. TCRαβ+ IELs (αβIELs) started producing IFN-γ at 4 weeks of age, within 1 week after weaning. In contrast, TCRγδ+ IELs (γδIELs) started producing IFN-γ at 7 weeks of age. In mice lacking Eγ4, an enhancer of the TCRγ locus (Eγ4-/- mice), Thy-1+ Vγ5+ γδIELs, a major subpopulation of γδIELs, were specifically reduced and their ability to produce IFN-γ was severely impaired, whereas Vγ2+ γδIELs normally produced IFN-γ. In Eγ4-/- mice, TCR expression levels were reduced in Vγ5+ γδIEL precursors in the thymus but unchanged in the Vγ5+ IELs. Nevertheless, TCR responsiveness in Vγ5+ γδIELs was impaired in Eγ4-/- mice, suggesting that the TCR signal received in the thymus may determine TCR responsiveness and the ability to produce IFN-γ in the gut. These results suggest that αβIELs and γδIELs start producing IFN-γ at different life stages and that the ability of Vγ5+ γδIELs to produce IFN-γ in the gut may be predetermined by TCR signalling in IEL precursors in the thymus.
Collapse
MESH Headings
- Animals
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Mice
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Knockout
- Mice, Inbred C57BL
- Intestine, Small/immunology
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
6
|
Beutler M, Eberl C, Garzetti D, Herp S, Münch P, Ring D, Dolowschiak T, Brugiroux S, Schiller P, Hussain S, Basic M, Bleich A, Stecher B. Contribution of bacterial and host factors to pathogen "blooming" in a gnotobiotic mouse model for Salmonella enterica serovar Typhimurium-induced enterocolitis. Infect Immun 2024; 92:e0031823. [PMID: 38189339 PMCID: PMC10863408 DOI: 10.1128/iai.00318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammation has a pronounced impact on the intestinal ecosystem by driving an expansion of facultative anaerobic bacteria at the cost of obligate anaerobic microbiota. This pathogen "blooming" is also a hallmark of enteric Salmonella enterica serovar Typhimurium (S. Tm) infection. Here, we analyzed the contribution of bacterial and host factors to S. Tm "blooming" in a gnotobiotic mouse model for S. Tm-induced enterocolitis. Mice colonized with the Oligo-Mouse-Microbiota (OMM12), a minimal bacterial community, develop fulminant colitis by day 4 after oral infection with wild-type S. Tm but not with an avirulent mutant. Inflammation leads to a pronounced reduction in overall intestinal bacterial loads, distinct microbial community shifts, and pathogen blooming (relative abundance >50%). S. Tm mutants attenuated in inducing gut inflammation generally elicit less pronounced microbiota shifts and reduction in total bacterial loads. In contrast, S. Tm mutants in nitrate respiration, salmochelin production, and ethanolamine utilization induced strong inflammation and S. Tm "blooming." Therefore, individual Salmonella-specific inflammation-fitness factors seem to be of minor importance for competition against this minimal microbiota in the inflamed gut. Finally, we show that antibody-mediated neutrophil depletion normalized gut microbiota loads but not intestinal inflammation or microbiota shifts. This suggests that neutrophils equally reduce pathogen and commensal bacterial loads in the inflamed gut.
Collapse
Affiliation(s)
- Markus Beutler
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Claudia Eberl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Simone Herp
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Philipp Münch
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Tamas Dolowschiak
- Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zurich, Zürich, Switzerland
| | - Sandrine Brugiroux
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Patrick Schiller
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Saib Hussain
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
McCann JR, Rawls JF. Essential Amino Acid Metabolites as Chemical Mediators of Host-Microbe Interaction in the Gut. Annu Rev Microbiol 2023; 77:479-497. [PMID: 37339735 PMCID: PMC11188676 DOI: 10.1146/annurev-micro-032421-111819] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Amino acids are indispensable substrates for protein synthesis in all organisms and incorporated into diverse aspects of metabolic physiology and signaling. However, animals lack the ability to synthesize several of them and must acquire these essential amino acids from their diet or perhaps their associated microbial communities. The essential amino acids therefore occupy a unique position in the health of animals and their relationships with microbes. Here we review recent work connecting microbial production and metabolism of essential amino acids to host biology, and the reciprocal impacts of host metabolism of essential amino acids on their associated microbes. We focus on the roles of the branched-chain amino acids (valine, leucine, and isoleucine) and tryptophan on host-microbe communication in the intestine of humans and other vertebrates. We then conclude by highlighting research questions surrounding the less-understood aspects of microbial essential amino acid synthesis in animal hosts.
Collapse
Affiliation(s)
- Jessica R McCann
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA; ,
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA; ,
| |
Collapse
|
9
|
Cortez V, Livingston B, Sharp B, Hargest V, Papizan JB, Pedicino N, Lanning S, Jordan SV, Gulman J, Vogel P, DuBois RM, Crawford JC, Boyd DF, Pruett-Miller SM, Thomas PG, Schultz-Cherry S. Indoleamine 2,3-dioxygenase 1 regulates cell permissivity to astrovirus infection. Mucosal Immunol 2023; 16:551-562. [PMID: 37290501 PMCID: PMC10528345 DOI: 10.1016/j.mucimm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Astroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses. We identified that Ido1 expression was highly enriched among infected goblet cells, and spatially corresponded to the zonation of infection. Because Ido1 can act as a negative regulator of inflammation, we hypothesized it could dampen host antiviral responses. Despite robust interferon signaling in goblet cells, as well as tuft cell and enterocyte bystanders, we observed delayed cytokine induction and suppressed levels of fecal lipocalin-2. Although we found Ido-/- animals were more resistant to infection, this was not associated with fewer goblet cells nor could it be rescued by knocking out interferon responses, suggesting that IDO1 instead regulates cell permissivity. We characterized IDO1-/- Caco-2 cells and observed significantly reduced human astrovirus-1 infection. Together this study highlights a role for Ido1 in astrovirus infection and epithelial cell maturation.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA.
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James B Papizan
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Natalie Pedicino
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Sarah Lanning
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Summer Vaughn Jordan
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Jacob Gulman
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rebecca M DuBois
- Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David F Boyd
- Department of Molecular, Cell & Development Biology, University of California, Santa Cruz, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Mantani Y, Sakata N, Kubota N, Shimada A, Nakanishi S, Yokoyama T, Hoshi N. Diurnal changes in bacterial settlement on the Peyer's patch and surrounding mucosa in the rat ileum and its effect against the intestinal immune system. Cell Tissue Res 2023:10.1007/s00441-023-03772-8. [PMID: 37148397 DOI: 10.1007/s00441-023-03772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Our previous study revealed the diurnal change in the indigenous bacteria settling on the terminal region of the rat ileum. In the present study, we investigated the diurnal change in indigenous bacteria on the most distal ileal Peyer's patch (PP) and surrounding ileal mucosa and explored how stimulation from indigenous bacteria for a day affects the intestinal immune system at the beginning of the light phase. Histological measurement revealed that bacteria adjacent to the follicle-associated epithelium of PP and to the villous epithelium of the surrounding ileal mucosa are more abundant at zeitgeber time (ZT)0 and ZT18 than at ZT12. On the other hand, tissue-section 16S rRNA amplicon sequencing revealed no significant difference between ZT0 and ZT12 in the bacterial composition on the ileal tissue including the PP. One-day treatment with an antibiotic (Abx) successfully impaired the settlement of bacteria around the ileal PP. In transcriptome analysis, 1-day Abx treatment led to the downregulation of several chemokines in both PP and ordinary ileal mucosa at ZT0. Histological analysis of the 1-day Abx group revealed decreases in both CD68+ macrophages in PP and naphthol AS-D chloroacetate esterase stain-positive mast cells in the ileal villi. Together, these findings suggest that the colonies of indigenous bacteria on the distal ileal PP and surrounding mucosa expand during the dark phase, which might lead to the expression of genes to regulate the intestinal immune system and contribute to the homeostasis of at least macrophages in PP and mast cells in the ileal mucosa.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Nanami Sakata
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Asaka Shimada
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
11
|
Vadaq N, Zhang Y, Meeder E, Van de Wijer L, Gasem MH, Joosten LAB, Netea MG, de Mast Q, Matzaraki V, Schellekens A, Fu J, van der Ven AJAM. Microbiome-Related Indole and Serotonin Metabolites are Linked to Inflammation and Psychiatric Symptoms in People Living with HIV. Int J Tryptophan Res 2022; 15:11786469221126888. [PMID: 36187510 PMCID: PMC9520182 DOI: 10.1177/11786469221126888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background People living with HIV (PLHIV) exhibit dysregulation of tryptophan metabolism. Altered gut microbiome composition in PLHIV might be involved. Mechanistic consequences within the 3 major tryptophan metabolism pathways (serotonin, kynurenine, and indoles), and functional consequences for platelet, immune and behavioral functions are unknown. We investigated plasma tryptophan metabolites, gut microbiome composition, and their association with platelet function, inflammation, and psychiatric symptoms. Methods This study included 211 PLHIV on long-term antiretroviral treatment (ART). Plasma tryptophan pathway metabolites were measured using time-of-flight mass spectrometry. Bacterial composition was profiled using metagenomic sequencing. Platelet reactivity and serotonin levels were quantified by flowcytometry and ELISA, respectively. Circulating inflammatory markers were determined using ELISA. Symptoms of depression and impulsivity were measured by DASS-42 and BIS-11 self-report questionnaires, respectively. Results Plasma serotonin and indole metabolites were associated with gut bacterial composition. Notably, species enriched in PLHIV were associated with 3-methyldioxyindole. Platelet serotonin concentrations were elevated in PLHIV, without effects on platelet reactivity. Plasma serotonin and indole metabolites were positively associated with plasma IL-10 and TNF-α concentrations. Finally, higher tryptophan, serotonin, and indole metabolites were associated with lower depression and anxiety, whereas higher kynurenine metabolites were associated with increased impulsivity. Conclusion Our results suggest that gut bacterial composition and dysbiosis in PLHIV on ART contribute to tryptophan metabolism, which may have clinical consequences for immune function and behavior.
