1
|
Nguyen AA, Platt CD. Flow Cytometry-based Immune Phenotyping of T and B Lymphocytes in the Evaluation of Immunodeficiency and Immune Dysregulation. Immunol Allergy Clin North Am 2025; 45:189-203. [PMID: 40287168 DOI: 10.1016/j.iac.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
There are approximately 500 congenital disorders that impair immune cell development and/or function. Patients with these disorders may present with a wide range of symptoms, including increased susceptibility to infection, autoimmunity, autoinflammation, lymphoproliferation, and/or atopy. Flow cytometry-based immune phenotyping of T and B lymphocytes plays an essential role in the evaluation of patients with these presentations. In this review, we describe the clinical utility of flow cytometry as part of a comprehensive evaluation of immune function and how this testing may be used as a diagnostic tool to identify underlying aberrant immune pathways, monitor disease activity, and assess infection risk.
Collapse
Affiliation(s)
- Alan A Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Fegan Building 6th Floor, Boston, MA 02115, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Karp Building 10th Floor, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Rahe MC, Byrne JJ, Meritet D, Gruber E, Langel SN, Crisci E. Case Report: The effect of asplenia on the response to influenza vaccination and passive transfer of immunity in an adult female pig. Front Immunol 2025; 16:1568142. [PMID: 40356897 PMCID: PMC12066655 DOI: 10.3389/fimmu.2025.1568142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Asplenia is an important cause of morbidity and mortality in humans. However, there are only very rare examples of this condition reported in domesticated species. Here we present a case of asplenia, diagnosed at necropsy, in a crossbred adult female pig from an influenza vaccine study. The humoral antibody response, including immune response to an influenza A virus vaccine, was characterized and compared to a parity-matched pig from the same study. The antibody profiles, lower total IgM with similar levels of IgG, were remarkably similar to those described in human patients with asplenia. However, in response to vaccination, the asplenic pig showed a robust hemagglutinin-specific IgM response with lower levels of IgG and IgA. These results were mirrored in the passively transferred antibody profiles of the asplenic dam's piglets. This constitutes the first case of congenital asplenia described in the pig.
Collapse
Affiliation(s)
- Michael C. Rahe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - John J. Byrne
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Danielle Meritet
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Erika Gruber
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Stephanie N. Langel
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Martire B, Beni A, Mastrototaro MF, Santilli V, Ottaviano G, Montin D, Rizzo C, Sgrulletti M, Miraglia del Giudice M, Costagliola G, Moschese V. Vaccinations in Pediatric Hematology and Oncology: Biologic Basis, Clinical Applications, and Perspectives. Vaccines (Basel) 2025; 13:397. [PMID: 40333279 PMCID: PMC12031037 DOI: 10.3390/vaccines13040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Children with hemato-oncological diseases represent a heterogeneous population at heightened risk for vaccine-preventable diseases. Their immunosuppressed state reduces vaccine efficacy and raises safety concerns regarding live attenuated vaccines due to the risk of viral reactivation. The immunological and clinical implications of the single conditions are significantly different; therefore, specific vaccination strategies are needed. Despite the availability of vaccine guidelines for immunocompromised patients, clinical practice remains highly variable. It is generally recommended to avoid vaccinations during chemotherapy, with some exceptions for influenza, pneumococcal, and, in some countries, hepatitis B vaccines. The timing of immune recovery after chemotherapy depends on the specific treatment and most guidelines recommend administering vaccines 3-6 months after treatment cessation. Concerning HSCT, the timing of immune recovery is affected by several factors such as the HSCT platform, graft-versus-host disease (GvHD), and infections. Inactivated vaccines are typically administered 3-6 months post-HSCT, while live attenuated vaccines are delayed for at least two years. In children with asplenia or hyposplenism, recommendations focus on immunization against encapsulated bacteria, with tailored schedules based on the patient's age and underlying condition. This paper explores the biological factors influencing vaccination efficacy and safety in pediatric hematology and oncology patients. It also provides an updated overview of the available evidence and current vaccination guidelines. Finally, this paper highlights the main clinical and research areas for further improvement to provide tailored vaccination schedules for this vulnerable population.
Collapse
Affiliation(s)
- Baldassarre Martire
- Unità Operativa Complessa (UOC) of Pediatrics and Neonatology, Maternal-Infant Department, “Monsignor A.R. Dimiccoli” Hospital, 70051 Barletta, Italy;
| | - Alessandra Beni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Maria Felicia Mastrototaro
- Unità Operativa Complessa (UOC) of Pediatrics and Neonatology, Maternal-Infant Department, “Monsignor A.R. Dimiccoli” Hospital, 70051 Barletta, Italy;
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Giorgio Ottaviano
- Department of Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, Italy;
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, “Regina Margherita” Children Hospital, 10126 Turin, Italy;
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.M.)
| | - Michele Miraglia del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy;
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.M.)
| |
Collapse
|
4
|
Pinto TNC, Benard G, Fernandes JR. Phenotypic Characterization of B-Lymphocyte Subpopulations in Human Peripheral Blood: A Cost-Effective Seven-Color One-Tube Protocol. Methods Mol Biol 2025; 2857:15-31. [PMID: 39348052 DOI: 10.1007/978-1-0716-4128-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
B cells are crucial components of the immune system, responsible for producing specific antibodies in response to infections and vaccines. Despite their uniform appearance, B cells display diverse surface molecules and functional properties, which are not yet fully understood. Apart from antibody production, B cells also play roles in antigen presentation and cytokine secretion, essential for initiating T-cell immune responses. Their significance as disease biomarkers and therapeutic targets has led to increased research focus. However, the lack of standardized protocols for B-cell identification and the variability in defining B-lymphocyte subpopulations pose some challenges. This paper proposes a B-cell identification panel throughout the evaluation of previous cytometry panels and nomenclature heterogeneity for B-cell subpopulations. Major subpopulations recognized in human peripheral blood include transitional, naive, switched memory, unswitched memory, double negative, and plasmablasts, characterized based on their functional and phenotypic features. We present a standardized flow cytometry protocol utilizing surface phenotypic markers (CD3, CD19, IgD, CD27, CD38, and CD24) to differentiate and analyze B-cell subpopulations. This practical and cost-effective panel can be used in various research and laboratory settings. The challenges of standardizing names and markers for classifying B-lymphocyte subpopulations are discussed, along with protocols utilizing multiple markers and gating strategies, allied with the importance of considering viability markers. In summary, this standardized protocol and panel provide a comprehensive approach to identifying B-cell subpopulations to enhance the reproducibility and comparability of B-cell subpopulation studies.
Collapse
Affiliation(s)
- Thalyta Nery Carvalho Pinto
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | - Gil Benard
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil
| | - Juliana Ruiz Fernandes
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Tropical Medicine Institute (IMT), School of Medicine, São Paulo University, São Paulo, Brazil.
| |
Collapse
|
5
|
Martínez LE, Comin-Anduix B, Güemes-Aragon M, Ibarrondo J, Detels R, Mimiaga MJ, Epeldegui M. Characterization of unique B-cell populations in the circulation of people living with HIV prior to non-Hodgkin lymphoma diagnosis. Front Immunol 2024; 15:1441994. [PMID: 39324141 PMCID: PMC11422120 DOI: 10.3389/fimmu.2024.1441994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
People living with HIV (PLWH) are at higher risk of developing lymphoma. In this study, we performed cytometry by time-of-flight (CyTOF) on peripheral blood mononuclear cells of cART-naïve HIV+ individuals and cART-naïve HIV+ individuals prior to AIDS-associated non-Hodgkin lymphoma (pre-NHL) diagnosis. Participants were enrolled in the Los Angeles site of the MACS/WIHS Combined Cohort Study (MWCCS). Uniform Manifold Approximation and Projection (UMAP) and unsupervised clustering analysis were performed to identify differences in the expression of B-cell activation markers and/or oncogenic markers associated with lymphomagenesis. CD10+CD27- B cells, CD20+CD27- B cells, and B-cell populations with aberrant features (CD20+CD27+CXCR4+CD71+ B cells and CD20+CXCR4+cMYC+ B cells) were significantly elevated in HIV+ cART-naïve compared to HIV-negative samples. CD20+CD27+CD24+CXCR4+CXCR5+ B cells, CD20+CD27+CD10+CD24+CXCR4+cMYC+ B cells, and a cluster of CD20+CXCR4hiCD27-CD24+CXCR5+CD40+CD4+AICDA+ B cells were significantly elevated in HIV+ pre-NHL (cART-naïve) compared to HIV+ cART-naïve samples. A potentially clonal cluster of CD20+CXCR4+CXCR5+cMYC+AICDA+ B cells and a cluster of germinal center B-cell-like cells (CD19-CD20+CXCR4+Bcl-6+PD-L1+cMYC+) were also found in the circulation of HIV+ pre-NHL (cART-naïve) samples. Moreover, significantly elevated clusters of CD19+CD24hiCD38hi cMYC+ AICDA+ B regulatory cells were identified in HIV+ pre-NHL (cART-naïve) compared to HIV+ cART-naïve samples. The present study identifies unique B-cell subsets in PLWH with potential pre-malignant features that may contribute to the development of pre-tumor B cells in PLWH and that may play a role in lymphomagenesis.
Collapse
Affiliation(s)
- Laura E. Martínez
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Miriam Güemes-Aragon
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Javier Ibarrondo
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Roger Detels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew J. Mimiaga
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marta Epeldegui
- UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Dąbrowska A, Wilczyński B, Mastalerz J, Kucharczyk J, Kulbacka J, Szewczyk A, Rembiałkowska N. The Impact of Liver Failure on the Immune System. Int J Mol Sci 2024; 25:9522. [PMID: 39273468 PMCID: PMC11395474 DOI: 10.3390/ijms25179522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Liver failure profoundly affects the immune system, leading to dysregulation of innate and adaptive immune response. This review explores the intricate relationship between liver function and immune homeostasis. The role of the liver as a central hub in immune response initiation is elucidated, emphasizing its involvement in hepatic inflammation induction and subsequent systemic inflammation. Cytokines, chemokines, growth factors, and lipid mediators orchestrate these immune processes, serving as both prognostic biomarkers and potential therapeutic targets in liver failure-associated immune dysregulation, which might result from acute-on-chronic liver failure (ACLF) and cirrhosis. Furthermore, the review delves into the mechanisms underlying immunosuppression in liver failure, encompassing alterations in innate immune cell functions such as neutrophils, macrophages, and natural killer cells (NK cells), as well as perturbations in adaptive immune responses mediated by B and T cells. Conclusion: Understanding the immunological consequences of liver failure is crucial for developing targeted therapeutic interventions and improving patient outcomes in liver disease management.
