1
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Zeller T, Münnich IA, Windisch R, Hilger P, Schewe DM, Humpe A, Kellner C. Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer. Front Immunol 2023; 14:1240275. [PMID: 37781391 PMCID: PMC10533923 DOI: 10.3389/fimmu.2023.1240275] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Denis M. Schewe
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Yan X, Sun J, Yang W, Li X, Yang Q, Li Y, Wu W, Wei P, Wang L, Song L. An immunoglobulin superfamily member (CgIgIT2) functions as immune inhibitory receptor to inhibit the inflammatory cytokine expressions in Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104708. [PMID: 37044269 DOI: 10.1016/j.dci.2023.104708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/05/2023]
Abstract
Immune inhibitory receptors are increasingly acknowledged as potent regulators of immune response, which inhibit the overactivation of immune system and play an important role in maintaining immune homeostasis. In the present study, a novel immunoglobulin superfamily member (CgIgIT2) was identified from the Pacific oyster, Crassostrea gigas. The protein sequence of CgIgIT2 contained one signal peptide, four Ig domains, one fibronectin type III domain, one transmembrane domain, and a cytoplasmic tail with two intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and one immunoreceptor tyrosine-based switch motif (ITSM). The mRNA transcripts of CgIgIT2 were widely expressed in all the tested tissues, including haemolymph, gill, mantle, adductor muscle, labial palp, gonad and hepatopancreas, with the highest expression in haemolymph. The mRNA expressions of CgIgIT2 in haemocytes increased significantly at 24, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgIgIT2 protein were mainly detected in granulocytes of haemocytes, which were 1.27-fold and 2.15-fold (p < 0.05) higher than that of semi-granulocytes and agranulocytes, respectively. And CgIgIT2 was mainly located in the membrane and cytoplasm of haemocytes. The recombinant protein of CgIgIT2-4 × Ig (rCgIgIT2-4 × Ig) exhibited binding activity towards multiple pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS), peptidoglycan (PGN), mannose (MAN) and polyinosinic-polycytidylic acid (Poly (I: C)) with the highest affinity for LPS. rCgIgIT2-4 × Ig could also bind Gram-negative bacteria (V. splendidus, V. anguillarum, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), and fungi (Pichia pastoris). In the blocking assay with anti-CgIgIT2 antibody, the mRNA expressions of interleukins (CgIL17-1, CgIL17-3 and CgIL17-6) and tumor necrosis factors (CgTNF-1 and CgTNF-2) in haemocytes all increased significantly at 12 h after V. splendidus stimulation. These results suggested that CgIgIT2 could function as an inhibitor receptor to bind different PAMPs and microbes, as well as inhibit the mRNA expressions of multiple inflammatory cytokines in oysters.
Collapse
Affiliation(s)
- Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Xiaopeng Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Ping Wei
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Shang Y, Liu X, Wei L, Liang S, Zou Z, Wu M, Xia J. Leukocyte Immunoglobulin-like Receptor A5 Deletion Aggravates the Pathogenesis of Pseudomonas aeruginosa Keratitis by Promoting Proinflammatory Cytokines. Cornea 2023; 42:607-614. [PMID: 36729030 DOI: 10.1097/ico.0000000000003205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/29/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE The purpose of this study was to assess the role of leukocyte immunoglobulin-like receptor A5 (LILRA5) in regulating bacterial infection and corneal inflammation. METHODS The human corneal tissue microarray data set GSE58291 from Gene Expression Omnibus was downloaded. Then, the differentially expressed genes, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis, and the immune infiltration analysis were conducted. We constructed the Pseudomonas aeruginosa ( P. aeruginosa ) keratitis mice model using wild-type and LILRA5-deficient mice. The results of the bioinformatics analysis were verified by the cell in vitro and animal in vivo experiments. RESULTS This study revealed that LILRA5 is substantially expressed in human keratitis and regulates the immune response negatively. Neutrophils were identified as the core fraction of immune cells in keratitis. After P. aeruginosa infection, neutrophils lacking LILRA5 induced elevated levels of proinflammatory cytokines and toll-like receptor 4. LILRA5 deficiency exacerbated the severity of the infection and the production of proinflammatory cytokines in mice. CONCLUSIONS LILRA5 was discovered as an immunosuppressive regulator in P. aeruginosa keratitis, highlighting its significance in activated immune responses.
Collapse
Affiliation(s)
- Yuqi Shang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liwen Wei
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Siping Liang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Zou
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Minhao Wu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinyu Xia
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; and
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Li M, Yu J, Guo G, Shen H. Interactions between Macrophages and Biofilm during Staphylococcus aureus-Associated Implant Infection: Difficulties and Solutions. J Innate Immun 2023; 15:499-515. [PMID: 37011602 PMCID: PMC10315156 DOI: 10.1159/000530385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) biofilm is the major cause of failure of implant infection treatment that results in heavy social and economic burden on individuals, families, and communities. Planktonic S. aureus attaches to medical implant surfaces where it proliferates and is wrapped by extracellular polymeric substances, forming a solid and complex biofilm. This provides a stable environment for bacterial growth, infection maintenance, and diffusion and protects the bacteria from antimicrobial agents and the immune system of the host. Macrophages are an important component of the innate immune system and resist pathogen invasion and infection through phagocytosis, antigen presentation, and cytokine secretion. The persistence, spread, or clearance of infection is determined by interplay between macrophages and S. aureus in the implant infection microenvironment. In this review, we discuss the interactions between S. aureus biofilm and macrophages, including the effects of biofilm-related bacteria on the macrophage immune response, roles of myeloid-derived suppressor cells during biofilm infection, regulation of immune cell metabolic patterns by the biofilm environment, and immune evasion strategies adopted by the biofilm against macrophages. Finally, we summarize the current methods that support macrophage-mediated removal of biofilms and emphasize the importance of considering multi-dimensions and factors related to implant-associated infection such as immunity, metabolism, the host, and the pathogen when developing new treatments.
Collapse
Affiliation(s)
- Mingzhang Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Wang J, Zhao SJ, Wang LL, Lin XX, Mor G, Liao AH. Leukocyte immunoglobulin-like receptor subfamily B: A novel immune checkpoint molecule at the maternal-fetal interface. J Reprod Immunol 2023; 155:103764. [PMID: 36434938 DOI: 10.1016/j.jri.2022.103764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Due to their crucial roles in embryo implantation, maternal-fetal tolerance induction, and pregnancy progression, immune checkpoint molecules (ICMs), such as programmed cell death-1, cytotoxic T-lymphocyte antigen 4, and T cell immunoglobulin mucin 3, are considered potential targets for clinical intervention in pregnancy complications. Despite the considerable progress on these molecules, our understanding of ICMs at the maternal-fetal interface is still limited. Identification of alternative and novel ICMs and the combination of multiple ICMs is urgently needed for deeply understanding the mechanism of maternal-fetal tolerance and to discover the causes of pregnancy complications. Leukocyte immunoglobulin-like receptor subfamily B (LILRB) is a novel class of ICMs with strong negative regulatory effects on the immune response. Recent studies have revealed that LILRB is enriched in decidual immune cells and stromal cells at the maternal-fetal interface, which can modulate the biological behavior of immune cells and promote immune tolerance. In this review, we introduce the structural features, expression profiles, ligands, and orthologs of LILRB. In addition, the potential mechanisms and functions mediated by LILRB for sustaining the maternal-fetal tolerance microenvironment, remodeling the uterine spiral artery, and induction of pregnancy immune memory are summarized. We have also provided new suggestions for further understanding the roles of LILRB and potential therapeutic strategies for pregnancy-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
7
|
Distinct frequency patterns of LILRB3 and LILRA6 allelic variants in Europeans. Immunogenetics 2022; 75:263-267. [DOI: 10.1007/s00251-022-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Abstract
The leukocyte immunoglobulin–like receptor (LILR)B3 and LILRA6 genes encode homologous myeloid inhibitory and activating orphan receptors, respectively. Both genes exhibit a strikingly high level of polymorphism at the amino acid level and LILRA6 (but not LILRB3) displays copy number variation (CNV). Although multiple alleles have been reported for both genes, limited data is available on frequencies of these alleles among humans. We have sequenced LILRB3/A6 exons encoding signal peptides and ectodomains in 91 healthy blood donors of European descent who carry one or two copies of LILRA6 per diploid genome. Analysis of haplotypes among individuals with two LILRA6 copies, representing the majority in this cohort (N = 86), shows that common LILRB3 and LILRA6 alleles encode some distinct amino acid sequences in homologous regions of the receptors, which could potentially impact their respective functions differentially. Comparison of sequences in individuals with one vs. two copies of LILRA6 supports non-allelic homologous recombination between LILRB3 and LILRA6 as a mechanism for generating LILRA6 CNV and LILRB3 diversity. These data characterize LILRB3/LILRA6 genetic variation in more detail than previously described and underscore the need to determine their ligands.