Collapse
Affiliation(s)
- Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Yue Zhang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elise Meeder
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Lisa Van de Wijer
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad Hussein Gasem
- Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
- Department of Internal Medicine, Faculty of Medicine Diponegoro University-Dr. Kariadi Hospital, Semarang, Indonesia
| | - Leo AB Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arnt Schellekens
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - André JAM van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Ganesan R, Jeong JJ, Kim DJ, Suk KT. Recent Trends of Microbiota-Based Microbial Metabolites Metabolism in Liver Disease. Front Med (Lausanne) 2022; 9:841281. [PMID: 35615096 PMCID: PMC9125096 DOI: 10.3389/fmed.2022.841281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome and microbial metabolomic influences on liver diseases and their diagnosis, prognosis, and treatment are still controversial. Research studies have provocatively claimed that the gut microbiome, metabolomics understanding, and microbial metabolite screening are key approaches to understanding liver cancer and liver diseases. An advance of logical innovations in metabolomics profiling, the metabolome inclusion, challenges, and the reproducibility of the investigations at every stage are devoted to this domain to link the common molecules across multiple liver diseases, such as fatty liver, hepatitis, and cirrhosis. These molecules are not immediately recognizable because of the huge underlying and synthetic variety present inside the liver cellular metabolome. This review focuses on microenvironmental metabolic stimuli in the gut-liver axis. Microbial small-molecule profiling (i.e., semiquantitative monitoring, metabolic discrimination, target profiling, and untargeted profiling) in biological fluids has been incompletely addressed. Here, we have reviewed the differential expression of the metabolome of short-chain fatty acids (SCFAs), tryptophan, one-carbon metabolism and bile acid, and the gut microbiota effects are summarized and discussed. We further present proof-of-evidence for gut microbiota-based metabolomics that manipulates the host's gut or liver microbes, mechanosensitive metabolite reactions and potential metabolic pathways. We conclude with a forward-looking perspective on future attention to the "dark matter" of the gut microbiota and microbial metabolomics.
Collapse
|
13
|
Cairo C, Webb TJ. Effective Barriers: The Role of NKT Cells and Innate Lymphoid Cells in the Gut. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:235-246. [PMID: 35017213 DOI: 10.4049/jimmunol.2100799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
The critical role of commensal microbiota in regulating the host immune response has been established. In addition, it is known that host-microbial interactions are bidirectional, and this interplay is tightly regulated to prevent chronic inflammatory disease. Although many studies have focused on the role of classic T cell subsets, unconventional lymphocytes such as NKT cells and innate lymphoid cells also contribute to the regulation of homeostasis at mucosal surfaces and influence the composition of the intestinal microbiota. In this review, we discuss the mechanisms involved in the cross-regulation between NKT cells, innate lymphoid cells, and the gut microbiota. Moreover, we highlight how disruptions in homeostasis can lead to immune-mediated disorders.
Collapse
Affiliation(s)
- Cristiana Cairo
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD;
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD; and
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Ren Z, Peng L, Chen S, Pu Y, Lv H, Wei H, Wan C. Lactiplantibacillus plantarum 1201 Inhibits Intestinal Infection of Salmonella enterica subsp. enterica Serovar Typhimurium Strain ATCC 13311 in Mice with High-Fat Diet. Foods 2021; 11:85. [PMID: 35010211 PMCID: PMC8750823 DOI: 10.3390/foods11010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Salmonella Typhimurium is widely distributed in food. It can colonise the gastrointestinal tract after ingestion, causing lamina propria edema, inflammatory cell infiltration, and mucosal epithelial decomposition. A high-fat diet (HFD) can induce an inflammatory response, but whether HFD can increase the infection level of S. Typhimurium is unknown. We established a model of Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 13311 ATCC 13311 infection in healthy adult mice with a maintenance diet (MD) or HFD to explore the effect of Lactiplantibacillus plantarum 1201 intervention on S. Typhimurium ATCC 13311 colonization and its protective effects on mice. HFD exacerbated the infection of S. Typhimurium ATCC 13311, while the intervention of L. plantarum 1201 effectively mitigated this process. L. plantarum 1201 can reduce the colonies of S. ATCC 13311 in the intestines and tissues; and reduce intestinal inflammation by down-regulating the level of TLR4/NF-κB pathway related proteins in serum and the expression of related inflammatory factors in the colon and jejunum. Since L. plantarum 1201 can inhibit the colonization of S. Typhimurium ATCC 13311 and relieve inflammation in HFD, current research may support the use of L. plantarum 1201 to prevent S. Typhimurium infection.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Pu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Z.R.); (L.P.); (S.C.); (Y.P.); (H.L.); (H.W.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cuixiang Wan
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
15
|
Roy U, de Oliveira RS, Galvez EJC, Gronow A, Basic M, Perez LG, Gagliani N, Bleich A, Huber S, Strowig T. Induction of IL-22-Producing CD4+ T Cells by Segmented Filamentous Bacteria Independent of Classical Th17 Cells. Front Immunol 2021; 12:671331. [PMID: 34566952 PMCID: PMC8456099 DOI: 10.3389/fimmu.2021.671331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023] Open
Abstract
The intestinal microbiota modulates IL-22 production in the intestine, including the induction of IL-22-producing CD4+ T helper cells. Which specific bacteria are responsible for the induction of these cells is less well understood. Here, we demonstrate through the use of novel gnotobiotic knock-in reporter mice that segmented filamentous bacteria (SFB), which are known for their ability to induce Th17 cells, also induce distinct IL-17A negative CD4+ T cell populations in the intestine. A subset of these cells instead produces IL-22 upon restimulation ex vivo and also during enteric infections. Furthermore, they produce a distinct set of cytokines compared to Th17 cells including the differential expression of IL-17F and IFN-γ. Importantly, genetic models demonstrate that these cells, presumably Th22 cells, develop independently of intestinal Th17 cells. Together, our data identifies that besides Th17, SFB also induces CD4+ T cell populations, which serve as immediate source of IL-22 during intestinal inflammation.
