1
|
Li Y, Wen Y, Liu X, Li Z, Lin B, Deng C, Yu Z, Zhu Y, Zhao L, Su W, Zhuo Y. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury. J Neuroinflammation 2022; 19:261. [PMID: 36289494 PMCID: PMC9597965 DOI: 10.1186/s12974-022-02621-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to establish a complete retinal cell atlas of ischemia-reperfusion injury by single-cell RNA sequencing, and to explore the underlying mechanism of retinal ischemia-reperfusion injury in mice. METHODS Single-cell RNA sequencing was used to evaluate changes in the mouse retinal ischemia reperfusion model. In vivo and in vitro experiments were performed to verify the protective effect of inhibiting ferroptosis in retinal ischemia-reperfusion injury. RESULTS After ischemia-reperfusion injury, retinal cells were significantly reduced, accompanied by the activation of myeloid and a large amount of blood-derived immune cell infiltration. The IFNG, MAPK and NFKB signaling pathways in retinal neuronal cells, together with the TNF signaling pathway in myeloid give rise to a strong inflammatory response in the I/R state. Besides, the expression of genes implicating iron metabolism, oxidative stress and multiple programed cell death pathways have changed in cell subtypes described above. Especially the ferroptosis-related genes and blocking this process could apparently alleviate the inflammatory immune responses and enhance retinal ganglion cells survival. CONCLUSIONS We established a comprehensive landscape of mouse retinal ischemia-reperfusion injury at the single-cell level, revealing the important role of ferroptosis during this injury, and targeted inhibition of ferroptosis can effectively protect retinal structure and function.
Collapse
Affiliation(s)
- Yangyang Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Yuwen Wen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Xiuxing Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Zhuang Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Bingying Lin
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Caibin Deng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Ziyu Yu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Yingting Zhu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Ling Zhao
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Wenru Su
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Yehong Zhuo
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| |
Collapse
|
2
|
Triiodothyronine-stimulated dendritic cell vaccination boosts antitumor immunity against murine colon cancer. Int Immunopharmacol 2022; 110:109016. [DOI: 10.1016/j.intimp.2022.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
|
3
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
4
|
Damo M, Wilson DS, Watkins EA, Hubbell JA. Soluble N-Acetylgalactosamine-Modified Antigens Enhance Hepatocyte-Dependent Antigen Cross-Presentation and Result in Antigen-Specific CD8 + T Cell Tolerance Development. Front Immunol 2021; 12:555095. [PMID: 33746941 PMCID: PMC7965950 DOI: 10.3389/fimmu.2021.555095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/10/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocytes compose up to 80% of the total liver and have been indicated as important players in the induction of immunologic tolerance in this organ. We show that hepatocytes possess the molecular machinery required for the cross-presentation of extracellular antigens. Using a derivative of the model antigen ovalbumin (OVA) covalently modified with a polymer containing multiple N-acetylgalactosamine residues (pGal-OVA) that enhance extracellular antigen uptake by mimicking the glycome of apoptotic debris, we show efficient hepatocyte-dependent induction of cross-tolerance of both adoptively transferred OT-I cells and endogenous OVA-specific CD8+ T lymphocytes, for example inducing tolerance to OVA-expressing skin transplants. Our study confirms that hepatocytes are capable of inducing peripheral tolerogenesis and provides proof of concept that they may be a valuable candidate for in vivo targeted tolerogenic treatments.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 2/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism
- Acetylgalactosamine/immunology
- Adoptive Transfer/methods
- Animals
- Antigen Presentation/immunology
- Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cross-Priming/immunology
- Hepatocytes/cytology
- Hepatocytes/immunology
- Immune Tolerance/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Skin Transplantation/methods
- Solubility
- Vesicular Transport Proteins/immunology
- Vesicular Transport Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Martina Damo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - D. Scott Wilson
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elyse A. Watkins
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Kumar A, Ghosh Kadamb A, Ghosh Kadamb K. Mesenchymal or Maintenance Stem Cell & Understanding Their Role in Osteoarthritis of the Knee Joint: A Review Article. THE ARCHIVES OF BONE AND JOINT SURGERY 2020; 8:560-569. [PMID: 33088856 DOI: 10.22038/abjs.2020.42536.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mesenchymal Stem Cell (MSC) therapy in osteoarthritis has been hailed as a promising treatment for osteoarthritis due to their unlimited potential of healing and regeneration. Existing literature regarding their proper name, optimal sources, mechanisms of action, dosage, and route of administration, efficacy, and safety is debatable. This index review article has tried to connect these puzzling pieces of available information and brought clarity on some of these crucial issues. The author believes that Maintenance Stem Cells (MSC) may be a more suitable term than mesenchymal stem cell or medicinal signaling cells as their origin might not be limited to mesodermal tissue. Also, they have been shown capable of self-renewal, differentiation, and maintaining a cascade of healing & possibly regeneration at the implanted site. Only a small percentage of implanted MSC survive and rest undergo apoptosis after releasing growth factors, cytokines, and extracellular vesicles. These surviving MSC become active due to conformational changes induced by anti-environment stimuli and undergo limited self-renewal, proliferation, and differentiation, but only a few of them might incorporate into the host tissues. These cells generate & maintain a momentum of series of regenerative activities to improve the function of joint, stabilize or possibly enhance the cartilage quality. More randomized studies with long term follow-up are required to bring clarity on their ideal source, expansion, culture technique, optimum dosage, and route of administration and long-term safety issues.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Orthopaedics, Saudi German Hospital, Dubai, UAE
| | | | | |
Collapse
|
6
|
Hosszu KK, Valentino A, Peerschke EI, Ghebrehiwet B. SLE: Novel Postulates for Therapeutic Options. Front Immunol 2020; 11:583853. [PMID: 33117397 PMCID: PMC7575694 DOI: 10.3389/fimmu.2020.583853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses. While C1q undoubtedly plays an important role in apoptotic clearance, an essential biological process such as removal of self- waste is so critical for host survival that multiple ligand-receptor combinations do fortunately exist to ensure that proper disposal of apoptotic debris is accomplished even in the absence of C1q. The second hypothesis is based on the observation that locally synthesized C1q plays a critical role in regulating the earliest stages of monocyte to dendritic cell (DC) differentiation and function. Indeed, circulating C1q has been shown to keep monocytes in a pre-dendritic state by silencing key molecular players and ensuring that unwarranted DC-driven immune responses do not occur. Monocytes are also able to display macromolecular C1 on their surface, representing a novel mechanism for the recognition of circulating "danger." Translation of this danger signal in turn, provides the requisite "license" to trigger a differentiation pathway that leads to adaptive immune response. Based on this evidence, the second hypothesis proposes that deficiency in C1q dysregulates monocyte-to-DC differentiation and causes inefficient or defective maintenance of self-tolerance. The fact that C1q receptors (cC1qR and gC1qR) are also expressed on the surface of both monocytes and DCs, suggests that C1q/C1qR may regulate DC differentiation and function through specific cell-signaling pathways. While their primary ligand is C1q, C1qRs can also independently recognize a vast array of plasma proteins as well as pathogen-associated molecular ligands, indicating that these molecules may collaborate in antigen recognition and processing, and thus regulate DC-differentiation. This review will therefore focus on the role of C1q and C1qRs in SLE and explore the gC1qR/C1q axis as a potential target for therapy.
Collapse
Affiliation(s)
- Kinga K Hosszu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alisa Valentino
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ellinor I Peerschke
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
7
|
Yang Z, Li H, Yuan Z, Fu L, Jiang S, Gao C, Wang F, Zha K, Tian G, Sun Z, Huang B, Wei F, Cao F, Sui X, Peng J, Lu S, Guo W, Liu S, Guo Q. Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater 2020; 114:31-52. [PMID: 32652223 DOI: 10.1016/j.actbio.2020.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.
