1
|
Kim S, Han M, Hwang HJ, Ahn YH, Im HJ, Hwang SH, Koh KN, Kim N. MicroRNA-196a increases apoptosis in B cells through downregulation of FOXO1. Mol Cells 2025:100223. [PMID: 40403879 DOI: 10.1016/j.mocell.2025.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025] Open
Abstract
MicroRNAs (miRNAs) are key regulators of cancer pathogenesis, and their expression is often dysregulated in cancer cells. The role of miR-196a-5p has been investigated in various types of cancers, however it is relatively less understood in B-cell malignancies. This study aimed to investigate the role of miR-196a-5p in B cells by using a human diffuse large B-cell lymphoma (DLBCL) cell line, SU-DHL-6 and mouse B lymphocytes. The enforced expression of miR-196a in SU-DHL-6 cells increased daunorubicin-mediated apoptosis. Luciferase assay revealed that FOXO1 was a direct target of miR-196a-5p in SU-DHL-6 cells. The mRNA and protein expression of FOXO1 was downregulated in miR-196a-overexpressing SU-DHL-6 cells. In addition, miR-196a-5p was highly expressed in mouse bone marrow (BM) cells, compared with that of splenic (SP) B cells, and FOXO1 expression was negatively correlated with miR-196a-5p level. miR-196a-5p was upregulated by B cell receptor (BCR)-stimulation, which was inversely correlated with FOXO1 expression in SP B cells. Apoptosis was increased when miR-196a-5p was upregulated in murine primary B cells. These results identify miR-196a-5p as a post-transcriptional regulator of FOXO1 and indicate its importance in regulating B cell malignancies and activation.
Collapse
Affiliation(s)
- Soyoung Kim
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mina Han
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Hwang
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ho Joon Im
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung-Nam Koh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Nayoung Kim
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Ding Y, Huang K, Sun C, Liu Z, Zhu J, Jiao X, Liao Y, Feng X, Guo J, Zhu C, Zhai Z, Xiong S. A Bruton tyrosine kinase inhibitor-resistance gene signature predicts prognosis and identifies TRIP13 as a potential therapeutic target in diffuse large B-cell lymphoma. Sci Rep 2024; 14:21184. [PMID: 39261532 PMCID: PMC11391086 DOI: 10.1038/s41598-024-72121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Bruton tyrosine kinase inhibitor (BTKi) combined with rituximab-based chemotherapy benefits diffuse large B-cell lymphoma (DLBCL) patients. However, drug resistance is the major cause of relapse and death of DLBCL. In this study, we conducted a comprehensive analysis BTKi-resistance related genes (BRRGs) and established a 10-gene (CARD16, TRIP13, PSRC1, CASP1, PLBD1, CARD6, CAPG, CACNA1A, CDH15, and NDUFA4) signature for early identifying high-risk DLBCL patients. The resistance scores based on the BRRGs signature were associated with prognosis. Furthermore, we developed a nomogram incorporating the BRRGs signature, which demonstrated excellent performance in predicting the prognosis of DLBCL patients. Notably, tumor immune microenvironment, biological pathways, and chemotherapy sensitivity were different between high- and low-resistance score groups. Additionally, we identified TRIP13 as a key gene in our model. TRIP13 was found to be overexpressed in DLBCL and BTKi-resistant DLBCL cell lines, knocking down TRIP13 suppresses cell proliferation, promotes cell apoptosis, and enhances the apoptosis effect of BTKi on DLBCL cells by regulating the Wnt/β-catenin pathway. In conclusion, our study presents a novel BRRGs signature that could serve as a promising prognostic marker in DLBCL, and TRIP13 might be a potential therapeutic target for resistant DLBCL.
Collapse
Affiliation(s)
- Yangyang Ding
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Keke Huang
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Cheng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zelin Liu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jinli Zhu
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xunyi Jiao
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ya Liao
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiangjiang Feng
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jingjing Guo
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chunhua Zhu
- Air Force Health Care Center for Special Services, Hangzhou, Zhejiang, People's Republic of China
| | - Zhimin Zhai
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Mu DP, Scharer CD, Kaminski NE, Zhang Q. A multiscale spatial modeling framework for the germinal center response. Front Immunol 2024; 15:1377303. [PMID: 38881901 PMCID: PMC11179717 DOI: 10.3389/fimmu.2024.1377303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymphoid organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events, including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanistic and applied research questions on the adaptive humoral immune response in the future.
Collapse
Affiliation(s)
- Derek P. Mu
- Montgomery Blair High School, Silver Spring, MD, United States
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Norbert E. Kaminski
- Department of Pharmacology & Toxicology, Institute for Integrative Toxicology, Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, United States
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Mu DP, Scharer CD, Kaminski NE, Zhang Q. A Multiscale Spatial Modeling Framework for the Germinal Center Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577491. [PMID: 38501122 PMCID: PMC10945589 DOI: 10.1101/2024.01.26.577491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The germinal center response or reaction (GCR) is a hallmark event of adaptive humoral immunity. Unfolding in the B cell follicles of the secondary lymph organs, a GC culminates in the production of high-affinity antibody-secreting plasma cells along with memory B cells. By interacting with follicular dendritic cells (FDC) and T follicular helper (Tfh) cells, GC B cells exhibit complex spatiotemporal dynamics. Driving the B cell dynamics are the intracellular signal transduction and gene regulatory network that responds to cell surface signaling molecules, cytokines, and chemokines. As our knowledge of the GC continues to expand in depth and in scope, mathematical modeling has become an important tool to help disentangle the intricacy of the GCR and inform novel mechanistic and clinical insights. While the GC has been modeled at different granularities, a multiscale spatial simulation framework - integrating molecular, cellular, and tissue-level responses - is still rare. Here, we report our recent progress toward this end with a hybrid stochastic GC framework developed on the Cellular Potts Model-based CompuCell3D platform. Tellurium is used to simulate the B cell intracellular molecular network comprising NF-κB, FOXO1, MYC, AP4, CXCR4, and BLIMP1 that responds to B cell receptor (BCR) and CD40-mediated signaling. The molecular outputs of the network drive the spatiotemporal behaviors of B cells, including cyclic migration between the dark zone (DZ) and light zone (LZ) via chemotaxis; clonal proliferative bursts, somatic hypermutation, and DNA damage-induced apoptosis in the DZ; and positive selection, apoptosis via a death timer, and emergence of plasma cells in the LZ. Our simulations are able to recapitulate key molecular, cellular, and morphological GC events including B cell population growth, affinity maturation, and clonal dominance. This novel modeling framework provides an open-source, customizable, and multiscale virtual GC simulation platform that enables qualitative and quantitative in silico investigations of a range of mechanic and applied research questions in future.