Collapse
Affiliation(s)
- Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Jakub Mastalerz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Julia Kucharczyk
- Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Nguyen AA, Platt CD. Flow Cytometry-based Immune Phenotyping of T and B Lymphocytes in the Evaluation of Immunodeficiency and Immune Dysregulation. Clin Lab Med 2024; 44:479-493. [PMID: 39089753 DOI: 10.1016/j.cll.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There are approximately 500 congenital disorders that impair immune cell development and/or function. Patients with these disorders may present with a wide range of symptoms, including increased susceptibility to infection, autoimmunity, autoinflammation, lymphoproliferation, and/or atopy. Flow cytometry-based immune phenotyping of T and B lymphocytes plays an essential role in the evaluation of patients with these presentations. In this review, we describe the clinical utility of flow cytometry as part of a comprehensive evaluation of immune function and how this testing may be used as a diagnostic tool to identify underlying aberrant immune pathways, monitor disease activity, and assess infection risk.
Collapse
Affiliation(s)
- Alan A Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Fegan Building 6th Floor, Boston, MA 02115, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 1 Blackfan Circle, Karp Building 10th Floor, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Budeus B, Kibler A, Küppers R. Human IgM-expressing memory B cells. Front Immunol 2023; 14:1308378. [PMID: 38143767 PMCID: PMC10748387 DOI: 10.3389/fimmu.2023.1308378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A hallmark of T cell dependent (TD) humoral immune responses is the generation of long-lived memory B cells. The generation of these cells occurs primarily in the germinal center (GC) reaction, where antigen-activated B cells undergo affinity maturation as a major consequence of the combined processes of proliferation, somatic hypermutation of their immunoglobulin V (IgV) region genes, and selection for improved affinity of their B-cell antigen receptors. As many B cells also undergo class-switching to IgG or IgA in these TD responses, there was traditionally a focus on class-switched memory B cells in both murine and human studies on memory B cells. However, it has become clear that there is also a large subset of IgM-expressing memory B cells, which have important phenotypic and functional similarities but also differences to class-switched memory B cells. There is an ongoing discussion about the origin of distinct subsets of human IgM+ B cells with somatically mutated IgV genes. We argue here that the vast majority of human IgM-expressing B cells with somatically mutated IgV genes in adults is indeed derived from GC reactions, even though a generation of some mostly lowly mutated IgM+ B cells from other differentiation pathways, mainly in early life, may exist.
Collapse
Affiliation(s)
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
9
|
Weill JC, Weller S, Reynaud CA. B cell diversification in gut-associated lymphoid tissues: From birds to humans. J Exp Med 2023; 220:e20231501. [PMID: 37824081 PMCID: PMC10568490 DOI: 10.1084/jem.20231501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Several species generate their preimmune repertoire in gut-associated lymphoid tissues (GALT), compensating a reduced germline V gene repertoire by post-rearrangement diversification mechanisms (gene conversion and/or somatic hypermutation) in these environments that act as primary lymphoid organs. We summarize here these processes for three different species (chickens, sheep, and rabbits) and further discuss the analogous process that T-independent B cell responses in humans represent: we indeed recently showed that response against bacterial polysaccharides mobilize marginal zone B cells that prediversified against gut antigens. While the initial diversification strategy differs in these two cases, i.e., repertoire formation driven by gut-derived mitotic signals vs. response against gut antigens, the common feature of these two processes is the mobilization of a B cell compartment prediversified in GALT for immune responses against distinct systemic antigens.
Collapse
Affiliation(s)
- Jean-Claude Weill
- Université Paris Cité, Institut national de la santé et de la recherche médicale U1151, Centre national de la recherche scientifique UMR-8253, Institut Necker Enfants Malades , Paris, France
| | - Sandra Weller
- Université Paris Cité, Institut national de la santé et de la recherche médicale U1151, Centre national de la recherche scientifique UMR-8253, Institut Necker Enfants Malades , Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, Institut national de la santé et de la recherche médicale U1151, Centre national de la recherche scientifique UMR-8253, Institut Necker Enfants Malades , Paris, France
| |
Collapse
|
10
|
Fouza A, Tagkouta A, Daoudaki M, Stangou M, Fylaktou A, Bougioukas K, Xochelli A, Vagiotas L, Kasimatis E, Nikolaidou V, Skoura L, Papagianni A, Antoniadis N, Tsoulfas G. Exploring Perturbations in Peripheral B Cell Memory Subpopulations Early after Kidney Transplantation Using Unsupervised Machine Learning. J Clin Med 2023; 12:6331. [PMID: 37834974 PMCID: PMC10573378 DOI: 10.3390/jcm12196331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND B cells have a significant role in transplantation. We examined the distribution of memory subpopulations (MBCs) and naïve B cell (NBCs) phenotypes in patients soon after kidney transplantation. Unsupervised machine learning cluster analysis is used to determine the association between the cellular phenotypes and renal function. METHODS MBC subpopulations and NBCs from 47 stable renal transplant recipients were characterized by flow cytometry just before (T0) and 6 months after (T6) transplantation. T0 and T6 measurements were compared, and clusters of patients with similar cellular phenotypic profiles at T6 were identified. Two clusters, clusters 1 and 2, were formed, and the glomerular filtration rate was estimated (eGFR) for these clusters. RESULTS A significant increase in NBC frequency was observed between T0 and T6, with no statistically significant differences in the MBC subpopulations. Cluster 1 was characterized by a predominance of the NBC phenotype with a lower frequency of MBCs, whereas cluster 2 was characterized by a high frequency of MBCs and a lower frequency of NBCs. With regard to eGFR, cluster 1 showed a higher value compared to cluster 2. CONCLUSIONS Transplanted kidney patients can be stratified into clusters based on the combination of heterogeneity of MBC phenotype, NBCs and eGFR using unsupervised machine learning.
Collapse
Affiliation(s)
- Ariadni Fouza
- Department of Transplant Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (L.V.); (N.A.); (G.T.)
| | - Anneta Tagkouta
- Laboratory of Biological Chemistry, Medical School, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, Medical School, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Daoudaki
- Laboratory of Biological Chemistry, Medical School, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Stangou
- 1st Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.K.); (A.P.)
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Konstantinos Bougioukas
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, Medical School, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Lampros Vagiotas
- Department of Transplant Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (L.V.); (N.A.); (G.T.)
| | - Efstratios Kasimatis
- 1st Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.K.); (A.P.)
| | - Vasiliki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.)
| | - Lemonia Skoura
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54124 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- 1st Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (M.S.); (E.K.); (A.P.)
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (L.V.); (N.A.); (G.T.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece; (L.V.); (N.A.); (G.T.)
| |
Collapse
|
11
|
Vitallé J, Zenarruzabeitia O, Merino-Pérez A, Terrén I, Orrantia A, Pacho de Lucas A, Iribarren JA, García-Fraile LJ, Balsalobre L, Amo L, de Andrés B, Borrego F. Human IgM hiCD300a + B Cells Are Circulating Marginal Zone Memory B Cells That Respond to Pneumococcal Polysaccharides and Their Frequency Is Decreased in People Living with HIV. Int J Mol Sci 2023; 24:13754. [PMID: 37762055 PMCID: PMC10530418 DOI: 10.3390/ijms241813754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
CD300a is differentially expressed among B cell subsets, although its expression in immunoglobulin (Ig)M+ B cells is not well known. We identified a B cell subset expressing CD300a and high levels of IgM (IgMhiCD300a+). The results showed that IgMhiCD300a+ B cells were CD10-CD27+CD25+IgDloCD21hiCD23-CD38loCD1chi, suggesting that they are circulating marginal zone (MZ) IgM memory B cells. Regarding the immunoglobulin repertoire, IgMhiCD300a+ B cells exhibited a higher mutation rate and usage of the IgH-VDJ genes than the IgM+CD300a- counterpart. Moreover, the shorter complementarity-determining region 3 (CDR3) amino acid (AA) length from IgMhiCD300a+ B cells together with the predicted antigen experience repertoire indicates that this B cell subset has a memory phenotype. IgM memory B cells are important in T cell-independent responses. Accordingly, we demonstrate that this particular subset secretes higher amounts of IgM after stimulation with pneumococcal polysaccharides or a toll-like receptor 9 (TLR9) agonist than IgM+CD300a- cells. Finally, the frequency of IgMhiCD300a+ B cells was lower in people living with HIV-1 (PLWH) and it was inversely correlated with the years with HIV infection. Altogether, these data help to identify a memory B cell subset that contributes to T cell-independent responses to pneumococcal infections and may explain the increase in severe pneumococcal infections and the impaired responses to pneumococcal vaccination in PLWH.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Aitana Merino-Pérez
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Arantza Pacho de Lucas
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Immunology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - José A. Iribarren
- Department of Infectious Diseases, Donostia University Hospital, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
| | - Lucio J. García-Fraile
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Internal Medicine, La Princesa University Hospital, 28006 Madrid, Spain
| | - Luz Balsalobre
- Laboratory of Microbiology, UR Salud, Infanta Sofía University Hospital, 28702 Madrid, Spain;
| | - Laura Amo
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Madrid, Spain;
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
12
|
Tomaszewska A, Jeleniewska A, Porębska K, Królikowska K, Rustecka A, Lipińska-Opałka A, Będzichowska A, Zdanowski R, Aleksandrowicz K, Kloc M, Kalicki B. Immunomodulatory Effect of Infectious Disease of a Breastfed Child on the Cellular Composition of Breast Milk. Nutrients 2023; 15:3844. [PMID: 37686876 PMCID: PMC10490220 DOI: 10.3390/nu15173844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Recent studies suggest that the content of immune components in milk is influenced by the mother's health and also by the infant she feeds. We aimed to evaluate the effect of a child's respiratory tract infection on the cellular composition of breast milk (neutrophils, monocytes, eosinophils, lymphocytes, and their subpopulations). Twenty-six breastfeeding mothers whose children were hospitalized for respiratory tract infections were enrolled in the study. The control group consisted of 23 mothers of healthy children. Regarding the children, baseline laboratory blood tests were performed, and nasal swabs were taken for the presence of RS virus. In the next step, milk samples were collected from the mothers to assess the cellular composition of the milk, including neutrophils, monocytes, eosinophils, lymphocytes, and their subpopulations. Significantly higher percentages of T lymphocytes (helper and cytotoxic lymphocytes) were observed in the milk of the studied mothers. There was a significantly higher percentage of milk lymphocytes in the group of affected children with confirmed RSV etiology than in children with excluded RSV etiology. A significant positive correlation was observed between the duration of infection and the percentage of milk NK cells and between milk CD19 lymphocytes and the child's serum leukocytosis. This study may provide evidence of a link between cells in breast milk and disease in the breastfed infant. The severity of the infection, its duration, and the etiological agent of the infection may affect the cellular composition of milk.