Collapse
|
8
|
Hequet O, Nosbaum A, Guironnet-Paquet A, Blasco E, Nicolas-Virelizier E, Griffith TS, Rigal D, Cognasse F, Nicolas JF, Vocanson M. CD8 + T cells mediate ultraviolet A-induced immunomodulation in a model of extracorporeal photochemotherapy. Eur J Immunol 2020; 50:725-735. [PMID: 32012249 DOI: 10.1002/eji.201948318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Extracorporeal photochemotherapy (ECP) that takes advantage of the immunomodulatory effects of UV light has been extensively used for many years for the treatment of several T cell-mediated diseases, including graft-versus-host disease (GvHD) and systemic scleroderma. Immune mechanisms that lead to the establishment of T cell tolerance in ECP-treated patients remain poorly known. In this study, we have tested the effect of UV/psoralen-treated BM-derived dendritic cells, referred to as ECP-BMDCs on the outcome of an antigen-specific T cell-mediated reaction, that is, contact hypersensitivity (CHS), which is mediated by CD8+ effector T cells (CD8+ Teff ). The intravenous (i.v.) injection of antigen-pulsed ECP-BMDCs in recipient C57BL/6 mice induced specific CD8+ T cells endowed with immunomodulatory properties (referred to as CD8+ TECP ), which prevented the priming of CD8+ Teff and the development of CHS, independently of conventional CD4+ regulatory T cells. CD8+ TECP mediated tolerance by inhibiting the migration and functions of skin DC and subsequently the priming of CD8+ Teff . CD8+ TECP displayed none of the phenotypes of the usual CD8+ T regulatory cells described so far. Our results reveal an underestimated participation of CD8+ T cells to ECP-induced immunomodulation that could explain the therapeutic effects of ECP in T cell-mediated diseases.
Collapse
Affiliation(s)
- Olivier Hequet
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France.,Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Apheresis Unit, Hôpital Lyon Sud, Pierre Bénite, France.,Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Scientific Departements, Saint-Etienne, France
| | - Audrey Nosbaum
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Aurélie Guironnet-Paquet
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Elisabeth Blasco
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Emmanuelle Nicolas-Virelizier
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Thomas S Griffith
- Department of Urology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Dominique Rigal
- Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Scientific Departements, Saint-Etienne, France
| | - Fabrice Cognasse
- Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Scientific Departements, Saint-Etienne, France.,GIMAP-EA 3064, Lyon University, Saint-Etienne, France
| | - Jean-François Nicolas
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Marc Vocanson
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| |
Collapse
|
9
|
Sag D, Ayyildiz ZO, Gunalp S, Wingender G. The Role of TRAIL/DRs in the Modulation of Immune Cells and Responses. Cancers (Basel) 2019; 11:cancers11101469. [PMID: 31574961 PMCID: PMC6826877 DOI: 10.3390/cancers11101469] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in immune cells and immune responses in general and in the tumor microenvironment in particular.
Collapse
Affiliation(s)
- Duygu Sag
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Zeynep Ozge Ayyildiz
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Sinem Gunalp
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| |
Collapse
|
10
|
Interactions of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) with the Immune System: Implications for Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081161. [PMID: 31412671 PMCID: PMC6721490 DOI: 10.3390/cancers11081161] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL has historically been distinct from the Fas ligand and TNFα in terms of selective apoptosis induction in tumor cells and has a nearly non-existent systemic toxicity. Consequently, in the search for an ideal drug for tumor therapy, TRAIL rapidly drew interest, promising effective tumor control with minimal side effects. However, euphoria gave way to disillusionment as it turned out that carcinoma cells possess or can acquire resistance to TRAIL-induced apoptosis. Additionally, studies on models of inflammation and autoimmunity revealed that TRAIL can influence immune cells in many different ways. While TRAIL was initially found to be an important player in tumor defense by natural killer cells or cytotoxic T cells, additional effects of TRAIL on regulatory T cells and effector T cells, as well as on neutrophilic granulocytes and antigen-presenting cells, became focuses of interest. The tumor-promoting effects of these interactions become particularly important for consideration in cases where tumors are resistant to TRAIL-induced apoptosis. Consequently, murine models have shown that TRAIL can impair the tumor microenvironment toward a more immunosuppressive type, thereby promoting tumor growth. This review summarizes the current state of knowledge on TRAIL’s interactions with the immune system in the context of cancer.
Collapse
|
11
|
Mancuso P, Raman S, Glynn A, Barry F, Murphy JM. Mesenchymal Stem Cell Therapy for Osteoarthritis: The Critical Role of the Cell Secretome. Front Bioeng Biotechnol 2019; 7:9. [PMID: 30761298 PMCID: PMC6361779 DOI: 10.3389/fbioe.2019.00009] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is an inflammatory condition still lacking effective treatments. Mesenchymal stem/stromal cells (MSCs) have been successfully employed in pre-clinical models aiming to resurface the degenerated cartilage. In early-phase clinical trials, intra-articular (IA) administration of MSCs leads to pain reduction and cartilage protection or healing. However, the consistent lack of engraftment indicates that the observed effect is delivered through a "hit-and-run" mechanism, by a temporal release of paracrine molecules. MSCs express a variety of chemokines and cytokines that aid in repair of degraded tissue, restoration of normal tissue metabolism and, most importantly, counteracting inflammation. Secretion of therapeutic factors is increased upon licensing by inflammatory signals or apoptosis, induced by the host immune system. Trophic effectors are released as soluble molecules or carried by extracellular vesicles (ECVs). This review provides an overview of the functions and mechanisms of MSC-secreted molecules found to be upregulated in models of OA, whether using in vitro or in vivo models.
Collapse
Affiliation(s)
- Patrizio Mancuso
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Swarna Raman
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Glynn
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - J Mary Murphy
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Heckmann BL, Tummers B, Green DR. Crashing the computer: apoptosis vs. necroptosis in neuroinflammation. Cell Death Differ 2018; 26:41-52. [PMID: 30341422 DOI: 10.1038/s41418-018-0195-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) plays critical roles in development, homeostasis, and both control and progression of a plethora of diseases, including cancer and neurodegenerative pathologies. Besides classical apoptosis, several different forms of PCD have now been recognized, including necroptosis. The way a cell dies determines the reaction of the surrounding environment, and immune activation in response to cell death proceeds in a manner dependent on which death pathways are activated. Apoptosis and necroptosis are major mechanisms of cell death that typically result in opposing immune responses. Apoptotic death usually leads to immunologically silent responses whereas necroptotic death releases molecules that promote inflammation, a process referred to as necroinflammation. Diseases of the nervous system, in particular neurodegenerative diseases, are characterized by neuronal death and progressive neuroinflammation. The mechanisms of neuronal death are not well defined and significant cross-talk between pathways has been suggested. Moreover, it has been proposed that the dying of neurons is a catalyst for activating immune cells in the brain and sustaining inflammatory output. In the current review we discuss the effects of apoptotis and necroptosis on inflammatory immune activation, and evaluate the roles of each cell death pathway in a variety of pathologies with specific focus on neurodegeneration. A putative model is proposed for the regulation of neuronal death and neuroinflammation that features a role for both the apoptotic and necroptotic pathways in disease establishment and progression.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
14
|
Veyer DL, Carrara G, Maluquer de Motes C, Smith GL. Vaccinia virus evasion of regulated cell death. Immunol Lett 2017; 186:68-80. [PMID: 28366525 DOI: 10.1016/j.imlet.2017.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Regulated cell death is a powerful anti-viral mechanism capable of aborting the virus replicative cycle and alerting neighbouring cells to the threat of infection. The biological importance of regulated cell death is illustrated by the rich repertoire of host signalling cascades causing cell death and by the multiple strategies exhibited by viruses to block death signal transduction and preserve cell viability. Vaccinia virus (VACV), a poxvirus and the vaccine used to eradicate smallpox, encodes multiple proteins that interfere with apoptotic, necroptotic and pyroptotic signalling. Here the current knowledge on cell death pathways and how VACV proteins interact with them is reviewed. Studying the mechanisms evolved by VACV to counteract host programmed cell death has implications for its successful use as a vector for vaccination and as an oncolytic agent against cancer.
