1
|
Deng T, Ding R, Wang Y, Chen Y, Sun H, Zheng M. Mapping knowledge of the stem cell in traumatic brain injury: a bibliometric and visualized analysis. Front Neurol 2024; 15:1301277. [PMID: 38523616 PMCID: PMC10957745 DOI: 10.3389/fneur.2024.1301277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a brain function injury caused by external mechanical injury. Primary and secondary injuries cause neurological deficits that mature brain tissue cannot repair itself. Stem cells can self-renewal and differentiate, the research of stem cells in the pathogenesis and treatment of TBI has made significant progress in recent years. However, numerous articles must be summarized to analyze hot spots and predict trends. This study aims to provide a panorama of knowledge and research hotspots through bibliometrics. Method We searched in the Web of Science Core Collection (WoSCC) database to identify articles pertaining to TBI and stem cells published between 2000 and 2022. Visualization knowledge maps, including co-authorship, co-citation, and co-occurrence analysis were generated by VOSviewer, CiteSpace, and the R package "bibliometrix." Results We retrieved a total of 459 articles from 45 countries. The United States and China contributed the majority of publications. The number of publications related to TBI and stem cells is increasing yearly. Tianjin Medical University was the most prolific institution, and Professor Charles S. Cox, Jr. from the University of Texas Health Science Center at Houston was the most influential author. The Journal of Neurotrauma has published the most research articles on TBI and stem cells. Based on the burst references, "immunomodulation," "TBI," and "cellular therapy" have been regarded as research hotspots in the field. The keywords co-occurrence analysis revealed that "exosomes," "neuroinflammation," and "microglia" were essential research directions in the future. Conclusion Research on TBI and stem cells has shown a rapid growth trend in recent years. Existing studies mainly focus on the activation mechanism of endogenous neural stem cells and how to make exogenous stem cell therapy more effective. The combination with bioengineering technology is the trend in this field. Topics related to exosomes and immune regulation may be the future focus of TBI and stem cell research.
Collapse
Affiliation(s)
- Tingzhen Deng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ruiwen Ding
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yatao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yueyang Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hongtao Sun
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Maohua Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Anaya-Martínez V, Anacleto-Santos J, Mondragón-Flores R, Zepeda-Rodríguez A, Casarrubias-Tabarez B, de Jesús López-Pérez T, de Alba-Alvarado MC, Martínez-Ortiz-de-Montellano C, Carrasco-Ramírez E, Rivera-Fernández N. Changes in the Proliferation of the Neural Progenitor Cells of Adult Mice Chronically Infected with Toxoplasma gondii. Microorganisms 2023; 11:2671. [PMID: 38004683 PMCID: PMC10673519 DOI: 10.3390/microorganisms11112671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
During Toxoplasma gondii chronic infection, certain internal factors that trigger the proliferation of neural progenitor cells (NPCs), such as brain inflammation, cell death, and changes in cytokine levels, are observed. NPCs give rise to neuronal cell types in the adult brain of some mammals. NPCs are capable of dividing and differentiating into a restricted repertoire of neuronal and glial cell types. In this study, the proliferation of NPCs was evaluated in CD-1 adult male mice chronically infected with the T. gondii ME49 strain. Histological brain sections from the infected mice were evaluated in order to observe T. gondii tissue cysts. Sagittal and coronal sections from the subventricular zone of the lateral ventricles and from the subgranular zone of the hippocampal dentate gyrus, as well as sagittal sections from the rostral migratory stream, were obtained from infected and non-infected mice previously injected with bromodeoxyuridine (BrdU). A flotation immunofluorescence technique was used to identify BrdU+ NPC. The scanning of BrdU+ cells was conducted using a confocal microscope, and the counting was performed with ImageJ® software (version 1.48q). In all the evaluated zones from the infected mice, a significant proliferation of the NPCs was observed when compared with that of the control group. We concluded that chronic infection with T. gondii increased the proliferation of NPCs in the three evaluated zones. Regardless of the role these cells are playing, our results could be useful to better understand the pathogenesis of chronic toxoplasmosis.