Collapse
Affiliation(s)
- Urmi Roy
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rômulo S. de Oliveira
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J. C. Galvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Achim Gronow
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Laura Garcia Perez
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
16
|
Chen LM, Bao CH, Wu Y, Liang SH, Wang D, Wu LY, Huang Y, Liu HR, Wu HG. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation 2021; 18:135. [PMID: 34127024 PMCID: PMC8204445 DOI: 10.1186/s12974-021-02175-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD), which mainly includes ulcerative colitis (UC) and Crohn's disease (CD), is a group of chronic bowel diseases that are characterized by abdominal pain, diarrhea, and bloody stools. IBD is strongly associated with depression, and its patients have a higher incidence of depression than the general population. Depression also adversely affects the quality of life and disease prognosis of patients with IBD. The tryptophan-kynurenine metabolic pathway degrades more than 90% of tryptophan (TRP) throughout the body, with indoleamine 2,3-dioxygenase (IDO), the key metabolic enzyme, being activated in the inflammatory environment. A series of metabolites of the pathway are neurologically active, among which kynerunic acid (KYNA) and quinolinic acid (QUIN) are molecules of great interest in recent studies on the mechanisms of inflammation-induced depression. In this review, the relationship between depression in IBD and the tryptophan-kynurenine metabolic pathway is overviewed in the light of recent publications.
Collapse
Affiliation(s)
- Li-Ming Chen
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Chun-Hui Bao
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China.
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China.
| | - Yu Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Shi-Hua Liang
- Faculty of Economics and Business, University of Groningen, Nettelbosje 2, Groningen, 9747 AE, The Netherlands
| | - Di Wang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Lu-Yi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Hui-Rong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Huan-Gan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China.
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China.
| |
Collapse
|
17
|
Grifka-Walk HM, Jenkins BR, Kominsky DJ. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front Immunol 2021; 12:653208. [PMID: 34149693 PMCID: PMC8213022 DOI: 10.3389/fimmu.2021.653208] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptophan (Trp) is an essential amino acid primarily derived from the diet for use by the host for protein synthesis. The intestinal tract is lined with cells, both host and microbial, that uptake and metabolize Trp to also generate important signaling molecules. Serotonin (5-HT), kynurenine and its downstream metabolites, and to a lesser extent other neurotransmitters are generated by the host to signal onto host receptors and elicit physiological effects. 5-HT production by neurons in the CNS regulates sleep, mood, and appetite; 5-HT production in the intestinal tract by enterochromaffin cells regulates gastric motility and inflammation in the periphery. Kynurenine can signal onto the aryl hydrocarbon receptor (AHR) to elicit pleiotropic responses from several cell types including epithelial and immune cells, or can be further metabolized into bioactive molecules to influence neurodegenerative disease. There is a remarkable amount of cross-talk with the microbiome with regard to tryptophan metabolites as well. The gut microbiome can regulate the production of host tryptophan metabolites and can use dietary or recycled trp to generate bioactive metabolites themselves. Trp derivatives like indole are able to signal onto xenobiotic receptors, including AHR, to elicit tolerogenic effects. Here, we review studies that demonstrate that tryptophan represents a key intra-kingdom signaling molecule.
Collapse
Affiliation(s)
| | | | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
18
|
Establishing causality in Salmonella-microbiota-host interaction: The use of gnotobiotic mouse models and synthetic microbial communities. Int J Med Microbiol 2021; 311:151484. [PMID: 33756190 DOI: 10.1016/j.ijmm.2021.151484] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Colonization resistance (CR), the ability to block infections by potentially harmful microbes, is a fundamental function of host-associated microbial communities and highly conserved between animals and humans. Environmental factors such as antibiotics and diet can disturb microbial community composition and thereby predispose to opportunistic infections. The most prominent is Clostridioides difficile, the causative agent of diarrhea and pseudomembranous colitis. In addition, the risk to succumb to infections with genuine human enteric pathogens like nontyphoidal Salmonella (NTS) is also increased by a low-diverse, diet or antibiotic-disrupted microbiota. Despite extensive microbial community profiling efforts, only a limited set of microorganisms have been causally linked with protection against enteric pathogens. Furthermore, it remains a challenge to predict colonization resistance from complex microbiome signatures due to context-dependent action of microorganisms. In the past decade, the study of NTS infection has led to the description of several fundamental principles of microbiota-host-pathogen interaction. In this review, I will give an overview on the current state of knowledge in this field and outline experimental approaches to gain functional insight to the role of specific microbes, functions and metabolites in Salmonella-microbiota-host interaction. In particular, I will highlight the value of mouse infection models, which, in combination with culture collections, synthetic communities and gnotobiotic models have become essential tools to screen for protective members of the microbiota and establishing causal relationship and mechanisms in infection research.
Collapse
|
19
|
Więdłocha M, Marcinowicz P, Janoska-Jaździk M, Szulc A. Gut microbiota, kynurenine pathway and mental disorders - Review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110145. [PMID: 33203568 DOI: 10.1016/j.pnpbp.2020.110145] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023]
Abstract
The intestine and the gut-associated limphoid tissue constitute the largest immunity organ of the human body. Among several possible tryptophan metabolism routes, the kynurenine pathway can be influenced by the gut microbiota. Disturbances of gut biodiversity may cause increased gut permeability and cause systemic inflammation, also related to central nervous system. Proinflammatory cytokines induce kynurenine pathway enzymes resulting in formation of neuroactive metabolites, which are being associated with several psychiatric disorders. The kynurenine pathway may also be influenced by certain bacteria species directly. The aim of this review is to highlight the current knowledge on the interaction of gut microbiota and the central nervous system with the kynurenine pathway taken into special account. Up to date study results on specific psychiatric disorders such as schizophrenia, bipolar disorder, Alzheimer's disease, autism spectrum disorders, depression and alcoholism are presented. Available evidence suggests that toxicity of kynurenine metabolites may be reduced by adjunction of probiotics which can affect proinflammatory cytokines. Due to their potential for modulation of the kynurenine pathway, gut microbiota pose an interesting target for future therapies.
Collapse
Affiliation(s)
- Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland.
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| | | | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Poland
| |
Collapse
|
20
|
Fattinger SA, Sellin ME, Hardt WD. Epithelial inflammasomes in the defense against Salmonella gut infection. Curr Opin Microbiol 2020; 59:86-94. [PMID: 33128958 DOI: 10.1016/j.mib.2020.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
The gut epithelium prevents bacterial access to the host's tissues and coordinates a number of mucosal defenses. Here, we review the function of epithelial inflammasomes in the infected host and focus on their role in defense against Salmonella Typhimurium. This pathogen employs flagella to swim towards the epithelium and a type III secretion system (TTSS) to dock and invade intestinal epithelial cells. Flagella and TTSS components are recognized by the canonical NAIP/NLRC4 inflammasome, while LPS activates the non-canonical Caspase-4/11 inflammasome. The relative contributions of these inflammasomes, the activated cell death pathways and the elicited mucosal defenses are subject to environmental control and appear to change along the infection trajectory. It will be an important future task to explain how this may enable defense against the challenges imposed by diverse bacterial enteropathogens.
Collapse
Affiliation(s)
- Stefan A Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland; Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol 2020; 19:77-94. [PMID: 32968241 DOI: 10.1038/s41579-020-0438-4] [Citation(s) in RCA: 761] [Impact Index Per Article: 152.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
The gut microbiota contributes to host physiology through the production of a myriad of metabolites. These metabolites exert their effects within the host as signalling molecules and substrates for metabolic reactions. Although the study of host-microbiota interactions remains challenging due to the high degree of crosstalk both within and between kingdoms, metabolite-focused research has identified multiple actionable microbial targets that are relevant for host health. Metabolites, as the functional output of combined host and microorganism interactions, provide a snapshot in time of an extraordinarily complex multi-organism system. Although substantial work remains towards understanding host-microbiota interactions and the underlying mechanisms, we review the current state of knowledge for each of the major classes of microbial metabolites with emphasis on clinical and translational research implications. We provide an overview of methodologies available for measurement of microbial metabolites, and in addition to discussion of key challenges, we provide a potential framework for integration of discovery-based metabolite studies with mechanistic work. Finally, we highlight examples in the literature where this approach has led to substantial progress in understanding host-microbiota interactions.