Collapse
Affiliation(s)
- David L Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
15
|
Ono N, Murakami K, Chan O, Hall H, Elford AR, Yen P, Calzascia T, Spencer DM, Ohashi PS, Dhanji S. Exposure to sequestered self-antigens in vivo is not sufficient for the induction of autoimmune diabetes. PLoS One 2017; 12:e0173176. [PMID: 28257518 PMCID: PMC5336264 DOI: 10.1371/journal.pone.0173176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/16/2017] [Indexed: 11/18/2022] Open
Abstract
Although the role of T cells in autoimmunity has been explored for many years, the mechanisms leading to the initial priming of an autoimmune T cell response remain enigmatic. The 'hit and run' model suggests that self-antigens released upon cell death can provide the initial signal for a self-sustaining autoimmune response. Using a novel transgenic mouse model where we could induce the release of self-antigens via caspase-dependent apoptosis. We tracked the fate of CD8+ T cells specific for the self-antigen. Our studies demonstrated that antigens released from apoptotic cells were cross-presented by CD11c+ cells in the draining lymph node. This cross-presentation led to proliferation of self-antigen specific T cells, followed by a transient ability to produce IFN-γ, but did not lead to the development of autoimmune diabetes. Using this model we examined the consequences on T cell immunity when apoptosis was combined with dendritic cell maturation signals, an autoimmune susceptible genetic background, and the deletion of Tregs. The results of our study demonstrate that autoimmune diabetes cannot be initiated by the presentation of antigens released from apoptotic cells in vivo even in the presence of factors known to promote autoimmunity.
Collapse
Affiliation(s)
- Nobuyuki Ono
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Kiichi Murakami
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Olivia Chan
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Håkan Hall
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Patty Yen
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Thomas Calzascia
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - David M. Spencer
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Medical Center, Houston, Texas, United States of America
- Bellicum Pharmaceuticals, Inc. Houston, Texas, United States of America
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| | - Salim Dhanji
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Departments of Medical Biophysics and Immunology, Toronto, Ontario, Canada
| |
Collapse
|
16
|
D'Errico G, Machado HL, Sainz B. A current perspective on cancer immune therapy: step-by-step approach to constructing the magic bullet. Clin Transl Med 2017; 6:3. [PMID: 28050779 PMCID: PMC5209322 DOI: 10.1186/s40169-016-0130-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy is the new trend in cancer treatment due to the selectivity, long lasting effects, and demonstrated improved overall survival and tolerance, when compared to patients treated with conventional chemotherapy. Despite these positive results, immunotherapy is still far from becoming the perfect magic bullet to fight cancer, largely due to the facts that immunotherapy is not effective in all patients nor in all cancer types. How and when will immunotherapy overcome these hurdles? In this review we take a step back to walk side by side with the pioneers of immunotherapy in order to understand what steps need to be taken today to make immunotherapy effective across all cancers. While early scientists, such as Coley, elicited an unselective but effective response against cancer, the search for selectivity pushed immunotherapy to the side in favor of drugs focused on targeting cancer cells. Fortunately, the modern era would revive the importance of the immune system in battling cancer by releasing the brakes or checkpoints (anti-CTLA-4 and anti-PD-1/PD-L1) that have been holding the immune system at bay. However, there are still many hurdles to overcome before immunotherapy becomes a universal cancer therapy. For example, we discuss how the redundant and complex nature of the immune system can impede tumor elimination by teeter tottering between different polarization states: one eliciting anti-cancer effects while the other promoting cancer growth and invasion. In addition, we highlight the incapacity of the immune system to choose between a fight or repair action with respect to tumor growth. Finally we combine these concepts to present a new way to think about the immune system and immune tolerance, by introducing two new metaphors, the “push the accelerator” and “repair the car” metaphors, to explain the current limitations associated with cancer immunotherapy.
Collapse
Affiliation(s)
- Gabriele D'Errico
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, #8543, New Orleans, LA, 70112, USA.
| | - Bruno Sainz
- Department of Biochemistry, School of Medicine, Autónoma University of Madrid, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain. .,Department of Cancer Biology, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain. .,Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
17
|
Pitt JM, Kroemer G, Zitvogel L. Immunogenic and Non-immunogenic Cell Death in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:65-79. [PMID: 29275465 DOI: 10.1007/978-3-319-67577-0_5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The host immune system is continuously exposed to dying cells and has evolved to distinguish between cell death events signaling potential threats and physiological apoptosis that should be tolerated. Tumors can use this distinction to their advantage, promoting apoptotic death of cancer cells to induce tolerance and evasion of immunosurveillance. On the other hand, stimuli that cause immunogenic death of cancer cells can induce an effective anti-tumor immune response. In this chapter we discuss different forms of cell death in the tumor microenvironment, and how these interact with host immune cells to impact tumor progression and cancer therapy. We focus on how cancer cells hijack aspects of cell death to promote tumor survival, and how anti-cancer treatments that activate immunogenic death modalities give strong and durable clinical efficacy.
Collapse
Affiliation(s)
- Jonathan M Pitt
- Gustave Roussy Cancer Campus, Villejuif, Cedex, France
- INSERM U1015, Villejuif, France
- Faculté de Médecine, Université Paris Sud-XI, Le Kremlin Bicêtre, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, Cedex, France
- INSERM U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes-V, Sorbonne Paris Cité, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, Cedex, France.
- INSERM U1015, Villejuif, France.
- Faculté de Médecine, Université Paris Sud-XI, Le Kremlin Bicêtre, France.
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.
| |
Collapse
|
18
|
Abstract
For almost two decades, cell-based therapies have been tested in modern regenerative medicine to either replace or regenerate human cells, tissues, or organs and restore normal function. Secreted paracrine factors are increasingly accepted to exert beneficial biological effects that promote tissue regeneration. These factors are called the cell secretome and include a variety of proteins, lipids, microRNAs, and extracellular vesicles, such as exosomes and microparticles. The stem cell secretome has most commonly been investigated in pre-clinical settings. However, a growing body of evidence indicates that other cell types, such as peripheral blood mononuclear cells (PBMCs), are capable of releasing significant amounts of biologically active paracrine factors that exert beneficial regenerative effects. The apoptotic PBMC secretome has been successfully used pre-clinically for the treatment of acute myocardial infarction, chronic heart failure, spinal cord injury, stroke, and wound healing. In this review we describe the benefits of choosing PBMCs instead of stem cells in regenerative medicine and characterize the factors released from apoptotic PBMCs. We also discuss pre-clinical studies with apoptotic cell-based therapies and regulatory issues that have to be considered when conducting clinical trials using cell secretome-based products. This should allow the reader to envision PBMC secretome-based therapies as alternatives to all other forms of cell-based therapies.
Collapse
Affiliation(s)
- Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Vienna, Austria.
- Head FFG Project 852748 "APOSEC", FOLAB Surgery, Medical University of Vienna, Vienna, Austria.