Collapse
|
5
|
Wang L, Zhang Z, Yu D, Yang L, Li L, He Y, Shi J. Recent research of BTK inhibitors: Methods of structural design, pharmacological activities, manmade derivatives and structure-activity relationship. Bioorg Chem 2023; 138:106577. [PMID: 37178649 DOI: 10.1016/j.bioorg.2023.106577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Protein kinases constitute the largest group within the kinase family, and mutations and translocations of protein kinases due to genetic alterations are intimately linked to the pathogenesis of numerous diseases. Bruton's tyrosine kinase (BTK) is a member of the protein kinases and plays a pivotal role in the development and function of B cells. BTK belongs to the tyrosine TEC family. The aberrant activation of BTK is closely associated with the pathogenesis of B-cell lymphoma. Consequently, BTK has always been a critical target for treating hematological malignancies. To date, two generations of small-molecule covalent irreversible BTK inhibitors have been employed to treat malignant B-cell tumors, and have exhibited clinical efficacy in hitherto refractory diseases. However, these drugs are covalent BTK inhibitors, which inevitably lead to drug resistance after prolonged use, resulting in poor tolerance in patients. The third-generation non-covalent BTK inhibitor Pirtobrutinib has obtained approval for marketing in the United States, thereby circumventing drug resistance caused by C481 mutation. Currently, enhancing safety and tolerance constitutes the primary issue in developing novel BTK inhibitors. This article systematically summarizes recently discovered covalent and non-covalent BTK inhibitors and classifies them according to their structures. This article also provides a detailed discussion of binding modes, structural features, pharmacological activities, advantages and limitations of typical compounds within each structure type, providing valuable references and insights for developing safer, more effective and more targeted BTK inhibitors in future studies.
Collapse
Affiliation(s)
- Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhengjie Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Liuqing Yang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ling Li
- School of Comprehensive Health Management, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yuxin He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
6
|
Lees J, Hay J, Moles MW, Michie AM. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front Immunol 2023; 14:1179101. [PMID: 37275916 PMCID: PMC10233034 DOI: 10.3389/fimmu.2023.1179101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Forkhead box (FOX) class O (FOXO) proteins are a dynamic family of transcription factors composed of four family members: FOXO1, FOXO3, FOXO4 and FOXO6. As context-dependent transcriptional activators and repressors, the FOXO family regulates diverse cellular processes including cell cycle arrest, apoptosis, metabolism, longevity and cell fate determination. A central pathway responsible for negative regulation of FOXO activity is the phosphatidylinositol-3-kinase (PI3K)-AKT signalling pathway, enabling cell survival and proliferation. FOXO family members can be further regulated by distinct kinases, both positively (e.g., JNK, AMPK) and negatively (e.g., ERK-MAPK, CDK2), with additional post-translational modifications further impacting on FOXO activity. Evidence has suggested that FOXOs behave as 'bona fide' tumour suppressors, through transcriptional programmes regulating several cellular behaviours including cell cycle arrest and apoptosis. However, an alternative paradigm has emerged which indicates that FOXOs operate as mediators of cellular homeostasis and/or resistance in both 'normal' and pathophysiological scenarios. Distinct FOXO family members fulfil discrete roles during normal B cell maturation and function, and it is now clear that FOXOs are aberrantly expressed and mutated in discrete B-cell malignancies. While active FOXO function is generally associated with disease suppression in chronic lymphocytic leukemia for example, FOXO expression is associated with disease progression in diffuse large B cell lymphoma, an observation also seen in other cancers. The opposing functions of the FOXO family drives the debate about the circumstances in which FOXOs favour or hinder disease progression, and whether targeting FOXO-mediated processes would be effective in the treatment of B-cell malignancies. Here, we discuss the disparate roles of FOXO family members in B lineage cells, the regulatory events that influence FOXO function focusing mainly on post-translational modifications, and consider the potential for future development of therapies that target FOXO activity.
Collapse
Affiliation(s)
| | | | | | - Alison M. Michie
- Paul O’Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Cox EM, El-Behi M, Ries S, Vogt JF, Kohlhaas V, Michna T, Manfroi B, Al-Maarri M, Wanke F, Tirosh B, Pondarre C, Lezeau H, Yogev N, Mittenzwei R, Descatoire M, Weller S, Weill JC, Reynaud CA, Boudinot P, Jouneau L, Tenzer S, Distler U, Rensing-Ehl A, König C, Staniek J, Rizzi M, Magérus A, Rieux-Laucat F, Wunderlich FT, Hövelmeyer N, Fillatreau S. AKT activity orchestrates marginal zone B cell development in mice and humans. Cell Rep 2023; 42:112378. [PMID: 37060566 DOI: 10.1016/j.celrep.2023.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.
Collapse
Affiliation(s)
- Eva-Maria Cox
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Mohamed El-Behi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Johannes F Vogt
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Vivien Kohlhaas
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Thomas Michna
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Benoît Manfroi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Mona Al-Maarri
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Florian Wanke
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Boaz Tirosh
- The Hebrew University of Jerusalem, Institute for Drug Research, Jerusalem, Israel
| | - Corinne Pondarre
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Harry Lezeau
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Nir Yogev
- Faculty of Medicine, Department of Dermatology, University of Cologne, 50931 Cologne, Germany
| | - Romy Mittenzwei
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Marc Descatoire
- Laboratory of Immune Inherited Disorders, Department of Immunology and Allergology Lausanne Hospital CHUV, Lausanne, Switzerland
| | - Sandra Weller
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Stefan Tenzer
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany; Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aude Magérus
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Frederic Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France; Université de Paris Cité, Paris Descartes, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
8
|
Mateu-Albero T, Juárez-Sánchez R, Loscertales J, Mol W, Terrón F, Muñoz-Calleja C, Cuesta-Mateos C. Effect of ibrutinib on CCR7 expression and functionality in chronic lymphocytic leukemia and its implication for the activity of CAP-100, a novel therapeutic anti-CCR7 antibody. Cancer Immunol Immunother 2021; 71:627-636. [PMID: 34297159 DOI: 10.1007/s00262-021-03014-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023]
Abstract
CAP-100 is a novel therapeutic antibody directed against the ligand binding site of human CCR7. This chemokine receptor is overexpressed in chronic lymphocytic leukemia (CLL) and orchestrates the homing of CLL cells into the lymph node. Previous studies, on a very limited number of samples, hypothesized that the Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib might induce loss of surface CCR7 levels in CLL cells. CAP-100 will be evaluated in clinical trials as a therapy for relapse/refractory CLL patients, who have received at least two systemic therapies (NCT04704323). As nowadays many relapse/refractory CLL patients will have received ibrutinib as a prior therapy, we aimed to investigate in a large cohort of CLL patients the impact of this BTKi on CCR7 expression and functionality as well as on the therapeutic activity of CAP-100. Our data confirm that ibrutinib moderately down-regulates the very high expression of CCR7 in CLL cells but has no apparent effect on CCR7-induced chemotaxis. Moreover, CLL cells are perfectly targetable by CAP-100 which led to a complete inhibition of CCR7-mediated migration and induced strong target cell killing through antibody-dependent cell-mediated cytotoxicity, irrespective of previous or contemporary ibrutinib administration. Together, these results validate the therapeutic utility of CAP-100 as a next-line single-agent therapy for CLL patients who failed to ibrutinib and confirm that CAP-100 and ibrutinib have complementary non-overlapping mechanisms of action, potentially allowing for combination therapy.