Collapse
Affiliation(s)
- Agata Tomaszewska
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Alicja Jeleniewska
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Klaudia Porębska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (K.P.); (R.Z.); (K.A.)
| | - Katarzyna Królikowska
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Agnieszka Rustecka
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Agnieszka Lipińska-Opałka
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Agata Będzichowska
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (K.P.); (R.Z.); (K.A.)
| | - Karolina Aleksandrowicz
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (K.P.); (R.Z.); (K.A.)
| | - Małgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bolesław Kalicki
- Department of Paediatrics, Nephrology and Allergology, Military Institute of Medicine—National Research Institute, Szaserów 128, 04-141 Warsaw, Poland; (A.J.); (K.K.); (A.R.); (A.L.-O.); (A.B.); (B.K.)
| |
Collapse
|
13
|
Saad HA, Elsayed RS, Riad M, El-Taher AK, Eraky ME, Abdelmonem A. Revitalize splenic functions. Following a splenectomy for trauma, a small amount of splenic autotransplantation was performed. BMC Surg 2023; 23:230. [PMID: 37568135 PMCID: PMC10422790 DOI: 10.1186/s12893-023-02126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
INTRODUCTION The spleen is a responsible significant part of the immune system; after Splenectomy following trauma, the immune system changes; splenic autotransplantation can preserve the immune system after trauma and Splenectomy. BACKGROUND Patients can be protected from immune dysfunction by autotransplanting splenic tissues after splenectomy following trauma because their immune systems and spleens are changed. Patients can gain their immune function after splenic autotransplantation. METHODS Patient classification methods are into three categories, Group A, 6 cases with auto-translation; Group B, 6 cases without transplantation; Group C, seven regular people serving as the control. AIM OF WORK The aim of the work is not to compare outcome methods or compare types of autotransplantation; This work aims to document postoperative radiological, immunological, clinical, and hematological investigations. We concentrated on the results of investigations more than the types of operation or approach or types of autotransplantation. RESULTS We showed that, after comparing each group with normal individuals subjects, patients who did not undergo autotransplantation had significantly higher platelet counts, a more significant percentage of micronucleated reticulocytes, increased levels of naive B lymphocytes, changes in class-switched memory and class-unswitched memory B cells, and higher levels of PD1 on CD8 + T lymphocytes. Nevertheless, neither splenic autotransplant patients nor the average general population showed any appreciable variations in any of the parameters. CONCLUSIONS Spleen's activities with adequate hemocatheter activity and recovery of the immunological deficit after splenic autotransplantation.
Collapse
Affiliation(s)
- Hassan A Saad
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Rasha S Elsayed
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Riad
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed K El-Taher
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed E Eraky
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ashraf Abdelmonem
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
Kibler A, Seifert M, Budeus B. Age-related changes of the human splenic marginal zone B cell compartment. Immunol Lett 2023; 256-257:59-65. [PMID: 37044264 DOI: 10.1016/j.imlet.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
In this review, we will summarize the growing body of knowledge on the age-related changes of human splenic B cell composition and molecular evidence of immune maturation and discuss the contribution of these changes on splenic protective function. From birth on, the splenic marginal zone (sMZ) contains a specialized B cell subpopulation, which recruits and archives memory B cells from immune responses throughout the organism. The quality of sMZ B cell responses is augmented by germinal center (GC)-dependent maturation of memory B cells during childhood, however, in old age, these mechanisms likely contribute to waning of splenic protective function.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Scharf S, Ackermann J, Bender L, Wurzel P, Schäfer H, Hansmann ML, Koch I. Holistic View on the Structure of Immune Response: Petri Net Model. Biomedicines 2023; 11:452. [PMID: 36830988 PMCID: PMC9953182 DOI: 10.3390/biomedicines11020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
The simulation of immune response is a challenging task because quantitative data are scarce. Quantitative theoretical models either focus on specific cell-cell interactions or have to make assumptions about parameters. The broad variation of, e.g., the dimensions and abundance between lymph nodes as well as between individual patients hampers conclusive quantitative modeling. No theoretical model has been established representing a consensus on the set of major cellular processes involved in the immune response. In this paper, we apply the Petri net formalism to construct a semi-quantitative mathematical model of the lymph nodes. The model covers the major cellular processes of immune response and fulfills the formal requirements of Petri net models. The intention is to develop a model taking into account the viewpoints of experienced pathologists and computer scientists in the field of systems biology. In order to verify formal requirements, we discuss invariant properties and apply the asynchronous firing rule of a place/transition net. Twenty-five transition invariants cover the model, and each is assigned to a functional mode of the immune response. In simulations, the Petri net model describes the dynamic modes of the immune response, its adaption to antigens, and its loss of memory.
Collapse
Affiliation(s)
- Sonja Scharf
- Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, Robert-Mayer Str. 11-15, 60325 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörg Ackermann
- Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, Robert-Mayer Str. 11-15, 60325 Frankfurt am Main, Germany
| | - Leonie Bender
- Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, Robert-Mayer Str. 11-15, 60325 Frankfurt am Main, Germany
| | - Patrick Wurzel
- Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, Robert-Mayer Str. 11-15, 60325 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hendrik Schäfer
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Institute of Pathology, Corporate Member of Free University of Berlin, Humboldt-University of Berlin, Charity-University Medicine Berlin, Virchowweg 15, 10117 Berlin, Germany
| | - Martin-Leo Hansmann
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ina Koch
- Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, Robert-Mayer Str. 11-15, 60325 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Weller S, Sterlin D, Fadeev T, Coignard E, de los Aires AV, Goetz C, Fritzen R, Bahuaud M, Batteux F, Gorochov G, Weill JC, Reynaud CA. T-independent responses to polysaccharides in humans mobilize marginal zone B cells prediversified against gut bacterial antigens. Sci Immunol 2023; 8:eade1413. [PMID: 36706172 PMCID: PMC7614366 DOI: 10.1126/sciimmunol.ade1413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
Marginal zone (MZ) B cells are one of the main actors of T-independent (TI) responses in mice. To identify the B cell subset(s) involved in such responses in humans, we vaccinated healthy individuals with Pneumovax, a model TI vaccine. By high-throughput repertoire sequencing of plasma cells (PCs) isolated 7 days after vaccination and of different B cell subpopulations before and after vaccination, we show that the PC response mobilizes large clones systematically, including an immunoglobulin M component, whose diversification and amplification predated the pneumococcal vaccination. These clones could be mainly traced back to MZ B cells, together with clonally related IgA+ and, to a lesser extent, IgG+CD27+ B cells. Recombinant monoclonal antibodies isolated from large PC clones recognized a wide array of bacterial species from the gut flora, indicating that TI responses in humans largely mobilize MZ and switched B cells that most likely prediversified during mucosal immune responses against bacterial antigens and acquired pneumococcal cross-reactivity through somatic hypermutation.
Collapse
Affiliation(s)
- Sandra Weller
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Delphine Sterlin
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013 Paris, France
- Département d’Immunologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Tatiana Fadeev
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Eva Coignard
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Alba Verge de los Aires
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Clara Goetz
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Rémi Fritzen
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Mathilde Bahuaud
- Université Paris Cité, INSERM U1016, Institut Cochin, F-75014 Paris, France
- Service d’Immunologie Biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, F-75014 Paris, France
| | - Frederic Batteux
- Université Paris Cité, INSERM U1016, Institut Cochin, F-75014 Paris, France
- Service d’Immunologie Biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, F-75014 Paris, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013 Paris, France
- Département d’Immunologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| | - Jean-Claude Weill
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, INSERM U1151, CNRS UMR-8253, Institut Necker Enfants Malades (INEM), F-75015 Paris, France
| |
Collapse
|
18
|
Abstract
Asplenia (the congenital or acquired absence of the spleen) and hyposplenism (defective spleen function) are common causes of morbidity and mortality. The spleen is a secondary lymphoid organ that is responsible for the regulation of immune responses and blood filtration. Hence, asplenia or hyposplenism increases susceptibility to severe and invasive infections, especially those sustained by encapsulated bacteria (namely, Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae type b). Asplenia is predominantly due to splenectomy for either traumatic events or oncohaematological conditions. Hyposplenism can be caused by several conditions, including haematological, infectious, autoimmune and gastrointestinal disorders. Anatomical disruption of the spleen and depletion of immune cells, especially IgM memory B cells, seem to be predominantly responsible for the clinical manifestations. Early recognition of hyposplenism and proper management of asplenia are warranted to prevent overwhelming post-splenectomy infections through vaccination and antibiotic prophylaxis. Although recommendations are available, the implementation of vaccination strategies, including more effective and immunogenic vaccines, is needed. Additionally, screening programmes for early detection of hyposplenism in high-risk patients and improvement of patient education are warranted.
