1
|
McAuliffe J, Panetti S, Steffke E, Wicki A, Pereira-Almeida V, Noblecourt L, Hu Y, Guo SYW, Lesenfants J, Ramirez-Valdez RA, Chandrasekar V, Ahmad M, Stroobant V, Vigneron N, Van den Eynde BJ, Leung CSK. Novel H-2D b-restricted CD8 epitope derived from mouse MAGE-type antigen P1A mediates antitumor immunity in C57BL/6 mice. J Immunother Cancer 2024; 12:e008998. [PMID: 39384196 PMCID: PMC11474967 DOI: 10.1136/jitc-2024-008998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/08/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Melanoma antigen gene (MAGE)-type antigens are promising targets for cancer immunotherapy as they are expressed in cancer cells but not in normal tissues, except for male germline cells. The mouse P1A antigen shares this MAGE-type expression pattern and has been used as a target antigen in preclinical tumor models aiming to induce antitumor CD8+ T-cell responses. However, so far only one MHC I-restricted P1A epitope has been identified. It is presented by H-2Ld in mice of the H-2d genetic background such as DBA/2 and BALB/c. Given the availability of multiple genetically altered strains of mice in the C57BL/6 background, it would be useful to define P1A T-cell epitopes presented by the H-2b haplotype, to facilitate more refined mechanistic studies. METHODS We employed a heterologous prime-boost vaccination strategy based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding P1A, to induce P1A-specific T-cell responses in C57BL/6 mice. Vaccine-induced responses were measured by intracellular cytokine staining and multiparameter flow cytometry. We mapped the immunogenic CD8 epitope and cloned the cognate T-cell receptor (TCR), which we used for adoptive cell therapy. RESULTS ChAdOx1/MVA-P1A vaccination induces a strong P1A-specific CD8+ T-cell response in C57BL/6 mice. This response is directed against a single 9-amino acid peptide with sequence FAVVTTSFL, corresponding to P1A amino acids 43-51. It is presented by H-2Db. P1A vaccination, especially with ChAdOx1 administered intramuscularly and MVA delivered intravenously, protected mice against P1A-expressing EL4 (EL4.P1A) tumor cell challenge. We identified and cloned four TCRs that are specific for the H-2Db-restricted P1A43-51 peptide. T cells transduced with these TCRs recognized EL4.P1A but not MC38.P1A and B16F10.P1A tumor cells, likely due to differences in the proteasome subtypes present in these cells. Adoptive transfer of these T cells in mice bearing EL4.P1A tumors reduced tumor growth and increased survival. CONCLUSIONS We identified the first CD8+ T-cell epitope of the MAGE-type P1A tumor antigen presented in the H-2b background. This opens new perspectives for mechanistic studies dissecting MAGE-type specific antitumor immunity, making use of the wealth of genetically altered mouse strains available in the C57BL/6 background. This should facilitate the advancement of specific cancer immunotherapies.
Collapse
Affiliation(s)
- James McAuliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Silvia Panetti
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emily Steffke
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amanda Wicki
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vinnycius Pereira-Almeida
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurine Noblecourt
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yushu Hu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Immunology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Shi Yu William Guo
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julie Lesenfants
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
| | | | | | - Maryam Ahmad
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vincent Stroobant
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Nathalie Vigneron
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- de Duve Institute, UCLouvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, de Duve Institute, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Brussels, Belgium
| | - Carol Sze Ki Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Pampeno C, Hurtado A, Opp S, Meruelo D. Channeling the Natural Properties of Sindbis Alphavirus for Targeted Tumor Therapy. Int J Mol Sci 2023; 24:14948. [PMID: 37834397 PMCID: PMC10573789 DOI: 10.3390/ijms241914948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Sindbis alphavirus vectors offer a promising platform for cancer therapy, serving as valuable models for alphavirus-based treatment. This review emphasizes key studies that support the targeted delivery of Sindbis vectors to tumor cells, highlighting their effectiveness in expressing tumor-associated antigens and immunomodulating proteins. Among the various alphavirus vectors developed for cancer therapy, Sindbis-vector-based imaging studies have been particularly extensive. Imaging modalities that enable the in vivo localization of Sindbis vectors within lymph nodes and tumors are discussed. The correlation between laminin receptor expression, tumorigenesis, and Sindbis virus infection is examined. Additionally, we present alternative entry receptors for Sindbis and related alphaviruses, such as Semliki Forest virus and Venezuelan equine encephalitis virus. The review also discusses cancer treatments that are based on the alphavirus vector expression of anti-tumor agents, including tumor-associated antigens, cytokines, checkpoint inhibitors, and costimulatory immune molecules.
Collapse
Affiliation(s)
| | | | | | - Daniel Meruelo
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| |
Collapse
|
3
|
McAuliffe J, Chan HF, Noblecourt L, Ramirez-Valdez RA, Pereira-Almeida V, Zhou Y, Pollock E, Cappuccini F, Redchenko I, Hill AV, Leung CSK, Van den Eynde BJ. Heterologous prime-boost vaccination targeting MAGE-type antigens promotes tumor T-cell infiltration and improves checkpoint blockade therapy. J Immunother Cancer 2021; 9:jitc-2021-003218. [PMID: 34479921 PMCID: PMC8420668 DOI: 10.1136/jitc-2021-003218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Background The clinical benefit of immune checkpoint blockade (ICB) therapy is often limited by the lack of pre-existing CD8+ T cells infiltrating the tumor. In principle, CD8+ T-cell infiltration could be promoted by therapeutic vaccination. However, this remains challenging given the paucity of vaccine platforms able to induce the strong cytotoxic CD8+ T-cell response required to reject tumors. A therapeutic cancer vaccine that induces a robust cytotoxic CD8+ T-cell response against shared tumor antigens and can be combined with ICB could improve the outcome of cancer immunotherapy. Methods Here, we developed a heterologous prime-boost vaccine based on a chimpanzee adenovirus (ChAdOx1) and a modified vaccinia Ankara (MVA) encoding MAGE-type antigens, which are tumor-specific shared antigens expressed in different tumor types. The mouse MAGE-type antigen P1A was used as a surrogate to study the efficacy of the vaccine in combination with ICB in murine tumor models expressing the P1A antigen. To characterize the vaccine-induced immune response, we performed flow cytometry and transcriptomic analyses. Results The ChAdOx1/MVA vaccine displayed strong immunogenicity with potent induction of CD8+ T cells. When combined with anti-Programmed Cell Death Protein 1 (PD-1), the vaccine induced superior tumor clearance and survival in murine tumor models expressing P1A compared with anti-PD-1 alone. Remarkably, ChAdOx1/MVA P1A vaccination promoted CD8+ T-cell infiltration in the tumors, and drove inflammation in the tumor microenvironment, turning ‘cold’ tumors into ‘hot’ tumors. Single-cell transcriptomic analysis of the P1A-specific CD8+ T cells revealed an expanded population of stem-like T cells in the spleen after the combination treatment as compared with vaccine alone, and a reduced PD-1 expression in the tumor CD8+ T cells. Conclusions These findings highlight the synergistic potency of ChAdOx1/MVA MAGE vaccines combined with anti-PD-1 for cancer therapy, and establish the foundation for clinical translation of this approach. A clinical trial of ChadOx1/MVA MAGE-A3/NY-ESO-1 combined with anti-PD-1 will commence shortly.