Collapse
Affiliation(s)
- Tamara Mateu-Albero
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, Diego de León 62, 28006, Madrid, Spain
| | - Raquel Juárez-Sánchez
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, Diego de León 62, 28006, Madrid, Spain.,IMMED S.L., Immunological and Medicinal Products, C/ Velázquez 57, 6º derecha, 28001, Madrid, Spain
| | - Javier Loscertales
- Hematology Department, Hospital Universitario de La Princesa, IIS-IP, Diego de León 62, 28006, Madrid, Spain
| | - Wim Mol
- Catapult Therapeutics, Lelystad, The Netherlands
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, C/ Velázquez 57, 6º derecha, 28001, Madrid, Spain.,Catapult Therapeutics, Lelystad, The Netherlands
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, Diego de León 62, 28006, Madrid, Spain.,Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, IIS-IP, Diego de León 62, 28006, Madrid, Spain. .,IMMED S.L., Immunological and Medicinal Products, C/ Velázquez 57, 6º derecha, 28001, Madrid, Spain. .,Catapult Therapeutics, Lelystad, The Netherlands.
| |
Collapse
|
9
|
Cuesta-Mateos C, Brown JR, Terrón F, Muñoz-Calleja C. Of Lymph Nodes and CLL Cells: Deciphering the Role of CCR7 in the Pathogenesis of CLL and Understanding Its Potential as Therapeutic Target. Front Immunol 2021; 12:662866. [PMID: 33841445 PMCID: PMC8024566 DOI: 10.3389/fimmu.2021.662866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
The lymph node (LN) is an essential tissue for achieving effective immune responses but it is also critical in the pathogenesis of chronic lymphocytic leukemia (CLL). Within the multitude of signaling pathways aberrantly regulated in CLL the homeostatic axis composed by the chemokine receptor CCR7 and its ligands is the main driver for directing immune cells to home into the LN. In this literature review, we address the roles of CCR7 in the pathophysiology of CLL, and how this chemokine receptor is of critical importance to develop more rational and effective therapies for this malignancy.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Biomarkers, Tumor
- Chemotaxis/genetics
- Chemotaxis/immunology
- Disease Susceptibility
- Gene Expression
- Humans
- Immune Tolerance
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Ligands
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Molecular Targeted Therapy
- Protein Binding
- Receptors, CCR7/antagonists & inhibitors
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Tumor Microenvironment
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics BV, Lelystad, Netherlands
| | - Jennifer R. Brown
- Chronic Lymphocytic Leukemia (CLL) Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Fernando Terrón
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
- Catapult Therapeutics BV, Lelystad, Netherlands
| | - Cecilia Muñoz-Calleja
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto de La Princesa (IIS-IP), Madrid, Spain
- School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Teku GN, Vihinen M. Simulation of the Dynamics of Primary Immunodeficiencies in B Cells. Front Immunol 2018; 9:1785. [PMID: 30116248 PMCID: PMC6082931 DOI: 10.3389/fimmu.2018.01785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a group of over 300 hereditary, heterogeneous, and mainly rare disorders that affect the immune system. Various aspects of immune system and PID proteins and genes have been investigated and facilitate systems biological studies of effects of PIDs on B cell physiology and response. We reconstructed a B cell network model based on data for the core B cell receptor activation and response processes and performed semi-quantitative dynamic simulations for normal and B cell PID failure modes. The results for several knockout simulations correspond to previously reported molecular studies and reveal novel mechanisms for PIDs. The simulations for CD21, CD40, LYN, MS4A1, ORAI1, PLCG2, PTPRC, and STIM1 indicated profound changes to major transcription factor signaling and to the network. Significant effects were observed also in the BCL10, BLNK, BTK, loss-of-function CARD11, IKKB, MALT1, and NEMO, simulations whereas only minor effects were detected for PIDs that are caused by constitutively active proteins (PI3K, gain-of-function CARD11, KRAS, and NFKBIA). This study revealed the underlying dynamics of PID diseases, confirms previous observations, and identifies novel candidates for PID diagnostics and therapy.
Collapse
Affiliation(s)
| | - Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Ottens K, Hinman RM, Barrios E, Skaug B, Davis LS, Li QZ, Castrillon DH, Satterthwaite AB. Foxo3 Promotes Apoptosis of B Cell Receptor-Stimulated Immature B Cells, Thus Limiting the Window for Receptor Editing. THE JOURNAL OF IMMUNOLOGY 2018; 201:940-949. [PMID: 29950509 DOI: 10.4049/jimmunol.1701070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 06/02/2018] [Indexed: 12/29/2022]
Abstract
Central tolerance checkpoints are critical for the elimination of autoreactive B cells and the prevention of autoimmunity. When autoreactive B cells encounter their Ag at the immature B cell stage, BCR cross-linking induces receptor editing, followed by apoptosis if edited cells remain autoreactive. Although the transcription factor Foxo1 is known to promote receptor editing, the role of the related factor Foxo3 in central B cell tolerance is poorly understood. We find that BCR-stimulated immature B cells from Foxo3-deficient mice demonstrate reduced apoptosis compared with wild type cells. Despite this, Foxo3-/- mice do not develop increased autoantibodies. This suggests that the increased survival of Foxo3-/- immature B cells allows additional rounds of receptor editing, resulting in more cells "redeeming" themselves by becoming nonautoreactive. Indeed, increased Igλ usage and increased recombining sequence recombination among Igλ-expressing cells were observed in Foxo3-/- mice, indicative of increased receptor editing. We also observed that deletion of high-affinity autoreactive cells was intact in the absence of Foxo3 in the anti-hen egg lysozyme (HEL)/membrane-bound HEL model. However, Foxo3 levels in B cells from systemic lupus erythematosus (SLE) patients were inversely correlated with disease activity and reduced in patients with elevated anti-dsDNA Abs. Although this is likely due in part to increased B cell activation in these SLE patients, it is also possible that low-affinity B cells that remain autoreactive after editing may survive inappropriately in the absence of Foxo3 and become activated to secrete autoantibodies in the context of other SLE-associated defects.
Collapse
Affiliation(s)
- Kristina Ottens
- Rheumatic Diseases Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rochelle M Hinman
- Rheumatic Diseases Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Evan Barrios
- Rheumatic Diseases Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Brian Skaug
- Rheumatic Diseases Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Laurie S Davis
- Rheumatic Diseases Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Quan-Zhen Li
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Diego H Castrillon
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390; and.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Anne B Satterthwaite
- Rheumatic Diseases Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
12
|
Deng Y, Wang F, Hughes T, Yu J. FOXOs in cancer immunity: Knowns and unknowns. Semin Cancer Biol 2018; 50:53-64. [PMID: 29309928 DOI: 10.1016/j.semcancer.2018.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
In the tumor microenvironment (TME), cancer cells, stromal cells, and immune cells, along with their extracellular factors, have profound effects on either promoting or repressing anti-cancer immunity. Accumulating evidence has shown the paradoxical intrinsic role of the Forkhead box O (FOXO) family of transcription factors in cancer, which can act as a tumor repressor while also maintaining cancer stem cells. FOXOs also regulate cancer immunity. FOXOs promote antitumor activity through negatively regulating the expression of immunosuppressive proteins, such as programmed death 1 ligand 1 (PD-L1), and vascular endothelial growth factor (VEGF) in tumor cells or stromal cells, which can shape an immunotolerant state in the TME. FOXOs also intrinsically control the anti-tumor immune response as well as the homeostasis and development of immune cells, including T cells, B cells, natural killer (NK) cells, macrophages, and dendritic cells. As a cancer repressor, reviving the activity of Foxo1 forces tumor-infiltrating activated regulatory T (Treg) cells to egress from tumor tissues. As a promoter of cancer development, Foxo3 and Foxo1 negatively regulate cytotoxicity of both CD8+ T cells and NK cells against tumor cells. In this review, we focus on the complex role of FOXOs in regulating cancer immunity due to the various roles that they play in cancer cells, stromal cells, and immune cells. We also speculate on some possible additional roles of FOXOs in cancer immunity based on findings regarding FOXOs in non-cancer settings, such as infectious disease.