Collapse
|
22
|
Abstract
Although researchers have described numerous risk factors for salmonellosis and for infection with specific common serotypes, the drivers of Salmonella serotype diversity among human populations remain poorly understood. In this retrospective observational study, we partition records of serotyped non-typhoidal Salmonella isolates from human clinical specimens reported to CDC national surveillance by demographic, geographic and seasonal characteristics and adapt sample-based rarefaction methods from the field of community ecology to study how Salmonella serotype diversity varied within and among these populations in the USA during 1996–2016. We observed substantially higher serotype richness in children <2 years old than in older children and adults and steadily increasing richness with age among older adults. Whereas seasonal and regional variation in serotype diversity was highest among infants and young children, variation by specimen source was highest in adults. Our findings suggest that the risk for infection from uncommon serotypes is associated with host and environmental factors, particularly among infants, young children and older adults. These populations may have a higher proportion of illness acquired through environmental transmission pathways than published source attribution models estimate.
Collapse
|
23
|
Microbiota Alterations in Alzheimer’s Disease: Involvement of the Kynurenine Pathway and Inflammation. Neurotox Res 2019; 36:424-436. [DOI: 10.1007/s12640-019-00057-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
|
24
|
Zhang W, Wu Q, Zhu Y, Yang G, Yu J, Wang J, Ji H. Probiotic Lactobacillus rhamnosus GG Induces Alterations in Ileal Microbiota With Associated CD3 -CD19 -T-bet +IFNγ +/- Cell Subset Homeostasis in Pigs Challenged With Salmonella enterica Serovar 4,[5],12:i:. Front Microbiol 2019; 10:977. [PMID: 31134022 PMCID: PMC6516042 DOI: 10.3389/fmicb.2019.00977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
Salmonella enterica serovar 4,[5],12:i:- (S. 4,[5],12:i:-) is an emerging foodborne pathogen causing salmonellosis in humans and animals. Probiotic Lactobacillus rhamnosus GG (LGG) is an effective strategy for controlling enteric infections through maintaining gut microbiota homeostasis and regulating the intestinal innate immune response. Here, LGG was orally administrated to newly weaned piglets for 1 week before S. 4,[5],12:i:- challenge. S. 4,[5],12:i:- challenge led to disturbed gut microbiota, characterized by increased levels of Psychrobacter, Chryseobacterium indoltheticum, and uncultured Corynebacteriaceae populations, as well as an aberrant correlation network in Prevotellaceae NK3B31 group-centric species. The beneficial effect of LGG correlated with attenuating the expansion of Prevotellaceae NK3B31 group. Fusobacterium only found in the pigs treated with LGG was positively correlated with Lactobacillus animalis and Propionibacterium. Administration of LGG induced the expansion of CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cell subsets in the peripheral blood at 24 h after a challenge of S. 4,[5],12:i:-. S. 4,[5],12:i:- infection increased the population of intraepithelial CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cells in the ileum; however, this increase was attenuated via LGG administration. Correlation analysis revealed that LGG enriched Flavobacterium frigidarium and Facklamia populations, which were negatively correlated with intraepithelial CD3-CD19-T-bet+IFNγ+ and CD3-CD19-T-bet+IFNγ- cells in the ileum. The present data suggest that probiotic LGG alters gut microbiota with associated CD3-CD19-T-bet+IFNγ+/- cell subset homeostasis in pigs challenged with S. enterica 4,[5],12:i:-. LGG may be used in potential gut microbiota-targeted therapy regimens to regulate the specific immune cell function and, consequently, control enteric infections.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guiyan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiao Yu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
25
|
Functions of Macrophages in the Maintenance of Intestinal Homeostasis. J Immunol Res 2019; 2019:1512969. [PMID: 31011585 PMCID: PMC6442305 DOI: 10.1155/2019/1512969] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023] Open
Abstract
Intestinal macrophages constitute the largest pool of macrophages in the body and have emerged as crucial sentinels for pathogen recognition and elimination. The source and development of intestinal macrophages, as well as their distinct properties have been well documented. Intestinal macrophages exert their functions in the maintenance of intestinal homeostasis by shaping host-microbiota symbiosis, managing gut inflammation, crosstalking with T cells, and facilitating wound repair. Recently, nutritional regulation of intestinal macrophages has attracted substantial attention and is becoming a promising approach to disease prevention and control. Understanding the mechanisms employed by intestinal macrophages in mediating intestinal immune homeostasis and inflammation, as well as the mode of action of dietary nutrients in the modulating functions of intestinal macrophages, represents an opportunity to prevent and control inflammatory bowel diseases.
Collapse
|
26
|
Age-of-diagnosis dependent ileal immune intensification and reduced alpha-defensin in older versus younger pediatric Crohn Disease patients despite already established dysbiosis. Mucosal Immunol 2019; 12:491-502. [PMID: 30542108 PMCID: PMC6375755 DOI: 10.1038/s41385-018-0114-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 02/04/2023]
Abstract
Age-of-diagnosis associated variation in disease location and antimicrobial sero-reactivity has suggested fundamental differences in pediatric Crohn Disease (CD) pathogenesis. This variation may be related to pubertal peak incidence of ileal involvement and Peyer's patches maturation, represented by IFNγ-expressing Th1 cells. However, direct mucosal evidence is lacking. We characterize the global pattern of ileal gene expression and microbial communities in 525 treatment-naive pediatric CD patients and controls (Ctl), stratifying samples by their age-of-diagnosis. We show a robust ileal gene signature notable for higher expression of specific immune genes including GM-CSF and INFγ, and reduced expression of antimicrobial Paneth cell α-defensins, in older compared to younger patients. Reduced α-defensin expression in older patients was associated with higher IFNγ expression. By comparison, the CD-associated ileal dysbiosis, characterized by expansion of Enterobacteriaceae and contraction of Lachnospiraceae and Ruminococcaceae, was already established within the younger group and did not vary systematically with increasing age-of-diagnosis. Multivariate analysis considering individual taxa, however did demonstrate negative associations between Lachnospiraceae and IFNγ, and positive associations between Bacteroides and α-defensin expression. These data provide evidence for maturation of mucosal Th1 immune responses and loss of epithelial antimicrobial α-defensins which are associated with specific taxa with increasing age-of-diagnosis in pediatric CD.
Collapse
|
27
|
Martin-Gallausiaux C, Larraufie P, Jarry A, Béguet-Crespel F, Marinelli L, Ledue F, Reimann F, Blottière HM, Lapaque N. Butyrate Produced by Commensal Bacteria Down-Regulates Indolamine 2,3-Dioxygenase 1 ( IDO-1) Expression via a Dual Mechanism in Human Intestinal Epithelial Cells. Front Immunol 2018; 9:2838. [PMID: 30619249 PMCID: PMC6297836 DOI: 10.3389/fimmu.2018.02838] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Commensal bacteria are crucial for the development and maintenance of a healthy immune system therefore contributing to the global well-being of their host. A wide variety of metabolites produced by commensal bacteria are influencing host health but the characterization of the multiple molecular mechanisms involved in host-microbiota interactions is still only partially unraveled. The intestinal epithelial cells (IECs) take a central part in the host-microbiota dialogue by inducing the first microbial-derived immune signals. Amongst the numerous effector molecules modulating the immune responses produced by IECs, indoleamine 2,3-dioxygenase-1 (IDO-1) is essential for gut homeostasis. IDO-1 expression is dependent on the microbiota and despites its central role, how the commensal bacteria impacts its expression is still unclear. Therefore, we investigated the impact of individual cultivable commensal bacteria on IDO-1 transcriptional expression and found that the short chain fatty acid (SCFA) butyrate was the main metabolite controlling IDO-1 expression in human primary IECs and IEC cell-lines. This butyrate-driven effect was independent of the G-protein coupled receptors GPR41, GPR43, and GPR109a and of the transcription factors SP1, AP1, and PPARγ for which binding sites were reported in the IDO-1 promoter. We demonstrated for the first time that butyrate represses IDO-1 expression by two distinct mechanisms. Firstly, butyrate decreases STAT1 expression leading to the inhibition of the IFNγ-dependent and phosphoSTAT1-driven transcription of IDO-1. In addition, we described a second mechanism by which butyrate impairs IDO-1 transcription in a STAT1-independent manner that could be attributed to its histone deacetylase (HDAC) inhibitor property. In conclusion, our results showed that IDO-1 expression is down-regulated by butyrate via a dual mechanism: the reduction of STAT1 level and the HDAC inhibitor property of SCFAs.
