1
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Khayal EES. Perfluorooctanoic acid induced lung toxicity via TGF-β1/Smad pathway, crosstalk between airway hyperresponsiveness and fibrosis: withdrawal impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4989-5007. [PMID: 39900883 DOI: 10.1007/s11356-025-36005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
Perfluorooctanoic acid (PFOA) is an environmental persistent agent to which humans are exposed daily through food and water. This study investigated the lung toxic effects induced by ingested PFOA (30 mg/kg/day) for 8 weeks in adult male rats and the impact following 8 weeks of its withdrawal. PFOA increased MDA and reduced TAC inducing oxidative stress. It induced airway hyperresponsiveness (AHR) via increased bronchoalveolar lavage fluid (BALF) IL-4, IL-5, IL-13, IL-9, eosinophil count, TNF-α, and IL-1ß; reduced IL-12; increased serum IgE; and increased urocortin expression in lung tissues. Moreover, it induced pulmonary fibrosis via increased serum KL-6, and SFTP-D, altered pulmonary structure, and increased deposition of collagen fibers in lung tissues. Furthermore, it increased TGF-β1, Smad2, and Smad3 and reduced Smad7 gene expression in lung tissues. These gene alterations were positively correlated with AHR and fibrosis-related factors. The recovered lung upon PFOA withdrawal showed complete resolution of oxidative stress and slight amelioration of other studying parameters. Exposure to PFOA induced lung toxicity by disrupting the TGF-β1/Smad signaling pathway, which acts as a crosstalk between AHR and fibrosis. Additionally, PFOA altered pulmonary architecture, triggered inflammation, and caused oxidative stress. The lung exhibited partial alleviation upon recovery.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
2
|
Plichta J, Panek M. Role of the TGF-β cytokine and its gene polymorphisms in asthma etiopathogenesis. FRONTIERS IN ALLERGY 2025; 6:1529071. [PMID: 39949968 PMCID: PMC11821632 DOI: 10.3389/falgy.2025.1529071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Transforming growth factor beta (TGF-β) is a pluripotent cytokine expressed by all cells of the human body which plays important roles in maintaining homeostasis and allowing for proper individual development. Disturbances in TGF-β signaling contribute to the development of many diseases and disorders, including cancer and organ fibrosis. One of the diseases with the best-characterized correlation between TGF-β action and etiopathogenesis is asthma. Asthma is the most common chronic inflammatory disease of the lower and upper respiratory tract, characterized by bronchial hyperresponsiveness to a number of environmental factors, leading to bronchospasm and reversible limitation of expiratory flow. TGF-β, in particular TGF-β1, is a key factor in the etiopathogenesis of asthma. TGF-β1 concentration in bronchoalveolar lavage fluid samples is elevated in atopic asthma, and TGF-β expression is increased in asthmatic bronchial samples. The expression of all TGF-β isoforms is affected by a number of single nucleotide polymorphisms found in the genes encoding these cytokines. Some of the SNPs that alter the level of TGF-β expression may be associated with the occurrence and severity of symptoms of asthma and other diseases. The TGF-β gene polymorphisms, which are the subject of this paper, are potential diagnostic factors. If properly used, these polymorphisms can facilitate the early and precise diagnosis of asthma, allowing for the introduction of appropriate therapy and reduction of asthma exacerbation frequency.
Collapse
Affiliation(s)
- Jacek Plichta
- Department of Internal Medicine, Asthma and Allergology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
3
|
Ding J, Garber JJ, Uchida A, Lefkovith A, Carter GT, Vimalathas P, Canha L, Dougan M, Staller K, Yarze J, Delorey TM, Rozenblatt-Rosen O, Ashenberg O, Graham DB, Deguine J, Regev A, Xavier RJ. An esophagus cell atlas reveals dynamic rewiring during active eosinophilic esophagitis and remission. Nat Commun 2024; 15:3344. [PMID: 38637492 PMCID: PMC11026436 DOI: 10.1038/s41467-024-47647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Coordinated cell interactions within the esophagus maintain homeostasis, and disruption can lead to eosinophilic esophagitis (EoE), a chronic inflammatory disease with poorly understood pathogenesis. We profile 421,312 individual cells from the esophageal mucosa of 7 healthy and 15 EoE participants, revealing 60 cell subsets and functional alterations in cell states, compositions, and interactions that highlight previously unclear features of EoE. Active disease displays enrichment of ALOX15+ macrophages, PRDM16+ dendritic cells expressing the EoE risk gene ATP10A, and cycling mast cells, with concomitant reduction of TH17 cells. Ligand-receptor expression uncovers eosinophil recruitment programs, increased fibroblast interactions in disease, and IL-9+IL-4+IL-13+ TH2 and endothelial cells as potential mast cell interactors. Resolution of inflammation-associated signatures includes mast and CD4+ TRM cell contraction and cell type-specific downregulation of eosinophil chemoattractant, growth, and survival factors. These cellular alterations in EoE and remission advance our understanding of eosinophilic inflammation and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jiarui Ding
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John J Garber
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Amiko Uchida
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ariel Lefkovith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Grace T Carter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Praveen Vimalathas
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Lauren Canha
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Michael Dougan
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kyle Staller
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joseph Yarze
- Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Daniel B Graham
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jacques Deguine
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Genentech, South San Francisco, CA, 94080, USA.
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Liu J, Su B, Tao P, Yang X, Zheng L, Lin Y, Zou X, Yang H, Wu W, Zhang T, Li H. Interplay of IL-33 and IL-35 Modulates Th2/Th17 Responses in Cigarette Smoke Exposure HDM-Induced Asthma. Inflammation 2024; 47:173-190. [PMID: 37737467 DOI: 10.1007/s10753-023-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Cigarette smoke (CS) facilitates adverse effects on the airway inflammation and treatment of asthma. Here, we investigated the mechanisms by which CS exacerbates asthma. The roles of IL-33 and IL-35 in asthma development were examined by treatment with IL-33 knockout (IL-33 KO) or transfection of adenovirus encoding IL-35 (Ad-IL-35) in a murine model of cigarette smoke-exposure asthma. Furthermore, the involvement of IL-33 and IL-35 in regulating DCs and Th2/Th17 cells was examined in a coculture system of DCs with CD4+ T cells. Additionally, we observed the effect of CpG-ODNs on the balance of IL-33 and IL-35. We show that CS and house dust mite (HDM) exposure induced IL-33 and suppressed IL-35 levels in cigarette smoke-exposure asthma in vivo and in vitro. Treatment with IL-33 KO or Ad-IL-35 significantly attenuated airway hyperreactivity, goblet hyperplasia, airway remodelling, and eosinophil and neutrophil infiltration in the lung tissues from asthmatic mice. Furthermore, we demonstrated reciprocal regulation between CS and HDM-modulated IL-33 and IL-35. Mechanistically, IL-33 KO (or anti-ST2) and Ad-IL-35 attenuated Th2- and Th17-associated inflammation by downregulating TSLP-DC signalling. Finally, administration of CpG-ODNs suppressed the expression of IL-33/ST2 and elevated the levels of IL-35, which is mainly derived from CD4+Foxp+ Tregs, to alleviate Th2- and Th17-associated inflammation by inhibiting the activation of BMDCs. Taken together, the IL-33/ST2 pathway drives the DC-Th2 and Th17 responses of cigarette smoke-exposure asthma, while IL-35 has the opposite effect. CpG-ODNs represent a potential therapeutic strategy for modulating the balance of IL-33 and IL-35 to suppress allergic airway inflammation.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Beiting Su
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Peizhi Tao
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuena Yang
- Department of Pulmonary and Critical Care Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Li Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yusen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hailing Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Hongtao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Pluangnooch P, Soontrapa K, Pudgerd A, Sridurongrit S. Expression of constitutively active TβRI leads to attenuation of ovalbumin-induced allergic airway inflammation associated with augmented M2 polarization of alveolar macrophage. Respir Investig 2024; 62:90-97. [PMID: 38007853 DOI: 10.1016/j.resinv.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/14/2023] [Accepted: 10/14/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Transforming growth factor-β (Tgf-β) plays an important role in the pathogenesis of asthma through the regulation of T cells and airway epithelium. Its functions in alveolar macrophage (AM) during allergic airway inflammation remain unknown. METHODS A murine asthma model was induced with ovalbumin (ova) in TβRICA/Fsp1-Cre transgenic mice expressing constitutively active Tgf-β receptor type I (TβRICA) under the control of Fsp1-Cre transgene. Cells in the bronchoalveolar lavage (BAL) were collected to study immune cell infiltration in the lungs. Cytokine levels in BAL fluid were measured by enzyme-linked immunoassay (ELISA). Lungs were sectioned and stained with hematoxylin and eosin, periodic acid-Schiff, and trichrome for histopathologic evaluation. AMs were assessed by flow cytometry and were sorted for quantitative polymerase chain reaction analysis. RESULTS Our data indicated that TβRICA transcripts were induced in AMs of TβRICA/Fsp1-Cre mice. Following the ova challenges, TβRICA/Fsp1-Cre mice exhibited reduced cellular infiltration of the airway, reduced pulmonary fibrosis, and reduced bronchial mucus secretion as compared to ova-challenged wild-type mice. An alternatively activated macrophage (M2) polarization was significantly elevated in the lungs of ova-challenged TβRICA/Fsp1-Cre mice as reflected by increased numbers of AMs expressing M2 subtype marker, CD163, in the lungs and enhanced expression of CCR2 and CD206 in AMs. Moreover, TβRICA/Fsp1-Cre AMs showed augmented expression of transcription factors, Foxo1, and IRF4, which are known to be positive regulators for M2 polarization. CONCLUSIONS Expression of TβRICA in AMs promoted M2 polarization and ameliorated allergic airway inflammation in an ova-induced asthma mouse model.
Collapse
Affiliation(s)
- Panwadee Pluangnooch
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Arnon Pudgerd
- Division of Anatomy, School of Medical Science, University of Phayao, Phayao 56000, Thailand
| | - Somyoth Sridurongrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Yuan F, Yang Y, Liu L, Zhou P, Zhu Y, Chai Y, Chen K, Tang W, Huang Q, Zhang C. Research progress on the mechanism of astragaloside IV in the treatment of asthma. Heliyon 2023; 9:e22149. [PMID: 38045181 PMCID: PMC10692808 DOI: 10.1016/j.heliyon.2023.e22149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Asthma is a common chronic respiratory disease, and its treatment is a core problem and challenge in clinical practice. Glucocorticoids (GCs) are the first-line therapy for the treatment of asthma. Local and systemic adverse reactions caused by GCs create obstacles to the treatment of asthma. Therefore, the research target is to find a new, safe, and effective therapeutic medicine at present. Natural products are an important source for treating asthma with low cost and low toxicity. Astragaloside IV (AS-IV) is an active ingredient of traditional Chinese medicine Astragalus mongholicus Bunge. Previous studies have indicated that AS-IV plays a therapeutic role in the treatment of asthma by inhibiting airway inflammation and remodeling the airway, and by regulating immunity and neuroendocrine function (Fig. 1) . It has a variety of biological characteristics such as multi-target intervention, high safety, and good curative effect. This article reviews the specific mechanism of AS-IV for the treatment of asthma to provide references for subsequent research.