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Saas P, Daguindau E, Perruche S. Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells 2016; 34:1464-73. [PMID: 27018198 DOI: 10.1002/stem.2361] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
Abstract
The objectives of this review are to summarize the experimental data obtained using apoptotic cell-based therapies, and then to discuss future clinical developments. Indeed, apoptotic cells exhibit immunomodulatory properties that are reviewed here by focusing on more recent mechanisms. These immunomodulatory mechanisms are in particular linked to the clearance of apoptotic cells (called also efferocytosis) by phagocytes, such as macrophages, and the induction of regulatory T cells. Thus, apoptotic cell-based therapies have been used to prevent or treat experimental inflammatory diseases. Based on these studies, we have identified critical steps to design future clinical trials. This includes: the administration route, the number and schedule of administration, the appropriate apoptotic cell type to be used, as well as the apoptotic signal. We also have analyzed the clinical relevancy of apoptotic-cell-based therapies in experimental models. Additional experimental data are required concerning the treatment of inflammatory diseases (excepted for sepsis) before considering future clinical trials. In contrast, apoptotic cells have been shown to favor engraftment and to reduce acute graft-versus-host disease (GvHD) in different relevant models of transplantation. This has led to the conduct of a phase 1/2a clinical trial to alleviate GvHD. The absence of toxic effects obtained in this trial may support the development of other clinical studies based on this new cell therapy. Stem Cells 2016;34:1464-1473.
Collapse
Affiliation(s)
- Philippe Saas
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Etienne Daguindau
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France.,CHRU Besançon, Hématologie, Besançon, France
| | - Sylvain Perruche
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| |
Collapse
|
20
|
Morelli AE, Larregina AT. Concise Review: Mechanisms Behind Apoptotic Cell-Based Therapies Against Transplant Rejection and Graft versus Host Disease. Stem Cells 2016; 34:1142-50. [PMID: 26865545 DOI: 10.1002/stem.2326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/10/2016] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
Abstract
The main limitations to the success of transplantation are the antigraft response developed by the recipient immune system, and the adverse side effects of chronic immunosuppression. Graft-versus-host disease (GVHD) triggered by donor-derived T lymphocytes against the recipient tissues is another serious obstacle in the field of hematopoietic stem cell transplantation. Several laboratories have tested the possibility of promoting antigen (Ag)-specific tolerance for therapy of graft rejection, GVHD, and autoimmune disorders, by developing methodologies that mimic the mechanisms by which the immune system maintains peripheral tolerance in the steady state. It has been long recognized that the silent clearance of cells undergoing apoptosis exerts potent immune-regulatory effects and provides apoptotic cell-derived Ags to those Ag-presenting cells (APCs) that internalize them, in particular macrophages and dendritic cells. Therefore, in situ-targeting of recipient APCs by systemic administration of leukocytes in early apoptosis and bearing donor Ags represents a relatively simple approach to control the antidonor response against allografts. Here, we review the mechanisms by which apoptotic cells are silently cleared by phagocytes, and how such phenomenon leads to down-regulation of the innate and adaptive immunity. We discuss the evolution of apoptotic cell-based therapies from murine models of organ/tissue transplantation and GVHD, to clinical trials. We make emphasis on potential limitations and areas of concern of apoptotic cell-based therapies, and on how other immune-suppressive therapies used in the clinics or tested experimentally likely also function through the silent clearance of apoptotic cells by the immune system. Stem Cells 2016;34:1142-1150.
Collapse
Affiliation(s)
- Adrian E Morelli
- T.E. Starzl Transplantation Institute, Department of Surgery.,Departments of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Adriana T Larregina
- Departments of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,Departments of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
21
|
Immunological aspects of antitumor photodynamic therapy outcome. Cent Eur J Immunol 2016; 40:481-5. [PMID: 26862314 PMCID: PMC4737746 DOI: 10.5114/ceji.2015.56974] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/16/2015] [Indexed: 12/03/2022] Open
Abstract
Photodynamic therapy (PDT) of cancer is an efficient and promising therapeutic modality approved for the treatment of several types of tumors and non-malignant diseases. It involves administration of a non-toxic photosensitizer followed by illumination of the tumor site with a harmless visible light. A light activated photosensitizer can transfer its energy directly to molecular oxygen, leading to production of highly toxic reactive oxygen species (ROS). Antitumor effects of PDT result from the combination of three independent mechanisms involving direct cytotoxicity to tumor cells, destruction of tumor vasculature and induction of the acute local inflammatory response. PDT-mediated inflammatory reaction is accompanied by tumor infiltration of the leukocytes, enhanced production of pro-inflammatory factors and cytokines. Photodynamic therapy is able to effectively stimulate both the innate and the adaptive arm of the immune system. In consequence, this regimen can lead to development of systemic and specific antitumor immune response. However, there are limited studies suggesting that under some specific circumstances, PDT on its own may exert some immunosuppressive effects leading to activation of immunosuppressive cells or cytokines production. In this report we briefly review all immunological aspects of PDT treatment.
Collapse
|
22
|
Amarante-Mendes GP, Griffith TS. Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 2015; 155:117-31. [PMID: 26343199 DOI: 10.1016/j.pharmthera.2015.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, Brazil.
| | - Thomas S Griffith
- Department of Urology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
| |
Collapse
|
23
|
Ansary MMU, Ishihara S, Oka A, Kusunoki R, Oshima N, Yuki T, Kawashima K, Maegawa H, Kashiwagi N, Kinoshita Y. Apoptotic cells ameliorate chronic intestinal inflammation by enhancing regulatory B-cell function. Inflamm Bowel Dis 2014; 20:2308-2320. [PMID: 25358066 DOI: 10.1097/mib.0000000000000240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis is a programmed physiological death of unwanted cells, and handling of apoptotic cells (ACs) is thought to have profound effects on immune-mediated disorders. However, there is scant information regarding the role of ACs in intestinal inflammation, in which immune homeostasis is a major concern. To investigate this, we injected ACs into a severe combined immunodeficiency adoptive transfer model of chronic colitis in the presence and absence of cotransferred whole B or regulatory B cell (Breg)-depleted B cells. We also injected syngeneic ACs into AKR/N mice as a control and into milk fat globule-epidermal growth factor 8 knockout mice deficient of phagocytic function. Chronic colitis severity was significantly reduced in the AC as opposed to the phosphate-buffered saline group with cotransferred whole B cells. The AC-mediated effect was lost in the absence of B cells or presence of Breg-depleted B cells. In addition, ACs induced splenic B cells to secrete significantly increased levels of interleukin 10 in AKR/N mice but not milk fat globule-epidermal growth factor 8 knockout mice. Apoptotic leukocytes were induced by reactive oxygen species during granulocyte/monocyte apheresis therapy in rabbits and H2O2-induced apoptotic neutrophils ameliorated mice colitis. Our results indicate that ACs are protective only in the presence of B cells and phagocytosis of ACs induced interleukin 10 producing Bregs. Thus, the ameliorative effect seen in this study might have been exerted by AC-induced Bregs through increased production of the immunosuppressive cytokine interleukin 10, whereas an AC-mediated effect may contribute to the anti-inflammatory effect of granulocyte/monocyte apheresis as a novel therapeutic mechanism for inflammatory bowel disease.