Collapse
|
8
|
Pinho S, Wei Q, Maryanovich M, Zhang D, Balandrán JC, Pierce H, Nakahara F, Di Staulo A, Bartholdy BA, Xu J, Borger DK, Verma A, Frenette PS. VCAM1 confers innate immune tolerance on haematopoietic and leukaemic stem cells. Nat Cell Biol 2022; 24:290-298. [PMID: 35210567 PMCID: PMC8930732 DOI: 10.1038/s41556-022-00849-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Haematopoietic stem cells (HSCs) home to the bone marrow via, in part, interactions with vascular cell adhesion molecule-1 (VCAM1)1-3. Once in the bone marrow, HSCs are vetted by perivascular phagocytes to ensure their self-integrity. Here we show that VCAM1 is also expressed on healthy HSCs and upregulated on leukaemic stem cells (LSCs), where it serves as a quality-control checkpoint for entry into bone marrow by providing 'don't-eat-me' stamping in the context of major histocompatibility complex class-I (MHC-I) presentation. Although haplotype-mismatched HSCs can engraft, Vcam1 deletion, in the setting of haplotype mismatch, leads to impaired haematopoietic recovery due to HSC clearance by mononuclear phagocytes. Mechanistically, VCAM1 'don't-eat-me' activity is regulated by β2-microglobulin MHC presentation on HSCs and paired Ig-like receptor-B (PIR-B) on phagocytes. VCAM1 is also used by cancer cells to escape immune detection as its expression is upregulated in multiple cancers, including acute myeloid leukaemia (AML), where high expression associates with poor prognosis. In AML, VCAM1 promotes disease progression, whereas VCAM1 inhibition or deletion reduces leukaemia burden and extends survival. These results suggest that VCAM1 engagement regulates a critical immune-checkpoint gate in the bone marrow, and offers an alternative strategy to eliminate cancer cells via modulation of the innate immune tolerance.
Collapse
Affiliation(s)
- Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Juan Carlos Balandrán
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Halley Pierce
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anna Di Staulo
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Boris A. Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jianing Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Daniel K. Borger
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
9
|
Lee HN, Manangeeswaran M, Lewkowicz AP, Engel K, Chowdhury M, Garige M, Eckhaus MA, Sourbier C, Ireland DD, Verthelyi D. NK cells require immune checkpoint receptor LILRB4/gp49B to control neurotropic Zika virus infections in mice. JCI Insight 2022; 7:151420. [PMID: 35132958 PMCID: PMC8855830 DOI: 10.1172/jci.insight.151420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Immune cells express an array of inhibitory checkpoint receptors that are upregulated upon activation and limit tissue damage associated with excessive response to pathogens or allergens. Mouse leukocyte immunoglobulin like receptor B4 (LILRB4), also known as glycoprotein 49B (gp49B), is an inhibitory checkpoint receptor constitutively expressed in myeloid cells and upregulated in B cells, T cells, and NK cells upon activation. Here, we report that expression of LILRB4, which binds Zika virus (ZIKV), was increased in microglia and myeloid cells infiltrating the brains of neonatal mice with ZIKV-associated meningoencephalitis. Importantly, while C57BL/6 mice developed transient neurological symptoms but survived infection, mice lacking LILRB4/gp49B (LILRB4 KO) exhibited more severe signs of neurological disease and succumbed to disease. Their brains showed increased cellular infiltration but reduced control of viral burden. The reduced viral clearance was associated with altered NK cell function in the absence of LILRB4/gp49B. In naive animals, this manifested as reduced granzyme B responses to stimulation, but in ZIKV-infected animals, NK cells showed phenotypic changes that suggested altered maturation, diminished glucose consumption, reduced IFN-γ and granzyme B production, and impaired cytotoxicity. Together, our data reveal LILRB4/gp49B as an important regulator of NK cell function during viral infections.
Collapse
Affiliation(s)
- Ha-Na Lee
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Mohanraj Manangeeswaran
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Aaron P Lewkowicz
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Kaliroi Engel
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Monica Chowdhury
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Mamatha Garige
- Laboratory of Molecular Oncology, Division of Biotechnology Review and Research-I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Michael A Eckhaus
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carole Sourbier
- Laboratory of Molecular Oncology, Division of Biotechnology Review and Research-I, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Derek Dc Ireland
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| | - Daniela Verthelyi
- Laboratory of Immunology, Center of Excellence in Infectious Disease and Inflammation, Office of Biotechnology Products, and
| |
Collapse
|
10
|
De Louche CD, Roghanian A. Human inhibitory leukocyte Ig-like receptors: from immunotolerance to immunotherapy. JCI Insight 2022; 7:151553. [PMID: 35076022 PMCID: PMC8855791 DOI: 10.1172/jci.insight.151553] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Rumpret M, von Richthofen HJ, Peperzak V, Meyaard L. Inhibitory pattern recognition receptors. J Exp Med 2022; 219:212908. [PMID: 34905019 PMCID: PMC8674843 DOI: 10.1084/jem.20211463] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/03/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogen- and damage-associated molecular patterns are sensed by the immune system's pattern recognition receptors (PRRs) upon contact with a microbe or damaged tissue. In situations such as contact with commensals or during physiological cell death, the immune system should not respond to these patterns. Hence, immune responses need to be context dependent, but it is not clear how context for molecular pattern recognition is provided. We discuss inhibitory receptors as potential counterparts to activating pattern recognition receptors. We propose a group of inhibitory pattern recognition receptors (iPRRs) that recognize endogenous and microbial patterns associated with danger, homeostasis, or both. We propose that recognition of molecular patterns by iPRRs provides context, helps mediate tolerance to microbes, and helps balance responses to danger signals.
Collapse
Affiliation(s)
- Matevž Rumpret
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Helen J von Richthofen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
12
|
Abdallah F, Coindre S, Gardet M, Meurisse F, Naji A, Suganuma N, Abi-Rached L, Lambotte O, Favier B. Leukocyte Immunoglobulin-Like Receptors in Regulating the Immune Response in Infectious Diseases: A Window of Opportunity to Pathogen Persistence and a Sound Target in Therapeutics. Front Immunol 2021; 12:717998. [PMID: 34594332 PMCID: PMC8478328 DOI: 10.3389/fimmu.2021.717998] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Immunoregulatory receptors are essential for orchestrating an immune response as well as appropriate inflammation in infectious and non-communicable diseases. Among them, leukocyte immunoglobulin-like receptors (LILRs) consist of activating and inhibitory receptors that play an important role in regulating immune responses modulating the course of disease progression. On the one hand, inhibitory LILRs constitute a safe-guard system that mitigates the inflammatory response, allowing a prompt return to immune homeostasis. On the other hand, because of their unique capacity to attenuate immune responses, pathogens use inhibitory LILRs to evade immune recognition, thus facilitating their persistence within the host. Conversely, the engagement of activating LILRs triggers immune responses and the production of inflammatory mediators to fight microbes. However, their heightened activation could lead to an exacerbated immune response and persistent inflammation with major consequences on disease outcome and autoimmune disorders. Here, we review the genetic organisation, structure and ligands of LILRs as well as their role in regulating the immune response and inflammation. We also discuss the LILR-based strategies that pathogens use to evade immune responses. A better understanding of the contribution of LILRs to host-pathogen interactions is essential to define appropriate treatments to counteract the severity and/or persistence of pathogens in acute and chronic infectious diseases lacking efficient treatments.
Collapse
Affiliation(s)
- Florence Abdallah
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Margaux Gardet
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Narufumi Suganuma
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Kochi Medical School, Kochi University, Nankoku-City, Japan
| | - Laurent Abi-Rached
- Aix-Marseille University, IRD, APHM, MEPHI, IHU Mediterranean Infection, SNC5039 CNRS, Marseille, France.,SNC5039 CNRS, Marseille, France
| | - Olivier Lambotte
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France.,Public-Hospital Assistance of Paris, Department of Internal Medicine and Clinical Immunology, Paris-Saclay University Hospital Group, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| |
Collapse
|
13
|
Uddin J, Tomar S, Sharma A, Waggoner L, Ganesan V, Marella S, Yang Y, Noah T, Vanoni S, Patterson A, Zeng C, Foster PS, Newberry R, Bishu S, Kao JY, Rosen MJ, Denson L, King PD, Hoebe K, Divanovic S, Munitz A, Hogan SP. PIR-B Regulates CD4 + IL17a + T-Cell Survival and Restricts T-Cell-Dependent Intestinal Inflammatory Responses. Cell Mol Gastroenterol Hepatol 2021; 12:1479-1502. [PMID: 34242819 PMCID: PMC8531983 DOI: 10.1016/j.jcmgh.2021.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS CD4+ T cells are regulated by activating and inhibitory cues, and dysregulation of these proper regulatory inputs predisposes these cells to aberrant inflammation and exacerbation of disease. We investigated the role of the inhibitory receptor paired immunoglobulin-like receptor B (PIR-B) in the regulation of the CD4+ T-cell inflammatory response and exacerbation of the colitic phenotype. METHODS We used Il10-/- spontaneous and CD4+CD45RBhi T-cell transfer models of colitis with PIR-B-deficient (Pirb-/-) mice. Flow cytometry, Western blot, and RNA sequencing analysis was performed on wild-type and Pirb-/- CD4+ T cells. In silico analyses were performed on RNA sequencing data set of ileal biopsy samples from pediatric CD and non-inflammatory bowel disease patients and sorted human memory CD4+ T cells. RESULTS We identified PIR-B expression on memory CD4+ interleukin (IL)17a+ cells. We show that PIR-B regulates CD4+ T-helper 17 cell (Th17)-dependent chronic intestinal inflammatory responses and the development of colitis. Mechanistically, we show that the PIR-B- Src-homology region 2 domain-containing phosphatase-1/2 axis tempers mammalian target of rapamycin complex 1 signaling and mammalian target of rapamycin complex 1-dependent caspase-3/7 apoptosis, resulting in CD4+ IL17a+ cell survival. In silico analyses showed enrichment of transcriptional signatures for Th17 cells (RORC, RORA, and IL17A) and tissue resident memory (HOBIT, IL7R, and BLIMP1) networks in PIR-B+ murine CD4+ T cells and human CD4+ T cells that express the human homologue leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3). High levels of LILRB3 expression were associated strongly with mucosal injury and a proinflammatory Th17 signature, and this signature was restricted to a treatment-naïve, severe pediatric CD population. CONCLUSIONS Our findings show an intrinsic role for PIR-B/LILRB3 in the regulation of CD4+ IL17a+ T-cell pathogenic memory responses.