Collapse
Affiliation(s)
- James McAuliffe
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hok Fung Chan
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurine Noblecourt
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Vinnycius Pereira-Almeida
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Département Biologie, Université Claude Bernard Lyon 1, Villeurbanne, Auvergne-Rhône-Alpes, France
| | - Yaxuan Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Emily Pollock
- The Jenner Institute, Nuffield Department of Medicine, University of oxford, Oxford, UK
| | - Federica Cappuccini
- The Jenner Institute, Nuffield Department of Medicine, University of oxford, Oxford, UK
| | - Irina Redchenko
- The Jenner Institute, Nuffield Department of Medicine, University of oxford, Oxford, UK
| | - Adrian Vs Hill
- The Jenner Institute, Nuffield Department of Medicine, University of oxford, Oxford, UK
| | - Carol Sze Ki Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Ludwig Institute for Cancer Research, WELBIO, de Duve Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
4
|
Canè S, Van Snick J, Uyttenhove C, Pilotte L, Van den Eynde BJ. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J Immunother Cancer 2021; 9:e001798. [PMID: 33637600 PMCID: PMC7919595 DOI: 10.1136/jitc-2020-001798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Transforming growth factor-β (TGFβ) is emerging as a promising target for cancer therapy, given its ability to promote progression of advanced tumors and to suppress anti-tumor immune responses. However, TGFβ also plays multiple roles in normal tissues, particularly during organogenesis, raising toxicity concerns about TGFβ blockade. Dose-limiting cardiovascular toxicity was observed, possibly due to the blockade of all three TGFβ isoforms. The dominant isoform in tumors is TGFβ1, while TGFβ2 and TGFβ3 seem to be more involved in cardiovascular development. Recent data indicated that selective targeting of TGFβ1 promoted the efficacy of checkpoint inhibitor anti-PD1 in transplanted preclinical tumor models, without cardiovascular toxicity. METHODS To further explore the therapeutic potential of isoform-specific TGFβ blockade, we developed neutralizing mAbs targeting mature TGFβ1 or TGFβ3, and tested them, in parallel with anti-panTGFβ mAb 1D11, in two preclinical models: the transplanted colon cancer model CT26, and the autochthonous melanoma model TiRP. RESULTS We observed that the blockade of TGFβ1, but not that of TGFβ3, increased the efficacy of a prophylactic cellular vaccine against colon cancer CT26. This effect was similar to pan-TGFβ blockade, and was associated with increased infiltration of activated CD8 T cells in the tumor, and reduced levels of regulatory T cells and myeloid-derived suppressor cells. In contrast, in the autochthonous TiRP melanoma model, we observed therapeutic efficacy of the TGFβ1-specific mAb as a single agent, while the TGFβ3 mAb was inactive. In this model, the anti-tumor effect of TGFβ1 blockade was tumor intrinsic rather than immune mediated, as it was also observed in T-cell depleted mice. Mechanistically, TGFβ1 blockade increased mouse survival by delaying the phenotype switch, akin to epithelial-to-mesenchymal transition (EMT), which transforms initially pigmented tumors into highly aggressive unpigmented tumors. CONCLUSIONS Our results confirm TGFβ1 as the relevant isoform to target for cancer therapy, not only in combination with checkpoint inhibitors, but also with other immunotherapies such as cancer vaccines. Moreover, TGFβ1 blockade can also act as a monotherapy, through a tumor-intrinsic effect blocking the EMT-like transition. Because human melanomas that resist therapy often express a gene signature that links TGFβ1 with EMT-related genes, these results support the clinical development of TGFβ1-specific mAbs in melanoma.
Collapse
Affiliation(s)
- Stefania Canè
- Ludwig Institute for Cancer Research, De Duve Institute, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | - Jacques Van Snick
- Ludwig Institute for Cancer Research, De Duve Institute, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Catherine Uyttenhove
- Ludwig Institute for Cancer Research, De Duve Institute, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, De Duve Institute, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- WELBIO, UCLouvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, De Duve Institute, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- WELBIO, UCLouvain, Brussels, Belgium
| |
Collapse
|
5
|
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells 2020; 9:E2671. [PMID: 33322641 PMCID: PMC7762980 DOI: 10.3390/cells9122671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.
Collapse
Affiliation(s)
| | | | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.W.); (P.Z.)
| |
Collapse
|
6
|
Pol JG, Bridle BW, Lichty BD. Detection of Tumor Antigen-Specific T-Cell Responses After Oncolytic Vaccination. Methods Mol Biol 2020; 2058:191-211. [PMID: 31486039 DOI: 10.1007/978-1-4939-9794-7_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncolytic vaccines, which consist of recombinant oncolytic viruses (OV) encoding tumor-associated antigens (TAAs), have demonstrated potent antitumor efficacy in preclinical models and are currently evaluated in phase I/II clinical trials. On one hand, oncolysis of OV-infected malignant entities reinstates cancer immunosurveillance. On the other hand, overexpression of TAAs in infected cells further stimulates the adaptive arm of antitumor immunity. Particularly, the presence of tumor-specific CD8+ T lymphocytes within the tumor microenvironment, as well as in the periphery, has demonstrated prognostic value for cancer treatments. These effector CD8+ T cells can be detected through their production of the prototypical Tc1 cytokine: IFN-γ. The quantitative and qualitative assessment of this immune cell subset remains critical in the development process of efficient cancer vaccines, including oncolytic vaccines. The present chapter will describe a single-cell immunological assay, namely the intracellular cytokine staining (ICS), that allows the enumeration of IFN-γ-producing TAA-specific CD8+ T cells in various tissues (tumor, blood, lymphoid organs) following oncolytic vaccination.
Collapse
Affiliation(s)
- Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,INSERM, U1138, Paris, France. .,Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. .,Université de Paris, Paris, France. .,Sorbonne Université, Paris, France.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada. .,Turnstone Biologics, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 2019; 18:689-706. [PMID: 31292532 DOI: 10.1038/s41573-019-0029-0] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
In the wake of the success of modern immunotherapy, oncolytic viruses (OVs) are currently seen as a potential therapeutic option for patients with cancer who do not respond or fail to achieve durable responses following treatment with immune checkpoint inhibitors. OVs offer a multifaceted therapeutic platform because they preferentially replicate in tumour cells, can be engineered to express transgenes that augment their cytotoxic and immunostimulatory activities, and modulate the tumour microenvironment to optimize immune-mediated tumour eradication, both at locoregional and systemic sites of disease. Lysis of tumour cells releases tumour-specific antigens that trigger both the innate and adaptive immune systems. OVs also represent attractive combination partners with other systemically delivered agents by virtue of their highly favourable safety profiles. Rational combinations of OVs with different immune modifiers and/or antitumour agents, based on mechanisms of tumour resistance to immune-mediated attack, may benefit the large, currently underserved, population of patients who respond poorly to immune checkpoint inhibition.
Collapse
Affiliation(s)
- Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | | | - Beth Kelly
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Jean-Charles Soria
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA.,Department of Medicine and Medical Oncology, Université Paris-Sud, Orsay, France
| |
Collapse
|
8
|
Singh A, Koutsoumpli G, van de Wall S, Daemen T. An alphavirus-based therapeutic cancer vaccine: from design to clinical trial. Cancer Immunol Immunother 2019; 68:849-859. [PMID: 30465060 PMCID: PMC11028389 DOI: 10.1007/s00262-018-2276-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/09/2018] [Indexed: 01/25/2023]
Abstract
Cancer immunotherapy has greatly advanced in recent years. Most immunotherapeutic strategies are based on the use of immune checkpoint blockade to unleash antitumor immune responses or on the induction or adoptive transfer of immune effector cells. We aim to develop therapeutic vaccines based on recombinant Semliki Forest virus vectors to induce tumor-specific effector immune cells. In this review, we describe our ongoing work on SFV-based vaccines targeted against human papillomavirus- and hepatitis C virus-related infections and malignancies, focusing on design, delivery, combination strategies, preclinical efficacy and product development for a first-in-man clinical trial with an HPV-specific vaccine.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, HPC EB88, PO Box 30.001, 9700RB, Groningen, The Netherlands
| | - Georgia Koutsoumpli
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, HPC EB88, PO Box 30.001, 9700RB, Groningen, The Netherlands
| | - Stephanie van de Wall
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, HPC EB88, PO Box 30.001, 9700RB, Groningen, The Netherlands
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, HPC EB88, PO Box 30.001, 9700RB, Groningen, The Netherlands.