Collapse
Affiliation(s)
- Fanyi Yuan
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Liu
- Department of Pharmacy, Hospital of Chengdu university of Traditional Chinese Medicine, Chengdu, China
| | - Pengcheng Zhou
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilu Chai
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Keling Chen
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Tang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
He H, Cao L, Wang Z, Wang Z, Miao J, Li XM, Miao M. Sinomenine Relieves Airway Remodeling By Inhibiting Epithelial-Mesenchymal Transition Through Downregulating TGF-β1 and Smad3 Expression In Vitro and In Vivo. Front Immunol 2021; 12:736479. [PMID: 34804018 PMCID: PMC8602849 DOI: 10.3389/fimmu.2021.736479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Airway remodeling is associated with dysregulation of epithelial-mesenchymal transition (EMT) in patients with asthma. Sinomenine (Sin) is an effective, biologically active alkaloid that has been reported to suppress airway remodeling in mice with asthma. However, the molecular mechanisms behind this effect remain unclear. We aimed to explore the potential relationship between Sin and EMT in respiratory epithelial cells in vitro and in vivo. First, 16HBE cells were exposed to 100 μg/mL LPS and treated with 200 μg/mL Sin. Cell proliferation, migration, and wound healing assays were performed to evaluate EMT, and EMT-related markers were detected using Western blotting. Mice with OVA-induced asthma were administered 35 mg/kg or 75 mg/kg Sin. Airway inflammation and remodeling detection experiments were performed, and EMT-related factors and proteins in the TGF-β1 pathway were detected using IHC and Western blotting. We found that Sin suppressed cell migration but not proliferation in LPS-exposed 16HBE cells. Sin also inhibited MMP7, MMP9, and vimentin expression in 16HBE cells and respiratory epithelial cells from mice with asthma. Furthermore, it decreased OVA-specific IgE and IL-4 levels in serum, relieved airway remodeling, attenuated subepithelial collagen deposition, and downregulating TGF-β1and Smad3 expression in mice with asthma. Our results suggest that Sin suppresses EMT by inhibiting IL-4 and downregulating TGF-β1 and Smad3 expression.
Collapse
Affiliation(s)
- Hongjuan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zheng Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiu-Min Li
- Microbiology and Immunology, and Department of Otolaryngology, New York Medical College, New York, NY, United States
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Commun Biol 2021; 4:700. [PMID: 34103634 PMCID: PMC8187656 DOI: 10.1038/s42003-021-02227-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
To identify candidate causal genes of asthma, we performed a genome-wide association study (GWAS) in UK Biobank on a broad asthma definition (n = 56,167 asthma cases and 352,255 controls). We then carried out functional mapping through transcriptome-wide association studies (TWAS) and Mendelian randomization in lung (n = 1,038) and blood (n = 31,684) tissues. The GWAS reveals 72 asthma-associated loci from 116 independent significant variants (PGWAS < 5.0E-8). The most significant lung TWAS gene on 17q12-q21 is GSDMB (PTWAS = 1.42E-54). Other TWAS genes include TSLP on 5q22, RERE on 1p36, CLEC16A on 16p13, and IL4R on 16p12, which all replicated in GTEx lung (n = 515). We demonstrate that the largest fold enrichment of regulatory and functional annotations among asthma-associated variants is in the blood. We map 485 blood eQTL-regulated genes associated with asthma and 50 of them are causal by Mendelian randomization. Prioritization of druggable genes reveals known (IL4R, TSLP, IL6, TNFSF4) and potentially new therapeutic targets for asthma.
Collapse
|
9
|
Pathophysiology of Lung Disease and Wound Repair in Cystic Fibrosis. PATHOPHYSIOLOGY 2021; 28:155-188. [PMID: 35366275 PMCID: PMC8830450 DOI: 10.3390/pathophysiology28010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive, life-threatening condition affecting many organs and tissues, the lung disease being the chief cause of morbidity and mortality. Mutations affecting the CF Transmembrane Conductance Regulator (CFTR) gene determine the expression of a dysfunctional protein that, in turn, triggers a pathophysiological cascade, leading to airway epithelium injury and remodeling. In vitro and in vivo studies point to a dysregulated regeneration and wound repair in CF airways, to be traced back to epithelial CFTR lack/dysfunction. Subsequent altered ion/fluid fluxes and/or signaling result in reduced cell migration and proliferation. Furthermore, the epithelial-mesenchymal transition appears to be partially triggered in CF, contributing to wound closure alteration. Finally, we pose our attention to diverse approaches to tackle this defect, discussing the therapeutic role of protease inhibitors, CFTR modulators and mesenchymal stem cells. Although the pathophysiology of wound repair in CF has been disclosed in some mechanisms, further studies are warranted to understand the cellular and molecular events in more details and to better address therapeutic interventions.
Collapse
|
10
|
Zhang X, Zhang M, Li L, Chen W, Zhou W, Gao J. IRAK-M knockout promotes allergic airway inflammation, but not airway hyperresponsiveness, in house dust mite-induced experimental asthma model. J Thorac Dis 2021; 13:1413-1426. [PMID: 33841934 PMCID: PMC8024803 DOI: 10.21037/jtd-20-2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background IL-1 receptor associated-kinase (IRAK)-M, expressed by airway epithelium and macrophages, was shown to regulate acute and chronic airway inflammation exhibiting a biphasic response in an OVA-based animal model. House dust mite (HDM) is a common real-life aeroallergen highly relevant to asthma pathogenesis. The role of IRAK-M in HDM-induced asthma remains unknown. This study was aimed to investigate the effect of IRAK-M on allergic airway inflammation induced by HDM using IRAK-M knockout (KO) mice and the potential underlying mechanisms. Methods IRAK-M KO and wild-type (WT) mice were sensitized and challenged with HDM. The differences in airway inflammation were evaluated 24 hours after the last challenge between the two genotypes of mice using a number of cellular and molecular biological techniques. In vitro mechanistic investigation was also involved. Results Lung expression of IRAK-M was significantly upregulated by HDM in the WT mice. Compared with the WT controls, HDM-treated IRAK-M KO mice showed exacerbated infiltration of inflammatory cells, particularly Th2 cells, in the airways and mucus overproduction, higher epithelial mediators IL-25, IL-33 and TSLP and Th2 cytokines in bronchoalveolar lavage (BAL) fluid. Lung IRAK-M KO macrophages expressed higher percentage of costimulatory molecules OX40L and CD 80 and exhibited enhanced antigen uptake. However, IRAK-M KO didn’t impact the airway hyperreactivity (AHR) indirectly induced by HDM. Conclusions The findings indicate that IRAK-M protects allergic airway inflammation, not AHR, by modifying activation and antigen uptake of lung macrophages following HDM stimulation. Optimal regulation of IRAK-M might indicate an intriguing therapeutic avenue for allergic airway inflammation.
Collapse
Affiliation(s)
- Xudong Zhang
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingqiang Zhang
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lun Li
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Chen
- Departments of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wexun Zhou
- Departments of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinming Gao
- Departments of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
D'Urso M, Kurniawan NA. Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol 2020; 8:609653. [PMID: 33425874 PMCID: PMC7793682 DOI: 10.3389/fbioe.2020.609653] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are cells present throughout the human body that are primarily responsible for the production and maintenance of the extracellular matrix (ECM) within the tissues. They have the capability to modify the mechanical properties of the ECM within the tissue and transition into myofibroblasts, a cell type that is associated with the development of fibrotic tissue through an acute increase of cell density and protein deposition. This transition from fibroblast to myofibroblast-a well-known cellular hallmark of the pathological state of tissues-and the environmental stimuli that can induce this transition have received a lot of attention, for example in the contexts of asthma and cardiac fibrosis. Recent efforts in understanding how cells sense their physical environment at the micro- and nano-scales have ushered in a new appreciation that the substrates on which the cells adhere provide not only passive influence, but also active stimulus that can affect fibroblast activation. These studies suggest that mechanical interactions at the cell-substrate interface play a key role in regulating this phenotype transition by changing the mechanical and morphological properties of the cells. Here, we briefly summarize the reported chemical and physical cues regulating fibroblast phenotype. We then argue that a better understanding of how cells mechanically interact with the substrate (mechanosensing) and how this influences cell behaviors (mechanotransduction) using well-defined platforms that decouple the physical stimuli from the chemical ones can provide a powerful tool to control the balance between physiological tissue regeneration and pathological fibrotic response.
Collapse
Affiliation(s)
- Mirko D'Urso
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
12
|
Kramer EL, Madala SK, Hudock KM, Davidson C, Clancy JP. Subacute TGFβ Exposure Drives Airway Hyperresponsiveness in Cystic Fibrosis Mice through the PI3K Pathway. Am J Respir Cell Mol Biol 2020; 62:657-667. [PMID: 31922900 DOI: 10.1165/rcmb.2019-0158oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal genetic disease characterized by progressive lung damage and airway obstruction. The majority of patients demonstrate airway hyperresponsiveness (AHR), which is associated with more rapid lung function decline. Recent studies in the neonatal CF pig demonstrated airway smooth muscle (ASM) dysfunction. These findings, combined with observed CF transmembrane conductance regulator (CFTR) expression in ASM, suggest that a fundamental defect in ASM function contributes to lung function decline in CF. One established driver of AHR and ASM dysfunction is transforming growth factor (TGF) β1, a genetic modifier of CF lung disease. Prior studies demonstrated that TGFβ exposure in CF mice drives features of CF lung disease, including goblet cell hyperplasia and abnormal lung mechanics. CF mice displayed aberrant responses to pulmonary TGFβ, with elevated PI3K signaling and greater increases in lung resistance compared with controls. Here, we show that TGFβ drives abnormalities in CF ASM structure and function through PI3K signaling that is enhanced in CFTR-deficient lungs. CF and non-CF mice were exposed intratracheally to an adenoviral vector containing the TGFβ1 cDNA, empty vector, or PBS only. We assessed methacholine-induced AHR, bronchodilator response, and ASM area in control and CF mice. Notably, CF mice demonstrated enhanced AHR and bronchodilator response with greater ASM area increases compared with non-CF mice. Furthermore, therapeutic inhibition of PI3K signaling mitigated the TGFβ-induced AHR and goblet cell hyperplasia in CF mice. These results highlight a latent AHR phenotype in CFTR deficiency that is enhanced through TGFβ-induced PI3K signaling.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| | - Satish K Madala
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| | - Kristin M Hudock
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, Ohio; and.,Division of Adult Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - John P Clancy
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| |
Collapse
|
13
|
Yeung BHY, Huang J, An SS, Solway J, Mitzner W, Tang WY. Role of Isocitrate Dehydrogenase 2 on DNA Hydroxymethylation in Human Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2020; 63:36-45. [PMID: 32150688 PMCID: PMC7328249 DOI: 10.1165/rcmb.2019-0323oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
Global DNA hydroxymethylation mediated by the TET (ten-eleven translocation) enzyme was induced in allergen-induced airway hyperresponsiveness in mouse lung tissues and specifically in isolated airway smooth muscle (ASM) cells. TET is an α-ketoglutarate (α-KG)-dependent enzyme, and the production of α-KG is catalyzed by IDH (isocitrate dehydrogenase). However, the role of IDH in the regulation of DNA hydroxymethylation in ASM cells is unknown. In comparison with nonasthmatic cells, asthmatic ASM cells exhibited higher TET activity and IDH2 (but not IDH-1 or IDH-3) gene expression levels. We modified the expression of IDH2 in ASM cells from humans with asthma by siRNA and examined the α-KG levels, TET activity, global DNA hydroxymethylation, cell proliferation, and expression of ASM phenotypic genes. Inhibition of IDH2 in asthmatic ASM cells decreased the α-KG levels, TET activity, and global DNA hydroxymethylation, and reversed the aberrant ASM phenotypes (including decreased cell proliferation and ASM phenotypic gene expression). Specifically, asthmatic cells transfected with siRNA against IDH2 showed decreased 5hmC (5-hydroxymethylcytosine) levels at the TGFB2 (transforming growth factor-β2) promoter determined by oxidative bisulfite sequencing. Taken together, our findings reveal that IDH2 plays an important role in the epigenetic regulation of ASM phenotypic changes in asthmatic ASM cells, suggesting that IDH2 is a potential therapeutic target for reversing the abnormal phenotypes seen in asthma.