Collapse
Affiliation(s)
- Jazib Uddin
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan; Graduate Program in Immunology, Ann Arbor, Michigan
| | - Sunil Tomar
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Ankit Sharma
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati, Ohio
| | - Varsha Ganesan
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Sahiti Marella
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Yanfen Yang
- Division of Allergy and Immunology, Cincinnati, Ohio
| | - Taeko Noah
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan
| | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati, Ohio
| | | | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati, Ohio
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Rodney Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Shrinivas Bishu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - John Y Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan
| | - Michael J Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati, Ohio
| | - Lee Denson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati, Ohio
| | - Philip D King
- Department of Microbiology and Immunology, Ann Arbor, Michigan
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati, Ohio; Janssen, Inc, Janssen R@D, Discovery, Innate Immunology Spring House, Pennsylvania
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati, Ohio; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Simon P Hogan
- Division of Experimental Pathology, Department of Pathology, Ann Arbor, Michigan; Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
14
|
de Morais SD, Kak G, Menousek JP, Kielian T. Immunopathogenesis of Craniotomy Infection and Niche-Specific Immune Responses to Biofilm. Front Immunol 2021; 12:625467. [PMID: 33708216 PMCID: PMC7940520 DOI: 10.3389/fimmu.2021.625467] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial infections in the central nervous system (CNS) can be life threatening and often impair neurological function. Biofilm infection is a complication following craniotomy, a neurosurgical procedure that involves the removal and replacement of a skull fragment (bone flap) to access the brain for surgical intervention. The incidence of infection following craniotomy ranges from 1% to 3% with approximately half caused by Staphylococcus aureus (S. aureus). These infections present a significant therapeutic challenge due to the antibiotic tolerance of biofilm and unique immune properties of the CNS. Previous studies have revealed a critical role for innate immune responses during S. aureus craniotomy infection. Experiments using knockout mouse models have highlighted the importance of the pattern recognition receptor Toll-like receptor 2 (TLR2) and its adaptor protein MyD88 for preventing S. aureus outgrowth during craniotomy biofilm infection. However, neither molecule affected bacterial burden in a mouse model of S. aureus brain abscess highlighting the distinctions between immune regulation of biofilm vs. planktonic infection in the CNS. Furthermore, the immune responses elicited during S. aureus craniotomy infection are distinct from biofilm infection in the periphery, emphasizing the critical role for niche-specific factors in dictating S. aureus biofilm-leukocyte crosstalk. In this review, we discuss the current knowledge concerning innate immunity to S. aureus craniotomy biofilm infection, compare this to S. aureus biofilm infection in the periphery, and discuss the importance of anatomical location in dictating how biofilm influences inflammatory responses and its impact on bacterial clearance.
Collapse
Affiliation(s)
- Sharon Db de Morais
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Joseph P Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
15
|
Yeboah M, Papagregoriou C, Jones DC, Chan HC, Hu G, McPartlan JS, Schiött T, Mattson U, Mockridge CI, Tornberg UC, Hambe B, Ljungars A, Mattsson M, Tews I, Glennie MJ, Thirdborough SM, Trowsdale J, Frendeus B, Chen J, Cragg MS, Roghanian A. LILRB3 (ILT5) is a myeloid cell checkpoint that elicits profound immunomodulation. JCI Insight 2020; 5:141593. [PMID: 32870822 PMCID: PMC7526549 DOI: 10.1172/jci.insight.141593] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Despite advances in identifying the key immunoregulatory roles of many of the human leukocyte immunoglobulin-like receptor (LILR) family members, the function of the inhibitory molecule LILRB3 (ILT5, CD85a, LIR3) remains unclear. Studies indicate a predominant myeloid expression; however, high homology within the LILR family and a relative paucity of reagents have hindered progress toward identifying the function of this receptor. To investigate its function and potential immunomodulatory capacity, a panel of LILRB3-specific monoclonal antibodies (mAbs) was generated. LILRB3-specific mAbs bound to discrete epitopes in Ig-like domain 2 or 4. LILRB3 ligation on primary human monocytes by an agonistic mAb resulted in phenotypic and functional changes, leading to potent inhibition of immune responses in vitro, including significant reduction in T cell proliferation. Importantly, agonizing LILRB3 in humanized mice induced tolerance and permitted efficient engraftment of allogeneic cells. Our findings reveal powerful immunosuppressive functions of LILRB3 and identify it as an important myeloid checkpoint receptor.
Collapse
Affiliation(s)
- Muchaala Yeboah
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Charys Papagregoriou
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Des C. Jones
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - H.T. Claude Chan
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Justine S. McPartlan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | - C. Ian Mockridge
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | - Ivo Tews
- Institute for Life Sciences and
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Martin J. Glennie
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Stephen M. Thirdborough
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - John Trowsdale
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark S. Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Ming S, Li M, Wu M, Zhang J, Zhong H, Chen J, Huang Y, Bai J, Huang L, Chen J, Lin Q, Liu J, Tao J, He D, Huang X. Immunoglobulin-Like Transcript 5 Inhibits Macrophage-Mediated Bacterial Killing and Antigen Presentation During Sepsis. J Infect Dis 2020; 220:1688-1699. [PMID: 31250008 DOI: 10.1093/infdis/jiz319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Immunosuppression contributes to the mortality of sepsis. However, the underlying mechanism remains unclear. METHODS In the present study, we investigated the role of inhibitory receptor immunoglobulin-like transcript 5 (ILT5) in sepsis. We first screened the expression of ILT family members, and we found that ILT5 was dramatically up-regulated in the peripheral blood mononuclear cells from sepsis patients versus healthy donors. RESULTS Knockdown of ILT5 by small interfering ribonucleic acid increased bacterial killing and reactive oxygen species production in THP-1 and RAW264.7 cells. Moreover, ILT5-expressing monocytes/macrophages exhibited lower expression of antigen-presenting molecules including major histocompatibility complex-II and CD80. In the in vitro coculture system with monocytes/macrophages, blockage of ILT5 facilitated Th1 proliferation and differentiation of CD4+ T cells. Furthermore, in vivo experiments demonstrated that pretreatment with ILT5 blocking peptide improved the survival and pulmonary pathology of septic mice. CONCLUSIONS Together, our study identified ILT5 as an immunosuppressive regulator during sepsis, which may provide potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Musheng Li
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Minhao Wu
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Jianhui Zhang
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Haibo Zhong
- The Third People's Hospital of Shantou, Shantou, China
| | - Junyang Chen
- The Third People's Hospital of Shantou, Shantou, China
| | - Yaopan Huang
- The Third People's Hospital of Shantou, Shantou, China
| | - Jun Bai
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Li Huang
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Juan Chen
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Quanshi Lin
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Jiao Liu
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Jianping Tao
- Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Duanman He
- The Third People's Hospital of Shantou, Shantou, China
| | - Xi Huang
- Program of Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Program of Immunology, Department of Internal Medicine and Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, China
| |
Collapse
|
17
|
Lewis Marffy AL, McCarthy AJ. Leukocyte Immunoglobulin-Like Receptors (LILRs) on Human Neutrophils: Modulators of Infection and Immunity. Front Immunol 2020; 11:857. [PMID: 32477348 PMCID: PMC7237751 DOI: 10.3389/fimmu.2020.00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Neutrophils have a crucial role in defense against microbes. Immune receptors allow neutrophils to sense their environment, with many receptors functioning to recognize signs of infection and to promote antimicrobial effector functions. However, the neutrophil response must be tightly regulated to prevent excessive inflammation and tissue damage, and regulation is achieved by expression of inhibitory receptors that can raise activation thresholds. The leukocyte immunoglobulin-like receptor (LILR) family contain activating and inhibitory members that can up- or down-regulate immune cell activity. New ligands and functions for LILR continue to emerge. Understanding the role of LILR in neutrophil biology is of general interest as they can activate and suppress antimicrobial responses of neutrophils and because several human pathogens exploit these receptors for immune evasion. This review focuses on the role of LILR in neutrophil biology. We focus on the current knowledge of LILR expression on neutrophils, the known functions of LILR on neutrophils, and how these receptors may contribute to shaping neutrophil responses during infection.