| |
Collapse
|
9
|
Vigneron N, Ferrari V, Van den Eynde BJ, Cresswell P, Leonhardt RM. Cytosolic Processing Governs TAP-Independent Presentation of a Critical Melanoma Antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1875-1888. [PMID: 30135181 PMCID: PMC6457910 DOI: 10.4049/jimmunol.1701479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/26/2018] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapy has been flourishing in recent years with remarkable clinical success. But as more patients are treated, a shadow is emerging that has haunted other cancer therapies: tumors develop resistance. Resistance is often caused by defects in the MHC class I Ag presentation pathway critical for CD8 T cell-mediated tumor clearance. TAP and tapasin, both key players in the pathway, are frequently downregulated in human cancers, correlating with poor patient survival. Reduced dependence on these factors may promote vaccine efficiency by limiting immune evasion. In this study, we demonstrate that PMEL209-217, a promising phase 3 trial-tested antimelanoma vaccine candidate, is robustly presented by various TAP- and/or tapasin-deficient cell lines. This striking characteristic may underlie its potency as a vaccine. Surprisingly, cytosolic proteasomes generate the peptide even for TAP-independent presentation, whereas tripeptidyl peptidase 2 (TPP2) efficiently degrades the epitope. Consequently, inhibiting TPP2 substantially boosts PMEL209-217 presentation, suggesting a possible strategy to improve the therapeutic efficacy of the vaccine.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium
- de Duve Institute, University of Louvain, Brussels B-1200, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Violette Ferrari
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium
- de Duve Institute, University of Louvain, Brussels B-1200, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Benoît J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium;
- de Duve Institute, University of Louvain, Brussels B-1200, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Peter Cresswell
- Department of Immunobiology, Yale University, New Haven, CT 06519; and
- Department of Cell Biology, Yale University, New Haven, CT 06519
| | - Ralf M Leonhardt
- Department of Immunobiology, Yale University, New Haven, CT 06519; and
| |
Collapse
|
10
|
Pol JG, Acuna SA, Yadollahi B, Tang N, Stephenson KB, Atherton MJ, Hanwell D, El-Warrak A, Goldstein A, Moloo B, Turner PV, Lopez R, LaFrance S, Evelegh C, Denisova G, Parsons R, Millar J, Stoll G, Martin CG, Pomoransky J, Breitbach CJ, Bramson JL, Bell JC, Wan Y, Stojdl DF, Lichty BD, McCart JA. Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology 2018; 8:e1512329. [PMID: 30546947 PMCID: PMC6287790 DOI: 10.1080/2162402x.2018.1512329] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple immunotherapeutics have been approved for cancer patients, however advanced solid tumors are frequently refractory to treatment. We evaluated the safety and immunogenicity of a vaccination approach with multimodal oncolytic potential in non-human primates (NHP) (Macaca fascicularis). Primates received a replication-deficient adenoviral prime, boosted by the oncolytic Maraba MG1 rhabdovirus. Both vectors expressed the human MAGE-A3. No severe adverse events were observed. Boosting with MG1-MAGEA3 induced an expansion of hMAGE-A3-specific CD4+ and CD8+ T-cells with the latter peaking at remarkable levels and persisting for several months. T-cells reacting against epitopes fully conserved between simian and human MAGE-A3 were identified. Humoral immunity was demonstrated by the detection of circulating MAGE-A3 antibodies. These preclinical data establish the capacity for the Ad:MG1 vaccination to engage multiple effector immune cell populations without causing significant toxicity in outbred NHPs. Clinical investigations utilizing this program for the treatment of MAGE-A3-positive solid malignancies are underway (NCT02285816, NCT02879760).
Collapse
Affiliation(s)
- Jonathan G Pol
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sergio A Acuna
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Beta Yadollahi
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Nan Tang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Matthew J Atherton
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - David Hanwell
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | | | - Alyssa Goldstein
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Badru Moloo
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Roberto Lopez
- Animal Resources Centre, University Health Network, Toronto, ON, Canada
| | - Sandra LaFrance
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Carole Evelegh
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Galina Denisova
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Robin Parsons
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jamie Millar
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Gautier Stoll
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Sorbonne Universités/Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Jonathan L Bramson
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - John C Bell
- Turnstone Biologics, Ottawa, ON, Canada.,Ottawa Health Research Institute, Ottawa, ON, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - David F Stojdl
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Turnstone Biologics, Ottawa, ON, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Turnstone Biologics, Ottawa, ON, Canada
| | - J Andrea McCart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, Mount Sinai Hospital and University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
van de Wall S, Ljungberg K, Ip PP, Boerma A, Knudsen ML, Nijman HW, Liljeström P, Daemen T. Potent therapeutic efficacy of an alphavirus replicon DNA vaccine expressing human papilloma virus E6 and E7 antigens. Oncoimmunology 2018; 7:e1487913. [PMID: 30288352 PMCID: PMC6169581 DOI: 10.1080/2162402x.2018.1487913] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Cervical cancer develops as a result of infection with high-risk human papillomavirus (HPV) through persistent expression of early proteins E6 and E7. Our group pioneered a recombinant viral vector system based on Semliki Forest virus (SFV) for vaccination against cervical cancer. The most striking benefit of this alphavirus vector-based vaccine platform is its high potency. DNA vaccines on the other hand, have a major advantage with respect to ease of production. In this study, the benefits associated with both SFV-based vaccines and DNA vaccines were combined with the development of a DNA-launched RNA replicon (DREP) vaccine targeting cervical cancer. Using intradermal delivery followed by electroporation, we demonstrated that DREP encoding for E6,7 (DREP-E6,7) induced effective, therapeutic antitumor immunity. While immunizations with a conventional DNA vaccine did not prevent tumor outgrowth, immunization with a 200-fold lower equimolar dose of DREP (0.05 µg of DREP) resulted in approximately 85% of tumor-free mice. To overcome the safety concern of potential malignant transformation at the vaccination site, we evaluated the anti-tumor effect of a DREP vaccine encoding a shuffled version of E7 (DREP-E7sh). DREP-E7sh delayed tumor growth yet not to the same extent as DREP-E6,7. In addition, inclusion of a helper cassette and an ER targeting signal (sigHelp) did not significantly further enhance the suppression of tumor outgrowth in the long term, albeit exhibiting better tumor control early after immunization. Collectively, this study points towards the clinical evaluation of DREP encoding HPV antigens as a potent immunotherapy for patients with HPV16 (pre)-malignancies.
Collapse
Affiliation(s)
- Stephanie van de Wall
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Peng Peng Ip
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annemarie Boerma
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maria L Knudsen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hans W Nijman
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Toos Daemen
- Department of Medical Microbiology, Tumor Virology and Cancer Immunotherapy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Ngu LN, Nji NN, Ambada G, Ngoh AA, Njambe Priso GD, Tchadji JC, Lissom A, Magagoum SH, Sake CN, Tchouangueu TF, Chukwuma GO, Okoli AS, Sagnia B, Chukwuanukwu R, Tebit DM, Esimone CO, Waffo AB, Park CG, Überla K, Nchinda GW. Dendritic cell targeted HIV-1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8 + T cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:163-175. [PMID: 29205929 PMCID: PMC5818444 DOI: 10.1002/iid3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
Introduction Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune‐modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV‐1 gag protein (DEC‐Gag) vaccine; for the induction of helper CD4+ T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV‐1 Gag P55 (rNDV‐L‐Gag) vaccine. Methods We do so through successive administration of anti‐DEC205‐gagP24 protein plus polyICLC (DEC‐Gag) vaccine and rNDV‐L‐Gag. First strong gag specific helper CD4+ T cells are induced in mice by selected targeting of anti‐DEC205‐gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV‐L‐Gag vaccine and improved both systemic and mucosal gag specific immunity. Results This sequential DEC‐Gag vaccine prime followed by an rNDV‐L‐gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8+ T cells to a pathogenic virus infection site. Conclusion Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8+T cells to a pathogenic virus infection site such as the murine airway.
Collapse
Affiliation(s)
- Loveline N Ngu
- Department of Biochemistry, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon.,Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon
| | - Nadesh N Nji
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon
| | - Georgia Ambada
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Apeh A Ngoh
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of biomedical sciences, University of Dschang, Dschang, Cameroon
| | - Ghislain D Njambe Priso
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Jules C Tchadji
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Suzanne H Magagoum
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Carol N Sake
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Microbiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Thibau F Tchouangueu
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of biochemistry, University of Dschang, Dschang, Cameroon
| | - George O Chukwuma
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Medical Laboratory Science College of Medicine, Nnewi Campus, Nnamdi Azikiwe University, Awka, Anambra
| | | | - Bertrand Sagnia
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon
| | - Rebecca Chukwuanukwu
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Medical Laboratory Science College of Medicine, Nnewi Campus, Nnamdi Azikiwe University, Awka, Anambra
| | - Denis M Tebit
- Myles Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, Jordan Hall 7088, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22903, USA
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Alain B Waffo
- Department of Biological Sciences # 223, Alabama State University, 1627, Hall Street, Montgomery, Alabama 36104, USA
| | - Chae G Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
14
|
Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun 2017; 8:1404. [PMID: 29123081 PMCID: PMC5680273 DOI: 10.1038/s41467-017-00784-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 07/27/2017] [Indexed: 12/15/2022] Open
Abstract
Despite impressive clinical success, cancer immunotherapy based on immune checkpoint blockade remains ineffective in many patients due to tumoral resistance. Here we use the autochthonous TiRP melanoma model, which recapitulates the tumoral resistance signature observed in human melanomas. TiRP tumors resist immunotherapy based on checkpoint blockade, cancer vaccines or adoptive T-cell therapy. TiRP tumors recruit and activate tumor-specific CD8+ T cells, but these cells then undergo apoptosis. This does not occur with isogenic transplanted tumors, which are rejected after adoptive T-cell therapy. Apoptosis of tumor-infiltrating lymphocytes can be prevented by interrupting the Fas/Fas-ligand axis, and is triggered by polymorphonuclear-myeloid-derived suppressor cells, which express high levels of Fas-ligand and are enriched in TiRP tumors. Blocking Fas-ligand increases the anti-tumor efficacy of adoptive T-cell therapy in TiRP tumors, and increases the efficacy of checkpoint blockade in transplanted tumors. Therefore, tumor-infiltrating lymphocytes apoptosis is a relevant mechanism of immunotherapy resistance, which could be blocked by interfering with the Fas/Fas-ligand pathway. Cancer immunotherapy is ineffective in a subset of patients. Here the authors show that, in a mouse model of melanoma, resistance to immune checkpoint inhibitors relies on loss of tumor-specific T cells through FasL-mediated apoptosis triggered by polymorphonuclear-myeloid-derived suppressor cells.