Collapse
Affiliation(s)
- Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), China.
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), China
| | - Tiffany Hughes
- Comprehensive Cancer Center, The Ohio State University, United States
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University, United States; Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, United States; The James Cancer Hospital and Solove Research Institute, The Ohio State University, United States.
| |
Collapse
|
13
|
Ujvari D, Jakson I, Babayeva S, Salamon D, Rethi B, Gidlöf S, Hirschberg AL. Dysregulation of In Vitro Decidualization of Human Endometrial Stromal Cells by Insulin via Transcriptional Inhibition of Forkhead Box Protein O1. PLoS One 2017; 12:e0171004. [PMID: 28135285 PMCID: PMC5279782 DOI: 10.1371/journal.pone.0171004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022] Open
Abstract
Insulin resistance and compensatory hyperinsulinemia are characteristic features of obesity and polycystic ovary syndrome, and both are associated with reduced fertility and implantation. There is little knowledge about the effect of insulin on the decidualization process and previous findings are contradictory. We investigated the effect of insulin on the regulation of forkhead box protein O1 (FOXO1), one of the most important transcription factors during decidualization. Endometrial stromal cells were isolated from six healthy, regularly menstruating women and decidualized in vitro. Gene expression levels of six putative FOXO1 target genes (including insulin-like growth factor binding protein-1 (IGFBP1) and prolactin (PRL)) were measured with Real-Time PCR following FOXO1 inhibition or insulin treatment. PI3K inhibition was used to identify the possible mechanism behind regulation. Subcellular localization of FOXO1 was analyzed with immunofluorescence. All the genes (IGFBP1, CTGF, INSR, DCN, LEFTY2), except prolactin, were evaluated as FOXO1 target genes in decidualizing stromal cells. Insulin caused a significant dose-dependent inhibition of the verified FOXO1 target genes. It was also demonstrated that insulin regulated FOXO1 target genes by transcriptional inactivation and nuclear export of FOXO1 via PI3K pathway. However, insulin did not inhibit the morphological transformation of endometrial stromal cells via transcriptional inactivation of FOXO1. This study provides new insights on the action of insulin on the endometrium via regulation of FOXO1. It is suggested that hyperinsulinemia results in dysregulation of a high number of FOXO1 controlled genes that may contribute to endometrial dysfunction and reproductive failure. Our findings may illuminate possible reasons for unexplained infertility.
Collapse
Affiliation(s)
- Dorina Ujvari
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Ivika Jakson
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| | - Shabnam Babayeva
- Department of Obstetrics and Gynecology II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Daniel Salamon
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bence Rethi
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Gidlöf
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Zimmermann M, Arachchige-Don APS, Donaldson MS, Patriarchi T, Horne MC. Cyclin G2 promotes cell cycle arrest in breast cancer cells responding to fulvestrant and metformin and correlates with patient survival. Cell Cycle 2016; 15:3278-3295. [PMID: 27753529 DOI: 10.1080/15384101.2016.1243189] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Definition of cell cycle control proteins that modify tumor cell resistance to estrogen (E2) signaling antagonists could inform clinical choice for estrogen receptor positive (ER+) breast cancer (BC) therapy. Cyclin G2 (CycG2) is upregulated during cell cycle arrest responses to cellular stresses and growth inhibitory signals and its gene, CCNG2, is directly repressed by E2-bound ER complexes. Our previous studies showed that blockade of HER2, PI3K and mTOR signaling upregulates CycG2 expression in HER2+ BC cells, and that CycG2 overexpression induces cell cycle arrest. Moreover, insulin and insulin-like growth factor-1 (IGF-1) receptor signaling strongly represses CycG2. Here we show that blockade of ER-signaling in MCF7 and T47D BC cell lines enhances the expression and nuclear localization of CycG2. Knockdown of CycG2 attenuated the cell cycle arrest response of E2-depleted and fulvestrant treated MCF7 cells. These muted responses were accompanied by sustained inhibitory phosphorylation of retinoblastoma (RB) protein, expression of cyclin D1, phospho-activation of ERK1/2 and MEK1/2 and expression of cRaf. Our work indicates that CycG2 can form complexes with CDK10, a CDK linked to modulation of RAF/MEK/MAPK signaling and tamoxifen resistance. We determined that metformin upregulates CycG2 and potentiates fulvestrant-induced CycG2 expression and cell cycle arrest. CycG2 knockdown blunts the enhanced anti-proliferative effect of metformin on fulvestrant treated cells. Meta-analysis of BC tumor microarrays indicates that CCNG2 expression is low in aggressive, poor-prognosis BC and that high CCNG2 expression correlates with longer periods of patient survival. Together these findings indicate that CycG2 contributes to signaling networks that limit BC.
Collapse
Affiliation(s)
- Maike Zimmermann
- a Department of Pharmacology , University of California , Davis , CA , USA.,b Department of Pharmacology , University of Iowa , Iowa City , IA , USA.,c Department of Internal Medicine , Division of Hematology and Oncology, University of California Davis , Sacramento , CA , USA
| | | | | | - Tommaso Patriarchi
- a Department of Pharmacology , University of California , Davis , CA , USA
| | - Mary C Horne
- a Department of Pharmacology , University of California , Davis , CA , USA.,b Department of Pharmacology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
15
|
Grabiec AM, Angiolilli C, Hartkamp LM, van Baarsen LGM, Tak PP, Reedquist KA. JNK-dependent downregulation of FoxO1 is required to promote the survival of fibroblast-like synoviocytes in rheumatoid arthritis. Ann Rheum Dis 2015; 74:1763-71. [PMID: 24812285 DOI: 10.1136/annrheumdis-2013-203610] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/13/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Forkhead box O (FoxO) transcription factors integrate environmental signals to modulate cell proliferation and survival, and alterations in FoxO function have been reported in rheumatoid arthritis (RA). OBJECTIVES To examine the relationship between inflammation and FoxO expression in RA, and to analyse the mechanisms and biological consequences of FoxO regulation in RA fibroblast-like synoviocytes (FLS). METHODS RNA was isolated from RA patient and healthy donor (HD) peripheral blood and RA synovial tissue. Expression of FoxO1, FoxO3a and FoxO4 was measured by quantitative PCR. FoxO1 DNA binding, expression and mRNA stability in RA FLS were measured by ELISA-based assays, immunoblotting and quantitative PCR. FLS were transduced with adenovirus encoding constitutively active FoxO1 (FoxO1ADA) or transfected with small interfering RNA targeting FoxO1 to examine the effects on cell viability and gene expression. RESULTS FoxO1 mRNA levels were reduced in RA patient peripheral blood compared with HD blood, and RA synovial tissue FoxO1 expression correlated negatively with disease activity. RA FLS stimulation with interleukin 1β or tumour necrosis factor caused rapid downregulation of FoxO1. This effect was independent of protein kinase B (PKB), but dependent on c-Jun N-terminal kinase (JNK)-mediated acceleration of FoxO1 mRNA degradation. FoxO1ADA overexpression in RA FLS induced apoptosis associated with altered expression of genes regulating cell cycle and survival, including BIM, p27(Kip1) and Bcl-XL. CONCLUSIONS Our findings identify JNK-dependent modulation of mRNA stability as an important PKB-independent mechanism underlying FoxO1 regulation by cytokines, and suggest that reduced FoxO1 expression is required to promote FLS survival in RA.