Collapse
|
19
|
Campbell NE, Deer EM, Herrock OT, LaMarca BB. The Role of Different Lymphoid Cell Populations in Preeclampsia Pathophysiology. KIDNEY360 2022; 3:1785-1794. [PMID: 36514732 PMCID: PMC9717666 DOI: 10.34067/kid.0001282022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), new-onset hypertension during pregnancy, affects up to 10% of pregnancies worldwide. Despite being the leading cause of maternal and fetal morbidity and mortality, PE has no cure beyond the delivery of the fetal-placental unit. Although the exact pathogenesis of PE is unclear, there is a strong correlation between chronic immune activation; intrauterine growth restriction; uterine artery resistance; dysregulation of the renin-angiotensin system. Which contributes to renal dysfunction; and the resulting hypertension during pregnancy. The genesis of PE is thought to begin with insufficient trophoblast invasion leading to reduced spiral artery remodeling, resulting in decreased placental perfusion and thereby causing placental ischemia. The ischemic placenta releases factors that shower the endothelium and contribute to peripheral vasoconstriction and chronic immune activation and oxidative stress. Studies have shown imbalances in proinflammatory and anti-inflammatory cell types in women with PE and in animal models used to examine mediators of a PE phenotype during pregnancy. T cells, B cells, and natural killer cells have all emerged as potential mediators contributing to the production of vasoactive factors, renal and endothelial dysfunction, mitochondrial dysfunction, and hypertension during pregnancy. The chronic immune activation seen in PE leads to a higher risk for other diseases, such as cardiovascular disease, CKD, dementia during the postpartum period, and PE during a subsequent pregnancy. The purpose of this review is to highlight studies demonstrating the role that different lymphoid cell populations play in the pathophysiology of PE. Moreover, we will discuss treatments focused on restoring immune balance or targeting specific immune mediators that may be potential strategies to improve maternal and fetal outcomes associated with PE.
Collapse
Affiliation(s)
- Nathan E Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Evangeline M Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Owen T Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Babbette B LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
20
|
Coudert JD, Slater N, Sooda A, Beer K, Lim EM, Boyder C, Zhang R, Mastaglia FL, Learmonth YC, Fairchild TJ, Yeap BB, Needham M. Immunoregulatory effects of testosterone supplementation combined with exercise training in men with Inclusion Body Myositis: a double-blind, placebo-controlled, cross-over trial. Clin Transl Immunology 2022; 11:e1416. [PMID: 36188123 PMCID: PMC9495304 DOI: 10.1002/cti2.1416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Sporadic Inclusion Body Myositis (IBM) is an inflammatory muscle disease affecting individuals over the age of 45, leading to progressive muscle wasting, disability and loss of independence. Histologically, IBM is characterised by immune changes including myofibres expressing major histocompatibility complex molecules and invaded by CD8+ T cells and macrophages, and by degenerative changes including protein aggregates organised in inclusion bodies, rimmed vacuoles and mitochondrial abnormalities. There is currently no cure, and regular exercise is currently the only recognised treatment effective at limiting muscle weakening, atrophy and loss of function. Testosterone exerts anti-inflammatory effects, inhibiting effector T-cell differentiation and pro-inflammatory cytokine production. Methods We conducted a double-blind, placebo-controlled, cross-over trial in men with IBM, to assess whether a personalised progressive exercise training combined with application of testosterone, reduced the inflammatory immune response associated with this disease over and above exercise alone. To assess intervention efficacy, we immunophenotyped blood immune cells by flow cytometry, and measured serum cytokines and chemokines by Luminex immunoassay. Results Testosterone supplementation resulted in modest yet significant count reduction in the classical monocyte subset as well as eosinophils. Testosterone-independent immunoregulatory effects attributed to exercise included altered proportions of some monocyte, T- and B-cell subsets, and reduced IL-12, IL-17, TNF-α, MIP-1β and sICAM-1 in spite of interindividual variability. Conclusion Overall, our findings indicate anti-inflammatory effects of exercise training in IBM patients, whilst concomitant testosterone supplementation provides some additional changes. Further studies combining testosterone and exercise would be worthwhile in larger cohorts and longer testosterone administration periods.
Collapse
Affiliation(s)
- Jerome D Coudert
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,School of Medicine University of Notre Dame Fremantle WA Australia
| | - Nataliya Slater
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia
| | - Anuradha Sooda
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia
| | - Kelly Beer
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia
| | - Ee Mun Lim
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Conchita Boyder
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Rui Zhang
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science Nedlands WA Australia
| | - Yvonne C Learmonth
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,Discipline of Exercise Science Murdoch University Murdoch WA Australia
| | - Timothy J Fairchild
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Discipline of Exercise Science Murdoch University Murdoch WA Australia
| | - Bu B Yeap
- Medical School University of Western Australia Perth WA Australia.,Department of Endocrinology and Diabetes Fiona Stanley Hospital Perth WA Australia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,School of Medicine University of Notre Dame Fremantle WA Australia.,Department of Neurology Fiona Stanley Hospital Perth WA Australia
| |
Collapse
|
21
|
Meednu N, Rangel-Moreno J, Zhang F, Escalera-Rivera K, Corsiero E, Prediletto E, DiCarlo E, Goodman S, Donlin LT, Raychauduri S, Bombardieri M, Pitzalis C, Orange DE, McDavid A, Anolik JH. Dynamic spectrum of ectopic lymphoid B cell activation and hypermutation in the RA synovium characterized by NR4A nuclear receptor expression. Cell Rep 2022; 39:110766. [PMID: 35508128 PMCID: PMC9234997 DOI: 10.1016/j.celrep.2022.110766] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/13/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Ectopic lymphoid structures (ELS) can develop in rheumatoid arthritis (RA) synovial tissue, but the precise pathways of B cell activation and selection are not well understood. Here, we identify a synovial B cell population characterized by co-expression of a family of orphan nuclear receptors (NR4A1-3), which is highly enriched in RA synovial tissue. A transcriptomic profile of NR4A synovial B cells significantly overlaps with germinal center light zone B cells and an accrual of somatic hypermutation that correlates with loss of naive B cell state. NR4A B cells co-express lymphotoxins α and β and IL-6, supporting functions in ELS promotion. Expanded and shared clones between synovial NR4A B cells and plasma cells and the rapid upregulation with BCR stimulation point to in situ differentiation. Together, we identify a dynamic progression of B cell activation in RA synovial ELS, with NR4A transcription factors having an important role in local adaptive immune responses.
Collapse
Affiliation(s)
- Nida Meednu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Katherine Escalera-Rivera
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Elisa Corsiero
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Edoardo Prediletto
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Edward DiCarlo
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY 10021, USA
| | - Susan Goodman
- Hospital for Special Surgery, New York, NY 10021, USA; Weill Cornell Medicine, New York, NY, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY 10021, USA; Weill Cornell Medicine, New York, NY, USA
| | - Soumya Raychauduri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA; Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, London, UK
| | - Dana E Orange
- Hospital for Special Surgery, New York, NY 10021, USA; Rockefeller University, New York, NY 10028, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
22
|
The Impact of Exosomes/Microvesicles Derived from Myeloid Dendritic Cells Cultured in the Presence of Calcitriol and Tacalcitol on Acute B-Cell Precursor Cell Lines with MLL Fusion Gene. J Clin Med 2022; 11:jcm11082224. [PMID: 35456315 PMCID: PMC9032710 DOI: 10.3390/jcm11082224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D analogs (VDAs) may directly inhibit the growth of normal and malignant (derived from acute lymphoblastic leukemia (ALL)) B cells, as both types of cells express vitamin D receptor (VDR). We performed anti-proliferative, morphology tests and phenotyping to evaluate the sensitivity of monocytes and iDCs (immature myeloid-derived dendritic cells) on calcitriol and tacalcitol treatment, phenotyping, morphology, and size distribution measurement to determine the characteristics of microvesicles (MVs) and exosomes (EXs) derived from them and, finally, phenotyping and Elisa test to determine the effects of VDAs on modulation of the phenotype of B cells through extracellular vesicles (EVs) released by iDCs. Our results confirmed that both SC cells and iDCs were sensitive to the VDAs and showed altered surface expression of markers associated with monocyte differentiation, which was resulting in the phenotypic changes in EVs derived from them. We also showed that obtained EVs could change the morphology and phenotype of ALL-B-derived precursor cells in a different way, depending on their origin. The differential effect of VDAs on ALL-B cells, which was associated with increased or decreased expression of CD27, CD24, CD38, and CD23 expression, was observed. Hence, further studies to explain the modulation in the composition of EVs by VDAs are required.
Collapse
|
23
|
Lokossou GAG, Kouakanou L, Schumacher A, Zenclussen AC. Human Breast Milk: From Food to Active Immune Response With Disease Protection in Infants and Mothers. Front Immunol 2022; 13:849012. [PMID: 35450064 PMCID: PMC9016618 DOI: 10.3389/fimmu.2022.849012] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022] Open
Abstract
Breastfeeding is associated with long-term wellbeing including low risks of infectious diseases and non-communicable diseases such as asthma, cancer, autoimmune diseases and obesity during childhood. In recent years, important advances have been made in understanding the human breast milk (HBM) composition. Breast milk components such as, non-immune and immune cells and bioactive molecules, namely, cytokines/chemokines, lipids, hormones, and enzymes reportedly play many roles in breastfed newborns and in mothers, by diseases protection and shaping the immune system of the newborn. Bioactive components in HBM are also involved in tolerance and appropriate inflammatory response of breastfed infants if necessary. This review summarizes the current literature on the relationship between mother and her infant through breast milk with regard to disease protection. We will shed some light on the mechanisms underlying the roles of breast milk components in the maintenance of health of both child and mother.
Collapse
Affiliation(s)
- Gatien A. G. Lokossou
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, Department Human Biology Engineering, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Léonce Kouakanou
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ana C. Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
24
|
Desombere I, Van Houtte F, Farhoudi A, Verhoye L, Buysschaert C, Gijbels Y, Couvent S, Swinnen W, Van Vlierberghe H, Elewaut A, Magri A, Stamataki Z, Meuleman P, McKeating JA, Leroux-Roels G. A Role for B Cells to Transmit Hepatitis C Virus Infection. Front Immunol 2021; 12:775098. [PMID: 34975862 PMCID: PMC8716873 DOI: 10.3389/fimmu.2021.775098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Hepatitis C virus (HCV) is highly variable and transmits through infected blood to establish a chronic liver infection in the majority of patients. Our knowledge on the infectivity of clinical HCV strains is hampered by the lack of in vitro cell culture systems that support efficient viral replication. We and others have reported that HCV can associate with and infect immune cells and may thereby evade host immune surveillance and elimination. To evaluate whether B cells play a role in HCV transmission, we assessed the ability of B cells and sera from recent (<2 years) or chronic (≥ 2 years) HCV patients to infect humanized liver chimeric mice. HCV was transmitted by B cells from chronic infected patients whereas the sera were non-infectious. In contrast, B cells from recently infected patients failed to transmit HCV to the mice, whereas all serum samples were infectious. We observed an association between circulating anti-glycoprotein E1E2 antibodies and B cell HCV transmission. Taken together, our studies provide evidence for HCV transmission by B cells, findings that have clinical implications for prophylactic and therapeutic antibody-based vaccine design.