Collapse
Affiliation(s)
- Alexander L Lewis Marffy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alex J McCarthy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Aldrich AL, Heim CE, Shi W, Fallet RW, Duan B, Kielian T. TLR2 and caspase-1 signaling are critical for bacterial containment but not clearance during craniotomy-associated biofilm infection. J Neuroinflammation 2020; 17:114. [PMID: 32290861 PMCID: PMC7158029 DOI: 10.1186/s12974-020-01793-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A craniotomy is required to access the brain for tumor resection or epilepsy treatment, and despite precautionary measures, infectious complications occur at a frequency of 1-3%. Approximately half of craniotomy infections are caused by Staphylococcus aureus (S. aureus) that forms a biofilm on the bone flap, which is recalcitrant to antibiotics. Our prior work in a mouse model of S. aureus craniotomy infection revealed a critical role for myeloid differentiation factor 88 (MyD88) in bacterial containment and pro-inflammatory mediator production. Since numerous receptors utilize MyD88 as a signaling adaptor, the current study examined the importance of Toll-like receptor 2 (TLR2) and TLR9 based on their ability sense S. aureus ligands, namely lipoproteins and CpG DNA motifs, respectively. We also examined the role of caspase-1 based on its known association with TLR signaling to promote IL-1β release. METHODS A mouse model of craniotomy-associated biofilm infection was used to investigate the role of TLR2, TLR9, and caspase-1 in disease progression. Wild type (WT), TLR2 knockout (KO), TLR9 KO, and caspase-1 KO mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the galea, brain, and bone flap. In addition, the role of TLR2-dependent signaling during microglial/macrophage crosstalk with myeloid-derived suppressor cells (MDSCs) was examined. RESULTS TLR2, but not TLR9, was important for preventing S. aureus outgrowth during craniotomy infection, as revealed by the elevated bacterial burden in the brain, galea, and bone flap of TLR2 KO mice concomitant with global reductions in pro-inflammatory mediator production compared to WT animals. Co-culture of MDSCs with microglia or macrophages, to model interactions in the brain vs. galea, respectively, also revealed a critical role for TLR2 in triggering pro-inflammatory mediator production. Similar to TLR2, caspase-1 KO animals also displayed increased S. aureus titers coincident with reduced pro-inflammatory mediator release, suggestive of pathway cooperativity. Treatment of caspase-1 KO mice with IL-1β microparticles significantly reduced S. aureus burden in the brain and galea compared to empty microparticles, confirming the critical role of IL-1β in limiting S. aureus outgrowth during craniotomy infection. CONCLUSIONS These results demonstrate the existence of an initial anti-bacterial response that depends on both TLR2 and caspase-1 in controlling S. aureus growth; however, neither pathway is effective at clearing infection in the WT setting, since craniotomy infection persists when both molecules are present.
Collapse
Affiliation(s)
- Amy L Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
- Present Address: Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rachel W Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
19
|
Zhao Y, van Woudenbergh E, Zhu J, Heck AJR, van Kessel KPM, de Haas CJC, Aerts PC, van Strijp JAG, McCarthy AJ. The Orphan Immune Receptor LILRB3 Modulates Fc Receptor-Mediated Functions of Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:954-966. [PMID: 31915259 PMCID: PMC7617070 DOI: 10.4049/jimmunol.1900852] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Neutrophils are critical to the generation of effective immune responses and for killing invading microbes. Paired immune receptors provide important mechanisms to modulate neutrophil activation thresholds and effector functions. Expression of the leukocyte Ig-like receptor (LILR)A6 (ILT8/CD85b) and LILRB3 (ILT5/CD85a) paired-receptor system on human neutrophils has remained unclear because of the lack of specific molecular tools. Additionally, there is little known of their possible functions in neutrophil biology. The objective of this study was to characterize expression of LILRA6/LILRB3 receptors during human neutrophil differentiation and activation, and to assess their roles in modulating Fc receptor-mediated effector functions. LILRB3, but not LILRA6, was detected in human neutrophil lysates following immunoprecipitation by mass spectrometry. We demonstrate high LILRB3 expression on the surface of resting neutrophils and release from the surface following neutrophil activation. Surface expression was recapitulated in a human PLB-985 cell model of neutrophil-like differentiation. Continuous ligation of LILRB3 inhibited key IgA-mediated effector functions, including production of reactive oxygen species, phagocytic uptake, and microbial killing. This suggests that LILRB3 provides an important checkpoint to control human neutrophil activation and their antimicrobial effector functions during resting and early-activation stages of the neutrophil life cycle.
Collapse
Affiliation(s)
- Yuxi Zhao
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Esther van Woudenbergh
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Netherlands Proteomics Center, 3584 CX Utrecht, the Netherlands; and
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Bijvoet Center for Biomolecular Research, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CX Utrecht, the Netherlands
- Netherlands Proteomics Center, 3584 CX Utrecht, the Netherlands; and
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Alex J McCarthy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands;
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Yue J, Zhang C, Shi X, Wei Y, Liu L, Liu S, Yang H. Activation of leukocyte immunoglobulin-like receptor B2 signaling pathway in cortical lesions of pediatric patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Dev 2019; 41:829-838. [PMID: 31495513 DOI: 10.1016/j.braindev.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUNDS Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are very frequently associated with epilepsy in pediatric patients. Human leukocyte immunoglobulin-like receptor B2 (LILRB2) participates in the process of neurite growth, synaptic plasticity, and inflammatory reaction, suggesting a potential role of LILRB2 in epilepsy. However, little is known about the distribution and expression of LILRB2 in cortical lesions of FCD IIb and cortical tubers of TSC. METHODS In this study, we have described the distribution and expression of LILRB2 signaling pathway in cortical lesions of pediatric patients with FCD IIb (n = 15) and TSC (n = 12) relative to age-matched autopsy control samples (CTX, n = 10), respectively. The protein levels of LILRB2 pathway molecules were assessed by western blotting and immunohistochemistry. The expression pattern was investigated by immunohistochemistry and double labeling experiment. Spearman correlation analysis to explore the correlation between LILRB2 protein level and seizure frequency. RESULTS The protein levels of LILRB2 and its downstream molecules POSH, SHROOM3, ROCK1, ROCK2 were increased in cortices of patients compared to CTX. Protein levels of LILRB2 negatively correlated with the frequency of seizures in FCD IIb and TSC patients, respectively. Moreover, all LILRB2 pathway molecules were strongly expressed in dysmorphic neurons, balloon cells, and giant cells, LILRB2 co-localized with neuron marker and astrocyte marker. CONCLUSION Taken together, the special expression patterns of LILRB2 signaling pathway in cortical lesions of FCD IIb and TSC implies that it may be involved in the process of epilepsy.
Collapse
Affiliation(s)
- Jiong Yue
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunqing Zhang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjun Shi
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yujia Wei
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lihong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Liu
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui Yang
- Epilepsy Research Center of PLA, Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
21
|
Ma J, Abram CL, Hu Y, Lowell CA. CARD9 mediates dendritic cell-induced development of Lyn deficiency-associated autoimmune and inflammatory diseases. Sci Signal 2019; 12:12/602/eaao3829. [PMID: 31594855 DOI: 10.1126/scisignal.aao3829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CARD9 is an immune adaptor protein in myeloid cells that is involved in C-type lectin signaling and antifungal immunity. CARD9 is implicated in autoimmune and inflammatory-related diseases, such as rheumatoid arthritis, IgA nephropathy, ankylosing spondylitis, and inflammatory bowel disease (IBD). Given that Lyn-deficient (Lyn-/-) mice are susceptible to both autoimmunity and IBD, we investigated the immunological role of CARD9 in the development of these diseases using the Lyn-/- mouse model. We found that genetic deletion of CARD9 was sufficient to reduce the development of both spontaneous autoimmune disease as well as DSS- or IL-10 deficiency-associated colitis in Lyn-/- mice. Mechanistically, CARD9 was a vital component of the Lyn-mediated regulation of Toll-like receptor (TLR2 and TLR4) signaling in dendritic cells, but not in macrophages. In the absence of Lyn, signaling through a CD11b-Syk-PKCδ-CARD9 pathway was amplified, leading to increased TLR-induced production of inflammatory cytokines. Dendritic cell-specific deletion of CARD9 reversed the development of autoimmune and experimental colitis observed in dendritic cell-specific, Lyn-deficient mice. These findings suggest that targeting CARD9 may suppress the development of colitis and autoimmunity by reducing dendritic cell-driven inflammation.