Collapse
Affiliation(s)
- Camille Martin-Gallausiaux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,IFD, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Pierre Larraufie
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anne Jarry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Ludovica Marinelli
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,IFD, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Florence Ledue
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frank Reimann
- MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Hervé M Blottière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,US 1367 MetaGenoPolis, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Lapaque
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
28
|
Fox E, Oliver T, Rowe M, Thomas S, Zakharia Y, Gilman PB, Muller AJ, Prendergast GC. Indoximod: An Immunometabolic Adjuvant That Empowers T Cell Activity in Cancer. Front Oncol 2018; 8:370. [PMID: 30254983 PMCID: PMC6141803 DOI: 10.3389/fonc.2018.00370] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022] Open
Abstract
Exploding interest in immunometabolism as a source of new cancer therapeutics has been driven in large part by studies of tryptophan catabolism mediated by IDO/TDO enzymes. A chief focus in the field is IDO1, a pro-inflammatory modifier that is widely overexpressed in cancers where it blunts immunosurveillance and enables neovascularization and metastasis. The simple racemic compound 1-methyl-D,L-tryptophan (1MT) is an extensively used probe of IDO/TDO pathways that exerts a variety of complex inhibitory effects. The L isomer of 1MT is a weak substrate for IDO1 and is ascribed the weak inhibitory activity of the racemate on the enzyme. In contrast, the D isomer neither binds nor inhibits the purified IDO1 enzyme. However, clinical development focused on D-1MT (now termed indoximod) due to preclinical cues of its greater anticancer activity and its distinct mechanisms of action. In contrast to direct enzymatic inhibitors of IDO1, indoximod acts downstream of IDO1 to stimulate mTORC1, a convergent effector signaling molecule for all IDO/TDO enzymes, thus possibly lowering risks of drug resistance by IDO1 bypass. In this review, we survey the unique biological and mechanistic features of indoximod as an IDO/TDO pathway inhibitor, including recent clinical findings of its ability to safely enhance various types of cancer therapy, including chemotherapy, chemo-radiotherapy, vaccines, and immune checkpoint therapy. We also review the potential advantages indoximod offers compared to selective IDO1-specific blockade, which preclinical studies and the clinical study ECHO-301 suggest may be bypassed readily by tumors. Indoximod lies at a leading edge of broad-spectrum immunometabolic agents that may act to improve responses to many anticancer modalities, in a manner analogous to vaccine adjuvants that act to boost immunity in settings of infectious disease.
Collapse
Affiliation(s)
- Eric Fox
- Department of Hematology-Oncology, Lankenau Medical Center, Wynnewood, PA, United States
| | - Thomas Oliver
- Department of Hematology-Oncology, Lankenau Medical Center, Wynnewood, PA, United States
| | - Melissa Rowe
- Department of Hematology-Oncology, Lankenau Medical Center, Wynnewood, PA, United States
| | - Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Yousef Zakharia
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Paul B. Gilman
- Department of Hematology-Oncology, Lankenau Medical Center, Wynnewood, PA, United States
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Alexander J. Muller
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Thiemann S, Smit N, Roy U, Lesker TR, Gálvez EJC, Helmecke J, Basic M, Bleich A, Goodman AL, Kalinke U, Flavell RA, Erhardt M, Strowig T. Enhancement of IFNγ Production by Distinct Commensals Ameliorates Salmonella-Induced Disease. Cell Host Microbe 2018; 21:682-694.e5. [PMID: 28618267 DOI: 10.1016/j.chom.2017.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/11/2017] [Accepted: 05/22/2017] [Indexed: 01/28/2023]
Abstract
The microbiota contributes to colonization resistance against invading pathogens by competing for metabolites, producing inhibitory substances, and priming protective immune responses. However, the specific commensal bacteria that promote host resistance and immune-mediated protection remain largely elusive. Using isogenic mouse lines with distinct microbiota profiles, we demonstrate that severity of disease induced by enteric Salmonella Typhimurium infection is strongly modulated by microbiota composition in individual lines. Transferring a restricted community of cultivable intestinal commensals from protected into susceptible mice decreases S. Typhimurium tissue colonization and consequently disease severity. This reduced tissue colonization, along with ameliorated weight loss and prolonged survival, depends on microbiota-enhanced IFNγ production, as IFNγ-deficient mice do not exhibit protective effects. Innate cells and CD4+ T cells increase in number and show high levels of IFNγ after transfer of the commensal community. Thus, distinct microbiota members prevent intestinal Salmonella infection by enhancing antibacterial IFNγ responses.
Collapse
Affiliation(s)
- Sophie Thiemann
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Nathiana Smit
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Urmi Roy
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Till Robin Lesker
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Eric J C Gálvez
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Julia Helmecke
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Richard A Flavell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Marc Erhardt
- Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Till Strowig
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.
| |
Collapse
|
30
|
Consequences of Epithelial Inflammasome Activation by Bacterial Pathogens. J Mol Biol 2018; 430:193-206. [DOI: 10.1016/j.jmb.2017.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 01/02/2023]
|
31
|
Hill DR, Huang S, Nagy MS, Yadagiri VK, Fields C, Mukherjee D, Bons B, Dedhia PH, Chin AM, Tsai YH, Thodla S, Schmidt TM, Walk S, Young VB, Spence JR. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife 2017; 6:29132. [PMID: 29110754 PMCID: PMC5711377 DOI: 10.7554/elife.29132] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022] Open
Abstract
The human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such as oral nutrition and microbial colonization. The confluence of these factors can lead to severe inflammatory disease in premature infants; however, investigating complex environment-host interactions is difficult due to limited access to immature human tissue. Here, we demonstrate that the epithelium of human pluripotent stem-cell-derived human intestinal organoids is globally similar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe interactions in this naive epithelium. Our findings demonstrate that the immature epithelium is intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide production, maturation of the mucus layer, and improved barrier function. These studies lay the groundwork for an improved mechanistic understanding of how colonization influences development of the immature human intestine.
Collapse
Affiliation(s)
- David R Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Melinda S Nagy
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Veda K Yadagiri
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Courtney Fields
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Dishari Mukherjee
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Brooke Bons
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Priya H Dedhia
- Department of Surgery, University of Michigan, Ann Arbor, United States
| | - Alana M Chin
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Yu-Hwai Tsai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Shrikar Thodla
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Thomas M Schmidt
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Seth Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman, United States
| | - Vincent B Young
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States.,Department of Cell andDevelopmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
32
|
Wotzka SY, Nguyen BD, Hardt WD. Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange. Cell Host Microbe 2017; 21:443-454. [PMID: 28407482 DOI: 10.1016/j.chom.2017.03.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 12/18/2022]
Abstract
Despite decades of research, efficient therapies for most enteropathogenic bacteria are still lacking. In this review, we focus on Salmonella enterica Typhimurium (S. Typhimurium), a frequent cause of acute, self-limiting food-borne diarrhea and a model that has revealed key principles of enteropathogen infection. We review the steps of gut infection and the mucosal innate-immune defenses limiting pathogen burdens, and we discuss how inflammation boosts gut luminal S. Typhimurium growth. We also discuss how S. Typhimurium-induced inflammation accelerates the transfer of plasmids and phages, which may promote the transmission of antibiotic resistance and facilitate emergence of pathobionts and pathogens with enhanced virulence. The targeted manipulation of the microbiota and vaccination might offer strategies to prevent this evolution. As gut luminal microbes impact various aspects of the host's physiology, improved strategies for preventing enteropathogen infection and disease-inflicted DNA exchange may be of broad interest well beyond the acute infection.
Collapse
Affiliation(s)
- Sandra Y Wotzka
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bidong D Nguyen
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
33
|
Chen K, Shanmugam NKN, Pazos MA, Hurley BP, Cherayil BJ. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability. PLoS One 2016; 11:e0160937. [PMID: 27505062 PMCID: PMC4978417 DOI: 10.1371/journal.pone.0160937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/27/2016] [Indexed: 11/18/2022] Open
Abstract
Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß). Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages) after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis.