Collapse
Affiliation(s)
- Bonnie H. Y. Yeung
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jessie Huang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Center for Regenerative Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Steven S. An
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois; and
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Wan-yee Tang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Li HT, Lin YS, Ye QM, Yang XN, Zou XL, Yang HL, Zhang TT. Airway inflammation and remodeling of cigarette smoking exposure ovalbumin-induced asthma is alleviated by CpG oligodeoxynucleotides via affecting dendritic cell-mediated Th17 polarization. Int Immunopharmacol 2020; 82:106361. [PMID: 32135492 DOI: 10.1016/j.intimp.2020.106361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Cigarette smoking (CS) is common in asthma, aggravating inflammatory reactions. However, the current treatment strategies for asthma are still not effective enough, and novel therapeutic approaches are required for CS-induced asthmatic disorders. We here investigated the ability of CpG oligodeoxynucleotides (CpG-ODNs) to inhibit airway inflammation and remodeling in ovalbumin (OVA)-associated asthma in mice exposed to chronic CS, revealing potential mechanistic insights. Lung tissue specimens were histologically analyzed. Th1/Th2/Th17 associated cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung specimens were quantitated by ELISA, qRT-PCR and immunoblot. Parameters of bone marrow-derived dendritic cells (BMDCs) functions were evaluated as well. The results showed that BALB/c mice after CS and OVA treatments developed an asthmatic phenotype with airway inflammation involving both eosinophils and neutrophils, goblet cell metaplasia, airway remodeling, and elevated OVA-specific serum IgE, serum IL-17A, and BALF Th17/Th2 associated cytokines. CpG-ODNs and budesonide were found to synergistically inhibit inflammatory cell recruitment in the lung, airway remodeling, IgE synthesis, and Th17/Th2 associated cytokines. Mechanistically, CpG-ODNs and budesonide acted synergistically on BMDCs via downregulation of TSLP receptor (TSLPR) and IL-23 production, and subsequently contributed to dampen Th17/Th2 polarization in CS-associated asthma. In conclusion, combined administration of CpG-ODNs and budesonide, in a synergistic manner, inhibits airway inflammation, and tissue remodeling mediated by BMDCs by regulating IL-23 secretion and blocking TSLP signaling, which subsequently contribute to alleviate Th17/Th2 imbalance in CS-associated asthma.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yu-Sen Lin
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qi-Mei Ye
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xue-Na Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiao-Ling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hai-Ling Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tian-Tuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Trinh HKT, Nguyen TVT, Kim SH, Cao TBT, Luu QQ, Kim SH, Park HS. Osteopontin contributes to late-onset asthma phenotypes in adult asthma patients. Exp Mol Med 2020; 52:253-265. [PMID: 32009132 PMCID: PMC7062758 DOI: 10.1038/s12276-020-0376-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
Patients with late-onset asthma (LOA) have poor clinical outcomes. Osteopontin (OPN) is associated with airway inflammation and remodeling. To investigate the role of OPN in LOA compared to early-onset asthma (EOA), serum OPN levels were compared between 131 adult asthma patients (48 LOA and 83 EOA patients) and 226 healthy controls (HCs). BALB/c mice were sensitized with ovalbumin with/without polyinosinic-polycytidylic acid (poly(I:C)) from week 6 (A6 mice) or week 12 (A12 mice) after birth. Airway hyperresponsiveness (AHR), bronchoalveolar lavage fluid (BALF), cell counts, histology, and Spp1 expression were assessed. The levels of OPN, transforming growth factor β1 (TGF-β1), chitinase 3-like 1 (CH3L1), and interleukin (IL) 5 were measured by ELISA. The expression of Smad3 phosphorylation and tissue transglutaminase 2 (TGM2) was evaluated by Western blot. The serum OPN levels were significantly higher in asthma patients than in HCs and in LOA patients than in those with EOA (P < 0.05) and were positively correlated with serum TGF-β1 and CH3L1 (r = 0.174, r = 0.264; P < 0.05). A12 mice showed elevated AHR with increased levels of OPN/TGF-β1/IL-5 in BALF and Spp1 compared to A6 mice. Poly(I:C) induced remarkable TGF-β1, CH3L1, Th2 cytokine, and OPN levels in BALF and the expression of phosphorylated Smad3, TGM2, and Spp1 in the lungs. OPN triggered TGF-β1/Smad3 signaling in the lungs, which was suppressed by dexamethasone and anti-IL5 antibody. In conclusion, aging and exposure to viral infections may induce OPN release and consequently modulate inflammation and TGF-β1/Smad3-related remodeling, contributing to the development of LOA. Aging and viral infections in older individuals may combine to spur the release of an inflammatory protein implicated in late-onset asthma. A team led by Hae-Sim Park from Ajou University School of Medicine, Suwon, South Korea, showed that people who develop asthma after age 40 have higher blood levels of osteopontin, a multifunctional protein with roles in airway inflammation and tissue remodeling, than people who develop asthma at a younger age or healthy individuals. The researchers developed two ovalbumin-induced asthma models in younger and older mice, and found that older mice developed more severe airway hyperresponsiveness with higher levels of osteopontin, among other inflammatory markers, which were emnhanced by viral infection. Drug therapies that target osteopontin signaling could help combat the late-onset asthma.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuy Van Thao Nguyen
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Seo-Hee Kim
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Thi Bich Tra Cao
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Quoc Quang Luu
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea. .,Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea.
| |
Collapse
|
16
|
Wang L, Meng J, Wang C, Yang C, Wang Y, Li Y, Li Y. Hydrogen sulfide alleviates cigarette smoke-induced COPD through inhibition of the TGF- β1/smad pathway. Exp Biol Med (Maywood) 2020; 245:190-200. [PMID: 32008357 DOI: 10.1177/1535370220904342] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smoking has become a major cause of chronic obstructive pulmonary disease through weakening of the respiratory mucus-ciliary transport system, impairing cough reflex sensitivity, and inducing inflammation. Recent researches have indicated that hydrogen sulfide is essential in the development of various lung diseases. However, the effect and mechanism of hydrogen sulfide on cigarette smoke-induced chronic obstructive pulmonary disease have not been reported. In this study, rats were treated with cigarette smoke to create a chronic obstructive pulmonary disease model followed by treatment with a low concentration of hydrogen sulfide. Pulmonary function, histopathological appearance, lung edema, permeability, airway remodeling indicators, oxidative products/antioxidases levels, inflammatory factors in lung, cell classification in bronchoalveolar lavage fluid were measured to examine the effect of hydrogen sulfide on chronic obstructive pulmonary disease model. The results showed that hydrogen sulfide effectively improved pulmonary function and reduced histopathological changes, lung edema, and permeability. Airway remodeling, oxidative stress, and inflammation were also reduced by hydrogen sulfide treatment. To understand the mechanisms, we measured the expression of TGF-β1, TGF-βIand TGF-βII receptors and Smad7 and phosphorylation of Smad2/Smad3. The results indicated that the TGF-β1 and Smad were activated in cigarette smoke-induced chronic obstructive pulmonary disease model, but inhibited by hydrogen sulfide. In conclusion, this study showed that hydrogen sulfide treatment alleviated cigarette smoke-induced chronic obstructive pulmonary disease through inhibition of the TGF-β1/Smad pathway. Impact statement COPD has become a severe public health issue in the world and smoking has become a major cause of COPD. As a result, it is a demandingly needed to explore new potential therapy for cigarette smoke-associated COPD. The present study suggested that H2S treatment improved pulmonary function and reduced histopathological changes, lung edema, permeability, inflammation, airway remodeling and oxidative injury in a COPD model induced by cigarette smoke. Although additional studies are required to elucidate the pharmacodynamics, pharmacokinetics, and pharmacology of H2S in the cigarette smoke-associated COPD, our findings provide an experimental basis for the potential clinical application of H2S in COPD treatment.
Collapse
Affiliation(s)
- Liang Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Jing Meng
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Caicai Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Chao Yang
- Department of Gynecology, Shijiazhuang Second Hospital, Shijiazhuang 050048, China
| | - Yuan Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Yamei Li
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Yujing Li
- Department of Laboratory, Hebei Chest Hospital, Hebei 050048, China
| |
Collapse
|
17
|
Hur GY, Broide DH. Genes and Pathways Regulating Decline in Lung Function and Airway Remodeling in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:604-621. [PMID: 31332973 PMCID: PMC6658410 DOI: 10.4168/aair.2019.11.5.604] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022]
Abstract
Asthma is a common disorder of the airways characterized by airway inflammation and by decline in lung function and airway remodeling in a subset of asthmatics. Airway remodeling is characterized by structural changes which include airway smooth muscle hypertrophy/hyperplasia, subepithelial fibrosis due to thickening of the reticular basement membrane, mucus metaplasia of the epithelium, and angiogenesis. Epidemiologic studies suggest that both genetic and environmental factors may contribute to decline in lung function and airway remodeling in a subset of asthmatics. Environmental factors include respiratory viral infection-triggered asthma exacerbations, and tobacco smoke. There is also evidence that several asthma candidate genes may contribute to decline in lung function, including ADAM33, PLAUR, VEGF, IL13, CHI3L1, TSLP, GSDMB, TGFB1, POSTN, ESR1 and ARG2. In addition, mediators or cytokines, including cysteinyl leukotrienes, matrix metallopeptidase-9, interleukin-33 and eosinophil expression of transforming growth factor-β, may contribute to airway remodeling in asthma. Although increased airway smooth muscle is associated with reduced lung function (i.e. forced expiratory volume in 1 second) in asthma, there have been few long-term studies to determine how individual pathologic features of airway remodeling contribute to decline in lung function in asthma. Clinical studies with inhibitors of individual gene products, cytokines or mediators are needed in asthmatic patients to identify their individual role in decline in lung function and/or airway remodeling.