Collapse
Affiliation(s)
- Aleksander M Grabiec
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chiara Angiolilli
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda M Hartkamp
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa G M van Baarsen
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul P Tak
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands GlaxoSmithKline, Stevenage, and University of Cambridge, Cambridge, UK
| | - Kris A Reedquist
- Department of Experimental Immunology and Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Patrussi L, Capitani N, Martini V, Pizzi M, Trimarco V, Frezzato F, Marino F, Semenzato G, Trentin L, Baldari CT. Enhanced Chemokine Receptor Recycling and Impaired S1P1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia. Cancer Res 2015; 75:4153-63. [PMID: 26282174 DOI: 10.1158/0008-5472.can-15-0986] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/19/2015] [Indexed: 11/16/2022]
Abstract
Lymphocyte trafficking is orchestrated by chemokine and sphingosine 1-phosphate (S1P) receptors that enable homing and egress from secondary lymphoid organs (SLO). These receptors undergo rapid internalization and plasma membrane recycling to calibrate cellular responses to local chemoattractants. Circulating chronic lymphocytic leukemia (CLL) cells display an abnormal increase in the surface levels of the homing receptors CCR7 and CXCR4 concomitant with low S1P receptor 1 (S1P1) expression. In this study, we investigated the role of receptor recycling on CXCR4/CCR7 surface levels in CLL cells and addressed the impact of quantitative alterations of these receptors and S1P1 on the ability of leukemic cells to accumulate in SLOs. We show that recycling accounts, to a major extent, for the high levels of surface CXCR4/CCR7 on CLL cells. In addition, increased expression of these receptors, together with S1P1 deficiency, is detectable not only in circulating leukemic cells, but also in SLOs of CLL patients with lymphoadenopathy. We further provide evidence that ibrutinib, a Btk inhibitor that promotes mobilization of leukemic cells from SLOs, normalizes the imbalance between CXCR4/CCR7 and S1P1. Taken together, our results highlight the relevance of chemokine and S1P receptor recycling in CLL pathogenesis and clinical outcome.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Chemotaxis/physiology
- Endosomes/metabolism
- Germinal Center/metabolism
- Germinal Center/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemic Infiltration/physiopathology
- Lymph Nodes/pathology
- Lymphoid Tissue/metabolism
- Lymphoid Tissue/pathology
- Membrane Proteins/metabolism
- Neoplasm Proteins/deficiency
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, Lymphocyte Homing/metabolism
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sphingosine-1-Phosphate Receptors
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy. Istituto Toscano Tumori, Siena, Italy
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy. Istituto Toscano Tumori, Siena, Italy
| | - Veronica Martini
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Valentina Trimarco
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Federica Frezzato
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Filippo Marino
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Gianpietro Semenzato
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Livio Trentin
- Venetian Institute of Molecular Medicine, Padua, Italy. Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Siena, Italy. Istituto Toscano Tumori, Siena, Italy.
| |
Collapse
|
17
|
Hüttl S, Kläsener K, Schweizer M, Schneppenheim J, Oberg HH, Kabelitz D, Reth M, Saftig P, Schröder B. Processing of CD74 by the Intramembrane Protease SPPL2a Is Critical for B Cell Receptor Signaling in Transitional B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:1548-63. [PMID: 26157172 DOI: 10.4049/jimmunol.1403171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/09/2015] [Indexed: 12/16/2022]
Abstract
The invariant chain (CD74), a chaperone in MHC class II-mediated Ag presentation, is sequentially processed by different endosomal proteases. We reported recently that clearance of the final membrane-bound N-terminal fragment (NTF) of CD74 is mediated by the intramembrane protease signal peptide peptidase-like (SPPL)2a, a process critical for B cell development. In mice, SPPL2a deficiency provokes the accumulation of this NTF in endocytic vesicles, which leads to a B cell maturation arrest at the transitional 1 stage. To define the underlying mechanism, we analyzed the impact of SPPL2a deficiency on signaling pathways involved in B cell homeostasis. We demonstrate that tonic as well as BCR-induced activation of the PI3K/Akt pathway is massively compromised in SPPL2a(-/-) B cells and identify this as major cause of the B cell maturation defect in these mice. Altered BCR trafficking induces a reduction of surface IgM in SPPL2a-deficient B cells, leading to a diminished signal transmission via the BCR and the tyrosine kinase Syk. We provide evidence that in SPPL2a(-/-) mice impaired BCR signaling is to a great extent provoked by the accumulating CD74 NTF, which can interact with the BCR and Syk, and that impaired PI3K/Akt signaling and reduced surface IgM are not directly linked processes. In line with disturbances in PI3K/Akt signaling, SPPL2a(-/-) B cells show a dysregulation of the transcription factor FOXO1, causing elevated transcription of proapoptotic genes. We conclude that SPPL2a-mediated processing of CD74 NTF is indispensable to maintain appropriate levels of tonic BCR signaling to promote B cell maturation.
Collapse
Affiliation(s)
- Susann Hüttl
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | - Kathrin Kläsener
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany; Institute for Biology III, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Max Planck Institute for Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Janna Schneppenheim
- Institute of Anatomy, Christian Albrechts University of Kiel, D-24118 Kiel, Germany; and
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian Albrechts University of Kiel, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian Albrechts University of Kiel, D-24105 Kiel, Germany
| | - Michael Reth
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany; Institute for Biology III, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany; Max Planck Institute for Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Paul Saftig
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany
| | - Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, D-24118 Kiel, Germany;
| |
Collapse
|
18
|
Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol 2015; 6:51-72. [PMID: 26184557 PMCID: PMC4511623 DOI: 10.1016/j.redox.2015.06.019] [Citation(s) in RCA: 557] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany.
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ignacio Prieto-Arroyo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Pavel Urbánek
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-Universität Jena, Dornburger Straße 29, 07743 Jena, Germany
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain.
| |
Collapse
|
19
|
Zhang Y, Hu T, Hua C, Gu J, Zhang L, Hao S, Liang H, Wang X, Wang W, Xu J, Liu H, Liu B, Cheng T, Yuan W. Rictor is required for early B cell development in bone marrow. PLoS One 2014; 9:e103970. [PMID: 25084011 PMCID: PMC4119011 DOI: 10.1371/journal.pone.0103970] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
The development of early B cells, which are generated from hematopoietic stem cells (HSCs) in a series of well-characterized stages in bone marrow (BM), represents a paradigm for terminal differentiation processes. Akt is primarily regulated by phosphorylation at Thr308 by PDK1 and at Ser473 by mTORC2, and Akt signaling plays a key role in hematopoiesis. However, the role of mTORC2 in the development of early B cells remains poorly understood. In this study, we investigated the functional role of mTORC2 by specifically deleting an integral component, Rictor, in a hematopoietic system. We demonstrated that the deletion of Rictor induced an aberrant increase in the FoxO1 and Rag-1 proteins in BM B cells and that this increase was accompanied by a significant decrease in the abundance of B cells in the peripheral blood (PB) and the spleen, suggesting impaired development of early B cells in adult mouse BM. A BM transplantation assay revealed that the B cell differentiation defect induced by Rictor deletion was not affected by the BM microenvironment, thus indicating a cell-intrinsic mechanism. Furthermore, the knockdown of FoxO1 in Rictor-deleted HSCs and hematopoietic progenitor cells (HPCs) promoted the maturation of B cells in the BM of recipient mice. In addition, we revealed that treatment with rapamycin (an mTORC1 inhibitor) aggravated the deficiency in B cell development in the PB and BM. Taken together, our results provide further evidence that Rictor regulates the development of early B cells in a cell-intrinsic manner by modifying the expression of FoxO1 and Rag-1.