Collapse
|
15
|
Vigneron N, Abi Habib J, Van den Eynde BJ. Learning from the Proteasome How To Fine-Tune Cancer Immunotherapy. Trends Cancer 2017; 3:726-741. [PMID: 28958390 DOI: 10.1016/j.trecan.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Cancer immunotherapy has recently emerged as a forefront strategy to fight cancer. Key players in antitumor responses are CD8+ cytolytic T lymphocytes (CTLs) that can detect tumor cells that carry antigens, in other words, small peptides bound to surface major histocompatibility complex (MHC) class I molecules. The success and safety of cancer immunotherapy strategies depends on the nature of the antigens recognized by the targeted T cells, their strict tumor specificity, and whether tumors and antigen-presenting cells can efficiently process the peptide. We review here the nature of the tumor antigens and their potential for the development of immunotherapeutic strategies. We also discuss the importance of proteasome in the production of these peptides in the context of immunotherapy and therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Joanna Abi Habib
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| |
Collapse
|
16
|
Lopes A, Vanvarenberg K, Préat V, Vandermeulen G. Codon-Optimized P1A-Encoding DNA Vaccine: Toward a Therapeutic Vaccination against P815 Mastocytoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:404-415. [PMID: 28918040 PMCID: PMC5537203 DOI: 10.1016/j.omtn.2017.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022]
Abstract
DNA vaccine can be modified to increase protein production and modulate immune response. To enhance the efficiency of a P815 mastocytoma DNA vaccine, the P1A gene sequence was optimized by substituting specific codons with synonymous ones while modulating the number of CpG motifs. The P815A murine antigen production was increased with codon-optimized plasmids. The number of CpG motifs within the P1A gene sequence modulated the immunogenicity by inducing a local increase in the cytokines involved in innate immunity. After prophylactic immunization with the optimized vaccines, tumor growth was significantly delayed and mice survival was improved. Consistently, a more pronounced intratumoral recruitment of CD8+ T cells and a memory response were observed. Therapeutic vaccination was able to delay tumor growth when the codon-optimized DNA vaccine containing the highest number of CpG motifs was used. Our data demonstrate the therapeutic potential of optimized P1A vaccine against P815 mastocytoma, and they show the dual role played by codon optimization on both protein production and innate immune activation.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, B1.73.12, 1200 Brussels, Belgium.
| | - Gaëlle Vandermeulen
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, B1.73.12, 1200 Brussels, Belgium
| |
Collapse
|
17
|
Holay N, Kim Y, Lee P, Gujar S. Sharpening the Edge for Precision Cancer Immunotherapy: Targeting Tumor Antigens through Oncolytic Vaccines. Front Immunol 2017; 8:800. [PMID: 28751892 PMCID: PMC5507961 DOI: 10.3389/fimmu.2017.00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy represents a promising, modern-age option for treatment of cancers. Among the many immunotherapies being developed, oncolytic viruses (OVs) are slowly moving to the forefront of potential clinical therapeutic agents, especially considering the fact that the first oncolytic virus was recently approved by the Food and Drug Administration for the treatment of melanoma. OVs were originally discovered for their ability to kill cancer cells, but they have emerged as unconventional cancer immunotherapeutics due to their ability to activate a long-term antitumor immune response. This immune response not only eliminates cancer cells but also offers potential for preventing cancer recurrence. A fundamental requirement for the generation of such a strong antitumor T cell response is the recognition of an immunogenic tumor antigen by the antitumor T cell. Several tumor antigens capable of activating these antitumor T cells have been identified and are now being expressed through genetically engineered OVs to potentiate antitumor immunity. With the emergence of novel technologies for identifying tumor antigens and immunogenic epitopes in a myriad of cancers, design of "oncolytic vaccines" expressing highly specific tumor antigens provides a great strategy for targeting tumors. Here, we highlight the various OVs engineered to target tumor antigens and discuss multiple studies and strategies used to develop oncolytic vaccine regimens. We also contend how, going forward, a combination of technologies for identifying novel immunogenic tumor antigens and rational design of oncolytic vaccines will pave the way for the next generation of clinically efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Namit Holay
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick Lee
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
- *Correspondence: Shashi Gujar,
| |
Collapse
|
18
|
Zaric M, Ibarzo Yus B, Kalcheva PP, Klavinskis LS. Microneedle-mediated delivery of viral vectored vaccines. Expert Opin Drug Deliv 2016; 14:1177-1187. [PMID: 27591122 DOI: 10.1080/17425247.2017.1230096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.
Collapse
Affiliation(s)
- Marija Zaric
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | - Bárbara Ibarzo Yus
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | | | | |
Collapse
|
19
|
Zappasodi R, Merghoub T. Alphavirus-based vaccines in melanoma: rationale and potential improvements in immunotherapeutic combinations. Immunotherapy 2015; 7:981-97. [DOI: 10.2217/imt.15.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade has formally demonstrated the clinical benefit of immunotherapy against melanoma. New immunotherapeutic modalities are currently explored to improve the management of relapsing/refractory patients. Potent antitumor vaccines would have the advantage to promote long-lasting tumor control while limiting autoimmunity. Alphavirus vectors and nonreplicating particles offer versatile platforms to deliver antigen expression and immunize against cancer. They have shown promising preclinical results and initial proof of clinical activity in melanoma. The growing number of clinically available immunomodulatory agents provides a tremendous opportunity to exploit and revisit anticancer vaccines in the setting of powerful immunotherapeutic combinations. Accelerating the evaluation of alphavirus-based vaccines in patients with immune sensitive, but still very deadly malignancies, such as melanoma, is thus extremely important.
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative & Swim Across America Laboratory, New York, NY, USA
| | - Taha Merghoub
- Ludwig Collaborative & Swim Across America Laboratory, New York, NY, USA
- Melanoma & Immunotherapeutics Service MSKCC, New York, NY, USA
| |
Collapse
|
20
|
Giordano M, Henin C, Maurizio J, Imbratta C, Bourdely P, Buferne M, Baitsch L, Vanhille L, Sieweke MH, Speiser DE, Auphan-Anezin N, Schmitt-Verhulst AM, Verdeil G. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. EMBO J 2015; 34:2042-58. [PMID: 26139534 DOI: 10.15252/embj.201490786] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/08/2015] [Indexed: 01/12/2023] Open
Abstract
T cells infiltrating neoplasms express surface molecules typical of chronically virus-stimulated T cells, often termed "exhausted" T cells. We compared the transcriptome of "exhausted" CD8 T cells infiltrating autochthonous melanomas to those of naïve and acutely stimulated CD8 T cells. Despite strong similarities between transcriptional signatures of tumor- and virus-induced exhausted CD8 T cells, notable differences appeared. Among transcriptional regulators, Nr4a2 and Maf were highly overexpressed in tumor-exhausted T cells and significantly upregulated in CD8 T cells from human melanoma metastases. Transduction of murine tumor-specific CD8 T cells to express Maf partially reproduced the transcriptional program associated with tumor-induced exhaustion. Upon adoptive transfer, the transduced cells showed normal homeostasis but failed to accumulate in tumor-bearing hosts and developed defective anti-tumor effector responses. We further identified TGFβ and IL-6 as main inducers of Maf expression in CD8 T cells and showed that Maf-deleted tumor-specific CD8 T cells were much more potent to restrain tumor growth in vivo. Therefore, the melanoma microenvironment contributes to skewing of CD8 T cell differentiation programs, in part by TGFβ/IL-6-mediated induction of Maf.