Collapse
Affiliation(s)
| | - Freya Van Houtte
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Ali Farhoudi
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lieven Verhoye
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Yvonne Gijbels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sibyl Couvent
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
- Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - André Elewaut
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium
- Laboratory of Hepatology Research, Ghent University, Ghent, Belgium
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Researc (NIHR) Birmingham Liver Biomedical Research Centre, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Philip Meuleman
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
25
|
Kim Y, Kim SY, Han SM, Payumo RM, Park K, Kim HE, Kim SH, Hyun JW, Lee E, Kim HJ. Functional impairment of CD19 +CD24 hiCD38 hi B cells in neuromyelitis optica spectrum disorder is restored by B cell depletion therapy. Sci Transl Med 2021; 13:eabk2132. [PMID: 34910550 DOI: 10.1126/scitranslmed.abk2132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yeseul Kim
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Korea.,Yonsei University College of Medicine, Seoul 03772, Korea.,Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang 10408, Korea
| | - So Yeon Kim
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Korea.,Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang 10408, Korea
| | - Sang-Min Han
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Korea.,Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang 10408, Korea
| | - Rosah May Payumo
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Kevin Park
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Korea.,Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang 10408, Korea
| | - Ha Eun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang 10408, Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang 10408, Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang 10408, Korea
| | - Eunjig Lee
- Yonsei University College of Medicine, Seoul 03772, Korea
| | - Ho Jin Kim
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Korea.,Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
26
|
Kealy L, Good-Jacobson KL. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab018. [PMID: 36845573 PMCID: PMC8499879 DOI: 10.1093/oxfimm/iqab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre (GC), a site where responding B cells undergo affinity maturation and are one of the major routes for memory B cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the GC and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of GC and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,Correspondence address. Department of Biochemistry and Molecular Biology, Monash University, Ground floor reception, 23 Innovation Walk (Bldg 77), Clayton, Victoria 3800 Australia. Tel: (+613) 990-29510; E-mail: ; Twitter: @KimLJacobson
| |
Collapse
|
27
|
Pearce AC, Bamford MJ, Barber R, Bridges A, Convery MA, Demetriou C, Evans S, Gobbetti T, Hirst DJ, Holmes DS, Hutchinson JP, Jayne S, Lezina L, McCabe MT, Messenger C, Morley J, Musso MC, Scott-Stevens P, Manso AS, Schofield J, Slocombe T, Somers D, Walker AL, Wyce A, Zhang XP, Wagner SD. GSK137, a potent small-molecule BCL6 inhibitor with in vivo activity, suppresses antibody responses in mice. J Biol Chem 2021; 297:100928. [PMID: 34274316 PMCID: PMC8350397 DOI: 10.1016/j.jbc.2021.100928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
B-cell lymphoma 6 (BCL6) is a zinc finger transcriptional repressor possessing a BTB-POZ (BR-C, ttk, and bab for BTB; pox virus and zinc finger for POZ) domain, which is required for homodimerization and association with corepressors. BCL6 has multiple roles in normal immunity, autoimmunity, and some types of lymphoma. Mice bearing disrupted BCL6 loci demonstrate suppressed high-affinity antibody responses to T-dependent antigens. The corepressor binding groove in the BTB-POZ domain is a potential target for small compound-mediated therapy. Several inhibitors targeting this binding groove have been described, but these compounds have limited or absent in vivo activity. Biophysical studies of a novel compound, GSK137, showed an in vitro pIC50 of 8 and a cellular pIC50 of 7.3 for blocking binding of a peptide derived from the corepressor silencing mediator for retinoid or thyroid hormone receptors to the BCL6 BTB-POZ domain. The compound has good solubility (128 μg/ml) and permeability (86 nM/s). GSK137 caused little change in cell viability or proliferation in four BCL6-expressing B-cell lymphoma lines, although there was modest dose-dependent accumulation of G1 phase cells. Pharmacokinetic studies in mice showed a profile compatible with achieving good levels of target engagement. GSK137, administered orally, suppressed immunoglobulin G responses and reduced numbers of germinal centers and germinal center B cells following immunization of mice with the hapten trinitrophenol. Overall, we report a novel small-molecule BCL6 inhibitor with in vivo activity that inhibits the T-dependent antigen immune response.
Collapse
Affiliation(s)
| | - Mark J Bamford
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Ruth Barber
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | - Angela Bridges
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | - Constantinos Demetriou
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Sian Evans
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | | | - David J Hirst
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Sandrine Jayne
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Larissa Lezina
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK; Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | | | | | - Joanne Morley
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Ana Sousa Manso
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK; Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK
| | - Jennifer Schofield
- Leicester Drug Discovery and Diagnostics, University of Leicester, Leicester, UK
| | - Tom Slocombe
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Don Somers
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | - Ann L Walker
- GlaxoSmithKline, Medicines Research Centre, Stevenage, UK
| | | | | | - Simon D Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Leicester, UK.
| |
Collapse
|
28
|
Ex vivo characterization of Breg cells in patients with chronic Chagas disease. Sci Rep 2021; 11:5511. [PMID: 33750870 PMCID: PMC7943772 DOI: 10.1038/s41598-021-84765-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the growing importance of the regulatory function of B cells in many infectious diseases, their immunosuppressive role remains elusive in chronic Chagas disease (CCD). Here, we studied the proportion of different B cell subsets and their capacity to secrete IL-10 ex vivo in peripheral blood from patients with or without CCD cardiomyopathy. First, we immunophenotyped peripheral blood mononuclear cells from patients according to the expression of markers CD19, CD24, CD38 and CD27 and we showed an expansion of total B cell and transitional CD24highCD38high B cell subsets in CCD patients with cardiac involvement compared to non-infected donors. Although no differences were observed in the frequency of total IL-10 producing B cells (B10) among the groups, CCD patients with cardiac involvement showed an increased proportion of naïve B10 cells and a tendency to a higher frequency of transitional B10 cells compared to non-infected donors. Our research demonstrates that transitional B cells are greatly expanded in patients with the cardiac form of CCD and these cells retain the ability to secrete IL-10. These findings provide insight into the phenotypic distribution of regulatory B cells in CCD, an important step towards new strategies to prevent cardiomyopathy associated with T. cruzi infection.
Collapse
|
29
|
Thouvenel CD, Fontana MF, Netland J, Krishnamurty AT, Takehara KK, Chen Y, Singh S, Miura K, Keitany GJ, Lynch EM, Portugal S, Miranda MC, King NP, Kollman JM, Crompton PD, Long CA, Pancera M, Rawlings DJ, Pepper M. Multimeric antibodies from antigen-specific human IgM+ memory B cells restrict Plasmodium parasites. J Exp Med 2021; 218:211852. [PMID: 33661302 PMCID: PMC7938364 DOI: 10.1084/jem.20200942] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
Multimeric immunoglobulin-like molecules arose early in vertebrate evolution, yet the unique contributions of multimeric IgM antibodies to infection control are not well understood. This is partially due to the difficulty of distinguishing low-affinity IgM, secreted rapidly by plasmablasts, from high-affinity antibodies derived from later-arising memory cells. We developed a pipeline to express B cell receptors (BCRs) from Plasmodium falciparum–specific IgM+ and IgG+ human memory B cells (MBCs) as both IgM and IgG molecules. BCRs from both subsets were somatically hypermutated and exhibited comparable monomeric affinity. Crystallization of one IgM+ MBC-derived antibody complexed with antigen defined a linear epitope within a conserved Plasmodium protein. In its physiological multimeric state, this antibody displayed exponentially higher antigen binding than a clonally identical IgG monomer, and more effectively inhibited P. falciparum invasion. Forced multimerization of this IgG significantly improved both antigen binding and parasite restriction, underscoring how avidity can alter antibody function. This work demonstrates the potential of high-avidity IgM in both therapeutics and vaccines.
Collapse
Affiliation(s)
| | - Mary F Fontana
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | | | - Kennidy K Takehara
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Yu Chen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Suruchi Singh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Gladys J Keitany
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Eric M Lynch
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA
| | - Silvia Portugal
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA.,Institute for Protein Design, University of Washington, Seattle, WA
| | - Neil P King
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA.,Institute for Protein Design, University of Washington, Seattle, WA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Marie Pancera
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
30
|
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2021; 1:1323-1343. [PMID: 23243596 PMCID: PMC3518505 DOI: 10.4161/onci.22009] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.
Collapse
Affiliation(s)
- Laura Senovilla
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Orsay, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reincke ME, Payne KJ, Harder I, Strohmeier V, Voll RE, Warnatz K, Keller B. The Antigen Presenting Potential of CD21 low B Cells. Front Immunol 2020; 11:535784. [PMID: 33193306 PMCID: PMC7609862 DOI: 10.3389/fimmu.2020.535784] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Human CD21low B cells are expanded in autoimmune (AI) diseases and display a unique phenotype with high expression of co-stimulatory molecules, compatible with a potential role as antigen-presenting cells (APCs). Thus, we addressed the co-stimulatory capacity of naïve-like, IgM-memory, switched memory and CD27negIgDneg memory CD21low B cells in allogenic co-cultures with CD4 T cells. CD21low B cells of patients with AI disorders expressed high levels of not only CD86, CD80, and HLA-DR (memory B cells) but also PD-L1 ex vivo and efficiently co-stimulated CD4 T cells of healthy donors (HD), as measured by upregulation of CD25, CD69, inducible co-stimulator (ICOS), and programmed cell death protein 1 (PD-1) and induction of cytokines. While the co-stimulatory capacity of the different CD21low B-cell populations was over all comparable to CD21pos counterparts of patients and HD, especially switched memory CD21low B cells lacked the increased capacity of CD21pos switched memory B-cells to induce high expression of ICOS, IL-2, IL-10, and IFN-γ. Acknowledging the limitation of the in vitro setting, CD21low B cells do not seem to preferentially support a specific Th effector response. In summary, our data implies that CD21low B cells of patients with AI diseases can become competent APCs and may, when enriched for autoreactive B-cell receptors (BCR), potentially contribute to AI reactions as cognate interaction partners of autoreactive T cells at sites of inflammation.