Collapse
Affiliation(s)
- Yingchi Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianyuan Hu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunlan Hua
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Gu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sha Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanzhi Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Activation of Ras overcomes B-cell tolerance to promote differentiation of autoreactive B cells and production of autoantibodies. Proc Natl Acad Sci U S A 2014; 111:E2797-806. [PMID: 24958853 DOI: 10.1073/pnas.1402159111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Newly generated immature B cells are selected to enter the peripheral mature B-cell pool only if they do not bind (or bind limited amount of) self-antigen. We previously suggested that this selection relies on basal extracellular signal-regulated kinase (Erk) activation mediated by tonic B-cell antigen receptor (BCR) signaling and that this signal can be replaced by an active rat sarcoma (Ras), which are small GTPase proteins. In this study we compared the activity of Ras and Erk in nonautoreactive and autoreactive immature B cells and investigated whether activation of Ras can break tolerance. Our results demonstrate lower levels of active Erk and Ras in autoreactive immature B cells, although this is evident only when these cells display medium/high avidity for self-antigen. Basal activation of Erk in immature B cells is proportional to surface IgM and dependent on sarcoma family kinases, whereas it is independent of B-cell activating factor, IFN, and Toll-like receptor signaling. Ectopic expression of the constitutively active mutant Ras form N-RasD12 in autoreactive cells raises active Erk, halts receptor editing via PI3 kinase, and promotes differentiation via Erk, breaking central tolerance. Moreover, when B cells coexpress autoreactive and nonautoreactive BCRs, N-RasD12 leads also to a break in peripheral tolerance with the production of autoantibodies. Our findings indicate that in immature B cells, basal activation of Ras and Erk are controlled by tonic BCR signaling, and that positive changes in Ras activity can lead to a break in both central and peripheral B-cell tolerance.
Collapse
|
21
|
Down-regulation of cyclin G2 by insulin, IGF-I (insulin-like growth factor 1) and X10 (AspB10 insulin): role in mitogenesis. Biochem J 2014; 457:69-77. [PMID: 24059861 DOI: 10.1042/bj20130490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms whereby insulin analogues may cause enhanced mitogenicity through activation of either the IR (insulin receptor) or the IGF-IR (insulin-like growth factor 1 receptor) are incompletely understood. We demonstrate that in L6 myoblasts expressing only IGF-IRs as well as in the same cells overexpressing the IR, IGF-I (insulin-like growth factor 1), insulin and X10 (AspB10 insulin) down-regulate the mRNA expression level of the cell cycle inhibitor cyclin G2, as measured by qRT-PCR (quantitative reverse transcription-PCR), and induce cell growth measured by [6-(3)H]thymidine incorporation into DNA. Western blotting showed a marked down-regulation of cyclin G2 at the protein level in both cell lines. Overexpression of cyclin G2 in the two cell lines diminished the mitogenic effect of all three ligands. The use of specific inhibitors indicated that both the MAPK (mitogen-activated protein kinase) and the PI3K (phosphoinositide 3-kinase) pathways mediate the down-regulation of Ccng2. The down-regulation of CCNG2 by the three ligands was also observed in other cell lines: MCF-7, HMEC, Saos-2, R(-)/IR and INS-1. These results indicate that regulation of cyclin G2 is a key mechanism whereby insulin, insulin analogues and IGF-I stimulate cell proliferation.
Collapse
|
22
|
Castello A, Gaya M, Tucholski J, Oellerich T, Lu KH, Tafuri A, Pawson T, Wienands J, Engelke M, Batista FD. Nck-mediated recruitment of BCAP to the BCR regulates the PI(3)K-Akt pathway in B cells. Nat Immunol 2013; 14:966-75. [PMID: 23913047 DOI: 10.1038/ni.2685] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022]
Abstract
The adaptor Nck links receptor signaling to cytoskeleton regulation. Here we found that Nck also controlled the phosphatidylinositol-3-OH kinase (PI(3)K)-kinase Akt pathway by recruiting the adaptor BCAP after activation of B cells. Nck bound directly to the B cell antigen receptor (BCR) via the non-immunoreceptor tyrosine-based activation motif (ITAM) phosphorylated tyrosine residue at position 204 in the tail of the immunoglobulin-α component. Genetic ablation of Nck resulted in defective BCR signaling, which led to hampered survival and proliferation of B cells in vivo. Indeed, antibody responses in Nck-deficient mice were also considerably impaired. Thus, we demonstrate a previously unknown adaptor function for Nck in recruiting BCAP to sites of BCR signaling and thereby modulating the PI(3)K-Akt pathway in B cells.
Collapse
Affiliation(s)
- Angelo Castello
- Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells. Mol Cell Biol 2013; 33:3214-26. [PMID: 23754751 DOI: 10.1128/mcb.00247-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.
Collapse
|
24
|
Yasui T, Sakakibara-Yada K, Nishimura T, Morita K, Tada S, Mosialos G, Kieff E, Kikutani H. Protein kinase N1, a cell inhibitor of Akt kinase, has a central role in quality control of germinal center formation. Proc Natl Acad Sci U S A 2012; 109:21022-7. [PMID: 23223530 PMCID: PMC3529033 DOI: 10.1073/pnas.1218925110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Germinal centers (GCs) are specialized microenvironments in secondary lymphoid organs where high-affinity antibody-producing B cells are selected based on B-cell antigen receptor (BCR) signal strength. BCR signaling required for normal GC selection is uncertain. We have found that protein kinase N1 (PKN1, also known as PRK1) negatively regulates Akt kinase downstream of the BCR and that this regulation is necessary for normal GC development. PKN1 interacted with and inhibited Akt1 kinase and transforming activities. Pkn1(-/-) B cells were hyperresponsive and had increased phosphorylated Akt1 levels upon BCR stimulation. In the absence of immunization or infection, Pkn1(-/-) mice spontaneously formed GCs and developed an autoimmune-like disease with age, which was characterized by autoantibody production and glomerulonephritis. More B cells, with fewer somatic BCR gene V region hypermutations were selected in Pkn1(-/-) GCs. These results indicate that PKN1 down-regulation of BCR-activated Akt activity is critical for normal GC B-cell survival and selection.