Collapse
Affiliation(s)
- Marilyn Giordano
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Coralie Henin
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Julien Maurizio
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Claire Imbratta
- Clinical Tumor Biology & Immunotherapy Group, Department of Oncology and Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
| | - Pierre Bourdely
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Michel Buferne
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Lukas Baitsch
- Clinical Tumor Biology & Immunotherapy Group, Department of Oncology and Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
| | - Laurent Vanhille
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Michael H Sieweke
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Daniel E Speiser
- Clinical Tumor Biology & Immunotherapy Group, Department of Oncology and Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Auphan-Anezin
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Anne-Marie Schmitt-Verhulst
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| | - Grégory Verdeil
- Centre d'Immunologie de Marseille-Luminy (CIML), UM2 Aix-Marseille Université, Marseille Cedex 9, France INSERM U1104, Marseille, France CNRS UMR7280, Marseille, France
| |
Collapse
|
21
|
Human Tumor Antigens and Cancer Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:948501. [PMID: 26161423 PMCID: PMC4487697 DOI: 10.1155/2015/948501] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 01/21/2023]
Abstract
With the recent developments of adoptive T cell therapies and the use of new monoclonal antibodies against the immune checkpoints, immunotherapy is at a turning point. Key players for the success of these therapies are the cytolytic T lymphocytes, which are a subset of T cells able to recognize and kill tumor cells. Here, I review the nature of the antigenic peptides recognized by these T cells and the processes involved in their presentation. I discuss the importance of understanding how each antigenic peptide is processed in the context of immunotherapy and vaccine delivery.
Collapse
|
22
|
Vandermeulen G, Vanvarenberg K, De Beuckelaer A, De Koker S, Lambricht L, Uyttenhove C, Reschner A, Vanderplasschen A, Grooten J, Préat V. The site of administration influences both the type and the magnitude of the immune response induced by DNA vaccine electroporation. Vaccine 2015; 33:3179-85. [PMID: 25980430 DOI: 10.1016/j.vaccine.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/10/2015] [Accepted: 05/04/2015] [Indexed: 11/28/2022]
Abstract
We investigated the influence of the site of administration of DNA vaccine on the induced immune response. DNA vaccines were administered by electroporation at three different sites: tibial cranial muscle, abdominal skin and ear pinna. Aiming to draw general conclusions about DNA vaccine delivery, we successively used several plasmids encoding either luciferase and ovalbumin as models or gp160 and P1A as vaccines against HIV and P815 mastocytoma, respectively. Low levels and duration of luciferase transgene expression were observed after electroporation of the abdominal skin, partly explaining its lower immunogenic performance as compared to the other sites of administration. Analyses of OT-I CD8+ and OT-II CD4+ T cell responses highlighted the differential impact of the delivery site on the elicited immune response. Muscle electroporation induced the strongest humoral immune response and both muscle and ear pinna sites induced cellular immunity against gp160. Ear pinna delivery generated the highest level of CTL responses against P1A but electroporation of muscle and ear pinna were equally efficient in delaying P815 growth and improving mice survival. The present study demonstrated that the site of administration is a key factor to be tested in the development of DNA vaccine.
Collapse
Affiliation(s)
- Gaëlle Vandermeulen
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Ans De Beuckelaer
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefaan De Koker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laure Lambricht
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Catherine Uyttenhove
- Université catholique de Louvain, Ludwig Institute for Cancer Research, Brussels Branch and de Duve Institute, Brussels, Belgium
| | - Anca Reschner
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium.
| |
Collapse
|
23
|
Overcoming tumor resistance by heterologous adeno-poxvirus combination therapy. MOLECULAR THERAPY-ONCOLYTICS 2015; 1:14006. [PMID: 27119097 PMCID: PMC4782942 DOI: 10.1038/mto.2014.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
Successful cancer control relies on overcoming resistance to cell death and on activation of host antitumor immunity. Oncolytic viruses are particularly attractive in this regard, as they lyse infected tumor cells and trigger robust immune responses during the infection. However, repeated injections of the same virus promote antiviral rather than antitumor immunity and tumors may mount innate antiviral defenses to restrict oncolytic virus replication. In this article, we have explored if alternating the therapy virus could circumvent these problems. We demonstrate in two virus-resistant animal models a substantial delay in antiviral immune- and innate cellular response induction by alternating injections of two immunologically distinct oncolytic viruses, adenovirus, and vaccinia virus. Our results are in support of clinical development of heterologous adeno-/vaccinia virus therapy of cancer.
Collapse
|
24
|
Vandermeulen G, Uyttenhove C, De Plaen E, Van den Eynde BJ, Préat V. Intramuscular electroporation of a P1A-encoding plasmid vaccine delays P815 mastocytoma growth. Bioelectrochemistry 2014; 100:112-8. [DOI: 10.1016/j.bioelechem.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022]
|
25
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
26
|
Kinetic and phenotypic analysis of CD8+ T cell responses after priming with alphavirus replicons and homologous or heterologous booster immunizations. J Virol 2014; 88:12438-51. [PMID: 25122792 DOI: 10.1128/jvi.02223-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Alphavirus replicons are potent inducers of CD8(+) T cell responses and thus constitute an attractive vaccine vector platform for developing novel vaccines. However, the kinetics and memory phenotype of CD8(+) T cell responses induced by alphavirus replicons are not well characterized. Furthermore, little is known how priming with alphavirus replicons affects booster immune responses induced by other vaccine modalities. We demonstrate here that a single immunization with an alphavirus replicon, administered as viral particles or naked DNA, induced an antigen-specific CD8(+) T cell response that had a sharp peak, followed by a rapid contraction. Administering a homologous boost before contraction had occurred did not further increase the response. In contrast, boosting after contraction when CD8(+) T cells had obtained a memory phenotype (based on CD127/CD62L expression), resulted in maintenance of CD8(+) T cells with a high recall capacity (based on CD27/CD43 expression). Increasing the dose of replicon particles promoted T effector memory (Tem) and inhibited T central memory development. Moreover, infection with a replicating alphavirus induced a similar distribution of CD8(+) T cells as the replicon vector. Lastly, the distribution of T cell subpopulations induced by a DNA-launched alphavirus replicon could be altered by heterologous boosts. For instance, boosting with a poxvirus vector (MVA) favored expansion of the Tem compartment. In summary, we have characterized the antigen-specific CD8(+) T cell response induced by alphavirus replicon vectors and demonstrated how it can be altered by homologous and heterologous boost immunizations. IMPORTANCE Alphavirus replicons are promising vaccine candidates against a number of diseases and are by themselves developed as vaccines against, for example, Chikungunya virus infection. Replicons are also considered to be used for priming, followed by booster immunization using different vaccine modalities. In order to rationally design prime-boost immunization schedules with these vectors, characterization of the magnitude and phenotype of CD8(+) T cell responses induced by alphavirus replicons is needed. Here, we demonstrate how factors such as timing and dose affect the phenotypes of memory T cell populations induced by immunization with alphavirus replicons. These findings are important for designing future clinical trials with alphaviruses, since they can be used to tailor vaccination regimens in order to induce a CD8(+) T cell response that is optimal for control and/or clearance of a specific pathogen.
Collapse
|
27
|
Abstract
Recent clinical data have emphatically shown the capacity of our immune systems to eradicate even advanced cancers. Although oncolytic viruses (OVs) were originally designed to function as tumour-lysing therapeutics, they have now been clinically shown to initiate systemic antitumour immune responses. Cell signalling pathways that are activated and promote the growth of tumour cells also favour the growth and replication of viruses within the cancer. The ability to engineer OVs that express immune-stimulating 'cargo', the induction of immunogenic tumour cell death by OVs and the selective targeting of OVs to tumour beds suggests that they are the ideal reagents to enhance antitumour immune responses. Coupling of OV therapy with tumour antigen vaccination, immune checkpoint inhibitors and adoptive cell therapy seems to be ready to converge towards a new generation of multimodal therapeutics to improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | | | - David F Stojdl
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; and the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Abstract
The therapeutic potential of host-specific and tumour-specific immune responses is well recognized and, after many years, active immunotherapies directed at inducing or augmenting these responses are entering clinical practice. Antitumour immunization is a complex, multi-component task, and the optimal combinations of antigens, adjuvants, delivery vehicles and routes of administration are not yet identified. Active immunotherapy must also address the immunosuppressive and tolerogenic mechanisms deployed by tumours. This Review provides an overview of new results from clinical studies of therapeutic cancer vaccines directed against tumour-associated antigens and discusses their implications for the use of active immunotherapy.