Collapse
Affiliation(s)
- Marlene E Reincke
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathryn J Payne
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Valentina Strohmeier
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Lurje I, Hammerich L, Tacke F. Dendritic Cell and T Cell Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications for Prevention and Therapy of Liver Cancer. Int J Mol Sci 2020; 21:ijms21197378. [PMID: 33036244 PMCID: PMC7583774 DOI: 10.3390/ijms21197378] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a chronic, highly prevalent disease that may progress to cirrhosis and substantially increases the risk for development of hepatocellular carcinoma (HCC). Fibrotic livers are characterized by an inflammatory microenvironment that is composed of various immunologically active cells, including liver-resident populations (e.g., Kupffer cells, hepatic stellate cells and sinusoidal endothelium) and infiltrating leukocytes (e.g., monocytes, monocyte-derived macrophages, neutrophils and lymphocytes). While inflammatory injury drives both fibrogenesis and carcinogenesis, the tolerogenic microenvironment of the liver conveys immunosuppressive effects that encourage tumor growth. An insufficient crosstalk between dendritic cells (DCs), the professional antigen presenting cells, and T cells, the efficient anti-tumor effector cells, is one of the main mechanisms of HCC tumor tolerance. The meticulous analysis of patient samples and mouse models of fibrosis-HCC provided in-depth insights into molecular mechanisms of immune interactions in liver cancer. The therapeutic modulation of this multifaceted immunological response, e.g., by inhibiting immune checkpoint molecules, in situ vaccination, oncolytic viruses or combinations thereof, is a rapidly evolving field that holds the potential to improve the outcome of patients with HCC. This review aims to highlight the current understanding of DC–T cell interactions in fibrogenesis and hepatocarcinogenesis and to illustrate the potentials and pitfalls of therapeutic clinical translation.
Collapse
|
33
|
Grasseau A, Boudigou M, Le Pottier L, Chriti N, Cornec D, Pers JO, Renaudineau Y, Hillion S. Innate B Cells: the Archetype of Protective Immune Cells. Clin Rev Allergy Immunol 2020; 58:92-106. [PMID: 31183788 DOI: 10.1007/s12016-019-08748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The innate B cell (IBC) population is heterogeneous and involved in the primary immune response. IBC functions include a high ability to produce natural antibodies with IgM isotype, the elimination of apoptotic cells, and a capacity to be cognate help to T cells. Among IBC subsets, B-1 cells and marginal zone B cells are the main producers of IgM, act as rapid immune responders that may relocate to follicular lymphoid and differentiate to cytokine and antibody-secreting cells shortly after infection. IBCs functions are highly dependent on their localization site and the nature of their B cell receptor repertoire, suggesting a high plasticity range of different immune responses. In this review, we will describe the nature and functions of the different innate-like B cell subsets, first in mice and then in humans. Besides this, we will emphasize the strong ability of these cells to undertake different protective functions from the first line of defense against pathogens to the regulatory role of the broader immune response.
Collapse
Affiliation(s)
- Alexis Grasseau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Marina Boudigou
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Laëtitia Le Pottier
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Nedra Chriti
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France
| | - Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France.
| |
Collapse
|
34
|
Laws HJ, Baumann U, Bogdan C, Burchard G, Christopeit M, Hecht J, Heininger U, Hilgendorf I, Kern W, Kling K, Kobbe G, Külper W, Lehrnbecher T, Meisel R, Simon A, Ullmann A, de Wit M, Zepp F. Impfen bei Immundefizienz. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:588-644. [PMID: 32350583 PMCID: PMC7223132 DOI: 10.1007/s00103-020-03123-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hans-Jürgen Laws
- Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - Ulrich Baumann
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität FAU Erlangen-Nürnberg, Erlangen, Deutschland
- Ständige Impfkommission (STIKO), Robert Koch-Institut, Berlin, Deutschland
| | - Gerd Burchard
- Ständige Impfkommission (STIKO), Robert Koch-Institut, Berlin, Deutschland
- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Deutschland
| | - Maximilian Christopeit
- Interdisziplinäre Klinik für Stammzelltransplantation, Universitätsklinikum Eppendorf, Hamburg, Deutschland
| | - Jane Hecht
- Abteilung für Infektionsepidemiologie, Fachgebiet Nosokomiale Infektionen, Surveillance von Antibiotikaresistenz und -verbrauch, Robert Koch-Institut, Berlin, Deutschland
| | - Ulrich Heininger
- Ständige Impfkommission (STIKO), Robert Koch-Institut, Berlin, Deutschland
- Universitäts-Kinderspital beider Basel, Basel, Schweiz
| | - Inken Hilgendorf
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Deutschland
| | - Winfried Kern
- Klinik für Innere Medizin II, Abteilung Infektiologie, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Kerstin Kling
- Abteilung für Infektionsepidemiologie, Fachgebiet Impfprävention, Robert Koch-Institut, Berlin, Deutschland.
| | - Guido Kobbe
- Klinik für Hämatologie, Onkologie und Klinische Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - Wiebe Külper
- Abteilung für Infektionsepidemiologie, Fachgebiet Impfprävention, Robert Koch-Institut, Berlin, Deutschland
| | - Thomas Lehrnbecher
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Frankfurt, Frankfurt am Main, Deutschland
| | - Roland Meisel
- Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - Arne Simon
- Klinik für Pädiatrische Onkologie und Hämatologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Deutschland
| | - Andrew Ullmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Maike de Wit
- Klinik für Innere Medizin - Hämatologie, Onkologie und Palliativmedizin, Vivantes Klinikum Neukölln, Berlin, Deutschland
- Klinik für Innere Medizin - Onkologie, Vivantes Auguste-Viktoria-Klinikum, Berlin, Deutschland
| | - Fred Zepp
- Ständige Impfkommission (STIKO), Robert Koch-Institut, Berlin, Deutschland
- Zentrum für Kinder- und Jugendmedizin, Universitätsmedizin Mainz, Mainz, Deutschland
| |
Collapse
|
35
|
Toro A, Parrinello NL, Schembari E, Mannino M, Corsale G, Triolo A, Palermo F, Romano A, Di Raimondo F, Di Carlo I. Single segment of spleen autotransplantation, after splenectomy for trauma, can restore splenic functions. World J Emerg Surg 2020; 15:17. [PMID: 32131858 PMCID: PMC7057566 DOI: 10.1186/s13017-020-00299-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Splenectomy is sometimes necessary after abdominal trauma, but splenectomized patients are at risk of sepsis due to impaired immunological functions. To overcome this risk, autotransplantation of the spleen by using a new technique has been proposed, but so far, a demonstration of functionality of the transplanted tissue is lacking. METHODS We therefore evaluated 5 patients who underwent a splenic autotransplant in comparison with 5 splenectomized patients without splenic autotransplant and 7 normal subjects. RESULTS We confirmed that the patients not undergoing autotransplantation, when compared to normal subjects, had a higher platelet count, higher percentage of micronucleated reticulocytes (p = 0.002), increased levels of naive B lymphocytes (p = 0.01), a defect of class-switched memory (p = 0.001) and class-unswitched memory B cells (p = 0.002), and increased levels of PD1 on T lymphocytes CD8+ (p = 0.08). In contrast, no significant differences for any of the abovementioned parameters were recorded between patients who underwent spleen autotransplantation and normal subjects. CONCLUSION These findings suggest that splenic autotransplantation is able to restore an adequate hemocatheretic activity as well as recover the immunological deficit after splenectomy.
Collapse
Affiliation(s)
- Adriana Toro
- Department of General Surgery, E. Muscatello Hospital, Augusta, SR, Italy
| | | | - Elena Schembari
- Department of Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy
| | - Maurizio Mannino
- Department of Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy
| | | | - Anna Triolo
- Division of Hematology, AOU Policlinico Vittorio Emanuele, University of Catania, Catania, Italy
| | - Filippo Palermo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Romano
- Division of Hematology, AOU Policlinico Vittorio Emanuele, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Division of Hematology, AOU Policlinico Vittorio Emanuele, University of Catania, Catania, Italy
| | - Isidoro Di Carlo
- Department of Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy.
| |
Collapse
|
36
|
The formation of mutated IgM memory B cells in rat splenic marginal zones is an antigen dependent process. PLoS One 2019; 14:e0220933. [PMID: 31490967 PMCID: PMC6730915 DOI: 10.1371/journal.pone.0220933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022] Open
Abstract
Previous studies in rodents have indicated that only a minor fraction of the immunoglobulin heavy chain variable region (IGHV-Cμ) transcripts carry somatic mutations and are considered memory B cells. This is in marked contrast to humans where nearly all marginal zone B (MZ-B) cells are mutated. Here we show in rats that the proportion of mutated IgM+ MZ-B cells varies significantly between the various IGHV genes analyzed, ranging from 27% mutated IGHV5 transcripts to 65% mutated IGHV4 transcripts. The observed data on mutated sequences in clonally-related B cells with a MZ-B cell or follicular B (FO-B) cell phenotype indicates that mutated IgM+ MZ-B and FO-B cells have a common origin. To further investigate the origin of mutated IgM+ MZ-B cells we determined whether mutations occurred in rearranged IGHV-Cμ transcripts using IGHV4 and IGHV5 genes from neonatal rat MZ-B cells and FO-B cells. We were not able to detect mutations in any of the IGHV4 and IGHV5 genes expressed by MZ-B cells or FO-B cells obtained from neonatal rat spleens. Germinal centres (GCs) are absent from neonatal rat spleen in the first few weeks of their life, and no mutations were found in any of the neonatal sequences, not even in the IGHV4 gene family which accumulates the highest number of mutated sequences (66%) in the adult rat. Therefore, these data do not support the notion that MZ-B cells in rats mutate their IGHV genes as part of their developmental program, but are consistent with the notion that mutated rat MZ-B cells require GCs for their generation. Our findings support that the splenic MZ of rats harbors a significant number of memory type IgM+ MZ-B cells with mutated IGHV genes and propose that these memory MZ-B cells are probably generated as a result of an antigen driven immune response in GCs, which still remains to be proven.