Collapse
Affiliation(s)
- Gyu Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Activin-A in the regulation of immunity in health and disease. J Autoimmun 2019; 104:102314. [PMID: 31416681 DOI: 10.1016/j.jaut.2019.102314] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/08/2023]
Abstract
The TGF-β superfamily of cytokines plays pivotal roles in the regulation of immune responses protecting against or contributing to diseases, such as, allergy, autoimmunity and cancer. Activin-A, a member of the TGF-β superfamily, was initially identified as an inducer of follicle-stimulating hormone secretion. Extensive research over the past decades illuminated fundamental roles for activin-A in essential biologic processes, including embryonic development, stem cell maintenance and differentiation, haematopoiesis, cell proliferation and tissue fibrosis. Activin-A signals through two type I and two type II receptors which, upon ligand binding, activate their kinase activity, phosphorylate the SMAD2 and 3 intracellular signaling mediators that form a complex with SMAD4, translocate to the nucleus and activate or silence gene expression. Most immune cell types, including macrophages, dendritic cells (DCs), T and B lymphocytes and natural killer cells have the capacity to produce and respond to activin-A, although not in a similar manner. In innate immune cells, including macrophages, DCs and neutrophils, activin-A exerts a broad range of pro- or anti-inflammatory functions depending on the cell maturation and activation status and the spatiotemporal context. Activin-A also controls the differentiation and effector functions of Th cell subsets, including Th9 cells, TFH cells, Tr1 Treg cells and Foxp3+ Treg cells. Moreover, activin-A affects B cell responses, enhancing mucosal IgA secretion and inhibiting pathogenic autoantibody production. Interestingly, an array of preclinical and clinical studies has highlighted crucial functions of activin-A in the initiation, propagation and resolution of human diseases, including autoimmune diseases, such as, systemic lupus erythematosus, rheumatoid arthritis and pulmonary alveolar proteinosis, in allergic disorders, including allergic asthma and atopic dermatitis, in cancer and in microbial infections. Here, we provide an overview of the biology of activin-A and its signaling pathways, summarize recent studies pertinent to the role of activin-A in the modulation of inflammation and immunity, and discuss the potential of targeting activin-A as a novel therapeutic approach for the control of inflammatory diseases.
Collapse
|
19
|
Gong Y, Wang N, Liu N, Dong H. Lipid Peroxidation and GPX4 Inhibition Are Common Causes for Myofibroblast Differentiation and Ferroptosis. DNA Cell Biol 2019; 38:725-733. [PMID: 31140862 DOI: 10.1089/dna.2018.4541] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ferroptosis is a new form of regulated cell death. Fibroblast-to-myofibroblast differentiation is known to be involved in the pathogenesis of idiopathic pulmonary fibrosis. Utilizing HFL1 cell line treated with transforming growth factor-β1 (TGF-β1), we investigated the relationship between ferroptosis and pulmonary fibrosis, and the function of glutathione peroxidase 4 (GPX4) in them. The results indicated that α-smooth muscle actin and collagen I (COL I) mRNA expression levels increased significantly from 24 h after TGF-β1-treatment, and further rose after TGF-β1+erastin treatment. The levels of reactive oxygen species (ROS), malondialdehyde were increased, and the levels of GPX4 mRNA and protein were reduced after treatment with TGF-β1, and all these were magnified after TGF-β1+erastin treatment. All these changes induced by TGF-β1 and erastin can be recovered by Fer-1 treatment. The cell viability rate was decreased significantly when treated with TGF-β1+erastin, but no obvious variation of cell viability was found in TGF-β1-treated group and in other groups, suggesting that ROS, lipid peroxidation, and GPX4 inhibition are not sufficient conditions for ferroptosis. Collectively, our study reveals that ROS, lipid peroxidation, and GPX4 play important roles in pulmonary fibrosis and ferroptosis induced by erastin. Erastin promoted fibroblast-to-myofibroblast differentiation by increasing lipid peroxidation and inhibiting the expression of GPX4. Fer-1 may inhibit pulmonary fibrosis and ferroptosis through suppressing lipid peroxidation and enhancing GPX4 expression.
Collapse
Affiliation(s)
- Yue Gong
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Nan Wang
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Naiguo Liu
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| | - Hongliang Dong
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, P.R. China
| |
Collapse
|
20
|
Altman MC, Gill MA, Whalen E, Babineau DC, Shao B, Liu AH, Jepson B, Gruchalla RS, O'Connor GT, Pongracic JA, Kercsmar CM, Khurana Hershey GK, Zoratti EM, Johnson CC, Teach SJ, Kattan M, Bacharier LB, Beigelman A, Sigelman SM, Presnell S, Gern JE, Gergen PJ, Wheatley LM, Togias A, Busse WW, Jackson DJ. Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children. Nat Immunol 2019; 20:637-651. [PMID: 30962590 PMCID: PMC6472965 DOI: 10.1038/s41590-019-0347-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Respiratory infections are common precursors to asthma exacerbations in children, but molecular immune responses that determine whether and how an infection causes an exacerbation are poorly understood. By using systems-scale network analysis, we identify repertoires of cellular transcriptional pathways that lead to and underlie distinct patterns of asthma exacerbation. Specifically, in both virus-associated and nonviral exacerbations, we demonstrate a set of core exacerbation modules, among which epithelial-associated SMAD3 signaling is upregulated and lymphocyte response pathways are downregulated early in exacerbation, followed by later upregulation of effector pathways including epidermal growth factor receptor signaling, extracellular matrix production, mucus hypersecretion, and eosinophil activation. We show an additional set of multiple inflammatory cell pathways involved in virus-associated exacerbations, in contrast to squamous cell pathways associated with nonviral exacerbations. Our work introduces an in vivo molecular platform to investigate, in a clinical setting, both the mechanisms of disease pathogenesis and therapeutic targets to modify exacerbations.
Collapse
Affiliation(s)
- Matthew C Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA.
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA.
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Whalen
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Baomei Shao
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew H Liu
- Department of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Rebecca S Gruchalla
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George T O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Leonard B Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University, St. Louis, MO, USA
| | - Avraham Beigelman
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University, St. Louis, MO, USA
| | - Steve M Sigelman
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Scott Presnell
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter J Gergen
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lisa M Wheatley
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - William W Busse
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
21
|
Liu Z, Xu Q, Yang Q, Cao J, Wu C, Peng H, Zhang X, Chen J, Cheng G, Wu Y, Shi R, Zhang G. Vascular peroxidase 1 is a novel regulator of cardiac fibrosis after myocardial infarction. Redox Biol 2019; 22:101151. [PMID: 30844643 PMCID: PMC6402381 DOI: 10.1016/j.redox.2019.101151] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is the most important mechanism contributing to cardiac remodeling after myocardial infarction (MI). VPO1 is a heme enzyme that uses hydrogen peroxide (H2O2) to produce hypochlorous acid (HOCl). Our previous study has demonstrated that VPO1 regulates myocardial ischemic reperfusion and renal fibrosis. We investigated the role of VPO1 in cardiac fibrosis after MI. The results showed that VPO1 expression was robustly upregulated in the failing human heart with ischemic cardiomyopathy and in a murine model of MI accompanied by severe cardiac fibrosis. Most importantly, knockdown of VPO1 by tail vein injection of VPO1 siRNA significantly reduced cardiac fibrosis and improved cardiac function and survival rate. In VPO1 knockdown mouse model and cardiac fibroblasts cultured with TGF-β1, VPO1 contributes to cardiac fibroblasts differentiation, migration, collagen I synthesis and proliferation. Mechanistically, the fibrotic effects following MI of VPO1 manifested partially through HOCl formation to activate Smad2/3 and ERK1/2. Thus, we conclude that VPO1 is a crucial regulator of cardiac fibrosis after MI by mediating HOCl/Smad2/3 and ERK1/2 signaling pathways, implying a promising therapeutic target in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Zhaoya Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qixin Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Cao
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huihui Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Chen
- Department of Humanistic Nursing, Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Guangjie Cheng
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Yueheng Wu
- Department of Cardiovascular Medicine, Guangdong General Hospital, Guangzhou, Guangdong China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Sun Q, Fang L, Tang X, Lu S, Tamm M, Stolz D, Roth M. TGF-β Upregulated Mitochondria Mass through the SMAD2/3→C/EBPβ→PRMT1 Signal Pathway in Primary Human Lung Fibroblasts. THE JOURNAL OF IMMUNOLOGY 2018; 202:37-47. [PMID: 30530593 DOI: 10.4049/jimmunol.1800782] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
Tissue remodeling of subepithelial mesenchymal cells is a major pathologic condition of chronic obstructive pulmonary disease and asthma. Fibroblasts contribute to fibrotic events and inflammation in both airway diseases. Recent mechanistic studies established a link between mitochondrial dysfunction or aberrant biogenesis leading to tissue remodeling of the airway wall in asthma. Protein arginine methyltransferase-1 (PRMT1) participated in airway wall remodeling in pulmonary inflammation. This study investigated the mechanism by which PRMT1 regulates mitochondrial mass in primary human airway wall fibroblasts. Fibroblasts from control or asthma patients were stimulated with TGF-β for up to 48 h, and the signaling pathways controlling PRMT1 expression and mitochondrial mass were analyzed. PRMT1 activity was suppressed by the pan-PRMT inhibitor AMI-1. The SMAD2/3 pathway was blocked by SB203580 and C/EBPβ by small interference RNA treatment. The data obtained from unstimulated cells showed a significantly higher basal expression of PRMT1 and mitochondrial markers in asthmatic compared with control fibroblasts. In all cells, TGF-β significantly increased the expression of PRMT1 through SMAD2/3 and C/EBPβ. Subsequently, PRMT1 upregulated the expression of the mitochondria regulators PGC-1α and heat shock protein 60. Both the inhibition of the SAMD2/3 pathway or PRMT1 attenuated TGF-β-induced mitochondrial mass and C/EBPβ and α-SMA expression. These findings suggest that the signaling sequence controlling mitochondria in primary human lung fibroblasts is as follows: TGF-β→SMAD2/3→C/EBPβ→PRMT1→PGC-1α. Therefore, PRMT1 and C/EBPβ present a novel therapeutic and diagnostic target for airway wall remodeling in chronic lung diseases.
Collapse
Affiliation(s)
- Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.,Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Lei Fang
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Xuemei Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Michael Tamm
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Daiana Stolz
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Michael Roth
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University of Basel and University Hospital Basel, CH-4031 Basel, Switzerland; and
| |
Collapse
|
23
|
Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol Life Sci 2018; 75:3943-3961. [PMID: 30101406 PMCID: PMC6182337 DOI: 10.1007/s00018-018-2899-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor β, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Koczurkiewicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Marek Sanak
- Division of Molecular Biology and Clinical Genetics, Department of Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
24
|
Paeonol Ameliorates Ovalbumin-Induced Asthma through the Inhibition of TLR4/NF- κB and MAPK Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3063145. [PMID: 30186353 PMCID: PMC6114069 DOI: 10.1155/2018/3063145] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/18/2017] [Indexed: 01/20/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways, with complex signaling pathways involved in its pathogenesis. It was reported that paeonol attenuated airway inflammation of ovalbumin (OVA)-induced mice. Therefore, it is of importance to further investigate the underlying mechanism. BALB/c mice were challenged with OVA for the asthma model, which was validated by the changed levels of IL-4, IFN-γ, and IgE. The elevation of IL-4 and the decreasing of IFN-γ were significantly in middle (p<0.05) or high (p<0.01) paeonol dose groups compared with OVA group. MIP-1β in bronchoalveolar lavage fluid (BALF) also decreased significantly in middle and high paeonol group compared with OVA group (p<0.01), which is similar to the change of its mRNA in lung tissues. Moreover, the inflammatory cells infiltration and collagen deposition were attenuated by paeonol and montelukast sodium via histology examination. At last the immune blot of the protein extracted from lung tissues demonstrated that paeonol decreased the expression of TLR4 and the nuclear translocation of NF-κB, as well as the phosphorylation levels of P38 and ERK in asthma model. In conclusion, paeonol ameliorated OVA-induced asthma through the TLR4/NF-κB and mitogen-activated protein kinase (MAPK) signaling.