Collapse
Affiliation(s)
- Jun Ma
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare L Abram
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Askarian F, Wagner T, Johannessen M, Nizet V. Staphylococcus aureus modulation of innate immune responses through Toll-like (TLR), (NOD)-like (NLR) and C-type lectin (CLR) receptors. FEMS Microbiol Rev 2018; 42:656-671. [PMID: 29893825 PMCID: PMC6098222 DOI: 10.1093/femsre/fuy025] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Early recognition of pathogens by the innate immune system is crucial for bacterial clearance. Many pattern recognition receptors (PRRs) such as Toll-like (TLRs) and (NOD)-like (NLRs) receptors have been implicated in initial sensing of bacterial components. The intracellular signaling cascades triggered by these receptors result in transcriptional upregulation of inflammatory pathways. Although this step is crucial for bacterial elimination, it is also associated with the potential for substantial immunopathology, which underscores the need for tight control of inflammatory responses. The leading human bacterial pathogen Staphylococcus aureus expresses over 100 virulence factors that exert numerous effects upon host cells. In this manner, the pathogen seeks to avoid host recognition or perturb PRR-induced innate immune responses to allow optimal survival in the host. These immune system interactions may result in enhanced bacterial proliferation but also provoke systemic cytokine responses associated with sepsis. This review summarizes recent findings on the various mechanisms applied by S. aureus to modulate or interfere with inflammatory responses through PRRs. Detailed understanding of these complex interactions can provide new insights toward future immune-stimulatory therapeutics against infection or immunomodulatory therapeutics to suppress or correct dysregulated inflammation.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Theresa Wagner
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group of Host Microbe Interaction, Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Takeda K, Nakamura A. Regulation of immune and neural function via leukocyte Ig-like receptors. J Biochem 2017; 162:73-80. [PMID: 28898976 DOI: 10.1093/jb/mvx036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023] Open
Abstract
Leukocyte Ig-like receptors (LILRs)/Ig-like transcripts (ILTs) are expressed on innate and adaptive immune cells and maintain immune homeostasis. LILRs consist of activating and inhibitory-type receptors that regulate adequate cellular functions. LILRs were firstly identified as MHC class I receptors, therefore expression and/or polymorphisms of LILRs are reported to associate with autoimmune disorders and transplant rejection; however, recent accumulating evidences have revealed that LILRs recognize with diverse ligands including bacteria and virus. In addition, inhibitory LILRB2 (ILT4) and murine relative paired Ig-like receptor (PIR)-B are expressed on neuron and is involved in the dysregulation of central nervous system via interaction with neuronal ligands including amyloid β-protein. In this review, we summarize recent discoveries on the functions of inhibitory MHC class I receptors, and discuss their regulatory roles in immune responses and neural functions.
Collapse
Affiliation(s)
- Kazuya Takeda
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
24
|
Kim SH, Jang YS. Yersinia enterocolitica Exploits Signal Crosstalk between Complement 5a Receptor and Toll-like Receptor 1/2 and 4 to Avoid the Bacterial Clearance in M cells. Immune Netw 2017; 17:228-236. [PMID: 28860952 PMCID: PMC5577300 DOI: 10.4110/in.2017.17.4.228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022] Open
Abstract
In the intestinal mucosal surface, microfold cells (M cells) are the representative gateway for the uptake of luminal antigens. At the same time, M cells are the primary infection site for pathogens invading mucosal surface for their infection. Although it is well recognized that many mucosal pathogens exploit the M cells for their infection, the mechanism to infect M cells utilized by pathogens is not clearly understood yet. In this study, we found that M cells expressing complement 5a (C5a) receptor (C5aR) also express Toll-like receptor (TLR) 1/2 and TLR4. Infection of Yersinia enterocolitica, an M cell-invading pathogen, synergistically regulated cyclic adenosine monophosphate-dependent protein kinase A (cAMP-PKA) signaling which are involved in signal crosstalk between C5aR and TLRs. In addition, Y. enterocolitica infection into M cells was enhanced by C5a treatment and this enhancement was abrogated by C5a antagonist treatment. Finally, Y. enterocolitica infection into M cells was unsuccessful in C5aR knock-out mice. Collectively, we suggest that exploit the crosstalk between C5aR and TLR signaling is one of infection mechanisms utilized by mucosal pathogens to infect M cells.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
25
|
van der Touw W, Chen HM, Pan PY, Chen SH. LILRB receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol Immunother 2017. [PMID: 28638976 DOI: 10.1007/s00262-017-2023-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The leukocyte immunoglobulin-like receptor (LILR) family comprises a set of paired immunomodulatory receptors expressed among human myeloid and lymphocyte cell populations. While six members of LILR subfamily A (LILRA) associate with membrane adaptors to signal via immunoreceptor tyrosine-based activating motifs (ITAM), LILR subfamily B (LILRB) members signal via multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIM). Ligand specificity of some LILR family members has been studied in detail, but new perspective into the immunoregulatory aspects of this receptor family in human myeloid cells has been limited. LILRB receptors and the murine ortholog, paired immunoglobulin-like receptor B (PIRB), have been shown to negatively regulate maturation pathways in myeloid cells including mast cells, neutrophils, dendritic cells, as well as B cells. Our laboratory further demonstrated in mouse models that PIRB regulated functional development of myeloid-derived suppressor cell and the formation of a tumor-permissive microenvironment. Based on observations from the literature and our own studies, our laboratory is focusing on how LILRs modulate immune homeostasis of human myeloid cells and how these pathways may be targeted in disease states. Integrity of this pathway in tumor microenvironments, for example, permits a myeloid phenotype that suppresses antitumor adaptive immunity. This review presents the evidence supporting a role of LILRs as myeloid cell regulators and ongoing efforts to understand the functional immunology surrounding this family.
Collapse
Affiliation(s)
- William van der Touw
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Hui-Ming Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Abram CL, Lowell CA. Shp1 function in myeloid cells. J Leukoc Biol 2017; 102:657-675. [PMID: 28606940 DOI: 10.1189/jlb.2mr0317-105r] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
The motheaten mouse was first described in 1975 as a model of systemic inflammation and autoimmunity, as a result of immune system dysregulation. The phenotype was later ascribed to mutations in the cytoplasmic tyrosine phosphatase Shp1. This phosphatase is expressed widely throughout the hematopoietic system and has been shown to impact a multitude of cell signaling pathways. The determination of which cell types contribute to the different aspects of the phenotype caused by global Shp1 loss or mutation and which pathways within these cell types are regulated by Shp1 is important to further our understanding of immune system regulation. In this review, we focus on the role of Shp1 in myeloid cells and how its dysregulation affects immune function, which can impact human disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| |
Collapse
|
27
|
Tsugita M, Morimoto N, Tashiro M, Kinoshita K, Nakayama M. SR-B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation. Cell Rep 2017; 18:1298-1311. [DOI: 10.1016/j.celrep.2017.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
|
28
|
Yue J, Li W, Liang C, Chen B, Chen X, Wang L, Zang Z, Yu S, Liu S, Li S, Yang H. Activation of LILRB2 signal pathway in temporal lobe epilepsy patients and in a pilocarpine induced epilepsy model. Exp Neurol 2016; 285:51-60. [DOI: 10.1016/j.expneurol.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
|
29
|
Favier B. Regulation of neutrophil functions through inhibitory receptors: an emerging paradigm in health and disease. Immunol Rev 2016; 273:140-55. [DOI: 10.1111/imr.12457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benoit Favier
- CEA, DRF, IMETI, IMVA, UMR 1184, INSERM; Université Paris-Sud; IDMIT Infrastructure; Fontenay-aux-Roses France
| |
Collapse
|
30
|
Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch Pharm Res 2016; 39:1519-1529. [PMID: 27498542 DOI: 10.1007/s12272-016-0804-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 12/29/2022]
Abstract
Lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, is associated with various inflammatory diseases ranging from minor skin diseases to severe sepsis. It is known that LTA is recognized by Toll-like receptor 2 (TLR2), leading to the initiation of innate immune responses and further development of adaptive immunity. However, excessive immune responses may result in the inflammatory sequelae that are involved in severe diseases such as sepsis. Although numerous studies have tried to identify the molecular basis for the pathophysiology of Gram-positive bacterial infection, the exact role of LTA during the infection has not been clearly elucidated. This review provides an overview of LTA structure and host recognition by TLR2 that leads to the activation of innate immune responses. Emphasis is placed on differential immunostimulating activities of LTAs of various Gram-positive bacteria at the molecular level.
Collapse
|
31
|
Burshtyn DN, Morcos C. The Expanding Spectrum of Ligands for Leukocyte Ig-like Receptors. THE JOURNAL OF IMMUNOLOGY 2016; 196:947-55. [PMID: 26802060 DOI: 10.4049/jimmunol.1501937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human leukocyte Ig-like receptor family is part of the paired receptor system. The receptors are widely expressed by various immune cells, and new functions continue to emerge. Understanding the range of functions of the receptors is of general interest because several types of pathogens exploit the receptors and genetic diversity of the receptors has been linked to various autoimmune diseases. Class I major histocompatibility molecules were the first ligands appreciated for these receptors, but the types of ligands identified over the last several years are quite diverse, including intact pathogens, immune-modulatory proteins, and molecules normally found within the CNS. This review focuses on the types of ligands described to date, how the individual receptors bind to several distinct types of ligands, and the known functional consequences of those interactions.