Collapse
|
37
|
Abstract
The marginal zone (MZ) is largely composed of a unique subpopulation of B cells, the so-called MZ-B cells. At a molecular level, memory B cells are characterized by the presence of somatically mutated IGV genes. The earliest studies in the rat have documented the presence of hapten-specific MZ-B cells after immunization in the MZ. This work later received experimental support demonstrating that the IGHV-Cµ transcripts expressed by phenotypically defined splenic MZ-B cells (defined as CD90negIgMhighIgDlow B cells) can carry somatic hypermutation. However, only a minor fraction (< 10%-20%) of these MZ-B cells is mutated and is considered to represent memory B cells. Memory B cells can either be class-switched (IgG, IgA, IgE), or non-class-switched (IgM) B cells. B cells in the MZ are a heterogeneous population of cells and both naïve MZ-B cells; class switched and unswitched memory MZ-B cells are present at this unique site in the spleen. Naïve MZ-B cells carry unmutated Ig genes, produce low-affinity IgM molecules and constitute a first line of defense against invading pathogens. Memory MZ-B cells express high-affinity Ig molecules, directed to (microbial) antigens that have been encountered. In this review, we report on the memory compartment of splenic MZ-B cells in the rat to provide insights into the origin and function of these memory MZ-B cells.
Collapse
Affiliation(s)
- Jacobus Hendricks
- Discipline of Human Physiology, Westville Campus, University of KwaZulu-Natal, Durban, South Africa.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicolaas A Bos
- Discipline of Human Physiology, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Frans G M Kroese
- Discipline of Human Physiology, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, Abolhassani H, Aghamohammadi A. The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency. Int Arch Allergy Immunol 2019; 179:231-246. [DOI: 10.1159/000499044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
|
39
|
Espéli M, Bashford-Rogers R, Sowerby JM, Alouche N, Wong L, Denton AE, Linterman MA, Smith KGC. FcγRIIb differentially regulates pre-immune and germinal center B cell tolerance in mouse and human. Nat Commun 2019; 10:1970. [PMID: 31036800 PMCID: PMC6488660 DOI: 10.1038/s41467-019-09434-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/21/2019] [Indexed: 11/18/2022] Open
Abstract
Several tolerance checkpoints exist throughout B cell development to control autoreactive B cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that inhibits B cell activation and, if defective, is associated with autoimmune disease, yet its impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced expression of FcγRIIb enhances the deletion and anergy of autoreactive immature B cells, but in contrast promotes autoreactive B cell expansion in the germinal center and serum autoantibody production, even in response to exogenous, non-self antigens. Our data thus show that FcγRIIb has opposing effects on pre-immune and post-immune tolerance checkpoints, and suggest that B cell tolerance requires the control of bystander germinal center B cells with low or no affinity for the immunizing antigen. The inhibitory receptor, FcγRIIb, is reported to limit autoimmune B cell response. Here the authors show that FcγRIIb has a dual role in both human and mouse, with reduced FcγRIIb expression or function associated with enhanced pre-immune B cell tolerance, yet defective control of mature autoreactive B cells in the germinal center.
Collapse
Affiliation(s)
- Marion Espéli
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France.
| | - Rachael Bashford-Rogers
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK
| | - Nagham Alouche
- UMR996 - Inflammation, Chemokines and Immunopathology, Inserm, Univ Paris-Sud, Université Paris-Saclay, Clamart, F-92140, France
| | - Limy Wong
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK
| | - Alice E Denton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Michelle A Linterman
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK.,Lymphocyte Signalling and Development, Babraham Institute, CB22 3AT, Cambridge, UK
| | - Kenneth G C Smith
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 OXY, England, UK. .,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, University of Cambridge, CB2 0AW, Cambridge, UK.
| |
Collapse
|
40
|
Kumar P, Shih DCW, Lim A, Paleja B, Ling S, Li Yun L, Li Poh S, Ngoh A, Arkachaisri T, Yeo JG, Albani S. Pro-inflammatory, IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy. JCI Insight 2019; 5:126337. [PMID: 30912766 PMCID: PMC6538358 DOI: 10.1172/jci.insight.126337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug refractory epilepsy (RE) is a chronic neurological disease with varied etiology that represents a group of patients whose seizures do not respond to antiepileptic drugs. The immune system may have a role in seizure and epilepsy development, but the specific mechanisms of inflammation that lead to epileptogenesis and contribute to RE are unknown. Here, we used mass cytometry to comprehensively study the immune system of pediatric patients with RE and compared their immune profile and function with patients with age-matched autoimmune encephalitis (AIE) and healthy controls. Patients with RE and AIE displayed similar immune profiles overall, with changes in CD4+ and CD8+ T cell subsets and an unbalance toward proinflammatory IL-17 production. In addition, patients with RE uniquely showed an altered balance in NK cell subsets. A systems-level intercellular network analysis identified rewiring of the immune system, leading to loss of inhibitory/regulatory intercellular connections and emergence of proinflammatory pathogenic functions in neuroinflammatory immune cell networks in patients with AIE and RE. These data underscore the contribution of systemic inflammation to the pathogenesis of seizures and epileptogenesis and have direct translational implications in advancing diagnostics and therapeutics design. The architecture of the immunome in pediatric refractory epilepsy is dominated by a emergence of pro-inflammatory, IL-17 dependent pathways.
Collapse
Affiliation(s)
- Pavanish Kumar
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Derrick Chan Wei Shih
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Amanda Lim
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Bhairav Paleja
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Simon Ling
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Lai Li Yun
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Su Li Poh
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Adeline Ngoh
- Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-NUS Medical School and Rheumatology and Immunology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Paediatrics Academic Clinical Programme, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
41
|
Kim SH, Hyun JW, Kim HJ. Individualized B cell-targeting therapy for neuromyelitis optica spectrum disorder. Neurochem Int 2018; 130:104347. [PMID: 30513364 DOI: 10.1016/j.neuint.2018.11.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system characterized by severe attacks of optic neuritis (ON), longitudinally extensive transverse myelitis (LETM), and area postrema syndrome. The majority of patients with NMOSD are seropositive for autoantibodies against the astrocyte water channel aquaporin-4 (AQP4). As convergent clinical and laboratory-based investigations have indicated that B cells play a fundamental role in NMO immunopathology, B cells have become an attractive therapeutic target. Rituximab is a therapeutic monoclonal antibody against CD20 expressed on B cells and increasingly used for the treatment of NMOSD. Although there is robust evidence for the efficacy and safety of rituximab in NMOSD, considerable variability has been noted in biological and clinical responses in patients. Therefore, the focus now is on understanding the mechanisms underlying the variability in response to rituximab and optimizing the use of rituximab for NMOSD. Identification of biomarkers for prediction of clinical response, and effective dosing and timing of treatment may provide useful tools for patient-tailored treatment in NMOSD. Herein, we review current evidence on factors that affect biological and clinical responses to rituximab and highlight the importance of individualized therapies for NMOSD.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Republic of Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Republic of Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Republic of Korea.
| |
Collapse
|
42
|
Lymphocyte subset expression and serum concentrations of PD-1/PD-L1 in sepsis - pilot study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:95. [PMID: 29661225 PMCID: PMC5902875 DOI: 10.1186/s13054-018-2020-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
Abstract
Background Sepsis remains a major cause of mortality in critical care, for which specific treatments are lacking. The dysregulated response to infection seen in sepsis includes features of lymphocyte dysfunction and exhaustion, suggesting that immune-stimulatory therapy may improve outcomes in certain patient groups. Monoclonal antibodies targeting checkpoint molecules, such as programmed-death 1 protein (PD-1) and its ligand PD-L1, have shown success in stimulating the immune response in patients with cancer, and are being considered for future sepsis trials. The aims of this pilot study were to compare lymphocyte subset expression of PD-1 and its ligands between patients with sepsis and controls; to characterize serum levels of PD-1 and PD-L1 in patients with sepsis and controls, and determine if serum concentrations correlated with cell surface expression. Methods Expression levels of PD-1, PD-L1 and PD-L2 on four lymphocyte subsets (CD27 + CD19+ B cells, CD27-CD19+ B cells, CD27 + CD4+ T cells and CD27-CD4+ T cells) were compared between 22 patients with sepsis (including 11 survivors and 11 non-survivors) and 11 healthy controls using flow cytometry. Levels of soluble PD-1 and PD-L1 were also compared using commercially available ELISA kits. Results Expression of PD-1 and PD-L1 was higher on all lymphocyte subsets in patients with sepsis compared to controls (p < 0.05). PD-L2 expression on CD27+ B cells was also higher in patients with sepsis (p = 0.0317). There was differential expression of PD-1 by CD27 status, with expression being higher in the B and T cell subsets associated with memory status (CD27+ and CD27-, respectively; p < 0.001). Higher PD-1 and PD-L1 expression was not associated with mortality or with a higher risk of nosocomial infection. There were no differences in levels of soluble PD-1 or PD-L1 between patients with sepsis and controls. Conclusions Higher expression of PD-1 by memory subpopulations of B cells and CD4+ T cells, with normal soluble PD-1 and PD-L1 in patients with sepsis, are novel findings. This information may be useful to enrich sepsis populations for trials of PD-1/PD-L1 blockade. Electronic supplementary material The online version of this article (10.1186/s13054-018-2020-2) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Harms Pritchard G, Pepper M. Memory B cell heterogeneity: Remembrance of things past. J Leukoc Biol 2018; 103:269-274. [PMID: 29345369 DOI: 10.1002/jlb.4mr0517-215r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022] Open
Abstract
B cells that persist for long periods of time after antigen encounter exist as either antibody-producing plasma cells (long-lived plasma cells, LLPCs) that reside primarily in the bone marrow or rapidly responsive memory B cells (MBCs) that reside in the spleen and circulation. Although LLPCs are thought to be non-responsive to a secondary infection, MBCs respond to subsequent infection through the production of antibody-secreting cells, formation of new germinal centers (GCs), and repopulation of the memory pool. Dogma suggests that MBCs express class-switched, somatically hypermutated BCRs after undergoing a GC reaction. Yet this narrow view of MBCs has been challenged over the years and it is now well recognized that diverse MBC subsets exist in both rodents and humans. Here, we review current thoughts on the phenotypic and functional characteristics of MBCs, focusing on a population of somatically hypermutated, high affinity IgM+ MBCs that are rapidly responsive to a secondary malaria infection.