Collapse
|
25
|
Kramer EL, Hardie WD, Madala SK, Davidson C, Clancy JP. Subacute TGFβ expression drives inflammation, goblet cell hyperplasia, and pulmonary function abnormalities in mice with effects dependent on CFTR function. Am J Physiol Lung Cell Mol Physiol 2018; 315:L456-L465. [PMID: 29877096 DOI: 10.1152/ajplung.00530.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) produces variable lung disease phenotypes that are, in part, independent of the CF transmembrane conductance regulator ( CFTR) genotype. Transforming growth factor-β (TGFβ) is the best described genetic modifier of the CF phenotype, but its mechanism of action is unknown. We hypothesized that TGFβ is sufficient to drive pathognomonic features of CF lung disease in vivo and that CFTR deficiency enhances susceptibility to pathological TGFβ effects. A CF mouse model and littermate controls were exposed intratracheally to an adenoviral vector containing the TGFβ1 cDNA (Ad-TGFβ), empty vector, or PBS only. Studies were performed 1 wk after treatment, including lung mechanics, collection of bronchoalveolar lavage fluid, and analysis of lung histology, RNA, and protein. CF and non-CF mice showed similar weight loss, inflammation, goblet cell hyperplasia, and Smad pathway activation after Ad-TGFβ treatment. Ad-TGFβ produced greater abnormalities in lung mechanics in CF versus control mice, which was uniquely associated with induction of phosphoinositide 3-kinase and mitogen-activated protein kinase signaling. CFTR transcripts were reduced, and epithelial sodium channel transcripts were increased in CF and non-CF mice, whereas the goblet cell transcription factors, forkhead ortholog A3 and SAM-pointed domain-containing ETS-like factor, were increased in non-CF but not CF mice following Ad-TGFβ treatment. Pulmonary TGFβ1 expression was sufficient to produce pulmonary remodeling and abnormalities in lung mechanics that were associated with both shared and unique cell signaling pathway activation in CF and non-CF mice. These results highlight the multifunctional impact of TGFβ on pulmonary pathology in vivo and identify cellular-response differences that may impact CF lung pathology.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - William D Hardie
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Satish K Madala
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Cynthia Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - John P Clancy
- Department of Pediatrics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
26
|
Reichard A, Wanner N, Stuehr E, Alemagno M, Weiss K, Queisser K, Erzurum S, Asosingh K. Quantification of airway fibrosis in asthma by flow cytometry. Cytometry A 2018; 93:952-958. [PMID: 29659138 DOI: 10.1002/cyto.a.23373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 01/31/2023]
Abstract
Airway fibrosis is a prominent feature of asthma, contributing to the detrimental consequences of the disease. Fibrosis in the airway is the result of collagen deposition in the reticular lamina layer of the subepithelial tissue. Myofibroblasts are the leading cell type involved with this collagen deposition. Established methods of collagen deposition quantification present various issues, most importantly their inability to quantify current collagen biosynthesis occurring in airway myofibroblasts. Here, a novel method to quantify myofibroblast collagen expression in asthmatic lungs is described. Single cell suspensions of lungs harvested from C57BL/6 mice in a standard house dust mite model of asthma were employed to establish a flow cytometric method and compare collagen production in asthmatic and non-asthmatic lungs. Cells found to be CD45- αSMA+ , indicative of myofibroblasts, were gated, and median fluorescence intensity of the anti-collagen-I antibody labeling the cells was calculated. Lung myofibroblasts with no, medium, or high levels of collagen-I expression were distinguished. In asthmatic animals, collagen-I levels were increased in both medium and high expressers, and the number of myofibroblasts with high collagen-I content was elevated. Our findings determined that quantification of collagen-I deposition in myofibroblastic lung cells by flow cytometry is feasible in mouse models of asthma and indicative of increased collagen-I expression by asthmatic myofibroblasts. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Andrew Reichard
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Nicholas Wanner
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Eric Stuehr
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Mario Alemagno
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Kelly Weiss
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Kimberly Queisser
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio
| | - Serpil Erzurum
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio.,Respiratory Institute, The Cleveland Clinic, Cleveland, Ohio
| | - Kewal Asosingh
- Department of Inflammation and Immunity, The Cleveland Clinic, Cleveland, Ohio.,Flow Cytometry Core, Lerner Research Institute The Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
27
|
Yang L, Jiao X, Wu J, Zhao J, Liu T, Xu J, Ma X, Cao L, Liu L, Liu Y, Chi J, Zou M, Li S, Xu J, Dong L. Cordyceps sinensis inhibits airway remodeling in rats with chronic obstructive pulmonary disease. Exp Ther Med 2018; 15:2731-2738. [PMID: 29456676 PMCID: PMC5795554 DOI: 10.3892/etm.2018.5777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Cordyceps sinensis is a traditional Chinese herbal medicine that has been used for centuries in Asia as a tonic to soothe the lung for the treatment of respiratory diseases. The aim of the present study was to determine the effects of C. sinensis on airway remodeling in chronic obstructive pulmonary disease (COPD) and investigate the underlying molecular mechanisms. Rats with COPD were orally administered C. sinensis at low, moderate or high doses (2.5, 5 or 7.5 g/kg/day, respectively) for 12 weeks. Airway tissue histopathology, lung inflammation and airway remodeling were evaluated. C. sinensis treatment significantly ameliorated airway wall thickening, involving collagen deposition, airway wall fibrosis, smooth muscle hypertrophy and epithelial hyperplasia in model rats with COPD. Additionally, C. sinensis administration in rats with COPD reduced inflammatory cell accumulation and decreased inflammatory cytokine production, including tumor necrosis factor-α, interleukin-8 and transforming growth factor (TGF)-β1 in bronchoalveolar lavage fluid. Meanwhile, the increased levels of α-smooth muscle actin and collagen I in the COPD group were also markedly decreased by C. sinensis treatment. Furthermore, compared with untreated rats with COPD, C. sinensis reduced the expression level of phosphorylated (p)-Smad2, p-Smad3, TGF-β1 and its receptors, with the concomitant increased expression of Smad7 in the lungs of rats with COPD. These results indicated that treatment with C. sinensis may be a useful approach for COPD therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Xingai Jiao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinxiang Wu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiping Zhao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tian Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianfeng Xu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Pulmonary Medicine, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiaohui Ma
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Liuzao Cao
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yahui Liu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingyu Chi
- Department of Tuberculosis, Shandong Provincial Chest Hospital, Jinan, Shandong 250013, P.R. China
| | - Minfang Zou
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuo Li
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jiawei Xu
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liang Dong
- Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
28
|
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by progressive lung disease. Most CF therapies focus on treating secondary pulmonary complications rather than addressing the underlying processes inducing airway remodeling and ineffective response to infection. Transforming growth factor beta (TGFβ) is a cytokine involved in fibrosis, inflammation, and injury response as well as a genetic modifier and biomarker of CF lung disease. Targeting the TGFβ pathway has been pursued in other diseases, but the mechanism of TGFβ effects in CF is less well understood. Areas covered: In this review, we discuss CF lung disease pathogenesis with a focus on potential links to TGFβ. TGFβ signaling in lung health and disease is reviewed. Recent studies investigating TGFβ's impact in CF airway epithelial cells are highlighted. Finally, an overview of potential therapies to target TGFβ signaling relevant to CF are addressed. Expert opinion: The broad impact of TGFβ signaling on numerous cellular processes in homeostasis and disease is both a strength and a challenge to developing TGFβ dependent therapeutics in CF. We discuss the challenges inherent in developing TGFβ-targeted therapy, identifying appropriate patient populations, and questions regarding the timing of treatment. Future directions for research into TGFβ focused therapeutics are discussed.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- a Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - John P Clancy
- a Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
29
|
Das S, Miller M, Broide DH. Chromosome 17q21 Genes ORMDL3 and GSDMB in Asthma and Immune Diseases. Adv Immunol 2017; 135:1-52. [PMID: 28826527 DOI: 10.1016/bs.ai.2017.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome 17q21 contains a cluster of genes including ORMDL3 and GSDMB, which have been highly linked to asthma in genome-wide association studies. ORMDL3 is localized to the endoplasmic reticulum and regulates downstream pathways including sphingolipids, metalloproteases, remodeling genes, and chemokines. ORMDL3 inhibits serine palmitoyl-CoA transferase, the rate-limiting enzyme for sphingolipid biosynthesis. In addition, ORMDL3 activates the ATF6α branch of the unfolded protein response which regulates SERCA2b and IL-6, pathways of potential importance to asthma. The SNP-linking chromosome 17q21 to asthma is associated with increased ORMDL3 and GSDMB expression. Mice expressing either increased levels of human ORMDL3, or human GSDMB, have an asthma phenotype characterized by increased airway responsiveness and increased airway remodeling (increased smooth muscle and fibrosis) in the absence of airway inflammation. GSDMB regulates expression of 5-LO and TGF-β1 which are known pathways involved in the pathogenesis of asthma. GSDMB is one of four members of the GSDM family (GSDMA, GSDMB, GSDMC, and GSDMD). GSDMD (located on chromosome 8q24 and not linked to asthma) has emerged as a key mediator of pyroptosis. GSDMD is a key component of the NLPR3 inflammasome and is required for its activation. GSDMD undergoes proteolytic cleavage by caspase-1 to release its N-terminal fragment, which in turn mediates pyroptosis and IL-1β secretion. Chromosome 17q21 has not only been linked to asthma but also to type 1 diabetes, inflammatory bowel disease, and primary biliary cirrhosis suggesting that future insights into the biology of genes located in this region will increase our understanding of these diseases.
Collapse
Affiliation(s)
- Sudipta Das
- University of California, San Diego, CA, United States
| | - Marina Miller
- University of California, San Diego, CA, United States
| | | |
Collapse
|
30
|
Adenosine Triphosphate Promotes Allergen-Induced Airway Inflammation and Th17 Cell Polarization in Neutrophilic Asthma. J Immunol Res 2017. [PMID: 28626774 PMCID: PMC5463097 DOI: 10.1155/2017/5358647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is a key mediator to alert the immune dysfunction by acting on P2 receptors. Here, we found that allergen challenge caused an increase of ATP secretion in a murine model of neutrophilic asthma, which correlated well with neutrophil counts and interleukin-17 production. When ATP signaling was blocked by intratracheal administration of the ATP receptor antagonist suramin before challenge, neutrophilic airway inflammation, airway hyperresponsiveness, and Th17-type responses were reduced significantly. Also, neutrophilic inflammation was abrogated when airway ATP levels were locally neutralized using apyrase. Furthermore, ATP promoted the Th17 polarization of splenic CD4+ T cells from DO11.10 mice in vitro. In addition, ovalbumin (OVA) challenge induced neutrophilic inflammation and Th17 polarization in DO11.10 mice, whereas administration of suramin before challenge alleviated these parameters. Thus, ATP may serve as a marker of neutrophilic asthma, and local blockade of ATP signaling might provide an alternative method to prevent Th17-mediated airway inflammation in neutrophilic asthma.