Collapse
Affiliation(s)
- Kejie Chen
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Nanda Kumar N. Shanmugam
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael A. Pazos
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan P. Hurley
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Müller AA, Dolowschiak T, Sellin ME, Felmy B, Verbree C, Gadient S, Westermann AJ, Vogel J, LeibundGut-Landmann S, Hardt WD. An NK Cell Perforin Response Elicited via IL-18 Controls Mucosal Inflammation Kinetics during Salmonella Gut Infection. PLoS Pathog 2016; 12:e1005723. [PMID: 27341123 PMCID: PMC4920399 DOI: 10.1371/journal.ppat.1005723] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/03/2016] [Indexed: 01/26/2023] Open
Abstract
Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and –injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens. Salmonella Typhimurium is a common cause of foodborne diarrhea. The disease symptoms arise already a few hours after infection. However, it had remained unclear how the immune system can mount the responses eliciting the disease symptoms so quickly. Earlier work in a mouse model had shown that the gut epithelium expresses a sensor, called NAIP/NLRC4/caspase-1 inflammasome that can detect the pathogen and mount a defense by 12-18h p.i. However, it has remained uncharacterized how inflammasome sensing drives the initial gut inflammation. Here, we found that the caspase-1 inflammasome triggers the production of IL-18, a pro-inflammatory cytokine that appears essential for the early onset of inflammation. IL-18 is driving the accumulation of NK cells into the infected mucosa, via the upregulation of NK cell chemoattractants and by the stimulation of their migratory capacity. Mature NK cells seem to induce mucosal inflammation via a perforin-mediated cytotoxic response. These data suggest that the inflammasome/IL-18/NK cell axis is a driver of early mucosal inflammation via a perforin-dependent cytotoxic NK cell response. Future work will have to address, if this mechanism is equally potent in the human gut and may contribute to ramping up the host's response during the first hours of infection. This may have implications for other gut infections and might provide leads for developing therapies.
Collapse
Affiliation(s)
- Anna A. Müller
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Mikael E. Sellin
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
- Department of Cell and Molecular Biology, Microbiology, Uppsala University, Uppsala, Sweden
| | - Boas Felmy
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Sandra Gadient
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
35
|
Deriu E, Boxx GM, He X, Pan C, Benavidez SD, Cen L, Rozengurt N, Shi W, Cheng G. Influenza Virus Affects Intestinal Microbiota and Secondary Salmonella Infection in the Gut through Type I Interferons. PLoS Pathog 2016; 12:e1005572. [PMID: 27149619 PMCID: PMC4858270 DOI: 10.1371/journal.ppat.1005572] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
Human influenza viruses replicate almost exclusively in the respiratory tract, yet infected individuals may also develop gastrointestinal symptoms, such as vomiting and diarrhea. However, the molecular mechanisms remain incompletely defined. Using an influenza mouse model, we found that influenza pulmonary infection can significantly alter the intestinal microbiota profile through a mechanism dependent on type I interferons (IFN-Is). Notably, influenza-induced IFN-Is produced in the lungs promote the depletion of obligate anaerobic bacteria and the enrichment of Proteobacteria in the gut, leading to a “dysbiotic” microenvironment. Additionally, we provide evidence that IFN-Is induced in the lungs during influenza pulmonary infection inhibit the antimicrobial and inflammatory responses in the gut during Salmonella-induced colitis, further enhancing Salmonella intestinal colonization and systemic dissemination. Thus, our studies demonstrate a systemic role for IFN-Is in regulating the host immune response in the gut during Salmonella-induced colitis and in altering the intestinal microbial balance after influenza infection. Influenza is a respiratory illness. Symptoms of flu include fever, headache, extreme tiredness, dry cough, sore throat, runny or stuffy nose, and muscle aches. Some people, especially children, can have additional gastrointestinal symptoms, such as nausea, vomiting, and diarrhea. In humans, there is no evidence that the influenza virus replicates in the intestine. Using an influenza mouse model, we found that influenza infection alters the intestinal microbial community through a mechanism dependent on type I interferons induced in the pulmonary tract. Futhermore, we demonstrate that influenza-induced type I interferons increase the host susceptibility to Salmonella intestinal colonization and dissemination during secondary Salmonella-induced colitis through suppression of host intestinal immunity.
Collapse
Affiliation(s)
- Elisa Deriu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Gayle M. Boxx
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Xuesong He
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Calvin Pan
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sammy David Benavidez
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Lujia Cen
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Nora Rozengurt
- Department of Pathology and Laboratory Medicine, CURE Imaging and Stem Cell Biology Core, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Campos-Rodríguez R, Godínez-Victoria M, Reyna-Garfias H, Arciniega-Martínez IM, Reséndiz-Albor AA, Abarca-Rojano E, Cruz-Hernández TR, Drago-Serrano ME. Intermittent fasting favored the resolution of Salmonella typhimurium infection in middle-aged BALB/c mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:13. [PMID: 26798034 PMCID: PMC5005893 DOI: 10.1007/s11357-016-9876-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Intermittent fasting (IF) reportedly increases resistance and intestinal IgA response to Salmonella typhimurium infection in mature mice. The aim of this study was to explore the effect of aging on the aforementioned improved immune response found with IF. Middle-aged male BALB/c mice were submitted to IF or ad libitum (AL) feeding for 40 weeks and then orally infected with S. typhimurium. Thereafter, infected animals were all fed AL (to maximize their viability) until sacrifice on day 7 or 14 post-infection. We evaluated body weight, bacterial load (in feces, Peyer's patches, spleen and liver), total and specific intestinal IgA, lamina propria IgA+ plasma cells, plasma corticosterone, and messenger RNA (mRNA) expression of α-chain, J-chain, and the polymeric immunoglobulin receptor (pIgR) in liver and intestinal mucosa. In comparison with the infected AL counterpart, the infected IF group (long-term IF followed by post-infection AL feeding) generally had lower intestinal and systemic bacterial loads as well as higher total IgA on both post-infection days. Both infected groups showed no differences in corticosterone levels, body weight, or food and caloric intake. The increase in intestinal IgA was associated with enhanced pIgR mRNA expression in the intestine (day 7) and liver. Thus, to maintain body weight and caloric intake, IF elicited metabolic signals that possibly induced the increased hepatic and intestinal pIgR mRNA expression found. The increase in IgA probably resulted from intestinal IgA transcytosis via pIgR. This IgA response along with phagocyte-induced killing of bacteria in systemic organs (not measured) may explain the resolution of the S. typhimurium infection.
Collapse
Affiliation(s)
- Rafael Campos-Rodríguez
- Research and Graduate Studies Section, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, CP 11340, México, D.F., México
| | - Marycarmen Godínez-Victoria
- Research and Graduate Studies Section, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, CP 11340, México, D.F., México
| | - Humberto Reyna-Garfias
- Research and Graduate Studies Section, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, CP 11340, México, D.F., México
| | - Ivonne Maciel Arciniega-Martínez
- Research and Graduate Studies Section, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, CP 11340, México, D.F., México
| | - Aldo Arturo Reséndiz-Albor
- Research and Graduate Studies Section, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, CP 11340, México, D.F., México
| | - Edgar Abarca-Rojano
- Research and Graduate Studies Section, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, CP 11340, México, D.F., México
| | - Teresita Rocío Cruz-Hernández
- Research and Graduate Studies Section, Superior School of Medicine, National Polytechnic Institute, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, CP 11340, México, D.F., México
| | - Maria Elisa Drago-Serrano
- Department of Biological Systems, Autonomous Metropolitan University Xochimilco Campus, Calzada del Hueso No 1100, Col. Villa Quietud, CP 04960, México, D.F., México.
| |
Collapse
|
37
|
Siefker DT, Adkins B. Rapid CD8 + Function Is Critical for Protection of Neonatal Mice from an Extracellular Bacterial Enteropathogen. Front Pediatr 2016; 4:141. [PMID: 28119902 PMCID: PMC5220481 DOI: 10.3389/fped.2016.00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Both human and murine neonates are characteristically highly susceptible to bacterial infections. However, we recently discovered that neonatal mice are surprisingly highly resistant to oral infection with Yersinia enterocolitica. This resistance was linked with activation of both innate and adaptive responses, involving innate phagocytes, CD4+ cells, and B cells. We have now extended these studies and found that CD8+ cells also contribute importantly to neonatal protection from Y. enterocolitica. Strikingly, neonatal CD8+ cells in the mesenteric lymph nodes (MLN) are rapidly mobilized, increasing in proportion, number, and IFNγ production as early as 48 h post infection. This early activation appears to be critical for protection since B2m-/- neonates are significantly more susceptible than wt neonates to primary Y. enterocolitica infection. In the absence of CD8+ cells, Y. enterocolitica rapidly disseminated to peripheral tissues. Within 48 h of infection, both the spleens and livers of B2m-/-, but not wt, neonates became heavily colonized, likely leading to their deaths from sepsis. In contrast to primary infection, CD8+ cells were dispensable for the generation of immunological memory protective against secondary infection. These results indicate that CD8+ cells in the neonatal MLN contribute importantly to protection against an extracellular bacterial enteropathogen but, notably, they appear to act during the early innate phase of the immune response.