Collapse
MESH Headings
- Animals
- Apoptosis/immunology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/pathology
- Cells, Cultured
- Chronic Disease
- Colitis/immunology
- Colitis/metabolism
- Colitis/pathology
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Immunoenzyme Techniques
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Mice
- Mice, Inbred AKR
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- RNA, Messenger/genetics
- Rabbits
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Md Mesbah Uddin Ansary
- *Department of Internal Medicine II, School of Medicine, Shimane University, Izumo, Japan; †Department of Gastrointestinal Endoscopy, Shimane University Hospital, Izumo, Japan; and ‡Research Division, JIMRO Co. Ltd., Takasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cabrera-Perez J, Condotta SA, Badovinac VP, Griffith TS. Impact of sepsis on CD4 T cell immunity. J Leukoc Biol 2014; 96:767-77. [PMID: 24791959 PMCID: PMC4197564 DOI: 10.1189/jlb.5mr0114-067r] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/08/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022] Open
Abstract
Sepsis remains the primary cause of death from infection in hospital patients, despite improvements in antibiotics and intensive-care practices. Patients who survive severe sepsis can display suppressed immune function, often manifested as an increased susceptibility to (and mortality from) nosocomial infections. Not only is there a significant reduction in the number of various immune cell populations during sepsis, but there is also decreased function in the remaining lymphocytes. Within the immune system, CD4 T cells are important players in the proper development of numerous cellular and humoral immune responses. Despite sufficient clinical evidence of CD4 T cell loss in septic patients of all ages, the impact of sepsis on CD4 T cell responses is not well understood. Recent findings suggest that CD4 T cell impairment is a multipronged problem that results from initial sepsis-induced cell loss. However, the subsequent lymphopenia-induced numerical recovery of the CD4 T cell compartment leads to intrinsic alterations in phenotype and effector function, reduced repertoire diversity, changes in the composition of naive antigen-specific CD4 T cell pools, and changes in the representation of different CD4 T cell subpopulations (e.g., increases in Treg frequency). This review focuses on sepsis-induced alterations within the CD4 T cell compartment that influence the ability of the immune system to control secondary heterologous infections. The understanding of how sepsis affects CD4 T cells through their numerical loss and recovery, as well as function, is important in the development of future treatments designed to restore CD4 T cells to their presepsis state.
Collapse
Affiliation(s)
- Javier Cabrera-Perez
- Microbiology, Immunology, and Cancer Biology Graduate Program Medical Scientist Training Program
| | | | - Vladimir P Badovinac
- Department of Pathology and Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Graduate Program Center for Immunology, and Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Minneapolis Veterans Administration Health Care System, Minneapolis, Minnesota, USA; and
| |
Collapse
|
25
|
Saas P, Kaminski S, Perruche S. Prospects of apoptotic cell-based therapies for transplantation and inflammatory diseases. Immunotherapy 2014; 5:1055-73. [PMID: 24088076 DOI: 10.2217/imt.13.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell removal or interactions of early-stage apoptotic cells with immune cells are associated with an immunomodulatory microenvironment that can be harnessed to exert therapeutic effects. While the involved immune mechanisms are still being deciphered, apoptotic cell infusion has been tested in different experimental models where inflammation is deregulated. This includes chronic and acute inflammatory disorders such as arthritis, contact hypersensitivity and acute myocardial infarction. Apoptotic cell infusion has also been used in transplantation settings to prevent or treat acute and chronic rejection, as well as to limit acute graft-versus-host disease associated with allogeneic hematopoietic cell transplantation. Here, we review the mechanisms involved in apoptotic cell-induced immunomodulation and data obtained in preclinical models of transplantation and inflammatory diseases.
Collapse
|
26
|
Citro A, Barnaba V, Martini H. From T Cell Apoptosis to Chronic Immune Activation in Inflammatory Diseases. Int Arch Allergy Immunol 2014; 164:140-6. [DOI: 10.1159/000363385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance. Proc Natl Acad Sci U S A 2014; 111:4215-20. [PMID: 24591636 DOI: 10.1073/pnas.1320924111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tolerance to apoptotic cells is essential to prevent inflammatory pathology. Though innate responses are critical for immune suppression, our understanding of early innate immunity driven by apoptosis is lacking. Herein we report apoptotic cells induce expression of the chemokine CCL22 in splenic metallophillic macrophages, which is critical for tolerance. Systemic challenge with apoptotic cells induced rapid production of CCL22 in CD169(+) (metallophillic) macrophages, resulting in accumulation and activation of FoxP3(+) Tregs and CD11c(+) dendritic cells, an effect that could be inhibited by antagonizing CCL22-driven chemotaxis. This mechanism was essential for suppression after apoptotic cell challenge, because neutralizing CCL22 or its receptor, reducing Treg numbers, or blocking effector mechanisms abrogated splenic TGF-β and IL-10 induction; this promoted a shift to proinflammatory cytokines associated with a failure to suppress T cells. Similarly, CCR4 inhibition blocked long-term, apoptotic cell-induced tolerance to allografts. Finally, CCR4 inhibition resulted in a systemic breakdown of tolerance to self after apoptotic cell injection with rapid increases in anti-dsDNA IgG and immune complex deposition. Thus, the data demonstrate CCL22-dependent chemotaxis is a key early innate response required for apoptotic cell-induced suppression, implicating a previously unknown mechanism of macrophage-dependent coordination of early events leading to stable tolerance.
Collapse
|
28
|
|
29
|
Condotta SA, Cabrera-Perez J, Badovinac VP, Griffith TS. T-cell-mediated immunity and the role of TRAIL in sepsis-induced immunosuppression. Crit Rev Immunol 2013; 33:23-40. [PMID: 23510024 DOI: 10.1615/critrevimmunol.2013006721] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sepsis is the leading cause of death in most intensive care units, and the death of septic patients usually does not result from the initial septic event but rather from subsequent nosocomial infections. Patients who survive severe sepsis often display severely compromised immune function. Not only is there significant apoptosis of lymphoid and myeloid cells that depletes critical components of the immune system during sepsis, there is also decreased function of the remaining immune cells. Studies of animals and humans suggest the immune defects that occur during sepsis may be critical to pathogenesis and subsequent mortality. This review focuses on sepsis-induced alterations with the cluster differentiation (CD) 8 T-cell compartment that can affect the control of secondary heterologous infections. Understanding how a septic event directly influences CD8 T-cell populations through apoptotic death and homeostatic proliferation and indirectly by immune-mediated suppression will provide valuable starting points for developing new treatment options.
Collapse
|
30
|
Sakurai Y, Kasuda S, Tatsumi K, Takeda T, Kato J, Kubo A, Shima M. Repression of Factor VIII Inhibitor Development with Apoptotic Factor VIII-expressing Embryonic Stem Cells. Hematol Rep 2013; 5:30-3. [PMID: 23888245 PMCID: PMC3719103 DOI: 10.4081/hr.2013.e9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/10/2013] [Accepted: 04/29/2012] [Indexed: 11/22/2022] Open
Abstract
Development of factor VIII (fVIII)-neutralizing antibodies, called inhibitors, is a challenging problem in the management of hemophilia A patients. We explored the possibility of pretreatment with apoptotic fVIII-expressing embryonic stem (ES) cells to prevent the development of fVIII inhibitors. Murine ES cells integrated with the human F8 gene were differentiated into embryoid bodies, dissociated to a single cell suspension, subjected to hypo-osmotic shock to induce apoptosis, and intraperitoneally injected into hemophilia A mice. Inhibitors were induced by periodic intraperitoneal injections of recombinant human fVIII (rhfVIII). In the groups in which intraperitoneal injections of rhfVIII began at 1-3 weeks after pretreatment, the titers of inhibitors were significantly lower after the third administration of rhfVIII compared with that in the control group in which apoptotic Ainv18 ES cells (without the human F8 gene) were used for pretreatment, and continued to show lower levels until the sixth administration of rhfVIII. These results suggest that pretreatment with apoptotic hfVIII-expressing ES cells might be promising for the prevention of fVIII inhibitor development in hemophilia A patients.