Collapse
|
29
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
30
|
Colluru VT, Johnson LE, Olson BM, McNeel DG. Preclinical and clinical development of DNA vaccines for prostate cancer. Urol Oncol 2013; 34:193-204. [PMID: 24332642 DOI: 10.1016/j.urolonc.2013.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/26/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens. As such, several therapeutic vaccines have entered clinical trials, with one autologous cellular vaccine (sipuleucel-T) recently gaining Food and Drug Administration approval after demonstrating overall survival benefit in randomized phase III clinical trials. DNA-based vaccines are safe, economical, alternative "off-the-shelf" approaches that have undergone extensive evaluation in preclinical models. In fact, the first vaccine approved in the United States for the treatment of cancer was a DNA vaccine for canine melanoma. Several prostate cancer-specific DNA vaccines have been developed in the last decade and have shown promising results in early phase clinical trials. This review summarizes anticancer human DNA vaccine trials, with a focus on those conducted for prostate cancer. We conclude with an outline of special considerations important for the development and successful translation of DNA vaccines from the laboratory to the clinic.
Collapse
Affiliation(s)
- V T Colluru
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Laura E Johnson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI.
| |
Collapse
|
31
|
Atherton MJ, Lichty BD. Evolution of oncolytic viruses: novel strategies for cancer treatment. Immunotherapy 2013; 5:1191-206. [DOI: 10.2217/imt.13.123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many viruses have documented oncolytic activity, with the first evidence observed clinically over a decade ago. In recent years, there has been a resurgence of interest in the field of oncolytic viruses. Viruses may be innately oncotropic, lacking the ability to cause disease in people or they may require engineering to allow selective tumor targeting and attenuation of pathogenicity. Following infection of a neoplastic cell, several events may occur, including direct viral oncolysis, apoptosis, necrotic cell death and autophagic cellular demise. Of late, a large body of work has recognized the ability of oncolytic viruses (OVs) to activate the innate and adaptive immune system, as well as directly killing tumors. The production of viruses expressing transgenes encoding for cytokines, colony-stimulating factors, costimulatory molecules and tumor-associated antigens has been able to further incite immune responses against target tumors. Multiple OVs are now in the advanced stages of clinical trials, with several individual viruses having completed their respective trials with positive results. This review introduces the multiple mechanisms by which OVs are able to act as an antineoplastic therapy, either on their own or in combination with other more traditional treatment modalities. The full benefit and the place where OVs will be integrated into standard-of-care therapies will be determined with ongoing studies ranging from the laboratory to the patient. With various different viruses now in the clinic this therapeutic option is beginning to prove its worth, and the versatility of these agents means further innovative and novel applications will continue to be developed.
Collapse
Affiliation(s)
- Matthew J Atherton
- McMaster Immunology Research Centre, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4K1
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
32
|
Choi Y, Chang J. Viral vectors for vaccine applications. Clin Exp Vaccine Res 2013; 2:97-105. [PMID: 23858400 PMCID: PMC3710930 DOI: 10.7774/cevr.2013.2.2.97] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/26/2013] [Accepted: 05/09/2013] [Indexed: 12/16/2022] Open
Abstract
Traditional approach of inactivated or live-attenuated vaccine immunization has resulted in impressive success in the reduction and control of infectious disease outbreaks. However, many pathogens remain less amenable to deal with the traditional vaccine strategies, and more appropriate vaccine strategy is in need. Recent discoveries that led to increased understanding of viral molecular biology and genetics has rendered the used of viruses as vaccine platforms and as potential anti-cancer agents. Due to their ability to effectively induce both humoral and cell-mediated immune responses, viral vectors are deemed as an attractive alternative to the traditional platforms to deliver vaccine antigens as well as to specifically target and kill tumor cells. With potential targets ranging from cancers to a vast number of infectious diseases, the benefits resulting from successful application of viral vectors to prevent and treat human diseases can be immense.
Collapse
Affiliation(s)
- Youngjoo Choi
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
33
|
Knudsen ML, Johansson DX, Kostic L, Nordström EKL, Tegerstedt K, Pasetto A, Applequist SE, Ljungberg K, Sirard JC, Liljeström P. The adjuvant activity of alphavirus replicons is enhanced by incorporating the microbial molecule flagellin into the replicon. PLoS One 2013; 8:e65964. [PMID: 23785460 PMCID: PMC3681802 DOI: 10.1371/journal.pone.0065964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022] Open
Abstract
Ligands of pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) stimulate innate and adaptive immune responses and are considered as potent adjuvants. Combinations of ligands might act in synergy to induce stronger and broader immune responses compared to stand-alone ligands. Alphaviruses stimulate endosomal TLRs 3, 7 and 8 as well as the cytoplasmic PRR MDA-5, resulting in induction of a strong type I interferon (IFN) response. Bacterial flagellin stimulates TLR5 and when delivered intracellularly the cytosolic PRR NLRC4, leading to secretion of proinflammatory cytokines. Both alphaviruses and flagellin have independently been shown to act as adjuvants for antigen-specific antibody responses. Here, we hypothesized that alphavirus and flagellin would act in synergy when combined. We therefore cloned the Salmonella Typhimurium flagellin (FliC) gene into an alphavirus replicon and assessed its adjuvant activity on the antibody response against co-administered antigen. In mice immunized with recombinant alphavirus, antibody responses were greatly enhanced compared to soluble FliC or control alphavirus. Both IgG1 and IgG2a/c responses were increased, indicating an enhancement of both Th1 and Th2 type responses. The adjuvant activity of FliC-expressing alphavirus was diminished but not abolished in the absence of TLR5 or type I IFN signaling, suggesting the contribution of several signaling pathways and some synergistic and redundant activity of its components. Thus, we have created a recombinant adjuvant that stimulates multiple signaling pathways of innate immunity resulting in a strong and broad antibody response.
Collapse
Affiliation(s)
- Maria L Knudsen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Resistance to two heterologous neurotropic oncolytic viruses, Semliki Forest virus and vaccinia virus, in experimental glioma. J Virol 2012; 87:2363-6. [PMID: 23221568 DOI: 10.1128/jvi.01609-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference.
Collapse
|
35
|
Abstract
The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.
Collapse
|
36
|
Malaria vaccines: focus on adenovirus based vectors. Vaccine 2012; 30:5191-8. [PMID: 22683663 DOI: 10.1016/j.vaccine.2012.05.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/09/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022]
Abstract
Protection against malaria through vaccination is known to be achievable, as first demonstrated over 30 years ago. Vaccination via repeated bites with Plasmodium falciparum infected and irradiated mosquitoes provided short lived protection from malaria infection to these vaccinees. Though this method still remains the most protective malaria vaccine to date, it is likely impractical for widespread use. However, recent developments in sub-unit malaria vaccine platforms are bridging the gap between high levels of protection and feasibility. The current leading sub-unit vaccine, RTS,S (which consists of a fusion of a portion of the P. falciparum derived circumsporozoite protein to the Hepatitis B surface antigen), has demonstrated the ability to induce protection from malaria infection in up 56% of RTS,S vaccinees. Though encouraging, these results may fall short of protection levels generally considered to be required to achieve eradication of malaria. Therefore, the use of viral vectored vaccine platforms has recently been pursued to further improve the efficacy of malaria targeted vaccines. Adenovirus based vaccine platforms have demonstrated potent anti-malaria immune responses when used alone, as well when utilized in heterologous prime boost regimens. This review will provide an update as to the current advancements in malaria vaccine development, with a focus on the use of adenovirus vectored malaria vaccines.