Collapse
Affiliation(s)
- Teruhito Yasui
- Department of Molecular Immunology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaori Sakakibara-Yada
- Department of Molecular Immunology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taki Nishimura
- Department of Molecular Immunology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kentaro Morita
- Department of Molecular Immunology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoru Tada
- Department of Molecular Immunology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - George Mosialos
- Department of Biology, Aristotle University of Thessaloniki, Panepistimioupoli, 54124 Thessaloniki, Greece; and
| | - Elliott Kieff
- Channing Laboratory, Infectious Disease Division, Department of Medicine, Microbiology and Immunobiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Hitoshi Kikutani
- Department of Molecular Immunology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Limon JJ, Fruman DA. Akt and mTOR in B Cell Activation and Differentiation. Front Immunol 2012; 3:228. [PMID: 22888331 PMCID: PMC3412259 DOI: 10.3389/fimmu.2012.00228] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/14/2012] [Indexed: 01/08/2023] Open
Abstract
Activation of phosphoinositide 3-kinase (PI3K) is required for B cell proliferation and survival. PI3K signaling also controls key aspects of B cell differentiation. Upon engagement of the B cell receptor (BCR), PI3K activation promotes Ca2+ mobilization and activation of NFκB-dependent transcription, events which are essential for B cell proliferation. PI3K also initiates a distinct signaling pathway involving the Akt and mTOR serine/threonine kinases. It has been generally assumed that activation of Akt and mTOR downstream of PI3K is essential for B cell function. However, Akt and mTOR have complex roles in B cell fate decisions and suppression of this pathway can enhance certain B cell responses while repressing others. In this review we will discuss genetic and pharmacological studies of Akt and mTOR function in normal B cells, and in malignancies of B cell origin.
Collapse
Affiliation(s)
- Jose J Limon
- Department of Molecular Biology and Biochemistry, Institute for Immunology, University of California Irvine Irvine, CA, USA
| | | |
Collapse
|
26
|
Mackay F, Figgett WA, Saulep D, Lepage M, Hibbs ML. B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev 2010; 237:205-25. [DOI: 10.1111/j.1600-065x.2010.00944.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Abstract
Development, survival, and activation of B lymphocytes are controlled by signals emanating from the B-cell antigen receptor (BCR). The BCR has an autonomous signaling function also known as tonic signaling that allows for long-term survival of B cells in the immune system. Upon binding of antigen to the BCR, the tonic signal is amplified and diversified, leading to alteration in gene expression and B-cell activation. The spleen tyrosine kinase (Syk) intimately cooperates with the signaling subunits of the BCR and plays a central role in the amplification and diversification of BCR signals. In this review, we discuss the molecular mechanisms by which Syk activity is inhibited and activated at the BCR. Importantly, Syk acts not only as a kinase that phosphorylates downstream substrates but also as an adapter that can bind to a diverse set of signaling proteins. Depending on its interactions and localization, Syk can signal opposing cell fate decisions such as proliferation or differentiation of B cells.
Collapse
Affiliation(s)
- Yogesh Kulathu
- Centre for Biological Signaling Studies (Bioss) and Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs-Universität Freiburg and Max-Planck Institute for Immunobiology, Freiburg, Germany
| | | | | |
Collapse
|
28
|
Hinman RM, Nichols WA, Diaz TM, Gallardo TD, Castrillon DH, Satterthwaite AB. Foxo3-/- mice demonstrate reduced numbers of pre-B and recirculating B cells but normal splenic B cell sub-population distribution. Int Immunol 2009; 21:831-42. [PMID: 19502585 PMCID: PMC2699488 DOI: 10.1093/intimm/dxp049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 04/30/2009] [Indexed: 12/20/2022] Open
Abstract
B cell antigen receptor (BCR) cross-linking promotes proliferation and survival of mature B cells. Phosphoinositide-3-kinase-mediated down-regulation of pro-apoptotic and anti-mitogenic genes such as the Foxo family of transcription factors is an important component of this process. Previously, we demonstrated that BCR signaling decreases expression of transcripts for Foxo1, Foxo3 and Foxo4. We now show that BCR-induced down-regulation of Foxo3 and Foxo4 mRNA expression occurs via distinct mechanisms from those established for Foxo1. While Foxo1, Foxo3 and Foxo4 bind the same DNA sequence, the differential control of their expression upon B cell activation suggests that they may have unique functions in the B lineage. To begin to address this issue, we evaluated B cell development and function in Foxo3-/- mice. No effect of Foxo3 deficiency was observed with respect to the following parameters in the splenic B cell compartment: sub-population distribution, proliferation, in vitro differentiation and expression of the Foxo target genes cyclin G2 and B cell translocation gene 1. However, Foxo3-/- mice demonstrated increased basal levels of IgG2a, IgG3 and IgA. A significant reduction in pre-B cell numbers was also observed in Foxo3-/- bone marrow. Finally, recirculating B cells in the bone marrow and peripheral blood were decreased in Foxo3-/- mice, perhaps due to lower than normal expression of receptor for sphingosine-1 phosphate, which mediates egress from lymphoid organs. Thus, Foxo3 makes a unique contribution to B cell development, B cell localization and control of Ig levels.
Collapse
Affiliation(s)
- Rochelle M Hinman
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
29
|
Essaghir A, Dif N, Marbehant CY, Coffer PJ, Demoulin JB. The transcription of FOXO genes is stimulated by FOXO3 and repressed by growth factors. J Biol Chem 2009; 284:10334-42. [PMID: 19244250 DOI: 10.1074/jbc.m808848200] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
FOXO (Forkhead box O) transcription factors induce cell growth arrest and apoptosis, which can be prevented by FOXO phosphorylation by AKT in response to growth factors such as platelet-derived growth factors (PDGF) and insulin-like growth factor I (IGF-I). In addition to this well characterized post-translational modification, we showed that FOXO1, FOXO3, and FOXO4 were also regulated at the transcriptional level. PDGF, fibroblast growth factors (FGF), and IGF-I repressed the expression of FOXO genes in human fibroblasts. This process was sensitive to phosphatidylinositol 3-kinase inhibition by LY294002. FOXO1-specific shRNA decreased FOXO1 mRNA expression and enhanced fibroblast proliferation, mimicking the effects of growth factors. Conversely, ectopic FOXO3 activation blocked the proliferation of fibroblasts and induced the expression of FOXO1, FOXO4, and p27-KIP1. Using luciferase reporter assays and chromatin immunoprecipitations, we identified a conserved FOXO-binding site in the promoter of the FOXO1 gene, which was required for regulation by PDGF, and mediated the up-regulation of FOXO1 by itself and by FOXO3. Altogether, our results suggest that the expression of FOXO1 and FOXO4 genes is stimulated by FOXO3 and possibly by other FOXO factors in a positive feedback loop, which is disrupted by growth factors.
Collapse
Affiliation(s)
- Ahmed Essaghir
- De Duve Institute, Université Catholique de Louvain, BE-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
30
|
Dengler HS, Baracho GV, Omori SA, Bruckner S, Arden K, Castrillon DH, DePinho RA, Rickert RC. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol 2008; 9:1388-98. [PMID: 18978794 PMCID: PMC2679692 DOI: 10.1038/ni.1667] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/25/2008] [Indexed: 12/11/2022]
Abstract
The transcription factors Foxo1, Foxo3 and Foxo4 modulate cell fate 'decisions' in diverse systems. Here we show that Foxo1-dependent gene expression was critical at many stages of B cell differentiation. Early deletion of Foxo1 caused a substantial block at the pro-B cell stage due to a failure to express interleukin 7 receptor-alpha. Foxo1 inactivation in late pro-B cells resulted in an arrest at the pre-B cell stage due to lower expression of the recombination-activating genes Rag1 and Rag2. Deletion of Foxo1 in peripheral B cells led to fewer lymph node B cells due to lower expression of L-selectin and failed class-switch recombination due to impaired upregulation of the gene encoding activation-induced cytidine deaminase. Thus, Foxo1 regulates a transcriptional program that is essential for early B cell development and peripheral B cell function.