Collapse
Affiliation(s)
- Verónica Anaya-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac, Lomas Anáhuac, Naucalpan de Juárez 52786, Estado de México, Mexico;
| | - Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | | | - Armando Zepeda-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (A.Z.-R.); (B.C.-T.)
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (A.Z.-R.); (B.C.-T.)
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Mariana Citlalli de Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Cintli Martínez-Ortiz-de-Montellano
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| | - Elba Carrasco-Ramírez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Ciudad de México 04510, Mexico; (J.A.-S.); (T.d.J.L.-P.); (M.C.d.A.-A.); (E.C.-R.)
| |
Collapse
|
3
|
Chang Y, Lee S, Kim J, Kim C, Shim HS, Lee SE, Park HJ, Kim J, Lee S, Lee YK, Park S, Yoo J. Gene Therapy Using Efficient Direct Lineage Reprogramming Technology for Neurological Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101680. [PMID: 37242096 DOI: 10.3390/nano13101680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Gene therapy is an innovative approach in the field of regenerative medicine. This therapy entails the transfer of genetic material into a patient's cells to treat diseases. In particular, gene therapy for neurological diseases has recently achieved significant progress, with numerous studies investigating the use of adeno-associated viruses for the targeted delivery of therapeutic genetic fragments. This approach has potential applications for treating incurable diseases, including paralysis and motor impairment caused by spinal cord injury and Parkinson's disease, and it is characterized by dopaminergic neuron degeneration. Recently, several studies have explored the potential of direct lineage reprogramming (DLR) for treating incurable diseases, and highlighted the advantages of DLR over conventional stem cell therapy. However, application of DLR technology in clinical practice is hindered by its low efficiency compared with cell therapy using stem cell differentiation. To overcome this limitation, researchers have explored various strategies such as the efficiency of DLR. In this study, we focused on innovative strategies, including the use of a nanoporous particle-based gene delivery system to improve the reprogramming efficiency of DLR-induced neurons. We believe that discussing these approaches can facilitate the development of more effective gene therapies for neurological disorders.
Collapse
Affiliation(s)
- Yujung Chang
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
- Department of Molecular Biology, Nuturn Science, Sinsadong 559-8, Seoul 06037, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon 24341, Republic of Korea
| | - Chunggoo Kim
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Hyun Soo Shim
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyeok Ju Park
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University-Seoul, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Yong Kyu Lee
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University-Seoul, Pildong-ro 1-gil 30, Jung-gu, Seoul 04620, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si 16419, Republic of Korea
| | - Junsang Yoo
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Hannamdaero 98, Seoul 04418, Republic of Korea
| |
Collapse
|
4
|
Echeverria V, Mendoza C, Iarkov A. Nicotinic acetylcholine receptors and learning and memory deficits in Neuroinflammatory diseases. Front Neurosci 2023; 17:1179611. [PMID: 37255751 PMCID: PMC10225599 DOI: 10.3389/fnins.2023.1179611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL, United States
| | - Cristhian Mendoza
- Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastián, Concepción, Chile
| | - Alex Iarkov
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
5
|
Zhai Y, Ye SY, Wang QS, Xiong RP, Fu SY, Du H, Xu YW, Peng Y, Huang ZZ, Yang N, Zhao Y, Ning YL, Li P, Zhou YG. Overexpressed ski efficiently promotes neurorestoration, increases neuronal regeneration, and reduces astrogliosis after traumatic brain injury. Gene Ther 2023; 30:75-87. [PMID: 35132206 DOI: 10.1038/s41434-022-00320-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) survivors suffer from long-term disability and neuropsychiatric sequelae due to irreparable brain tissue destruction. However, there are still few efficient therapies to promote neurorestoration in damaged brain tissue. This study aimed to investigate whether the pro-oncogenic gene ski can promote neurorestoration after TBI. We established a ski-overexpressing experimental TBI mouse model using adenovirus-mediated overexpression through immediate injection after injury. Hematoxylin-eosin staining, MRI-based 3D lesion volume reconstruction, neurobehavioral tests, and analyses of neuronal regeneration and astrogliosis were used to assess neurorestorative efficiency. The effects of ski overexpression on the proliferation of cultured immature neurons and astrocytes were evaluated using imaging flow cytometry. The Ski protein level increased in the perilesional region at 3 days post injury. ski overexpression further elevated Ski protein levels up to 14 days post injury. Lesion volume was attenuated by approximately 36-55% after ski overexpression, with better neurobehavioral recovery, more newborn immature and mature neurons, and less astrogliosis in the perilesional region. Imaging flow cytometry results showed that ski overexpression elevated the proliferation rate of immature neurons and reduced the proliferation rate of astrocytes. These results show that ski can be considered a novel neurorestoration-related gene that effectively promotes neurorestoration, facilitates neuronal regeneration, and reduces astrogliosis after TBI.