Collapse
Affiliation(s)
- Deborah N Burshtyn
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Chris Morcos
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
32
|
Trowsdale J, Jones DC, Barrow AD, Traherne JA. Surveillance of cell and tissue perturbation by receptors in the LRC. Immunol Rev 2016; 267:117-36. [PMID: 26284474 DOI: 10.1111/imr.12314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human leukocyte receptor complex (LRC) encompasses several sets of genes with a common evolutionary origin and which form a branch of the immunoglobulin superfamily (IgSF). Comparisons of LRC genes both within and between species calls for a high degree of plasticity. The drive for this unprecedented level of variation is not known, but it relates in part to interaction of several LRC products with polymorphic human leukocyte antigen (HLA) class I molecules. However, the range of other proposed ligands for LRC products indicates a dynamic set of receptors that have adapted to detect target molecules relating to numerous cellular pathways. Several receptors in the complex bind a molecular signature in collagenous ligands. Others detect a variety of motifs relating to pathogens in addition to cellular stress, attesting to the opportunistic versatility of LRC receptors.
Collapse
Affiliation(s)
- John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Des C Jones
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Alexander D Barrow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
33
|
Hogan LE, Jones DC, Allen RL. Expression of the innate immune receptor LILRB5 on monocytes is associated with mycobacteria exposure. Sci Rep 2016; 6:21780. [PMID: 26908331 PMCID: PMC4764857 DOI: 10.1038/srep21780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
Antigen presenting cells (APC) are critical components of innate immunity and consequently shape the adaptive response. Leukocyte Ig Like Receptors (LILR) are innate immune receptors predominantly expressed on myeloid cells. LILR can influence the antigen presenting phenotype of monocytic cells to determine the nature of T cell responses in infections including Mycobaterium leprae. We therefore investigated the relevance of LILR in the context of Mycobacterium tuberculosis. Real-time PCR studies indicated that the transcriptional profile of the orphan receptor LILRB5 was significantly up-regulated following exposure to mycobacteria. Furthermore, LILRA1 and LILRB5 were able to trigger signalling through direct engagement of mycobacteria using tranfectant cells incorporating a reporter system. We describe for the first time the expression of this receptor on T cells, and highlight the potential relevance to mycobacterial recognition. Furthermore, we demonstrate that crosslinking of this receptor on T cells increases proliferation of cytotoxic, but not helper, T cells.
Collapse
Affiliation(s)
- Louise E. Hogan
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE
- TB Research Group, Animal and Plant Health Agency, Weybridge, New Haw, KT15 3NB, UK
| | - Des C. Jones
- Immunology Division, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP
| | - Rachel L. Allen
- Institute for Infection and Immunity, St George’s, University of London, Cranmer Terrace, London, SW17 0RE
| |
Collapse
|
34
|
Kwong LS, Akkaya M, Barclay AN, Hatherley D. Herpesvirus orthologues of CD200 bind host CD200R but not related activating receptors. J Gen Virol 2015; 97:179-184. [PMID: 26538068 DOI: 10.1099/jgv.0.000335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Several herpesviruses have acquired the gene for the CD200 membrane protein from their hosts and can downregulate myeloid activity through interaction of this viral CD200 orthologue with the host receptor for CD200, namely CD200R, which can give inhibitory signals. This receptor is a 'paired receptor', meaning proteins related to the inhibitory CD200R are present but differ in that they can give activating signals and also give a negligible interaction with CD200. We showed that the viral orthologues e127 from rat cytomegalovirus and K14 from human herpesvirus 8 do not bind the activating CD200R-like proteins from their respective species, although they do bind the inhibitory receptors. It is thought that the activating receptors have evolved in response to pathogens targeting the inhibitory receptor. In this case, the CD200 orthologue is not trapped by the activating receptor but has maintained the specificity of the host from which it was acquired, suggesting that the activating members of the CD200R family have evolved to protect against a different pathogen.
Collapse
Affiliation(s)
- Lai Shan Kwong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Munir Akkaya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - A Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Deborah Hatherley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Van Avondt K, van Sorge NM, Meyaard L. Bacterial immune evasion through manipulation of host inhibitory immune signaling. PLoS Pathog 2015; 11:e1004644. [PMID: 25742647 PMCID: PMC4351076 DOI: 10.1371/journal.ppat.1004644] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kristof Van Avondt
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linde Meyaard
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRα. Proc Natl Acad Sci U S A 2014; 111:8877-82. [PMID: 24889612 DOI: 10.1073/pnas.1324105111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Paired Ig-like type 2 receptor α (PILRα) recognizes a wide range of O-glycosylated mucin and related proteins to regulate broad immune responses. However, the molecular characteristics of these recognitions are largely unknown. Here we show that sialylated O-linked sugar T antigen (sTn) and its attached peptide region are both required for ligand recognition by PILRα. Furthermore, we determined the crystal structures of PILRα and its complex with an sTn and its attached peptide region. The structures show that PILRα exhibits large conformational change to recognize simultaneously both the sTn O-glycan and the compact peptide structure constrained by proline residues. Binding and functional assays support this binding mode. These findings provide significant insight into the binding motif and molecular mechanism (which is distinct from sugar-recognition receptors) by which O-glycosylated mucin proteins with sTn modifications are recognized in the immune system as well as during viral entry.
Collapse
|
37
|
Shik D, Moshkovits I, Karo-Atar D, Reichman H, Munitz A. Interleukin-33 requires CMRF35-like molecule-1 expression for induction of myeloid cell activation. Allergy 2014; 69:719-29. [PMID: 24735452 DOI: 10.1111/all.12388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND IL-33 is a potent activator of various cells involved in allergic inflammation, including eosinophils and mast cells. Despite its critical role in Th2 disease settings, endogenous molecular mechanisms that may regulate IL-33-induced responses remain to be defined. We have recently shown that eosinophils express CMRF35-like molecule (CLM)-1. Yet, the role of CLM-1 in regulating eosinophil functions is still elusive. METHODS CLM-1 and CLM-8 expression and cellular localization were assessed in murine bone marrow-derived and/or peritoneal cells at baseline and following IL-33 stimulation (flow cytometry, western blot). IL-33-induced mediator release and signaling were assessed in wild-type (wt) and Clm1(-/-) cells and mice. RESULTS BM-derived eosinophils express high levels of glycosylated CLM-1. IL-33 induced a rapid, specific, concentration- and time-dependent upregulation of CLM-1 in eosinophils (in vitro and in vivo). Clm1(-/-) eosinophils secreted less IL-33-induced mediators than wt eosinophils. CLM-1 co-localized to ST2 following IL-33 stimulation and was required for IL-33-induced NFκB and p38 phosphorylation. Th2 cytokine (e.g., IL-5, IL-13) and chemokine (e.g., eotaxins, CCL2) secretion was markedly attenuated in IL-33-treated Clm1(-/-) mice. Subsequently, IL-33-challenged mice displayed reduced infiltration of mast cells, macrophages, neutrophils, and B cells. Despite the markedly impaired IL-33-induced eotaxin expression in Clm1(-/-) mice, eosinophil accumulation was similar in wt and Clm1(-/-) mice, due to hyperchemotactic responses of Clm1(-/-) eosinophils. CONCLUSIONS CLM-1 is a novel regulator of IL-33-induced eosinophil activation. These data contribute to the understanding of endogenous molecular mechanisms regulating IL-33-induced responses and may ultimately lead to receptor-based tools for future therapeutic intervention in IL-33-associated diseases.
Collapse
Affiliation(s)
- D. Shik
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - I. Moshkovits
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - D. Karo-Atar
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - H. Reichman
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - A. Munitz
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| |
Collapse
|
38
|
Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K. Effect of silica particle size on macrophage inflammatory responses. PLoS One 2014; 9:e92634. [PMID: 24681489 PMCID: PMC3969333 DOI: 10.1371/journal.pone.0092634] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/23/2014] [Indexed: 11/18/2022] Open
Abstract
Amorphous silica particles, such as nanoparticles (<100 nm diameter particles), are used in a wide variety of products, including pharmaceuticals, paints, cosmetics, and food. Nevertheless, the immunotoxicity of these particles and the relationship between silica particle size and pro-inflammatory activity are not fully understood. In this study, we addressed the relationship between the size of amorphous silica (particle dose, diameter, number, and surface area) and the inflammatory activity (macrophage phagocytosis, inflammasome activation, IL-1β secretion, cell death and lung inflammation). Irrespective of diameter size, silica particles were efficiently internalized by mouse bone marrow-derived macrophages via an actin cytoskeleton-dependent pathway, and induced caspase-1, but not caspase-11, activation. Of note, 30 nm-1000 nm diameter silica particles induced lysosomal destabilization, cell death, and IL-1β secretion at markedly higher levels than did 3000 nm-10000 nm silica particles. Consistent with in vitro results, intra-tracheal administration of 30 nm silica particles into mice caused more severe lung inflammation than that of 3000 nm silica particles, as assessed by measurement of pro-inflammatory cytokines and neutrophil infiltration in bronchoalveolar lavage fluid of mice, and by the micro-computed tomography analysis. Taken together, these results suggest that silica particle size impacts immune responses, with submicron amorphous silica particles inducing higher inflammatory responses than silica particles over 1000 nm in size, which is ascribed not only to their ability to induce caspase-1 activation but also to their cytotoxicity.