Collapse
|
37
|
Alpizar YA, Karwacz K, Arce F, Yglesias Rivera A, Fernández LE, Collins MK, Sánchez Ramírez B. Lentiviral vector followed by protein immunisation breaks tolerance against the self-antigen Her1 and results in lung cancer immunotherapy. J Gene Med 2012; 14:151-7. [PMID: 22262303 DOI: 10.1002/jgm.2606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer mortality, and so the aim of the present study was to develop a therapeutic vaccine protocol. METHODS We constructed a lentiviral vector (LV) expressing the extracellular domain (ECD) of murine Her1, an antigen associated with poor prognosis in lung cancer. RESULTS A single LV injection, followed by two Her1 protein boosts, was effective in reducing the metastatic burden of Lewis lung carcinoma in mice. The Her1 LV immunisation generated CD8+ T cells that recognised Her1 ECD presented by dendritic cells, and that also homed to Her1-expressing tumours. Protein boosting further increased the CD8+ T cell response and generated anti-Her1 antibodies; in the antibody response, Her1 LV priming increased Th1-dependent immunoglobulin G2c production. CONCLUSIONS The ability of this vaccine protocol to break both T cell and B cell tolerance to a self-antigen likely explains its effectiveness.
Collapse
|
38
|
Aurisicchio L, Ciliberto G. Emerging cancer vaccines: the promise of genetic vectors. Cancers (Basel) 2011; 3:3687-713. [PMID: 24212974 PMCID: PMC3759217 DOI: 10.3390/cancers3033687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 01/18/2023] Open
Abstract
Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.
Collapse
Affiliation(s)
- Luigi Aurisicchio
- Takis, via di Castel Romano 100, 00128 Rome, Italy; E-Mail:
- BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Gennaro Ciliberto
- Takis, via di Castel Romano 100, 00128 Rome, Italy; E-Mail:
- Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
39
|
Molinari P, Crespo MI, Gravisaco MJ, Taboga O, Morón G. Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLoS One 2011; 6:e24108. [PMID: 21918683 PMCID: PMC3168877 DOI: 10.1371/journal.pone.0024108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Baculoviruses (BV) are DNA viruses that are pathogenic for insects. Although BV infect a range of mammalian cell types, they do not replicate in these cells. Indeed, the potential effects of these insect viruses on the immune responses of mammals are only just beginning to be studied. We show in this paper that a recombinant Autographa californica multiple nuclear polyhedrosis virus carrying a fragment of ovalbumin (OVA) on the VP39 capsid protein (BV-OVA) has the capacity to act as an adjuvant and vector of antigens in mice, thereby promoting specific CD4 and cytotoxic T cell responses against OVA. BV also induced in vivo maturation of dendritic cells and the production of inflammatory cytokines, thus promoting innate and adaptive immune responses. The OVA-specific response induced by BV-OVA was strong enough to reject a challenge with OVA-expressing melanoma cells (MO5 cells) and effectively prolonged survival of MO5 bearing mice. All these findings, together with the absence of pre-existing immunity to BV in humans and the lack of viral gene expression in mammalian cells, make BV a candidate for vaccination.
Collapse
Affiliation(s)
- Paula Molinari
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - María I. Crespo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María J. Gravisaco
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Gabriel Morón
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
40
|
Archaeosome adjuvant overcomes tolerance to tumor-associated melanoma antigens inducing protective CD8 T cell responses. Clin Dev Immunol 2011; 2010:578432. [PMID: 21318177 PMCID: PMC3034908 DOI: 10.1155/2010/578432] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 01/16/2023]
Abstract
Vesicles comprised of the ether glycerolipids of the archaeon Methanobrevibacter smithii (archaeosomes) are potent adjuvants for evoking CD8+ T cell responses. We therefore explored the ability of archaeosomes to overcome immunologic tolerance to self-antigens. Priming and boosting of mice with archaeosome-antigen evoked comparable CD8+ T cell response and tumor protection to an alternate boosting strategy utilizing live bacterial vectors for antigen delivery. Vaccination with melanoma antigenic peptides TRP181-189 and Gp10025-33 delivered in archaeosomes resulted in IFN-γ producing antigen-specific CD8+ T cells with strong cytolytic capability and protection against subcutaneous B16 melanoma. Targeting responses against multiple antigens afforded prolonged median survival against melanoma challenge. Entrapment of multiple peptides within the same vesicle or admixed formulations were both effective at evoking CD8+ T cells against each antigen. Melanoma-antigen archaeosome formulations also afforded therapeutic protection against established B16 tumors when combined with depletion of T-regulatory cells. Overall, we demonstrate that archaeosome adjuvants constitute an effective choice for formulating cancer vaccines.
Collapse
|
41
|
The immunosuppressive tumor environment is the major impediment to successful therapeutic vaccination in Neu transgenic mice. J Immunother 2010; 33:482-91. [PMID: 20463599 DOI: 10.1097/cji.0b013e3181d756bb] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We earlier showed that therapeutic vaccination of FVB/N mice with alphaviral replicon particles expressing rat neuET-VRP induced regression of established neu-expressing tumors. In this study, we evaluated the efficacy of neuET-VRPs in a tolerant mouse model using mice with transgenic expression of neu. Using the same approach that induced regression of 70 mm(2) tumors in FVB/N mice, we were unable to inhibit tumor growth in tolerant neu-N mice, despite showing neu-specific B-cell and T-cell responses post vaccination. As neu-N mice have a limited T-cell repertoire specific to neu, we hypothesized that the absence of these T cells led to differences in the vaccine response. However, transfer of neu-specific T cells from vaccinated FVB/N mice was not effective in inducing tumor regression, as these cells did not proliferate in the tumor-draining lymph node. Vaccination given with low-dose cyclophosphamide to deplete regulatory T cells delayed tumor growth but did not result in tumor regression. Finally, we showed that T cells given with vaccination were effective in inhibiting tumor growth, if administered with approaches to deplete myeloid-derived suppressor cells. Our data show that both central deletion of lymphocytes and peripheral immunosuppressive mechanisms are present in neu-N mice. However, the major impediment to successful vaccination is the peripheral tumor-induced immune suppression.
Collapse
|
42
|
Demotte N, Wieërs G, Van Der Smissen P, Moser M, Schmidt C, Thielemans K, Squifflet JL, Weynand B, Carrasco J, Lurquin C, Courtoy PJ, van der Bruggen P. A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. Cancer Res 2010; 70:7476-88. [PMID: 20719885 DOI: 10.1158/0008-5472.can-10-0761] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human CD8(+) tumor-infiltrating T lymphocytes (TIL), in contrast with CD8(+) blood cells, show impaired IFN-γ secretion on ex vivo restimulation. We have attributed the impaired IFN-γ secretion to a decreased mobility of T-cell receptors on trapping in a lattice of glycoproteins clustered by extracellular galectin-3. Indeed, we have previously shown that treatment with N-acetyllactosamine, a galectin ligand, restored this secretion. We strengthened this hypothesis here by showing that CD8(+) TIL treated with an anti-galectin-3 antibody had an increased IFN-γ secretion. Moreover, we found that GCS-100, a polysaccharide in clinical development, detached galectin-3 from TIL and boosted cytotoxicity and secretion of different cytokines. Importantly, we observed that not only CD8(+) TIL but also CD4(+) TIL treated with GCS-100 secreted more IFN-γ on ex vivo restimulation. In tumor-bearing mice vaccinated with a tumor antigen, injections of GCS-100 led to tumor rejection in half of the mice, whereas all control mice died. In nonvaccinated mice, GCS-100 had no effect by itself. These results suggest that a combination of galectin-3 ligands and therapeutic vaccination may induce more tumor regressions in cancer patients than vaccination alone.
Collapse
Affiliation(s)
- Nathalie Demotte
- Ludwig Institute for Cancer Research and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alphavirus vectors for cancer therapy. Virus Res 2010; 153:179-96. [PMID: 20692305 DOI: 10.1016/j.virusres.2010.07.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/23/2022]
Abstract
Alphaviruses contain a single strand RNA genome that can be easily modified to express heterologous genes at very high levels in a broad variety of cells, including tumor cells. Alphavirus vectors can be used as viral particles containing a packaged vector RNA, or directly as nucleic acids in the form of RNA or DNA. In the latter case alphavirus RNA is cloned within a DNA vector downstream of a eukaryotic promoter. Expression mediated by these vectors is generally transient due to the induction of apoptosis. The high expression levels, induction of apoptosis, and activation of type I IFN response are the key features that have made alphavirus vectors very attractive for cancer treatment and vaccination. Alphavirus vectors have been successfully used as vaccines to induce protective and therapeutic immune responses against many tumor-associated antigens in animal models of mastocytoma, melanoma, mammary, prostate, and virally induced tumors. Alphavirus vectors have also shown a high antitumoral efficacy by expressing antitumoral molecules in tumor cells, which include cytokines, antiangiogenic factors or toxic proteins. In these studies induction of apoptosis in tumor cells contributed to the antitumoral efficacy by the release of tumor antigens that can be uptaken by antigen presenting cells, enhancing immune responses against tumors. The potential use of alphaviruses as oncolytic agents has also been evaluated for avirulent strains of Semliki Forest virus and Sindbis virus. The fact that this latter virus has a natural tropism for tumor cells has led to many studies in which this vector was able to reach metastatic tumors when administered systemically. Other "artificial" strategies to increase the tropism of alphavirus for tumors have also been evaluated and will be discussed.