Collapse
Affiliation(s)
- Yoshihiko Sakurai
- Departments of Pediatrics, Nara Medical University School of Medicine , Kashihara ; Department of Pediatrics, Nara Prefectural Mimuro Hospital, Sango
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Ravishankar B, McGaha TL. O death where is thy sting? Immunologic tolerance to apoptotic self. Cell Mol Life Sci 2013; 70:3571-89. [PMID: 23377225 DOI: 10.1007/s00018-013-1261-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/14/2012] [Accepted: 01/03/2013] [Indexed: 12/22/2022]
Abstract
In higher organisms, innate scavenging cells maintain physiologic homeostasis by removal of the billions of apoptotic cells generated on a daily basis. Apoptotic cell removal requires efficient recognition and uptake by professional and non-professional phagocytic cells, which are governed by an array of soluble and apoptotic cell-integral signals resulting in immunologically silent clearance. While apoptosis is associated with profound suppression of adaptive and innate inflammatory immunity, we have only begun to scratch the surface in understanding how immunologic tolerance to apoptotic self manifest at either the molecular or cellular level. In the last 10 years, data has emerged implicating professional phagocytes, most notably stromal macrophages and CD8α(+)CD103(+) dendritic cells, as critical in initiation of the regulatory cascade that will ultimately lead to long-term whole-animal immune tolerance. Importantly, recent work by our lab and others has shown that alterations in apoptotic cell perception by the innate immune system either by removal of critical phagocytic sentinels in secondary lymphoid organs or blockage of immunosuppressive pathways leads to pronounced inflammation with a breakdown of tolerance towards self. This challenges the paradigm that apoptotic cells are inherently immunosuppressive, suggesting that apoptotic cell tolerance is a "context-dependent" event.
Collapse
Affiliation(s)
- Buvana Ravishankar
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Georgia Regents University, Building CN4143, 1120 15th Street, Augusta, GA, 30904, USA
| | | |
Collapse
|
33
|
Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc Natl Acad Sci U S A 2012; 110:E60-8. [PMID: 23248266 DOI: 10.1073/pnas.1216353110] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.
Collapse
|
34
|
The role of antigen cross-presentation from leukemia blasts on immunity to the leukemia-associated antigen PR1. J Immunother 2012; 35:309-20. [PMID: 22495388 DOI: 10.1097/cji.0b013e31824b3b14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cross-presentation is an important mechanism by which exogenous tumor antigens are presented to elicit immunity. Because neutrophil elastase (NE) and proteinase-3 (P3) expression is increased in myeloid leukemia, we investigated whether NE and P3 are cross-presented by dendritic cells (DC) and B cells, and whether the NE and P3 source determines immune outcomes. We show that NE and P3 are elevated in leukemia patient serum and that levels correlate with remission status. We demonstrate cellular uptake of NE and P3 into lysosomes, ubiquitination, and proteasome processing for cross-presentation. Using anti-PR1/human leukocyte antigen-A2 monoclonal antibody, we provide direct evidence that B-cells cross-present soluble and leukemia-associated NE and P3, whereas DCs cross-present only leukemia-associated NE and P3. Cross-presentation occurred at early time points but was not associated with DC or B-cell activation, suggesting that NE and P3 cross-presentation may favor tolerance. Furthermore, we show aberrant subcellular localization of NE and P3 in leukemia blasts to compartments that share common elements of the classic major histocompatibility class I antigen-presenting pathway, which may facilitate cross-presentation. Our data demonstrate distinct mechanisms for cross-presentation of soluble and cell-associated NE and P3, which may be valuable in understanding immunity to PR1 in leukemia.
Collapse
|
35
|
Trauma patients' elevated tumor necrosis related apoptosis inducing ligand (TRAIL) contributes to increased T cell apoptosis. Clin Immunol 2012; 145:44-54. [PMID: 22926077 DOI: 10.1016/j.clim.2012.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 11/22/2022]
Abstract
Immunosuppression resulting from excessive post-trauma apoptosis of hyperactivated T cells is controversial. TRAIL mediated T cell apoptosis decreases highly activated T cells' responses. Caspase-10, a particular TRAIL target, was increased in trauma patients' T cells with concomitantly elevated plasma TRAIL levels. These patients' T cells developed anergy, implicating increased TRAIL-mediated T cell apoptosis in post-trauma T cell anergy. Control T cells cultured with patients' sera containing high TRAIL levels increased their caspase-10 activity and apoptosis. Stimulated primary T cells are TRAIL apoptosis resistant. Increased plasma thrombospondin-1 and T cell expression of CD47, a thrombospondin-1 receptor, preceded patients' T cell anergy. CD47 triggering of T cells increased their sensitivity to TRAIL-induced apoptosis. Augmentation of T cell TRAIL-induced apoptosis was secondary to CD47 triggered activation of the Src homology-containing phosphatase-1 (SHP-1) and was partially blocked by a SHP-1 inhibitor. We suggest that combined post-trauma CD47 triggering, SHP-1 mediated NFκB suppression, and elevated TRAIL levels increase patients' CD47 expressing T cell apoptosis, thus contributing to subsequent T cell anergy.
Collapse
|
36
|
Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S, Rogers NC, Schulz O, Sancho D, Reis e Sousa C. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Invest 2012; 122:1615-27. [PMID: 22505458 PMCID: PMC3336984 DOI: 10.1172/jci60644] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/29/2012] [Indexed: 02/06/2023] Open
Abstract
DNGR-1 (CLEC9A) is a receptor for necrotic cells required by DCs to cross-prime CTLs against dead cell antigens in mice. It is currently unknown how DNGR-1 couples dead cell recognition to cross-priming. Here we found that DNGR-1 did not mediate DC activation by dead cells but rather diverted necrotic cell cargo into a recycling endosomal compartment, favoring cross-presentation to CD8(+) T cells. DNGR-1 regulated cross-priming in non-infectious settings such as immunization with antigen-bearing dead cells, as well as in highly immunogenic situations such as infection with herpes simplex virus type 1. Together, these results suggest that DNGR-1 is a dedicated receptor for cross-presentation of cell-associated antigens. Our work thus underscores the importance of cross-priming in immunity and indicates that antigenicity and adjuvanticity can be decoded by distinct innate immune receptors. The identification of specialized receptors that regulate antigenicity of virus-infected cells reveals determinants of antiviral immunity that might underlie the human response to infection and vaccination.
Collapse
Affiliation(s)
- Santiago Zelenay
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Anna M. Keller
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Paul G. Whitney
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Barbara U. Schraml
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Safia Deddouche
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Neil C. Rogers
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Oliver Schulz
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
Department of Vascular Biology and Inflammation, CNIC–Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
37
|
Thacker RI, Janssen EM. Cross-presentation of cell-associated antigens by mouse splenic dendritic cell populations. Front Immunol 2012; 3:41. [PMID: 22566924 PMCID: PMC3342388 DOI: 10.3389/fimmu.2012.00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/19/2012] [Indexed: 11/13/2022] Open
Abstract
Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction of anti-tumor responses, autoimmune diseases, and transplant rejection. While several dendritic cell (DC) populations can induce pro-inflammatory CD8(+) T cell responses to cell-associated Ag during infection, in the absence of infection, cross-priming of naïve CD8(+) T cells is highly restricted. Comparison of the main splenic DC populations in mice - including the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) - reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake, endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize similar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs is associated with IL-12 production, while the superior priming of the mcDC is critically dependent on type I IFN production. This discussion illustrates how subtle differences in internal processing pathways and their signaling sequelae significantly affect the duration of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing CD8(+) T cell response.