Collapse
|
31
|
Lin SC, Chou HC, Chiang BL, Chen CM. CTGF upregulation correlates with MMP-9 level in airway remodeling in a murine model of asthma. Arch Med Sci 2017; 13:670-676. [PMID: 28507585 PMCID: PMC5420622 DOI: 10.5114/aoms.2016.60371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/05/2015] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Connective tissue growth factor (CTGF) mediates hypertrophy, proliferation, and extracellular matrix synthesis. Matrix metalloproteinase (MMP) plays a role in airway extracellular matrix remodeling. The correlation between CTGF and MMP in airway remodeling of asthma was unknown. This study investigated lung CTGF expression and its correlation with MMP and airway structural changes in a murine model of asthma. MATERIAL AND METHODS Female BALB/c mice were sensitized and challenged by intraperitoneal injections and intranasal phosphate-buffered saline (PBS) or ovalbumin (OVA). Airway responsiveness and serum OVA-specific IgE were measured. Airway structural changes were quantified by morphometric analysis. Differential cell counts and MMP-2, MMP-9, and tissue inhibitor of metalloproteinase (TIMP)-1 were evaluated in bronchoalveolar lavage fluid (BALF). Lung CTGF was determined by Western blot. RESULTS Serum OVA-specific IgE level and airway responsiveness in enhanced pause (Penh) is significantly higher in sensitized mice challenged with OVA compared to PBS-challenged mice. MMP-2, MMP-9, and TIMP-1 in BALF were significantly higher in OVA mice. Airway structural changes of animals' lungs with OVA challenge showed increased thickness of the smooth muscle layer and numbers of Goblet cells and inflammatory cells and eosinophils near airways and perivascular areas. Lung CTGF expression significantly increased in OVA-challenged mice. CTGF expressions positively correlated with MMP-9 (r = 0.677, p < 0.05), TIMP-1 (r = 0.574, p < 0.05) and thickness of the smooth muscle layer (r = 0.499, p < 0.05). CONCLUSIONS This study indicates that CTGF upregulation correlates with MMP-9, probably involved in the pathogenesis of airway remodeling of asthma.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Papaporfyriou A, Bakakos P, Kostikas K, Papatheodorou G, Hillas G, Trigidou R, Katafigiotis P, Koulouris NG, Papiris SA, Loukides S. Activin A and follistatin in patients with asthma. Does severity make the difference? Respirology 2016; 22:473-479. [PMID: 27807906 DOI: 10.1111/resp.12937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Activin A is a pleiotropic cytokine holding a fundamental role in inflammation and tissue remodelling. Follistatin can modulate the bioactivity of activin. We aimed to measure activin A and follistatin in sputum supernatants and bronchoalveolar lavage (BAL) of asthmatic patients and to determine the possible associations with severity as well as with inflammatory and remodelling indices. METHODS A total of 58 asthmatic patients (33 with severe refractory asthma (SRA)) and 10 healthy controls underwent sputum induction for % cells, activin A, follistatin, eosinophilic cationic protein (ECP), transforming growth factor beta 1 (TGF-β1), IL-13 and IL-8 measurements. In 22 asthmatic patients, BAL and bronchial biopsies were also performed for the assessment of the above-mentioned variables, measurement of remodelling indices and immunostaining for different activin A receptors. RESULTS Sputum activin A (pg/mL) was higher in patients with SRA (median (interquartile ranges): 76 (33-185)) compared to mild-to-moderate asthma (44 (18-84); P = 0.005), whereas follistatin did not differ between the two groups. BAL activin A (pg/mL) was higher in patients with SRA compared to those with mild-to-moderate disease. A significant association was observed between activin A and TGF-β1, eosinophils in sputum and/or in BAL, while reticular basement membrane (RBM) thickness was significantly associated with BAL activin levels only. No difference in immunostaining for activin receptor type IB was observed between patients with SRA and those with mild-to-moderate asthma. CONCLUSION Sputum and BAL levels of activin A are higher in SRA. The association of activin A with TGF-β1, eosinophils and RBM thickness may indicate a role of this cytokine in the inflammatory and remodelling process in SRA.
Collapse
Affiliation(s)
- Anastasia Papaporfyriou
- 1st Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | - Petros Bakakos
- 1st Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | - Konstantinos Kostikas
- 2nd Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | | | - Georgios Hillas
- 1st Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | - Rodoula Trigidou
- Pathology Department, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | | | - Nikolaos G Koulouris
- 1st Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Sotiria" Hospital of Chest Diseases, Athens, Greece
| | - Spyros A Papiris
- 2nd Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Stelios Loukides
- 2nd Department of Respiratory Medicine, Medical School of National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| |
Collapse
|
33
|
Wang Z, Zhang H, Sun X, Ren L. The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway. Mol Med Rep 2016; 14:2389-96. [PMID: 27484042 PMCID: PMC4991747 DOI: 10.3892/mmr.2016.5563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Asthma is a common worldwide health burden, the prevalence of which is increasing. Recently, the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3, has been reported to have a protective role in murine asthma; however, the molecular mechanisms by which vitamin D3 attenuates asthma-associated airway injury remain elusive. In the present study, BALB/c mice were sensitized to ovalbumin (OVA) and were administered 100 ng 1,25-dihydroxyvitamin D3 (intraperitoneal injection) 30 min prior to each airway challenge. The inflammatory responses were measured by ELISA, airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was analyzed by Masson staining and periodic acid-Schiff staining, markers of oxidative stress were measured by commercial kits, and the expression levels of α-smooth muscle actin (α-SMA) and the activity of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and the transforming growth factor-β (TGF-β)/Smad signaling pathways were measured by immunohistochemistry and western blotting. The results demonstrated that OVA-induced airway inflammation and immunoglobulin E overexpression were significantly reduced by vitamin D3 treatment. In addition, treatment with vitamin D3 decreased α-SMA expression, collagen deposition and goblet cell hyperplasia, and inhibited TGF-β/Smad signaling in the asthmatic airway. The upregulated levels of malondialdehyde, and the reduced activities of superoxide dismutase and glutathione in OVA-challenged mice were also markedly restored following vitamin D3 treatment. Furthermore, treatment with vitamin D3 enhanced activation of the Nrf2/HO-1 pathway in the airways of asthmatic mice. In conclusion, these findings suggest that vitamin D3 may protect airways from asthmatic damage via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway; however, these protective effects were shown to be accompanied by hypercalcemia.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haitao Zhang
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaohan Sun
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lihong Ren
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
34
|
Hill DA, Spergel JM. The Immunologic Mechanisms of Eosinophilic Esophagitis. Curr Allergy Asthma Rep 2016; 16:9. [PMID: 26758862 DOI: 10.1007/s11882-015-0592-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory disease that is triggered by food and/or environmental allergens and is characterized by a clinical and pathologic phenotype of progressive esophageal dysfunction due to tissue inflammation and fibrosis. EoE is suspected in patients with painful swallowing, among other symptoms, and is diagnosed by the presence of 15 or more eosinophils per high-power field in one or more of at least four esophageal biopsy specimens. The prevalence of EoE is increasing and has now reached rates similar to those of other chronic gastrointestinal disorders such as Crohn's disease. In recent years, our understanding of the immunologic mechanisms underlying this condition has grown considerably. Thanks to new genetic, molecular, cellular, animal, and translational studies, we can now postulate a detailed pathway by which exposure to allergens results in a complex and coordinated type 2 inflammatory cascade that, if not intervened upon, can result in pain on swallowing, esophageal strictures, and food impaction. Here, we review the most recent research in this field to synthesize and summarize our current understanding of this complex and important disease.
Collapse
Affiliation(s)
- David A Hill
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St., Philadelphia, PA, 19104, USA
| | - Jonathan M Spergel
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3550 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Hardy CL, Rolland JM, O'Hehir RE. The immunoregulatory and fibrotic roles of activin A in allergic asthma. Clin Exp Allergy 2016; 45:1510-22. [PMID: 25962695 PMCID: PMC4687413 DOI: 10.1111/cea.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activin A, a member of the TGF-β superfamily of cytokines, was originally identified as an inducer of follicle stimulating hormone release, but has since been ascribed roles in normal physiological processes, as an immunoregulatory cytokine and as a driver of fibrosis. In the last 10–15 years, it has also become abundantly clear that activin A plays an important role in the regulation of asthmatic inflammation and airway remodelling. This review provides a brief introduction to the activin A/TGF-β superfamily, focussing on the regulation of receptors and signalling pathways. We examine the contradictory evidence for generalized pro- vs. anti-inflammatory effects of activin A in inflammation, before appraising its role in asthmatic inflammation and airway remodelling specifically by evaluating data from both murine models and clinical studies. We identify key issues to be addressed, paving the way for safe exploitation of modulation of activin A function for treatment of allergic asthma and other inflammatory lung diseases.
Collapse
Affiliation(s)
- C L Hardy
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - J M Rolland
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - R E O'Hehir
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| |
Collapse
|
36
|
Ma Y, Huang W, Liu C, Li Y, Xia Y, Yang X, Sun W, Bai H, Li Q, Peng Z. Immunization against TGF-β1 reduces collagen deposition but increases sustained inflammation in a murine asthma model. Hum Vaccin Immunother 2016; 12:1876-85. [PMID: 26901684 DOI: 10.1080/21645515.2016.1145849] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor (TGF)-β1 is involved in the processes of airway inflammation and remodeling; however, its reported roles in asthma pathogenesis are controversial. We sought both to investigate the effects of active immunization targeting TGF-β1 on allergen-induced airway inflammatory responses and to evaluate its possible application for asthma treatment. BALB/c mice were immunized with a virus-like-particle (VLP) vaccine presenting a TGF-β1 peptide. For the preventive intervention of acute allergic airway inflammation, immunization was conducted before sensitization and challenges with ovalbumin (OVA), and for the therapeutic treatment of chronic inflammatory responses, immunization was initiated after inflammatory responses were established. Preventive immunization with VLPs led to increased proinflammatory IL-4, IL-13, and IL-33 levels in the bronchoalveolar lavage fluids (BALF) with no significant effects on lung tissue inflammation and airway goblet cell hyperplasia. Therapeutic treatment showed that at 24 h after the fourth 2-day challenge with OVA following 2 intraperitoneal sensitizations, airway subepithelial collagen deposition was significantly ameliorated in vaccinated mice, whereas the lung histology and cytokine profile in the BALF were not changed. In contrast, after a 4-week recovery from the last OVA challenge, the vaccinated mice's collagen deposition remained reduced, but they sustained lung-tissue inflammation and goblet-cell hyperplasia; elevated IL-13, TNF, and IFN-γ levels in the BALF; and increased airway resistance, tissue resistance, and tissue elastance. In a conclusion, the role of TGF-β1 is complicated in allergic airway inflammatory responses. It is important to make a careful assessment in accordance with specific disease conditions when targeting TGF-β1 for a therapeutic purpose.