Collapse
|
44
|
Prime‐boost vaccinations using recombinant flavivirus replicon and vaccinia virus vaccines: an ELISPOT analysis. Immunol Cell Biol 2010; 89:426-36. [DOI: 10.1038/icb.2010.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Lambeck AJ, Nijman HW, Hoogeboom BN, Regts J, de Mare A, Wilschut J, Daemen T. Role of T cell competition in the induction of cytotoxic T lymphocyte activity during viral vector-based immunization regimens. Vaccine 2010; 28:4275-82. [DOI: 10.1016/j.vaccine.2010.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/31/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
46
|
Zhao HP, Sun JF, Li N, Sun Y, Wang Y, Qiu HJ. Prime-boost immunization using alphavirus replicon and adenovirus vectored vaccines induces enhanced immune responses against classical swine fever virus in mice. Vet Immunol Immunopathol 2009; 131:158-66. [DOI: 10.1016/j.vetimm.2009.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/30/2009] [Accepted: 04/03/2009] [Indexed: 02/06/2023]
|
47
|
Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations. Cancer Immunol Immunother 2009; 59:397-408. [PMID: 19756595 DOI: 10.1007/s00262-009-0759-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Studies comparing two or more vaccine platforms have historically evaluated each platform based on its ability to induce an immune response and may conclude that one vaccine is more efficacious than the other(s), leading to a recommendation for development of the more effective vaccine for clinical studies. Alternatively, these studies have documented the advantages of a diversified prime and boost regimen due to amplification of the antigen-specific T-cell population. We hypothesize here that two vaccine platforms targeting the same antigen might induce shared and distinct antigen-specific T-cell populations, and examined the possibility that two distinct vaccines could be used concomitantly. EXPERIMENTAL DESIGN Using recombinant poxvirus and yeast vaccines, we compared the T-cell populations induced by these two platforms in terms of serum cytokine response, T-cell gene expression, T-cell receptor phenotype, antigen-specific cytokine expression, T-cell avidity, and T-cell antigen-specific tumor cell lysis. RESULTS These studies demonstrate for the first time that vaccination with a recombinant poxvirus platform (rV/F-CEA/TRICOM) or a heat-killed yeast vaccine platform (yeast-CEA) elicits T-cell populations with both shared and unique phenotypic and functional characteristics. Furthermore, both the antigen and the vector play a role in the induction of distinct T-cell populations. CONCLUSIONS In this study, we demonstrate that concurrent administration of two vaccines targeting the same antigen induces a more diverse T-cell population that leads to enhanced antitumor efficacy. These studies provide the rationale for future clinical studies investigating concurrent administration of vaccine platforms targeting a single antigen to enhance the antigen-specific immune response.
Collapse
|
48
|
Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 2009; 17:1814-21. [PMID: 19603003 DOI: 10.1038/mt.2009.154] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vesicular stomatitis virus (VSV) has proven to be an effective vaccine vector for immunization against viral infection, but its potential to induce an immune response to a self-tumor antigen has not been investigated. We constructed a recombinant VSV expressing human dopachrome tautomerase (hDCT) and evaluated its immunogenicity in a murine melanoma model. Intranasal delivery of VSV-hDCT activated both CD4(+) and CD8(+) DCT-specific T-cell responses. The magnitude of these responses could be significantly increased by booster immunization with recombinant adenovirus (Ad)-hDCT, which led to enhanced efficacy against B16-F10 melanoma in both prophylactic and therapeutic settings. Notably, the interval of VSV/Ad heterologous vaccination could be shortened to as few as 4 days, making it a potential regimen to rapidly expand antigen-specific effector cells. Furthermore, VSV-hDCT could increase DCT-specific T-cell responses primed by Ad-hDCT, suggesting VSV is efficient for both priming and boosting of the immune response against a self-tumor antigen.
Collapse
|
49
|
Impact of preexisting vector-specific immunity on vaccine potency: characterization of listeria monocytogenes-specific humoral and cellular immunity in humans and modeling studies using recombinant vaccines in mice. Infect Immun 2009; 77:3958-68. [PMID: 19528221 DOI: 10.1128/iai.01274-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recombinant live-attenuated Listeria monocytogenes is currently being developed as a vaccine platform for treatment or prevention of malignant and infectious diseases. The effectiveness of complex biologic vaccines, such as recombinant viral and bacterial vectors, can be limited by either preexisting or vaccine-induced vector-specific immunity. We characterized the level of L. monocytogenes-specific cellular and humoral immunity present in more than 70 healthy adult subjects as a first step to understanding its possible impact on the efficacy of L. monocytogenes-based vaccines being evaluated in early-phase clinical trials. Significant L. monocytogenes-specific humoral immunity was not measured in humans, consistent with a lack of antibodies in mice immunized with wild-type L. monocytogenes. Cellular immune responses specific for listeriolysin O, a secreted bacterial protein required for potency of L. monocytogenes-derived vaccines, were detected in approximately 60% of human donors tested. In mice, while wild-type L. monocytogenes did not induce significant humoral immunity, attenuated L. monocytogenes vaccine strains induced high-titer L. monocytogenes-specific antibodies when given at high doses used for immunization. Passive transfer of L. monocytogenes-specific antiserum to naïve mice had no impact on priming antigen-specific immunity in mice immunized with a recombinant L. monocytogenes vaccine. In mice with preexisting L. monocytogenes-specific immunity, priming of naïve T cells was not prevented, and antigen-specific responses could be boosted by additional vaccinations. For the first time, our findings establish the level of L. monocytogenes-specific cellular immunity in healthy adults, and, together with modeling studies performed with mice, they support the scientific rationale for repeated L. monocytogenes vaccine immunization regimens to elicit a desired therapeutic effect.
Collapse
|
50
|
Stark FC, Sad S, Krishnan L. Intracellular bacterial vectors that induce CD8(+) T cells with similar cytolytic abilities but disparate memory phenotypes provide contrasting tumor protection. Cancer Res 2009; 69:4327-34. [PMID: 19435919 DOI: 10.1158/0008-5472.can-08-3160] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Induction of a functional CD8(+) T-cell response is the important criterion for cancer vaccines, and it is unclear whether acute or chronic live vectors are better suited for cancer antigen delivery. We have evaluated the tumor protective ability of two recombinant vectors, Listeria monocytogenes (LM) and Salmonella typhimurium (ST), both expressing ovalbumin (OVA). Although both vectors induced a similar OVA-specific CD8(+) T-cell response in the long term, LM-OVA induced mainly central-phenotype (T(CM), CD44(high)CD62L(high)), whereas ST-OVA induced mainly effector-phenotype (T(EM), CD44(high)CD62L(low)) cells. Both vectors induced functional OVA-specific CD8(+) T cells that expressed IFN-gamma and killed targets specifically in vivo. However, only LM-OVA-vaccinated mice were protected against B16-OVA tumors. This correlated to the ability of CD8(+) T cells generated against LM-OVA, but not against ST-OVA, to produce interleukin 2 and exhibit profound homeostatic and antigen-induced proliferation in vivo. Furthermore, adoptive transfer of memory CD8(+) T cells generated against LM-OVA (but not against ST-OVA) into recipient mice resulted in their trafficking to tumor-draining lymph nodes conferring protection. Although cytotoxicity and IFN-gamma production are considered to be the principal functions of memory CD8(+) T cells, the vaccine delivery strategy may also influence memory CD8(+) T-cell quality, and ability to proliferate and traffic to tumors. Thus, for efficacy, cancer vaccines should be selected for their ability to induce self-renewing memory CD8(+) T cells (CD44(high)IL-7Ralpha(high)CD62L(high)) besides their effector functions.
Collapse
Affiliation(s)
- Felicity C Stark
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|