Collapse
Affiliation(s)
- Robert I Thacker
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | | |
Collapse
|
38
|
Rahimpour A, Mattarollo SR, Yong M, Leggatt GR, Steptoe RJ, Frazer IH. γδ T cells augment rejection of skin grafts by enhancing cross-priming of CD8 T cells to skin-derived antigen. J Invest Dermatol 2012; 132:1656-64. [PMID: 22358058 PMCID: PMC3352982 DOI: 10.1038/jid.2012.16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gamma delta T cells (γδ T cells) possess innate-like properties and are proposed to bridge the gap between innate and adaptive immunity. In this study, we explored the role of γδ T cells in cutaneous immunity using a skin transplantation model. Following engraftment of skin expressing cell-associated model antigen (Ag) (ovalbumin) in epithelial keratinocytes, skin-resident γδ T cells enhanced graft rejection. Although the effector function of CD8 T cells was intact in the absence of γδ T cells, cross-priming of CD8 T cell to graft-derived Ag was impaired in the absence of γδ T cells. The reduced graft rejection and graft priming of γδ T-cell-deficient mice was evident in both acutely inflamed and well-healed grafting models. Furthermore, expression of the CD40 activation marker on migrating dendritic cells was lower in TCRδ(-/-) mice compared with wild-type mice, regardless of the presence or absence of inflammation associated with grafting. These results indicate that γδ T cells enhance graft priming and consequently the likelihood of a successful immune outcome in the context of skin graft rejection, suggesting that γδ T cells may be an important component of immunity to epithelial cancers or infection.
Collapse
Affiliation(s)
- Azad Rahimpour
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Barnaba V, Paroli M, Piconese S. The ambiguity in immunology. Front Immunol 2012; 3:18. [PMID: 22566903 PMCID: PMC3341998 DOI: 10.3389/fimmu.2012.00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/02/2012] [Indexed: 01/07/2023] Open
Abstract
In the present article, we discuss the various ambiguous aspects of the immune system that render this complex biological network so highly flexible and able to defend the host from different external invaders. This ambiguity stems mainly from the property of the immune system to be both protective and harmful. Immunity cannot be fully protective without producing a certain degree of damage (immunopathology) to the host. The balance between protection and tissue damage is, therefore, critical for the establishment of immune homeostasis and protection. In this review, we will consider as ambiguous, various immunological tactics including: (a) the opposing functions driving immune responses, immune-regulation, and contra-regulation, as well as (b) the phenomenon of chronic immune activation as a result of a continuous cross-presentation of apoptotic T cells by dendritic cells. All these plans participate principally to maintain a state of chronic low-level inflammation during persisting infections, and ultimately to favor the species survival.
Collapse
Affiliation(s)
- Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma Rome, Italy
| | | | | |
Collapse
|
40
|
Williams CD, Jaeschke H. Role of innate and adaptive immunity during drug-induced liver injury. Toxicol Res (Camb) 2012; 1:161. [DOI: 10.1039/c2tx20032e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
41
|
Griffith TS, Ferguson TA. Cell death in the maintenance and abrogation of tolerance: the five Ws of dying cells. Immunity 2011; 35:456-66. [PMID: 22035838 DOI: 10.1016/j.immuni.2011.08.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/11/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023]
Abstract
The mammalian immune system continually faces death in the form of its own dead and dying cells that arise during normal tissue turnover, infections, cellular damage, and cancer. Complex decisions must then be made that will permit a protective response to pathogens, while at the same time destroying tumors but not attacking vital systems of the host that could lead to autoimmunity. By using an investigative technique termed the five Ws (who, what, when, where, and why), we will examine how the immune system responds to antigens generated via cell death. This analysis will give us a better understanding of the molecular differences fundamental to tolerogenic or immunogenic cell death, the cells that sense and react to the dead cells, and the consequences of these fundamental elements on the maintenance or abrogation of tolerance.
Collapse
Affiliation(s)
- Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
42
|
Global expression profiling of peripheral Qa-1-restricted CD8αα+TCRαβ+ regulatory T cells reveals innate-like features: implications for immune-regulatory repertoire. Hum Immunol 2011; 73:214-22. [PMID: 21889557 DOI: 10.1016/j.humimm.2011.07.306] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/16/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022]
Abstract
Among peripheral regulatory T cells, CD8(+) T cells also play an important role in the maintenance of immune homeostasis. A subset of CD8(+) Treg that express αβ T cell receptor (TCR) and CD8αα homodimers can recognize TCR-derived peptides in the context of the class Ib MHC molecule Qa-1. To gain a better understanding of the nature and phenotype of CD8αα(+)TCRαβ+ Treg, a global gene expression profiling using microarray, real-time quantitative polymerase chain reaction, and flow-cytometric analysis was performed using functional Treg clones and lines. The study findings show that CD8(+) Treg shared gene profile expressed by innate-like lymphocytes, including murine intraepithelial lymphocytes and thymic CD8αα(+)TCRαβ+ T-cell populations. In addition, this subset displays differential expression of several key regulatory molecules, including CD200. CD8αα(+) Treg expressed higher levels of a number of natural killer cell-related receptors and molecules belonging to the TNF superfamily. Collectively, peripheral class Ib-reactive CD8αα(+)TCRαβ+ T cells represent a unique regulatory population different from class Ia major histocompatibility complex-restricted conventional T cells. These studies have important implications for the regulatory mechanisms mediated by the CD8(+) Treg population in general.
Collapse
|
43
|
Gurung P, Rai D, Condotta SA, Babcock JC, Badovinac VP, Griffith TS. Immune unresponsiveness to secondary heterologous bacterial infection after sepsis induction is TRAIL dependent. THE JOURNAL OF IMMUNOLOGY 2011; 187:2148-54. [PMID: 21788440 DOI: 10.4049/jimmunol.1101180] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is the leading cause of death in most intensive care units, and patients who survive the hyperinflammation that develops early during sepsis later display severely compromised immunity. Not only is there apoptosis of lymphoid and myeloid cells during sepsis that depletes these critical cellular components of the immune system, but also the remaining immune cells show decreased function. Using a cecal-ligation and puncture (CLP) model to induce intra-abdominal polymicrobial peritonitis, we recently established a link between the apoptotic cells generated during sepsis and induction of sepsis-induced suppression of delayed-type hypersensitivity. The present study extends this earlier work to include a secondary heterologous bacterial infection (OVA(257)-expressing Listeria monocytogenes [LM-OVA]) subsequent to sepsis initiation to investigate sepsis-induced alterations in the control of this secondary infection and the associated naive Ag-specific CD8 T cell response. We found that CLP-treated wild-type (WT) mice had a reduced ability to control the LM-OVA infection, which was paralleled by suppressed T cell responses, versus sham-treated WT mice. In contrast, CLP-treated Trail(-/-) and Dr5(-/-) mice were better able to control the secondary bacterial infection, and the Ag-specific CD8 T cell response was similar to that seen in sham-treated mice. Importantly, administration of a blocking anti-TRAIL mAb to CLP-treated WT mice was able to restore the ability to control the LM-OVA infection and generate Ag-specific CD8 T cell responses like those seen in sham-treated mice. These data further implicate TRAIL-dependent immune suppression during sepsis and suggest TRAIL neutralization may be a potential therapeutic target to restore cellular immunity in septic patients.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Urology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
44
|
Fang Y, Sharp GC, Braley-Mullen H. Effect of transgenic overexpression of FLIP on lymphocytes on development and resolution of experimental autoimmune thyroiditis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1211-20. [PMID: 21763264 DOI: 10.1016/j.ajpath.2011.05.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/26/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022]
Abstract
In our previous studies, resolution of granulomatous experimental autoimmune thyroiditis (G-EAT) was promoted when thyroid epithelial cells were protected from Fas-mediated apoptosis due to transgenic overexpression of FLIP. We hypothesized that if FLIP were overexpressed on lymphocytes, CD4(+) effector cells would be protected from Fas-mediated apoptosis, and resolution would be delayed. To test this hypothesis, we generated transgenic (Tg) mice overexpressing FLIP under the CD2 promoter. Transgenic FLIP was expressed on CD4(+) and CD8(+) T cells and B cells. Transgenic overexpression of FLIP protected cultured splenocytes from Fas-mediated, but not irradiation-induced, apoptosis in vitro. Unexpectedly, Tg(+) donor cells transferred minimal G-EAT, which was partially overcome by depleting donor CD8(+) T cells. When Tg(+) and Tg(-) donors transferred equivalent disease, G-EAT resolution was delayed in FLIP transgenic mice. However, CD2-FLIP Tg(+) donors often transferred less severe G-EAT, even after depletion of CD8(+) T cells. This influenced the rate of G-EAT resolution, resulting in little difference in G-EAT resolution between groups. Tg(+) mice always had reduced anti-mouse thyroglobulin autoantibody responses, compared with Tg(-) littermates, presumably because of FLIP overexpression on B cells. These results suggest that effects of transgenic FLIP on a particular autoimmune disease vary, depending on what cells express the transgene and whether those cells are effector cells or if they function to modulate disease.