Collapse
Affiliation(s)
- Yanbing Ma
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Weiwei Huang
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Cunbao Liu
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Yang Li
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Ye Xia
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Xu Yang
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Wenjia Sun
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Hongmei Bai
- a Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Kunming , China
| | - Qihan Li
- b Department of Viral Immunology , Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Zhikang Peng
- c Department of Pediatrics and Child Health , University of Manitoba , Winnipeg , Canada
| |
Collapse
|
37
|
Snell JN, Westall GP, Snell GI. The potential role of activin and follistatin in lung transplant dysfunction. Expert Rev Respir Med 2015; 9:697-701. [DOI: 10.1586/17476348.2015.1098537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Miller M, Beppu A, Rosenthal P, Pham A, Das S, Karta M, Song DJ, Vuong C, Doherty T, Croft M, Zuraw B, Zhang X, Gao X, Aceves S, Chouiali F, Hamid Q, Broide DH. Fstl1 Promotes Asthmatic Airway Remodeling by Inducing Oncostatin M. THE JOURNAL OF IMMUNOLOGY 2015; 195:3546-56. [PMID: 26355153 DOI: 10.4049/jimmunol.1501105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023]
Abstract
Chronic asthma is associated with airway remodeling and decline in lung function. In this article, we show that follistatin-like 1 (Fstl1), a mediator not previously associated with asthma, is highly expressed by macrophages in the lungs of humans with severe asthma. Chronic allergen-challenged Lys-Cre(tg) /Fstl1(Δ/Δ) mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM), a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, whereas administration of an anti-OSM Ab blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness, all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/OSM pathway may be a novel pathway to inhibit airway remodeling in severe human asthma.
Collapse
Affiliation(s)
- Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Andrew Beppu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Peter Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Alexa Pham
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Sudipta Das
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Maya Karta
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Dae Jin Song
- Department of Pediatrics, Korea University College of Medicine, Seoul 02841, Korea
| | - Christine Vuong
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Taylor Doherty
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bruce Zuraw
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Xu Zhang
- Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Seema Aceves
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093; and
| | - Fazila Chouiali
- Meakins-Christie Laboratories of McGill University and McGill University Health Center Research Institute, Montreal, Quebec H2X 2p2, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories of McGill University and McGill University Health Center Research Institute, Montreal, Quebec H2X 2p2, Canada
| | - David H Broide
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
39
|
Verhamme FM, Bracke KR, Joos GF, Brusselle GG. Transforming growth factor-β superfamily in obstructive lung diseases. more suspects than TGF-β alone. Am J Respir Cell Mol Biol 2015; 52:653-62. [PMID: 25396302 DOI: 10.1165/rcmb.2014-0282rt] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Asthma and chronic obstructive pulmonary disease are respiratory disorders and a major global health problem with increasing incidence and severity. Genes originally associated with lung development could be relevant in the pathogenesis of chronic obstructive pulmonary disease/asthma, owing to either an early-life origin of adult complex diseases or their dysregulation in adulthood upon exposure to environmental stressors (e.g., smoking). The transforming growth factor (TGF)-β superfamily is conserved through evolution and is involved in a range of biological processes, both during development and in adult tissue homeostasis. TGF-β1 has emerged as an important regulator of lung and immune system development. However, considerable evidence has been presented for a role of many of the other ligands of the TGF-β superfamily in lung pathology, including activins, bone morphogenetic proteins, and growth differentiation factors. In this review, we summarize the current knowledge on the mechanisms by which activin, bone morphogenetic protein, and growth differentiation factor signaling contribute to the pathogenesis of obstructive airway diseases.
Collapse
Affiliation(s)
- Fien M Verhamme
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
40
|
Al-Alawi M, Hassan T, Chotirmall SH. Transforming growth factor β and severe asthma: a perfect storm. Respir Med 2014; 108:1409-23. [PMID: 25240764 DOI: 10.1016/j.rmed.2014.08.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic inflammatory airway disease involving complex interplay between resident and infiltrative cells, which in turn are regulated by a wide range of host mediators. Identifying useful biomarkers correlating with clinical symptoms and degree of airway obstruction remain important to effective future asthma treatments. Transforming growth factor β (TGF-β) is a major mediator involved in pro-inflammatory responses and fibrotic tissue remodeling within the asthmatic lung. Its role however, as a therapeutic target remains controversial. The aim of this review is to highlight its role in severe asthma including interactions with adaptive T-helper cells, cytokines and differentiation through regulatory T-cells. Associations between TGF-β and eosinophils will be addressed and the effects of genetic polymorphisms of the TGF-β1 gene explored in the context of asthma. We highlight TGF-β1 as a potential future therapeutic target in severe asthma including its importance in identifying emerging clinical phenotypes in asthmatic subjects who may be suitable for individualized therapy through TGF-β modulation.
Collapse
Affiliation(s)
- Mazen Al-Alawi
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Tidi Hassan
- Department of Respiratory Medicine, Mater Misericordiae Hospital, Eccles Street, Dublin 7, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
41
|
Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes Immun 2014; 15:511-20. [PMID: 25056447 DOI: 10.1038/gene.2014.45] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/04/2023]
Abstract
The prevalence of allergic diseases has significantly increased in industrialized countries. Allergen-specific immunotherapy (AIT) remains as the only curative treatment. The knowledge about the mechanisms underlying healthy immune responses to allergens, the development of allergic reactions and restoration of appropriate immune responses to allergens has significantly improved over the last decades. It is now well-accepted that the generation and maintenance of functional allergen-specific regulatory T (Treg) cells and regulatory B (Breg) cells are essential for healthy immune responses to environmental proteins and successful AIT. Treg cells comprise different subsets of T cells with suppressive capacity, which control the development and maintenance of allergic diseases by various ways of action. Molecular mechanisms of generation of Treg cells, the identification of novel immunological organs, where this might occur in vivo, such as tonsils, and related epigenetic mechanisms are starting to be deciphered. The key role played by the suppressor cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β produced by functional Treg cells during the generation of immune tolerance to allergens is now well established. Treg and Breg cells together have a role in suppression of IgE and induction of IgG4 isotype allergen-specific antibodies particularly mediated by IL-10. Other cell types such as subsets of dendritic cells, NK-T cells and natural killer cells producing high levels of IL-10 may also contribute to the generation of healthy immune responses to allergens. In conclusion, better understanding of the immune regulatory mechanisms operating at different stages of allergic diseases will significantly help the development of better diagnostic and predictive biomarkers and therapeutic interventions.
Collapse
|
42
|
Cho J, Doshi A, Rosenthal P, Beppu A, Miller M, Aceves S, Broide D. Smad3-deficient mice have reduced esophageal fibrosis and angiogenesis in a model of egg-induced eosinophilic esophagitis. J Pediatr Gastroenterol Nutr 2014; 59:10-6. [PMID: 24590208 PMCID: PMC4148477 DOI: 10.1097/mpg.0000000000000343] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Eosinophilic esophagitis (EoE) is a food-triggered disease associated with esophageal fibrosis and stricture formation in a subset of patients. In the present study we used a murine model of egg (ovalbumin [OVA])-induced EoE to determine whether inhibiting transforming growth factor-β1 (TGF-β1) signaling through the Smad3 pathway would inhibit features of esophageal remodeling including fibrosis, angiogenesis, and basal zone hyperplasia. METHODS Wild-type (WT) and Smad3-deficient (KO [knockout]) mice were sensitized intraperitoneally and then challenged chronically with intraesophageal OVA for 1 month. Levels of esophageal eosinophils, esophageal TGF-β1+ and vascular endothelial growth factor (VEGF)+ cells, and features of esophageal remodeling (fibrosis, angiogenesis, basal zone hyperplasia) were quantitated by immunohistochemistry and image analysis. RESULTS OVA challenge induced a similar increase in the levels of esophageal major basic protein (MBP)+ eosinophils and esophageal TGF-β1+ cells in WT and Smad3 KO mice. Smad3 KO mice challenged with OVA had significantly less esophageal fibrosis and esophageal angiogenesis compared with OVA-challenged WT mice. The reduced esophageal angiogenesis in Smad3 KO mice was associated with reduced numbers of VEGF+ cells in the esophagus. There was a trend toward OVA-challenged Smad3 KO to have reduced basal zone hyperplasia, but this was not statistically significant. CONCLUSIONS In a mouse model of egg-induced EoE, Smad3-deficient mice have significantly less esophageal remodeling, especially fibrosis and angiogenesis that is associated with reduced expression of VEGF. Targeting the TGF-β1/Smad3 pathway may be a novel strategy to reduce esophageal fibrosis and its associated complications such as esophageal strictures in EoE.
Collapse
Affiliation(s)
- JaeYoun Cho
- Allergy and Immunology, Department of Medicine, University of California San Diego
| | - Ashmi Doshi
- Allergy and Immunology, Department of Medicine, University of California San Diego
| | - Peter Rosenthal
- Allergy and Immunology, Department of Medicine, University of California San Diego
| | - Andrew Beppu
- Allergy and Immunology, Department of Medicine, University of California San Diego
| | - Marina Miller
- Allergy and Immunology, Department of Medicine, University of California San Diego
| | - Seema Aceves
- Allergy and Immunology, Department of Medicine, University of California San Diego
- Allergy and Immunology, Department of Pediatrics, University of California San Diego
| | - David Broide
- Allergy and Immunology, Department of Medicine, University of California San Diego
| |
Collapse
|
43
|
Cheng RYS, Shang Y, Limjunyawong N, Dao T, Das S, Rabold R, Sham JSK, Mitzner W, Tang WY. Alterations of the lung methylome in allergic airway hyper-responsiveness. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:244-255. [PMID: 24446183 PMCID: PMC4125208 DOI: 10.1002/em.21851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/20/2013] [Accepted: 12/28/2013] [Indexed: 05/29/2023]
Abstract
Asthma is a chronic airway disorder characterized by recurrent attacks of breathlessness and wheezing, affecting 300 million people around the world (available at: www.who.int). To date, genetic factors associated with asthma susceptibility have been unable to explain the full etiology of asthma. Recent studies have demonstrated that the epigenetic disruption of gene expression plays an equally important role in the development of asthma through interaction with our environment. We sensitized 6-week-old C57BL/6J mice with house-dust-mite (HDM) extracts intraperitoneally followed by 5 weeks of exposure to HDM challenges (three times a week) intratracheally. HDM-exposed mice showed an increase in airway hyper-responsiveness (AHR) and inflammation together with structural remodeling of the airways. We applied methylated DNA immunoprecipitation-next generation sequencing (MeDIP-seq) for profiling of DNA methylation changes in the lungs in response to HDM. We observed about 20 million reads by a single-run of massive parallel sequencing. We performed bioinformatics and pathway analysis on the raw sequencing data to identify differentially methylated candidate genes in HDM-exposed mice. Specifically, we have revealed that the transforming growth factor beta signaling pathway is epigenetically modulated by chronic exposure to HDM. Here, we demonstrated that a specific allergen may play a role in AHR through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in airway inflammation and remodeling. Our findings provide new insights into the potential mechanisms by which environmental allergens induce allergic asthma and such insights may assist in the development of novel preventive and therapeutic options for this debilitative disease.