Collapse
Affiliation(s)
- Hart S. Dengler
- Program of Inflammatory Disease Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Gisele V. Baracho
- Program of Inflammatory Disease Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Sidne A. Omori
- Program of Inflammatory Disease Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Shane Bruckner
- Program of Inflammatory Disease Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Karen Arden
- The Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Diego H. Castrillon
- UT Southwestern Medical Center, Department of Pathology, Dallas, TX 75390, USA
| | - Ronald A. DePinho
- Center for Applied Cancer Science, Belfer Institute for Innovative Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robert C. Rickert
- Program of Inflammatory Disease Research, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Nixon JC, Ferrell S, Miner C, Oldham AL, Hochgeschwender U, Webb CF. Transgenic mice expressing dominant-negative bright exhibit defects in B1 B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6913-22. [PMID: 18981111 PMCID: PMC2636627 DOI: 10.4049/jimmunol.181.10.6913] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcription factor Bright up-regulates Ig H chain production from select V region promoters and requires Bright dimerization, Bruton's tyrosine kinase (Btk), and the Btk substrate, TFII-I, for this activity. Defects in Btk cause X-linked immunodeficiency disease in mice and humans. Btk-deficient mice exhibit decreased serum IgM production, B cell developmental blocks, absence of peritoneal B1 cells, and subnormal immune responses against Ags, including phosphorylcholine, which confer protection against Streptococcus pneumoniae. Transgenic mice expressing dominant-negative Bright share similarities with Btk-deficient mice, including decreased serum IgM, poor anti-phosphorylcholine responses, and slightly reduced numbers of mature B cells. Although dominant-negative Bright mice developed B1 B cells, these were functionally deficient in Ig secretion. These data suggest a mechanistic explanation for the abnormal responses to phosphorylcholine observed in Btk-deficient mice, and indicate that Bright functions in a subset of Btk-dependent pathways in vivo, particularly those responses dominated by B1 B cells.
Collapse
Affiliation(s)
- Jamee C. Nixon
- Oklahoma Medical Research Foundation, 825 N.E. 13 St., Oklahoma City, OK 73104
| | - Scott Ferrell
- Oklahoma Medical Research Foundation, 825 N.E. 13 St., Oklahoma City, OK 73104
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Cathrine Miner
- Oklahoma Medical Research Foundation, 825 N.E. 13 St., Oklahoma City, OK 73104
| | - Athenia L. Oldham
- Oklahoma Medical Research Foundation, 825 N.E. 13 St., Oklahoma City, OK 73104
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Ute Hochgeschwender
- Oklahoma Medical Research Foundation, 825 N.E. 13 St., Oklahoma City, OK 73104
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Carol F. Webb
- Oklahoma Medical Research Foundation, 825 N.E. 13 St., Oklahoma City, OK 73104
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
32
|
Abstract
In addition to their key roles in cellular survival, death, proliferation and metabolism, the Foxo subfamily of forkhead (Fox) transcription factors play critical roles in the homeostasis of immune-relevant cells, including T cells, B cells, neutrophils and other non-lymphoid lineages that modulate inflammation in disease states such as inflammatory arthritis and systemic lupus erythematosus. This review summarizes such current and expanding knowledge of the Foxo family members in immunity, and their potential as therapeutic targets in inflammatory disease.
Collapse
|
33
|
Kuo CC, Lin SC. Altered FOXO1 transcript levels in peripheral blood mononuclear cells of systemic lupus erythematosus and rheumatoid arthritis patients. Mol Med 2008; 13:561-6. [PMID: 17873969 PMCID: PMC1976859 DOI: 10.2119/2007-00021.kuo] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Accepted: 08/20/2007] [Indexed: 11/06/2022] Open
Abstract
FOXO forkhead transcription factors play an important role in controlling lymphocyte activation and proliferation. To evaluate the possibility that FOXO transcriptional expression is dysregulated in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients, we determined the quantities of FOXO1, FOXO3a, and FOXO4 transcripts in peripheral blood mononuclear cells (PBMCs) from normal controls as well as from SLE and RA patients. Results showed that FOXO1 and FOXO3a are dominant FOXO factors at the transcript level in PBMCs. Statistical analysis showed that the FOXO1 transcript levels in RA patients and in SLE patients with active disease activity were significantly lower than those in normal controls, and the FOXO1 transcript levels were inversely correlated with lupus disease activity. In contrast, the differences in FOXO3a and FOXO4 transcript levels between normal controls and patients were not significant. These data suggest that the transcriptional dysregulation in FOXO1 is possibly linked to the pathogenesis of SLE and RA.
Collapse
Affiliation(s)
- Chia-Chen Kuo
- Division of Allergy and Immunology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | | |
Collapse
|
34
|
Abstract
The Foxo subfamily of forkhead (Fox) transcription factors are mammalian homologues of the Caenorhabditis elegans DAF-16 longevity gene, and play key roles in cellular and organism survival, death, proliferation and metabolism. A growing body of evidence indicates that Foxo proteins furthermore play critical roles in immune cell homeostasis, modulating inflammation in some disease states such as inflammatory arthritis and systemic lupus erythematosus (SLE), via fundamental roles in T cells, B cells, neurophils and other myeloid lineages. This review summarizes current knowledge of the Foxo family members in general and in immunity, including their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Stanford L Peng
- Inflammation, Autoimmunity, Transplantation Research, Palo Alto, CA 94304, USA.
| |
Collapse
|
35
|
Halcomb KE, Contreras CM, Hinman RM, Coursey TG, Wright HL, Satterthwaite AB. Btk and phospholipase C gamma 2 can function independently during B cell development. Eur J Immunol 2007; 37:1033-42. [PMID: 17372989 DOI: 10.1002/eji.200636451] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pre-BCR and the BCR regulate B cell development via a signalosome nucleated by the adaptor protein B cell linker protein (BLNK). Formation of this complex facilitates activation of phospholipase C (PLC) gamma2 by Bruton's tyrosine kinase (Btk). To determine whether Btk and PLCgamma2 also have separate functions, we generated Btk(-/-)PLCgamma2(-/-) mice. They demonstrated a block in development at the pre-B stage and increased pre-BCR surface expression. This phenotype was more severe than that of Btk(-/-) or PLCgamma2(-/-) mice. Although both Btk and PLCgamma2 were required for proliferation of splenic B cells in response to BCR cross-linking, they contributed differently to anti-IgM-induced phosphorylation of ERK. Btk(-/-) and PLCgamma2(-/-) mice each had a reduced frequency of Iglambda-expressing B cells and impaired migration of pre-B cells towards stromal cell-derived factor 1. However, the increase in pre-B cell malignancy that occurs in BLNK(-/-) mice in the absence of Btk was not observed in the absence of PLCgamma2. Thus, Btk and PLCgamma2 act both in concert and independently throughout B cell development.
Collapse
Affiliation(s)
- Kristina E Halcomb
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | | | | | | | | | | |
Collapse
|