Collapse
Affiliation(s)
- Gretchen Harms Pritchard
- Department of Immunology, University of Washington School of Medicine, 750 Republican Street, Seattle WA, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, 750 Republican Street, Seattle WA, USA
| |
Collapse
|
44
|
Keefer MC, Zheng B, Rosenberg AF, Kobie JJ. Increased Steady-State Memory B Cell Subsets Among High-Risk Participants in an HIV Vaccine Trial. AIDS Res Hum Retroviruses 2017; 32:1143-1148. [PMID: 27612555 DOI: 10.1089/aid.2016.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The success of an HIV vaccine will require induction of a protective immune response in the most at-risk populations. The increased incidence of HIV infection in high-risk populations is assumed to be primarily the result of more frequent exposure to the virus or a greater inoculum of the virus; however, underlying variations in immune homeostasis may also contribute to HIV susceptibility and potentially impact vaccine responses and those required for protection. As an effective humoral immune response is likely to be a critical component of a protective HIV vaccine, we evaluated the steady-state phenotypic profile of peripheral blood B cells by flow cytometry from participants in the HIV Vaccine Trials Network (HVTN) 203 Phase 2a HIV vaccine trial considered to be at higher risk and lower risk for HIV acquisition. Overall, high-risk participants exhibited increased frequency of unswitched IgM memory and activated switched IgD-CD95+ memory B cells than low-risk participants. Most (93%) of the high-risk male participants were men who have sex with men who engaged in high-risk sexual behavior. High-risk males had a significantly increased frequency of CXCR3+ IgD-CD95+ B cells than low-risk males. These results suggest that high-risk populations have altered B cell homeostasis. The increased frequency of activated and memory B cells may suggest increased immune activation in high-risk populations, which may contribute to possible differential responses to HIV vaccine strategies.
Collapse
Affiliation(s)
- Michael C. Keefer
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, New York
| | - Bo Zheng
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, New York
| | - Alexander F. Rosenberg
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester, Rochester, New York
| | - James J. Kobie
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, New York
| |
Collapse
|
45
|
Muir L, McKay PF, Petrova VN, Klymenko OV, Kratochvil S, Pinder CL, Kellam P, Shattock RJ. Optimisation of ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses. Wellcome Open Res 2017; 2:97. [PMID: 29588920 PMCID: PMC5843844 DOI: 10.12688/wellcomeopenres.11386.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be cultured ex vivo, allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM + memory B cells. Methods: Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry. Results: The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions: Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination.
Collapse
Affiliation(s)
- Luke Muir
- Department of Mucosal Infection and Immunity, Imperial College London, London, W2 1PG, UK
| | - Paul F McKay
- Department of Mucosal Infection and Immunity, Imperial College London, London, W2 1PG, UK
| | | | - Oleksiy V Klymenko
- Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Sven Kratochvil
- Department of Mucosal Infection and Immunity, Imperial College London, London, W2 1PG, UK
| | - Christopher L Pinder
- Department of Mucosal Infection and Immunity, Imperial College London, London, W2 1PG, UK
| | - Paul Kellam
- Department of Mucosal Infection and Immunity, Imperial College London, London, W2 1PG, UK.,The Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK.,Kymab Ltd., Cambridge, CB22 3AT, UK
| | - Robin J Shattock
- Department of Mucosal Infection and Immunity, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
46
|
Muir L, McKay PF, Petrova VN, Klymenko OV, Kratochvil S, Pinder CL, Kellam P, Shattock RJ. Optimisation of ex vivo memory B cell expansion/differentiation for interrogation of rare peripheral memory B cell subset responses. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.11386.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:Human memory B cells play a vital role in the long-term protection of the host from pathogenic re-challenge. In recent years the importance of a number of different memory B cell subsets that can be formed in response to vaccination or infection has started to become clear. To study memory B cell responses, cells can be culturedex vivo,allowing for an increase in cell number and activation of these quiescent cells, providing sufficient quantities of each memory subset to enable full investigation of functionality. However, despite numerous papers being published demonstrating bulk memory B cell culture, we could find no literature on optimised conditions for the study of memory B cell subsets, such as IgM+memory B cells.Methods:Following a literature review, we carried out a large screen of memory B cell expansion conditions to identify the combination that induced the highest levels of memory B cell expansion. We subsequently used a novel Design of Experiments approach to finely tune the optimal memory B cell expansion and differentiation conditions for human memory B cell subsets. Finally, we characterised the resultant memory B cell subpopulations by IgH sequencing and flow cytometry.Results:The application of specific optimised conditions induce multiple rounds of memory B cell proliferation equally across Ig isotypes, differentiation of memory B cells to antibody secreting cells, and importantly do not alter the Ig genotype of the stimulated cells. Conclusions:Overall, our data identify a memory B cell culture system that offers a robust platform for investigating the functionality of rare memory B cell subsets to infection and/or vaccination.
Collapse
|
47
|
Matsuda Y, Imamura R, Takahara S. Evaluation of Antigen-Specific IgM and IgG Production during an In Vitro Peripheral Blood Mononuclear Cell Culture Assay. Front Immunol 2017; 8:794. [PMID: 28740496 PMCID: PMC5502262 DOI: 10.3389/fimmu.2017.00794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022] Open
Abstract
The recent attention given to diseases associated with memory B-cell (mBC)-produced antibodies (Abs) suggests the need for a similar in vitro assay to evaluate the functions of mBCs. Here, we cultured peripheral blood mononuclear cells (PBMCs) with the intent to collect mBC-derived Abs in vitro and maintain their cell–cell contact-dependent interactions with helper T-cells. PBMCs were cultured with interleukin (IL)-21, CpG-oligodeoxynucleotides (ODN), phorbol myristate acetate (PMA), and phytohemagglutinin/leucoagglutinin (PHA-L) in 24-well flat-bottom plates (5 × 105 cells/well). A culture supernatant analysis of PBMCs from healthy donors (n = 10) indicated that antigen-specific IgM Ab levels in a PBMC culture supernatant might be better able to demonstrate the antigen sensitization status in a smaller peripheral blood sample, compared to IgG because Epstein–Barr virus-specific IgM mBCs circulate peripherally at a significantly higher frequency once antiviral humoral immunity has stabilized. Thus, our in vitro assay demonstrated the potential significance of antigen-specific IgM Ab production in the culture supernatants. Furthermore, an analysis of cultured PBMCs from allograft kidney recipients (n = 16) sensitized with de novo donor-specific human leukocyte antigen (HLA)-specific Abs (DSAs) showed that IgM-type HLA-specific Abs were detected mainly from the culture supernatants from PBMCs of patients with stable graft function, whereas IgG isotype HLA Abs were detectable only from patients with biopsy-proven antibody-mediated rejection. In other words, these IgG isotype Abs also represented an activated humoral immune response in vivo. Additionally, IgM- and IgG-expressing mBCs from healthy donors (n = 5) were cultured with IL-21, CpG-ODN, and a supernatant produced by stimulating CD19+ B-cell-depleted PBMCs with PHA-L and PMA in 24-well flat-bottom plates (1 × 105 cells/well), and the resulting in vitro analysis provided some information regarding the biological processes of IgG and IgM mBCs in peripheral blood. Taken together, our findings suggest that antigen-specific Ab subtype analyses of supernatants from cultured PBMCs might more effectively and accurately reflect a patient’s Ab-associated pathological condition vs. than serum IgG and IgM levels.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Department of Advanced Technology for Transplantation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
48
|
Abdel-Azim H, Elshoury A, Mahadeo KM, Parkman R, Kapoor N. Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children: A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution. Biol Blood Marrow Transplant 2017; 23:1437-1446. [PMID: 28495643 DOI: 10.1016/j.bbmt.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/04/2017] [Indexed: 01/25/2023]
Abstract
Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4+ T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California; University of Southern California Keck School of Medicine, Los Angeles, California.
| | - Amro Elshoury
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California
| | - Kris M Mahadeo
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California; University of Southern California Keck School of Medicine, Los Angeles, California
| | - Robertson Parkman
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California; University of Southern California Keck School of Medicine, Los Angeles, California
| | - Neena Kapoor
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California; University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
49
|
Abstract
We comprehensively review memory B cells (MBCs), covering the definition of MBCs and their identities and subsets, how MBCs are generated, where they are localized, how they are maintained, and how they are reactivated. Whereas naive B cells adopt multiple fates upon stimulation, MBCs are more restricted in their responses. Evolving work reveals that the MBC compartment in mice and humans consists of distinct subpopulations with differing effector functions. We discuss the various approaches to define subsets and subset-specific roles. A major theme is the need to both deliver faster effector function upon reexposure and readapt to antigenically variant pathogens while avoiding burnout, which would be the result if all MBCs generated only terminal effector function. We discuss cell-intrinsic differences in gene expression and signaling that underlie differences in function between MBCs and naive B cells and among MBC subsets and how this leads to memory responses.
Collapse
Affiliation(s)
- Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
50
|
Phan TG, Tangye SG. Memory B cells: total recall. Curr Opin Immunol 2017; 45:132-140. [PMID: 28363157 DOI: 10.1016/j.coi.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/27/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022]
Abstract
Immunological memory is a cornerstone of adaptive immune responses in higher vertebrates. The remarkable ability to generate memory cells following Ag exposure, in the context of natural infection or immunization, provides long-lived protection against infectious diseases, often for the hosts' lifetime. Indeed, the generation of memory B cells and long-lived plasma cells underpins the success of most vaccines. The concept of immunological memory is not new-it was first proposed nearly 2500 years ago. While our understanding of the complexities of humoral and cell-mediated memory continues to evolve, important aspects of this process remain unresolved. Here, we will provide an overview of recent advances in B-cell memory in mice and humans, and in health and disease.
Collapse
Affiliation(s)
- Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of NSW, Australia.
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of NSW, Australia.
| |
Collapse
|