Collapse
Affiliation(s)
- David T Siefker
- Department of Pediatrics, Le Bonheur Children's Medical Center , Memphis, TN , USA
| | - Becky Adkins
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
38
|
Now you see me, now you don't: the interaction of Salmonella with innate immune receptors. Nat Rev Microbiol 2015; 13:206-16. [PMID: 25749454 DOI: 10.1038/nrmicro3428] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salmonella enterica serovars are associated with an estimated 1 million deaths annually and are also useful model organisms for investigating the mechanisms of host-bacterium interactions. The insights gained from studies on non-typhoidal Salmonella (NTS) serovars have provided a fascinating overview of the mechanisms by which the innate immune system detects and responds to bacterial pathogens. However, specific virulence factors and changes in virulence gene regulation in S. enterica subsp. enterica serovar Typhi alter the innate immune responses to this pathogen. In this Review, we compare and contrast the interactions of S. Typhi and NTS serovars with host innate immune receptors and discuss why the disease manifestations associated with S. Typhi infection differ considerably from those associated with the closely related NTS serovars.
Collapse
|
39
|
Kollias CM, Huneke RB, Wigdahl B, Jennings SR. Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2015; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
MESH Headings
- Animals
- Central Nervous System/pathology
- Central Nervous System/virology
- Disease Models, Animal
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Ganglia, Sensory/pathology
- Ganglia, Sensory/virology
- Guinea Pigs
- Herpes Genitalis/pathology
- Herpes Genitalis/virology
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/pathogenicity
- Herpesvirus 2, Human/physiology
- Humans
- Immunity, Innate
- Mice
- Rabbits
- Species Specificity
- Virus Activation
- Virus Latency
Collapse
Affiliation(s)
- Christina M Kollias
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | | | | | | |
Collapse
|
40
|
Fulde M, Hornef MW. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 2015; 260:21-34. [PMID: 24942679 DOI: 10.1111/imr.12190] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The innate immune system instructs the host on microbial exposure and infection. This information is critical to mount a protective innate and adaptive host response to microbial challenge, but is also involved in homeostatic and adaptive processes that adjust the organism to meet environmental requirements. This is of particular importance for the neonatal host during the transition from the protected fetal life to the intense and dynamic postnatal interaction with commensal and pathogenic microorganisms. Here, we discuss both adaptive and developmental mechanisms of the mucosal innate immune system that prevent inappropriate stimulation and facilitate establishment of a stable homeostatic host-microbial interaction after birth.
Collapse
Affiliation(s)
- Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
41
|
Neonatal immunology: responses to pathogenic microorganisms and epigenetics reveal an "immunodiverse" developmental state. Immunol Res 2014; 57:246-57. [PMID: 24214026 DOI: 10.1007/s12026-013-8439-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal animals have heightened susceptibility to infectious agents and are at increased risk for the development of allergic diseases, such as asthma. Experimental studies using animal models have been quite useful for beginning to identify the cellular and molecular mechanisms underlying these sensitivities. In particular, results from murine neonatal models indicate that developmental regulation of multiple immune cell types contributes to the typically poor responses of neonates to pathogenic microorganisms. Surprisingly, however, animal studies have also revealed that responses at mucosal surfaces in early life may be protective against primary or secondary disease. Our understanding of the molecular events underlying these processes is less well developed. Emerging evidence indicates that the functional properties of neonatal immune cells and the subsequent maturation of the immune system in ontogeny may be regulated by epigenetic phenomena. Here, we review recent findings from our group and others describing cellular responses to infection and developmentally regulated epigenetic processes in the newborn.
Collapse
|
42
|
Lacroix-Lamandé S, Guesdon W, Drouet F, Potiron L, Lantier L, Laurent F. The gut flora is required for the control of intestinal infection by poly(I:C) administration in neonates. Gut Microbes 2014; 5:533-40. [PMID: 24918602 DOI: 10.4161/gmic.29154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We found that immunostimulation of the intestinal immune system of neonatal mice by poly(I:C) injection decreased intestinal infection by the parasite Cryptosporidium parvum. We showed that the presence of dendritic cells and the cooperation of mutually dependent cytokines, such as IL-12p40, and type I and type II IFNs, were involved in the mechanism of protection induced by poly(I:C). This protection is dependent not only on TLR3-TRIF signaling, but also on the activation of the TLR5-MyD88 pathway by gut microbiota. These results raise the possibility that flagellated intestinal commensal bacteria may, in the presence of natural or synthetic agonists of TLR3, provide synergy between the TRIF and MyD88 signaling pathways, thereby favoring the development of mucosal defenses. In this addendum, we summarize these recent findings and discuss their implications for neonatal infections and immunomodulatory strategies.
Collapse
Affiliation(s)
- Sonia Lacroix-Lamandé
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - William Guesdon
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - Françoise Drouet
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - Laurent Potiron
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - Louis Lantier
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| | - Fabrice Laurent
- INRA Val de Loire; UMR 1282 Infectiologie et Santé Publique, F-37380; Nouzilly, France; Université François Rabelais; UMR 1282 Infectiologie et Santé Publique, F-37000 ; Tours, France
| |
Collapse
|
43
|
Abstract
Vibrio cholerae is the causative agent of the acute diarrheal disease of cholera. Innate immune responses to V. cholerae are not a major cause of cholera pathology, which is characterized by severe, watery diarrhea induced by the action of cholera toxin. Innate responses may, however, contribute to resolution of infection and must be required to initiate adaptive responses after natural infection and oral vaccination. Here we investigated whether a well-established infant mouse model of cholera can be used to observe an innate immune response. We also used a vaccination model in which immunized dams protect their pups from infection through breast milk antibodies to investigate innate immune responses after V. cholerae infection for pups suckled by an immune dam. At the peak of infection, we observed neutrophil recruitment accompanied by induction of KC, macrophage inflammatory protein 2 (MIP-2), NOS-2, interleukin-6 (IL-6), and IL-17a. Pups suckled by an immunized dam did not mount this response. Accessory toxins RtxA and HlyA played no discernible role in neutrophil recruitment in a wild-type background. The innate response to V. cholerae deleted for cholera toxin-encoding phage (CTX) and part of rtxA was significantly reduced, suggesting a role for CTX-carried genes or for RtxA in the absence of cholera toxin (CTX). Two extracellular V. cholerae DNases were not required for neutrophil recruitment, but DNase-deficient V. cholerae caused more clouds of DNA in the intestinal lumen, which appeared to be neutrophil extracellular traps (NETs), suggesting that V. cholerae DNases combat NETs. Thus, the infant mouse model has hitherto unrecognized utility for interrogating innate responses to V. cholerae infection.
Collapse
|
44
|
Neutrophils are a source of gamma interferon during acute Salmonella enterica serovar Typhimurium colitis. Infect Immun 2014; 82:1692-7. [PMID: 24421037 DOI: 10.1128/iai.01508-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gamma interferon (IFN-γ) is an important driver of intestinal inflammation during colitis caused by Salmonella enterica serovar Typhimurium. Here we used the mouse colitis model to investigate the cellular sources of IFN-γ in the cecal mucosa during the acute phase of an S. Typhimurium infection. While IFN-γ staining was detected in T cells, NK cells, and inflammatory monocytes at 2 days after infection, the majority of IFN-γ-positive cells in the cecal mucosa were neutrophils. Furthermore, neutrophil depletion blunted mucosal Ifng expression and reduced the severity of intestinal lesions during S. Typhimurium infection. We conclude that neutrophils are a prominent cellular source of IFN-γ during the innate phase of S. Typhimurium-induced colitis.