Collapse
Affiliation(s)
- Toshimasa Kusaka
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Masafumi Nakayama
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Kyohei Nakamura
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan; Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Ishimiya
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Emi Furusawa
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
39
|
Bashirova AA, Apps R, Vince N, Mochalova Y, Yu XG, Carrington M. Diversity of the human LILRB3/A6 locus encoding a myeloid inhibitory and activating receptor pair. Immunogenetics 2014; 66:1-8. [PMID: 24096970 PMCID: PMC3877738 DOI: 10.1007/s00251-013-0730-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/10/2013] [Indexed: 12/24/2022]
Abstract
Leukocyte immunoglobulin-like receptor (LILR)B3 and LILRA6 represent a pair of inhibitory/activating receptors with identical extracellular domains and unknown ligands. LILRB3 can mediate inhibitory signaling via immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail whereas LILRA6 can signal through association with an activating adaptor molecule, FcRγ, which bears a cytoplasmic tail with an immunoreceptor tyrosine-based activation motif. The receptors are encoded by two highly polymorphic neighboring genes within the leukocyte receptor complex on human chromosome 19. Here, we report that the two genes display similar levels of single nucleotide polymorphisms with the majority of polymorphic sites being identical. In addition, the LILRA6 gene exhibits copy number variation (CNV) whereas LILRB3 does not. A screen of healthy Caucasians indicated that 32 % of the subjects possessed more than two copies of LILRA6, whereas 4 % have only one copy of the gene per diploid genome. Analysis of mRNA expression in the major fractions of PBMCs showed that LILRA6 is primarily expressed in monocytes, similarly to LILRB3, and its expression level correlates with copy number of the gene. We suggest that the LILRA6 CNV may influence the level of the activating receptor on the cell surface, potentially affecting signaling upon LILRB3/A6 ligation.
Collapse
Affiliation(s)
- Arman A. Bashirova
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114, USA
| | - Richard Apps
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114, USA
| | - Nicolas Vince
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114, USA
| | - Yelizaveta Mochalova
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114, USA
- University of Maryland, Baltimore County, Baltimore, Maryland, 21250, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02114, USA
| |
Collapse
|
40
|
Abstract
The CD200:CD200R1 inhibitory signaling pathway has been implicated in playing a prominent role in limiting inflammation in a wide range of inflammatory diseases. CD200R1 signaling inhibits the expression of proinflammatory molecules including tumor necrosis factor, interferons, and inducible nitric oxide synthase in response to selected stimuli. Unsurprisingly, due to the regulatory role that CD200R1 plays in multiple inflammatory pathways, an increasing number of parasitic, bacterial, and viral pathogens exploit this pathway to suppress host defenses. A complete understanding of the pathways regulated by CD200R1 signaling and the diverse mechanisms that pathogens have evolved to manipulate the CD200:CD200R1 pathway can help identify clinical situations where targeting this interaction can be of therapeutic benefit. In this review, we compare CD200R1 to other pathogen-targeted inhibitory receptors and highlight how this signaling pathway is utilized by a diverse number of pathogens and, therefore, may represent a novel targeting strategy for the treatment of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Antigens, Surface/physiology
- Extracellular Fluid/immunology
- Extracellular Fluid/microbiology
- Extracellular Fluid/virology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immunoglobulins/physiology
- Inflammation/genetics
- Inflammation/microbiology
- Inflammation/virology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Lectins, C-Type/physiology
- Mice
- Orexin Receptors
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/physiology
- Receptors, KIR/administration & dosage
- Receptors, KIR/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Christine A Vaine
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Roy J Soberman
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
41
|
Davidson CL, Cameron LE, Burshtyn DN. The AP-1 transcription factor JunD activates the leukocyte immunoglobulin-like receptor 1 distal promoter. Int Immunol 2013; 26:21-33. [PMID: 24038602 DOI: 10.1093/intimm/dxt038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leukocyte immunoglobulin-like receptor 1 (LILRB1) is an inhibitory receptor that binds classical and non-classical MHC-I as well as UL18, a viral MHC-I homolog. LILRB1 is encoded within the leukocyte receptor complex and is widely expressed on immune cells. Two distinct promoters used differentially by lymphoid and myeloid cells were previously identified, but little is known regarding molecular regulation of each promoter or cell-type-specific usage. Here, we have investigated the transcriptional regulation of human LILRB1 focusing on elements that drive expression in NK cells. We found that while both the distal and proximal promoter regions are active in reporter plasmids in lymphoid and myeloid cells, the proximal promoter is used minimally to transcribe LILRB1 in NK cells compared with monocytes. We defined a 120-bp core region of transcriptional activity in the distal promoter that can bind several factors in NK cell nuclear extracts. Within this region, we investigated overlapping putative AP-1 sites. An inhibitor of JNK decreased LILRB1 transcript in a LILRB1⁺ NK cell line. Upon examining binding of specific AP-1 factors, we found JunD associated with the LILRB1 distal promoter. Finally, depletion of JunD led to a decrease in distal promoter transcript, indicating an activating role for JunD in regulation of LILRB1 transcription. This study presents the first description of regions/factors required for activity of the LILRB1 distal promoter, the first description of a role for JunD in NK cells and suggests a potential mechanism for dynamic regulation of LILRB1 by cytokines.
Collapse
Affiliation(s)
- Chelsea L Davidson
- Department of Medical Microbiology and Immunology, University of Alberta, 6-043 Katz Building, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
42
|
Johannessen M, Askarian F, Sangvik M, Sollid JE. Bacterial interference with canonical NFκB signalling. MICROBIOLOGY-SGM 2013; 159:2001-2013. [PMID: 23873783 PMCID: PMC3799228 DOI: 10.1099/mic.0.069369-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human body is constantly challenged by a variety of commensal and pathogenic micro-organisms that trigger the immune system. Central in the first line of defence is the pattern-recognition receptor (PRR)-induced stimulation of the NFκB pathway, leading to NFκB activation. The subsequent production of pro-inflammatory cytokines and/or antimicrobial peptides results in recruitment of professional phagocytes and bacterial clearance. To overcome this, bacteria have developed mechanisms for targeted interference in every single step in the PRR–NFκB pathway to dampen host inflammatory responses. This review aims to briefly overview the PRR–NFκB pathway in relation to the immune response and give examples of the diverse bacterial evasion mechanisms including changes in the bacterial surface, decoy production and injection of effector molecules. Targeted regulation of inflammatory responses is needed and bacterial molecules developed for immune evasion could provide future anti-inflammatory agents.
Collapse
Affiliation(s)
- Mona Johannessen
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Fatemeh Askarian
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Maria Sangvik
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Johanna E Sollid
- Research Group of Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
43
|
Karo-Atar D, Moshkovits I, Eickelberg O, Königshoff M, Munitz A. Paired immunoglobulin-like receptor-B inhibits pulmonary fibrosis by suppressing profibrogenic properties of alveolar macrophages. Am J Respir Cell Mol Biol 2013; 48:456-64. [PMID: 23258232 DOI: 10.1165/rcmb.2012-0329oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macrophages are lung-resident cells that play key roles in fibrosis. Surprisingly, pathways that inhibit macrophage functions, especially in idiopathic pulmonary fibrosis (IPF), receive little attention. The cell-surface molecule paired immunoglobulin-like receptor B (PIR-B) can suppress macrophage activation. However, its role in pulmonary fibrosis remains unknown. We sought to define the role of PIR-B in IPF. The expression of PIR-B was assessed (by quantitative PCR and flow cytometry) after bleomycin treatment. Differential cell counts, histopathology, and profibrogenic-mediator expression, for example, collagen, α-smooth muscle actin, resistin-like molecule-α (Relm-α), matrix metalloproteinase (MMP)-12, and tissue inhibitor of metalloproteinase (TIMP)-1, were determined (by ELISA quantitative PCR and flow cytometry) in the lungs of wild-type and Pirb(-/-) mice after bleomycin or IL-4 treatment. Bone marrow-derived wild-type and Pirb(-/-) macrophages were stimulated with IL-4 and assessed for Relm-α and MMP-12 expression. PIR-B was up-regulated in lung myeloid cells after bleomycin administration. Bleomycin-treated Pirb(-/-) mice displayed increased lung histopathology and an increased expression of collagen and of the IL-4-associated profibrogenic markers Relm-α, MMP-12, TIMP-1, and osteopontin, which were localized to alveolar macrophages. Increased profibrogenic mediator expression in Pirb(-/-) mice was not attributable to increased IL-4/IL-13 concentrations, suggesting that PIR-B negatively regulates IL-4-induced macrophage activation. Indeed, IL-4-treated Pirb(-/-) mice displayed increased Relm-α expression and Relm-α(+) macrophage concentrations. IL-4-activated Pirb(-/-) macrophages displayed increased Relm-α and MMP-12 induction. Finally, leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3)/immunoglobulin-like transcript-5, the human PIR-B orthologue, was expressed and up-regulated in lung biopsies from patients with IPF. Our results establish a key role for PIR-B in IPF, likely via the regulation of macrophage activation. Therefore, PIR-B/LILRB3 may offer a possible target for suppressing macrophage profibrogenic activity in IPF.