Collapse
Affiliation(s)
- Yujiang Fang
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA.
| | | | | |
Collapse
|
45
|
Abstract
Immune responses during infection, injury, and cancer proceed in the presence of tissue injury and cell death. Consequently, the system must deal with its own dead cells while it determines the appropriate response to the invader. As apoptotic cells are known to induce immune tolerance and necrotic cells can be potent stimulators of immunity, this decision becomes more complex. The key to understanding the immunologic choices made during cell death is to examine the mechanisms of tolerance induction by dying cells and then relate them to the mechanisms of immunity. Ideally, immunogenic cell death should be directed toward tumor cells and infected cells, whereas tolerogenic cell death should be associated with preventing unwanted immune responses to self. In this review, we discuss how the decision is made by focusing on the biochemical process of cell death and how its key components can influence both tolerance and immunity.
Collapse
Affiliation(s)
- Thomas A Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
46
|
Mroz P, Hamblin MR. The immunosuppressive side of PDT. Photochem Photobiol Sci 2011; 10:751-8. [PMID: 21437314 PMCID: PMC3441049 DOI: 10.1039/c0pp00345j] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 02/25/2011] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) is a promising novel therapeutic procedure for the management of a variety of solid tumors and many non-malignant diseases. PDT has been described as having a significant effect on the immune system, which may be either immunostimulatory or, in some circumstances, immunosuppressive. The immunosuppressive effects of PDT have nearly all been concerned with the suppression of the contact hypersensitivity reaction in mice. Here, we review the immunosuppressive aspects of PDT treatment and discuss some additional mechanisms that may be involved.
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
47
|
Matignon M, Bonnefoy F, Lang P, Grimbert P. Transfusion sanguine et transplantation. Transfus Clin Biol 2011; 18:70-8. [DOI: 10.1016/j.tracli.2011.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/25/2022]
|
48
|
Griffith TS, Brincks EL, Gurung P, Kucaba TA, Ferguson TA. Systemic immunological tolerance to ocular antigens is mediated by TRAIL-expressing CD8+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:791-8. [PMID: 21169546 PMCID: PMC3075597 DOI: 10.4049/jimmunol.1002678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Systemic immunological tolerance to Ag encountered in the eye restricts the formation of potentially damaging immune responses that would otherwise be initiated at other anatomical locations. We previously demonstrated that tolerance to Ag administered via the anterior chamber (AC) of the eye required Fas ligand-mediated apoptotic death of inflammatory cells that enter the eye in response to the antigenic challenge. Moreover, the systemic tolerance induced after AC injection of Ag was mediated by CD8(+) regulatory T cells. This study examined the mechanism by which these CD8(+) regulatory T cells mediate tolerance after AC injection of Ag. AC injection of Ag did not prime CD4(+) T cells and led to increased TRAIL expression by splenic CD8(+) T cells. Unlike wild-type mice, Trail(-/-) or Dr5(-/-) mice did not develop tolerance to Ag injected into the eye, even though responding lymphocytes underwent apoptosis in the AC of the eyes of these mice. CD8(+) T cells from Trail(-/-) mice that were first injected via the AC with Ag were unable to transfer tolerance to naive recipient wild-type mice, but CD8(+) T cells from AC-injected wild-type or Dr5(-/-) mice could transfer tolerance. Importantly, the transferred wild-type (Trail(+/+)) CD8(+) T cells were also able to decrease the number of infiltrating inflammatory cells into the eye; however, Trail(-/-) CD8(+) T cells were unable to limit the inflammatory cell ingress. Together, our data suggest that "helpless" CD8(+) regulatory T cells generated after AC injection of Ag enforce systemic tolerance in a TRAIL-dependent manner to inhibit inflammation in the eye.
Collapse
Affiliation(s)
- Thomas S Griffith
- Department of Urology, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
49
|
Beeston T, Smith TRF, Maricic I, Tang X, Kumar V. Involvement of IFN-γ and perforin, but not Fas/FasL interactions in regulatory T cell-mediated suppression of experimental autoimmune encephalomyelitis. J Neuroimmunol 2010; 229:91-7. [PMID: 20708278 PMCID: PMC2991517 DOI: 10.1016/j.jneuroim.2010.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/01/2010] [Accepted: 07/09/2010] [Indexed: 11/17/2022]
Abstract
Autoaggressive, myelin-reactive T cells are involved in multiple sclerosis and its prototype experimental autoimmune encephalomyelitis (EAE) in mice. A peripheral negative feedback mechanism involving regulatory CD4+ and CD8+T cells (Treg) operates to suppress disease-mediating T cell responses. We have recently characterized a novel population of Qa-1a-restricted, TCR-peptide-reactive CD8αα+TCRαβ+ Treg that induce apoptotic depletion of the encephalitogenic Vβ8.2 cells in vivo and provide protection from EAE. Here we have used mice deficient in perforin, Fas/FasL and IFN-γ molecules to investigate their role in Treg-mediated regulation of EAE. Data show that Fas/FasL interactions are not involved, but regulation mediated by Treg is dependent on the presence of IFN-γ and the perforin pathway. These data provide a molecular mechanism of Treg-mediated killing of the pathogenic T cells and have important implications in the design of immune interventions for demyelinating disease.
Collapse
MESH Headings
- Animals
- CD4 Antigens/metabolism
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- Cell Proliferation
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin Basic Protein/immunology
- Perforin/deficiency
- Perforin/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Statistics, Nonparametric
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Tara Beeston
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
50
|
Saas P, Gaugler B, Perruche S. Intravenous apoptotic cell infusion as a cell-based therapy toward improving hematopoietic cell transplantation outcome. Ann N Y Acad Sci 2010; 1209:118-26. [PMID: 20958324 DOI: 10.1111/j.1749-6632.2010.05741.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allogeneic hematopoietic cell transplantation (AHCT) is an efficient therapy for different malignant and nonmalignant hematological diseases. However, the use of this therapeutic approach is still limited by some severe toxic side effects, mainly graft-versus-host disease (GvHD). Today, the risk of fatal GvHD restrains the wider application of AHCT to many patients in need of an effective therapy for their high-risk hematologic malignancies. Thus, new strategies, including cell-based therapy approaches, are required. We propose to use intravenous donor apoptotic leukocyte infusion to improve AHCT outcome. In experimental AHCT models, we demonstrated that intravenous apoptotic leukocyte infusion, simultaneously with allogeneic bone marrow grafts, favors hematopoietic engraftment, prevents allo-immunization, and delays acute GvHD onset. Here, we review the different mechanisms and the potential beneficial effects associated with the immunomodulatory properties of apoptotic cells in the AHCT setting.
Collapse
|