Collapse
|
45
|
Murine neonates infected with Yersinia enterocolitica develop rapid and robust proinflammatory responses in intestinal lymphoid tissues. Infect Immun 2013; 82:762-72. [PMID: 24478090 DOI: 10.1128/iai.01489-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neonatal animals are generally very susceptible to infection with bacterial pathogens. However, we recently reported that neonatal mice are highly resistant to orogastric infection with Yersinia enterocolitica. Here, we show that proinflammatory responses greatly exceeding those in adults arise very rapidly in the mesenteric lymph nodes (MLN) of neonates. High-level induction of proinflammatory gene expression occurred in the neonatal MLN as early as 18 h postinfection. Marked innate phagocyte recruitment was subsequently detected at 24 h postinfection. Enzyme-linked immunosorbent spot assay (ELISPOT) analyses indicated that enhanced inflammation in neonatal MLN is contributed to, in part, by an increased frequency of proinflammatory cytokine-secreting cells. Moreover, both CD11b(+) and CD11b(-) cell populations appeared to play a role in proinflammatory gene expression. The level of inflammation in neonatal MLN was also dependent on key bacterial components. Y. enterocolitica lacking the virulence plasmid failed to induce innate phagocyte recruitment. In contrast, tumor necrosis factor alpha (TNF-α) protein expression and neutrophil recruitment were strikingly higher in neonatal MLN after infection with a yopP-deficient strain than with wild-type Y. enterocolitica, whereas only modest increases occurred in adults. This hyperinflammatory response was associated with greater colonization of the spleen and higher mortality in neonates, while there was no difference in mortality among adults. This model highlights the dynamic levels of inflammation in the intestinal lymphoid tissues and reveals the protective (wild-type strain) versus harmful (yopP-deficient strain) consequences of inflammation in neonates. Moreover, these results reveal that the neonatal intestinal lymphoid tissues have great potential to rapidly mobilize innate components in response to infection with bacterial enteropathogens.
Collapse
|
46
|
Felmy B, Songhet P, Slack EMC, Müller AJ, Kremer M, Van Maele L, Cayet D, Heikenwalder M, Sirard JC, Hardt WD. NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella Typhimurium. PLoS One 2013; 8:e77204. [PMID: 24143212 PMCID: PMC3797104 DOI: 10.1371/journal.pone.0077204] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/08/2013] [Indexed: 12/22/2022] Open
Abstract
Infections, microbe sampling and occasional leakage of commensal microbiota and their products across the intestinal epithelial cell layer represent a permanent challenge to the intestinal immune system. The production of reactive oxygen species by NADPH oxidase is thought to be a key element of defense. Patients suffering from chronic granulomatous disease are deficient in one of the subunits of NADPH oxidase. They display a high incidence of Crohn’s disease-like intestinal inflammation and are hyper-susceptible to infection with fungi and bacteria, including a 10-fold increased risk of Salmonellosis. It is not completely understood which steps of the infection process are affected by the NADPH oxidase deficiency. We employed a mouse model for Salmonella diarrhea to study how NADPH oxidase deficiency (Cybb−/−) affects microbe handling by the large intestinal mucosa. In this animal model, wild type S. Typhimurium causes pronounced enteropathy in wild type mice. In contrast, an avirulent S. Typhimurium mutant (S.Tmavir; invGsseD), which lacks virulence factors boosting trans-epithelial penetration and growth in the lamina propria, cannot cause enteropathy in wild type mice. We found that Cybb−/− mice are efficiently infected by S.Tmavir and develop enteropathy by day 4 post infection. Cell depletion experiments and infections in Cybb−/−Myd88−/− mice indicated that the S.Tmavir-inflicted disease in Cybb−/− mice hinges on CD11c+CX3CR1+ monocytic phagocytes mediating colonization of the cecal lamina propria and on Myd88-dependent proinflammatory immune responses. Interestingly, in mixed bone marrow chimeras a partial reconstitution of Cybb-proficiency in the bone marrow derived compartment was sufficient to ameliorate disease severity. Our data indicate that NADPH oxidase expression is of key importance for restricting the growth of S.Tmavir in the mucosal lamina propria. This provides important insights into microbe handling by the large intestinal mucosa and the role of NADPH oxidase in maintaining microbe-host mutualism at this exposed body surface.
Collapse
Affiliation(s)
- Boas Felmy
- Institute of Microbiology, D-BIOL, ETH Zürich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Diefenbach A. Innate lymphoid cells in the defense against infections. Eur J Microbiol Immunol (Bp) 2013; 3:143-51. [PMID: 24265932 DOI: 10.1556/eujmi.3.2013.3.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 01/07/2023] Open
Abstract
Barrier surfaces are under constant attack by potentially dangerous microbes. Interestingly, mucosal tissues contain a large number of innate lymphocytes now collectively referred to as innate lymphoid cells (ILCs). Different groups of ILCs are being distinguished, each of which produce an array of cytokines strikingly resembling the profile of the various T helper cell effector subsets. Over the last couple of years, evidence has been emerging that the various ILC subsets play important roles in immune defense against mucosal infections. In this review, I will introduce the various groups of ILCs and then focus on their roles for immunity to mucosal infections.
Collapse
Affiliation(s)
- Andreas Diefenbach
- Section of Molecular Infection Biology, Department of Medical Microbiology and Hygiene, University of Freiburg Hermann-Herder-Strasse 11, D-79104 Freiburg Germany
| |
Collapse
|
48
|
Reid-Yu SA, Small CLN, Coombes BK. CD3⁻NK1.1⁺ cells aid in the early induction of a Th1 response to an attaching and effacing enteric pathogen. Eur J Immunol 2013; 43:2638-49. [PMID: 23775576 DOI: 10.1002/eji.201343435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/24/2013] [Accepted: 06/11/2013] [Indexed: 11/06/2022]
Abstract
Extracellular attaching and effacing (A/E) pathogens including pathogenic Escherichia coli colonize the host gut causing diarrhea and inflammation. Although much is known regarding the pathogenesis of A/E bacteria, there remains an incomplete understanding of host immune responses to these microbes. NK cells are an important source of IFN-γ and are essential for early innate responses to viral pathogens; however, their role during extracellular bacterial infections is still largely unexplored. We studied the host response to the murine A/E pathogen Citrobacter rodentium to investigate NK-cell function during infection. NK1.1⁺ cell depletions and analysis of colonic intestinal inflammation following Citrobacter infection demonstrated that CD3⁻NK1.1⁺ cells play an important role in the initial clearance of C. rodentium, as evidenced by higher bacterial load, intestinal pathology, and crypt hyperplasia at the peak of inflammation in depleted mice. Loss of CD3⁻NK1.1⁺ cells resulted in lower colonic IFN-γ, TNF-α, and IL-12, and a delay in homing of IFN-γ⁺CD4⁺ T cells to the gut. Loss of this response resulted in lower anti-C. rodentium IgG in NK1.1-depleted mice. These data establish that CD3⁻NK1.1⁺ cells are critical for inducing an early Th1 response involved in clearance of a pathogen that is restricted to the gastrointestinal tract.
Collapse
Affiliation(s)
- Sarah A Reid-Yu
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
49
|
Fakultas Peternakan, Universitas Gadjah Mada, Yogyakarta, Indonesia, Julia M, Harmayani E, Baliarti E. Mucosal and Cellular Immune Response of Rat Given Goat Milk Powder and Infected with Salmonella Typhimurium. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2013. [DOI: 10.6066/jtip.2013.24.1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Neonatal immune adaptation of the gut and its role during infections. Clin Dev Immunol 2013; 2013:270301. [PMID: 23737810 PMCID: PMC3659470 DOI: 10.1155/2013/270301] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022]
Abstract
The intestinal tract is engaged in a relationship with a dense and complex microbial ecosystem, the microbiota. The establishment of this symbiosis is essential for host physiology, metabolism, and immune homeostasis. Because newborns are essentially sterile, the first exposure to microorganisms and environmental endotoxins during the neonatal period is followed by a crucial sequence of active events leading to immune tolerance and homeostasis. Contact with potent immunostimulatory molecules starts immediately at birth, and the discrimination between commensal bacteria and invading pathogens is essential to avoid an inappropriate immune stimulation and/or host infection. The dysregulation of these tight interactions between host and microbiota can be responsible for important health disorders, including inflammation and sepsis. This review summarizes the molecular events leading to the establishment of postnatal immune tolerance and how pathogens can avoid host immunity and induce neonatal infections and sepsis.
Collapse
|