Collapse
Affiliation(s)
- Danielle Karo-Atar
- Department of Microbiology and Clinical Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
44
|
Li NL, Fu L, Uchtenhagen H, Achour A, Burshtyn DN. Cis association of leukocyte Ig-like receptor 1 with MHC class I modulates accessibility to antibodies and HCMV UL18. Eur J Immunol 2013; 43:1042-52. [PMID: 23348966 DOI: 10.1002/eji.201242607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 12/16/2012] [Accepted: 01/21/2013] [Indexed: 01/21/2023]
Abstract
Leukocyte Ig-like receptor (LIR) 1 (CD85j/ILT2/LILRB1) is an inhibitory receptor with broad specificity for MHC class I (MHC-I) and the human CMV MHC-I homologue UL18. LIR-1 can inhibit NK cells through the conventional interaction with MHC-I expressed on a target cell (in trans) but the nature and the effects of LIR-1 interactions with MHC-I in cis are not well understood. Here we show that MHC-I expressed in cis has an impact on the detection of LIR-1 with various antibodies. We found the cis interaction alters recognition by only one of two antibodies known to block functional trans recognition by LIR-1 on NK cells. Specifically, we observed an enhancement of recognition with GHI/75 in the presence of various MHC-I alleles on 721.221 cells. We found that blocking the LIR-1 contact site with anti-MHC-I antibodies decreased detection of LIR-1 with GHI/75. We also observed a decrease in GHI/75 following acid denaturation of MHC-I. Finally, disruption of LIR-1 cis interactions with MHC-I significantly enhanced UL18-Fc binding to NK92 cells and enhanced the relative inhibition of NK92 cells by HLA-G. These results have implications for LIR-1 function in scenarios such as infection when MHC-I levels on effector cells may be increased by IFNs.
Collapse
Affiliation(s)
- Nicholas L Li
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
45
|
Akkaya M, Barclay AN. How do pathogens drive the evolution of paired receptors? Eur J Immunol 2013; 43:303-13. [DOI: 10.1002/eji.201242896] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Munir Akkaya
- Sir William Dunn School of Pathology; University of Oxford; Oxford United Kingdom
| | - A. Neil Barclay
- Sir William Dunn School of Pathology; University of Oxford; Oxford United Kingdom
| |
Collapse
|
46
|
Nakayama M, Kurokawa K, Nakamura K, Lee BL, Sekimizu K, Kubagawa H, Hiramatsu K, Yagita H, Okumura K, Takai T, Underhill DM, Aderem A, Ogasawara K. Inhibitory receptor paired Ig-like receptor B is exploited by Staphylococcus aureus for virulence. THE JOURNAL OF IMMUNOLOGY 2012; 189:5903-11. [PMID: 23152562 DOI: 10.4049/jimmunol.1201940] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The innate immune system has developed to acquire a wide variety of pattern-recognition receptors (PRRs) to identify potential pathogens, whereas pathogens have also developed to escape host innate immune responses. ITIM-bearing receptors are attractive targets for pathogens to attenuate immune responses against them; however, the in vivo role of the inhibitory PRRs in host-bacteria interactions remains unknown. We demonstrate in this article that Staphylococcus aureus, a major Gram-positive bacteria, exploits inhibitory PRR paired Ig-like receptor (PIR)-B on macrophages to suppress ERK1/2 and inflammasome activation, and subsequent IL-6 and IL-1β secretion. Consequently, Pirb(-/-) mice infected with S. aureus showed enhanced inflammation and more effective bacterial clearance, resulting in resistance to the sepsis. Screening of S. aureus mutants identified lipoteichoic acid (LTA) as an essential bacterial cell wall component required for binding to PIR-B and modulating inflammatory responses. In vivo, however, an LTA-deficient S. aureus mutant was highly virulent and poorly recognized by macrophages in both wild-type and Pirb(-/-) mice, demonstrating that LTA recognition by PRRs other than PIR-B mediates effective bacterial elimination. These results provide direct evidence that bacteria exploit the inhibitory receptor for virulence, and host immune system counterbalances the infection.
Collapse
Affiliation(s)
- Masafumi Nakayama
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma. Clin Dev Immunol 2012; 2012:652130. [PMID: 22844324 PMCID: PMC3400434 DOI: 10.1155/2012/652130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/25/2022]
Abstract
The role of different receptors in natural-killer- (NK-) cell-mediated cytotoxicity against multiple myeloma (MM) cells is unknown. We investigated if an enhancement of NK-cell-mediated cytotoxicity against MM could be reached by blocking of the inhibitory leukocyte immunoglobulin-like receptor 1 (LIR-1). Our investigations revealed high levels of LIR-1 expression not only on the NK cell line NK-92, but also on myeloma cells (MOLP-8, RPMI8226) as well as on a lymphoblastoid cell line (LBCL; IM-9). Subsequent cytotoxicity assays were designed to show the isolated effects of LIR-1 blocking on either the effector or the tumor side to rule out receptor-receptor interactions. Although NK-92 was shown to be capable of myeloma cell lysis, inhibition of LIR-1 on NK-92 did not enhance cytotoxicity. Targeting the receptor on MM and LBCL did not also alter NK-92-mediated lysis. We come to the conclusion that LIR-1 alone does not directly influence NK-cell-mediated cytotoxicity against myeloma. To our knowledge, this work provides the first investigation of the inhibitory capability of LIR-1 in NK-92-mediated cytotoxicity against MM and the first functional evaluation of LIR-1 on MM and LBCL.
Collapse
|
48
|
Natural killer (NK)-dendritic cell interactions generate MHC class II-dressed NK cells that regulate CD4+ T cells. Proc Natl Acad Sci U S A 2011; 108:18360-5. [PMID: 22042851 DOI: 10.1073/pnas.1110584108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells contribute to not only innate but also to adaptive immunity by interacting with dendritic cells (DCs) and T cells. All activated human NK cells express HLA-DR and can initiate MHCII-dependent CD4(+) T-cell proliferation; however, the expression of MHCII by mouse NK cells and its functional significance are controversial. In this study, we show that NK-DC interactions result in the emergence of MHCII-positive NK cells. Upon in vitro or in vivo activation, mouse conventional NK cells did not induce MHCII transcripts, but rapidly acquired MHCII protein from DCs. MHCII H2-Ab1-deficient NK cells turned I-A(b)-positive when adoptively transferred into wild-type mice or when cultured with WT splenic DCs. NK acquisition of MHCII was mediated by intercellular membrane transfer called "trogocytosis," but not upon DAP10/12- and MHCI-binding NK cell receptor signaling. MHCII-dressed NK cells concurrently acquired costimulatory molecules such as CD80 and CD86 from DCs; however, their expression did not reach functional levels. Therefore, MHCII-dressed NK cells inhibited DC-induced CD4(+) T-cell responses rather than activated CD4(+) T cells by competitive antigen presentation. In a mouse model for delayed-type hypersensitivity, adoptive transfer of MHCII-dressed NK cells attenuated footpad swelling. These results suggest that MHCII-dressed NK cells generated through NK-DC interactions regulate T cell-mediated immune responses.
Collapse
|
49
|
Arita K, Endo S, Kaifu T, Kitaguchi K, Nakamura A, Ohmori H, Kohu K, Satake M, Takai T. Transcriptional Activation of thePirbGene in B Cells by PU.1 and Runx3. THE JOURNAL OF IMMUNOLOGY 2011; 186:7050-9. [DOI: 10.4049/jimmunol.1001302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
50
|
Ma G, Pan PY, Eisenstein S, Divino CM, Chen SH. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 2011; 34:385-95. [PMID: 21376641 PMCID: PMC3064726 DOI: 10.1016/j.immuni.2011.02.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/23/2010] [Accepted: 02/01/2011] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) bear characteristics of precursors for both M1 and M2 macrophages. The molecular mechanism underlying the differentiation into M1 and M2 macrophages and the relationship of this differentiation to antitumor responses remains largely undefined. Herein, we investigate the potential function of paired immunoglobulin-like receptor B (PIR-B), also known as leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3) in MDSC differentiation, and its role in tumor-induced immunity. Our studies indicated that MDSCs genetically ablated for PIR-B (Lilrb3(-/-)) underwent a specific transition to M1-like cells when entering the periphery from bone marrow, resulting in decreased suppressive function, regulatory T cell activation activity, primary tumor growth, and lung metastases. Activation of Toll-like receptor (TLR), signal transducers, and activators of transcription 1 (STAT1), and nuclear factor-kappa B (NF-κB) signaling in Lilrb3(-/-) MDSC promoted the acquisition of M1 phenotype. Inhibition of the PIR-B signaling pathway promoted MDSC differentiation into M1 macrophages.
Collapse
Affiliation(s)
- Ge Ma
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 13-02, New York, NY 10029-6574, USA
| | - Ping-Ying Pan
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 13-02, New York, NY 10029-6574, USA
| | - Samuel Eisenstein
- Department of Surgery, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 13-02, New York, NY 10029-6574, USA
| | - Celia M Divino
- Department of Surgery, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 13-02, New York, NY 10029-6574, USA
| | - Shu-Hsia Chen
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 13-02, New York, NY 10029-6574, USA
- Department of Surgery, Mount Sinai School of Medicine, 1425 Madison Avenue, Room 13-02, New York, NY 10029-6574, USA
| |
Collapse
|