Collapse
Affiliation(s)
- Robert YS Cheng
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yan Shang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
- Department of Respiratory Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Nathachit Limjunyawong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Tyna Dao
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sandhya Das
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Richard Rabold
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - James SK Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Wan-Yee Tang
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| |
Collapse
|
44
|
Miller M, Rosenthal P, Beppu A, Mueller JL, Hoffman HM, Tam AB, Doherty TA, McGeough MD, Pena CA, Suzukawa M, Niwa M, Broide DH. ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. THE JOURNAL OF IMMUNOLOGY 2014; 192:3475-87. [PMID: 24623133 DOI: 10.4049/jimmunol.1303047] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Orosomucoid-like (ORMDL)3 has been strongly linked with asthma in genetic association studies. Because allergen challenge induces lung ORMDL3 expression in wild-type mice, we have generated human ORMDL3 zona pellucida 3 Cre (hORMDL3(zp3-Cre)) mice that overexpress human ORMDL3 universally to investigate the role of ORMDL3 in regulating airway inflammation and remodeling. These hORMDL3(zp3-Cre) mice have significantly increased levels of airway remodeling, including increased airway smooth muscle, subepithelial fibrosis, and mucus. hORMDL3(zp3-Cre) mice had spontaneously increased airway responsiveness to methacholine compared to wild-type mice. This increased airway remodeling was associated with selective activation of the unfolded protein response pathway transcription factor ATF6 (but not Ire1 or PERK). The ATF6 target gene SERCA2b, implicated in airway remodeling in asthma, was strongly induced in the lungs of hORMDL3(zp3-Cre) mice. Additionally, increased levels of expression of genes associated with airway remodeling (TGF-β1, ADAM8) were detected in airway epithelium of these mice. Increased levels of airway remodeling preceded increased levels of airway inflammation in hORMDL3(zp3-Cre) mice. hORMDL3(zp3-Cre) mice had increased levels of IgE, with no change in levels of IgG, IgM, and IgA. These studies provide evidence that ORMDL3 plays an important role in vivo in airway remodeling potentially through ATF6 target genes such as SERCA2b and/or through ATF6-independent genes (TGF-β1, ADAM8).
Collapse
Affiliation(s)
- Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Royce SG, Moodley Y, Samuel CS. Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis. Pharmacol Ther 2013; 141:250-60. [PMID: 24513131 DOI: 10.1016/j.pharmthera.2013.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023]
Abstract
Inflammatory cell infiltration, cytokine release, epithelial damage, airway/lung remodelling and fibrosis are central features of inflammatory lung disorders, which include asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Although the lung has some ability to repair itself from acute injury, in the presence of ongoing pathological stimuli and/or insults that lead to chronic disease, it no longer retains the capacity to heal, resulting in fibrosis, the final common pathway that causes an irreversible loss of lung function. Despite inflammation, genetic predisposition/factors, epithelial-mesenchymal transition and mechanotransduction being able to independently contribute to airway remodelling and fibrosis, current therapies for inflammatory lung diseases are limited by their ability to only target the inflammatory component of the disease without having any marked effects on remodelling (epithelial damage and fibrosis) that can cause lung dysfunction independently of inflammation. Furthermore, as subsets of patients suffering from these diseases are resistant to currently available therapies (such as corticosteroids), novel therapeutic approaches are required to combat all aspects of disease pathology. This review discusses emerging therapeutic approaches, such as trefoil factors, relaxin, histone deacetylase inhibitors and stem cells, amongst others that have been able to target airway inflammation and airway remodelling while improving related lung dysfunction. A better understanding of the mode of action of these therapies and their possible combined effects may lead to the identification of their clinical potential in the setting of lung disease, either as adjunct or alternative therapies to currently available treatments.
Collapse
Affiliation(s)
- Simon G Royce
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Departments of Pathology and Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Yuben Moodley
- Department of Respiratory and Sleep Medicine, School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth 6000, Western Australia, Australia
| | - Chrishan S Samuel
- Fibrosis Laboratory, Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
46
|
Hypoxia potentiates allergen induction of HIF-1α, chemokines, airway inflammation, TGF-β1, and airway remodeling in a mouse model. Clin Immunol 2013; 147:27-37. [PMID: 23499929 DOI: 10.1016/j.clim.2013.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 02/08/2023]
Abstract
Whether hypoxia contributes to airway inflammation and remodeling in asthma is unknown. In this study we used mice exposed to a hypoxic environment during allergen challenge (simulating hypoxia during an asthma exacerbation) to investigate the contribution of hypoxia to airway inflammation and remodeling. Although neither hypoxia alone, nor OVA allergen alone, induced significant neutrophil influx into the lung, the combination of OVA and hypoxia induced a synergistic 27 fold increase in peribronchial neutrophils, enhanced expression of HIF-1α and one of its target genes, the CXC-family neutrophil chemokine KC. The combination of hypoxia and OVA allergen increased eotaxin-1, peribronchial eosinophils, lung TGB-β1 expression, and indices of airway remodeling (fibrosis and smooth muscle) compared to either stimulus alone. As hypoxia is present in >90% of severe asthma exacerbations, these findings underscore the potential of hypoxia to potentiate the airway inflammatory response, remodeling, and accelerate the decline of lung function in asthma exacerbations.
Collapse
|
47
|
de Kretser DM, O'Hehir RE, Hardy CL, Hedger MP. The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol 2012; 359:101-6. [PMID: 22037168 DOI: 10.1016/j.mce.2011.10.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/15/2023]
Abstract
Activin A, a member of the transforming growth factor-β superfamily of cytokines, is a critical controller of inflammation, immunity and fibrosis. It is rapidly released into the blood following a lipopolysaccharide challenge in experimental animals, through activation of the Toll-like receptor 4 signalling pathway. Blocking activin action by pre-treatment with its binding protein, follistatin, modifies the inflammatory cytokine cascade, and reduces the severity of the subsequent inflammatory response and mortality. Likewise, high serum levels of activin A are predictive of death in patients with septicaemia. However, activin A has complex immunomodulatory actions. It is produced by inflammatory macrophages, but can regulate either pro- or anti-inflammatory responses in these cells, depending on their prior activation status. Activin A is also produced by Th2 cells, and stimulates antibody production by B cells and the development of regulatory T cells. Production of activin A during inflammatory responses stimulates fibrosis and tissue remodelling, and follistatin inhibits these actions of activin A. The modulation of activin by follistatin may represent an important therapeutic target for the modulation and amelioration of inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- David M de Kretser
- Monash Institute of Medical Research and the Department of Immunology and Pathology, Monash University, Clayton Victoria 3800, Australia.
| | | | | | | |
Collapse
|
48
|
Budd DC, Holmes AM. Targeting TGFβ superfamily ligand accessory proteins as novel therapeutics for chronic lung disorders. Pharmacol Ther 2012; 135:279-91. [PMID: 22722064 DOI: 10.1016/j.pharmthera.2012.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dysregulation of the transforming growth factor β (TGFβ) pathway has been implicated to underlie a number of disease indications including chronic lung disorders such as asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonias, and pulmonary arterial hypertension (PAH). Consequently, the pharmaceutical industry has devoted significant resources in the pursuit of TGFβ pathway inhibitors that target the cognate type I and II receptors and respective ligands. The progress of these approaches has been painfully slow, due in part to dose-limiting safety issues that result from the antagonism of a pathway that is responsible for regulating many fundamental biological processes including immune surveillance and cardiovascular responses. These disappointments have led many in the field to conclude that modulating the TGFβ pathway for chronic indications with a sufficient safety window using conventional approaches may be extremely difficult to achieve. Here we review the rationale and limitations of the use of TGFβ pathway inhibitors in chronic lung disorders and the possibility of targeting TGFβ superfamily ligand accessory proteins to allow rheostatic regulation of signaling to achieve efficacy while maintaining a sufficient therapeutic index.
Collapse
Affiliation(s)
- David C Budd
- Respiratory Drug Discovery, Inflammation, Hoffmann-La Roche Inc., Nutley, NJ, USA.
| | | |
Collapse
|
49
|
Shen ZJ, Braun RK, Hu J, Xie Q, Chu H, Love RB, Stodola LA, Rosenthal LA, Szakaly RJ, Sorkness RL, Malter JS. Pin1 protein regulates Smad protein signaling and pulmonary fibrosis. J Biol Chem 2012; 287:23294-305. [PMID: 22613712 DOI: 10.1074/jbc.m111.313684] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstitial pulmonary fibrosis is caused by the excess production of extracellular matrix (ECM) by Fb in response to TGF-β1. Here, we show that the peptidyl-prolyl isomerase Pin1 modulates the production of many pro- and antifibrogenic cytokines and ECM. After acute, bleomycin injury, Pin1(-/-) mice showed reduced, pulmonary expression of collagens, tissue inhibitors of metalloproteinases, and fibrogenic cytokines but increased matrix metalloproteinases, compared with WT mice, despite similar levels of inflammation. In primary fibroblasts, Pin1 was required for TGF-β-induced phosphorylation, nuclear translocation, and transcriptional activity of Smad3. In Pin1(-/-) cells, inhibitory Smad6 was found in the cytoplasm rather than nucleus. Smad6 knockdown in Pin1(-/-) fibroblasts restored TGF-β-induced Smad3 activation, translocation, and target gene expression. Therefore, Pin1 is essential for normal Smad6 function and ECM production in response to injury or TGF-β and thus may be an attractive therapeutic target to prevent excess scarring in diverse lung diseases.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nieuwenhuizen NE, Kirstein F, Jayakumar J, Emedi B, Hurdayal R, Horsnell WGC, Lopata AL, Brombacher F. Allergic airway disease is unaffected by the absence of IL-4Rα-dependent alternatively activated macrophages. J Allergy Clin Immunol 2012; 130:743-750.e8. [PMID: 22552110 DOI: 10.1016/j.jaci.2012.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Markers of alternatively activated macrophages (AAMs) are upregulated in the lungs of asthmatic patients and in mice with allergic airway disease. AAMs are thought to contribute to the pathogenesis of allergic airway disease by virtue of their decreased NO production and increased production of proline and polyamines, which are important in the synthesis of connective tissues such as collagen. OBJECTIVE We aimed to define the role of AAMs in the pathogenesis of allergic airway disease. METHODS The IL-4 receptor alpha (IL-4Rα) gene is genetically abrogated in macrophages in LysM(cre)IL-4Rα(-/lox) mice, which therefore have impaired IL-4/IL-13 activation of AAMs through IL-4R types 1 and 2. Responses of LysM(cre)IL-4Rα(-/lox) mice and IL-4Rα(-/lox) littermate controls were examined in ovalbumin- and house dust mite-induced allergic airway disease. RESULTS IL-4Rα expression was shown to be efficiently depleted from alveolar macrophages, interstitial macrophages, and CD11b(+)MHCII(+) inflammatory macrophages. Although the expression of markers of AAMs such as Ym-1, arginase and found in inflammatory zone 1 was decreased in macrophages of LysM(cre)IL-4Rα(-/lox) mice in chronic ovalbumin-induced allergic airway disease, airway hyperreactivity, T(H)2 responses, mucus hypersecretion, eosinophil infiltration, and collagen deposition were not significantly reduced. LysM(cre)IL-4Rα(-/lox) mice and littermate controls also developed similar responses in acute ovalbumin- and house dust mite-induced allergic airway disease. CONCLUSION Our results suggest that the presence of AAMs in allergic airway disease may be only an association, as a result of the increased T(H)2 responses present during disease, and that IL-4Rα-dependent AAMs do not play an important role in the pathology of disease.
Collapse
|