Collapse
Affiliation(s)
- Yu Zhai
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Shi-Yang Ye
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Qiu-Shi Wang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.,Department of Pathology, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Ren-Ping Xiong
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Sheng-Yu Fu
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Hao Du
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Wei Xu
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Peng
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Zhi-Zhong Huang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Nan Yang
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Yan Zhao
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ya-Lei Ning
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China
| | - Ping Li
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.
| | - Yuan-Guo Zhou
- The Molecular Biology Centre, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
6
|
Fan H, Duan H, Hao P, Gao Y, Zhao W, Hao F, Li X, Yang Z. Cellular regeneration treatments for traumatic brain injury. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Hossain MM, Belkadi A, Zhou X, DiCicco-Bloom E. Exposure to deltamethrin at the NOAEL causes ER stress and disruption of hippocampal neurogenesis in adult mice. Neurotoxicology 2022; 93:233-243. [DOI: 10.1016/j.neuro.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
|
8
|
Guo X, Ma R, Wang M, Wui-Man Lau B, Chen X, Li Y. Novel perspectives on the therapeutic role of cryptotanshinone in the management of stem cell behaviors for high-incidence diseases. Front Pharmacol 2022; 13:971444. [PMID: 36046823 PMCID: PMC9420941 DOI: 10.3389/fphar.2022.971444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cryptotanshinone (CTS), a diterpenoid quinone, is found mostly in Salvia miltiorrhiza Bunge (S. miltiorrhiza) and plays a crucial role in many cellular processes, such as cell proliferation/self-renewal, differentiation and apoptosis. In particular, CTS’s profound physiological impact on various stem cell populations and their maintenance and fate determination could improve the efficiency and accuracy of stem cell therapy for high-incidence disease. However, as much promise CTS holds, these CTS-mediated processes are complex and multifactorial and many of the underlying mechanisms as well as their clinical significance for high-incidence diseases are not yet fully understood. This review aims to shed light on the impact and mechanisms of CTS on the actions of diverse stem cells and the involvement of CTS in the many processes of stem cell behavior and provide new insights for the application of CTS and stem cell therapy in treating high-incidence diseases.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruishuang Ma
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Xiaopeng Chen
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xiaopeng Chen, ; Yue Li,
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xiaopeng Chen, ; Yue Li,
| |
Collapse
|
9
|
Marzano LAS, de Castro FLM, Machado CA, de Barros JLVM, Macedo E Cordeiro T, Simões E Silva AC, Teixeira AL, Silva de Miranda A. Potential Role of Adult Hippocampal Neurogenesis in Traumatic Brain Injury. Curr Med Chem 2021; 29:3392-3419. [PMID: 34561977 DOI: 10.2174/0929867328666210923143713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI's long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.
Collapse
Affiliation(s)
- Lucas Alexandre Santos Marzano
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | | | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Brazil
| | | | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, United States
| | - Aline Silva de Miranda
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
10
|
Pinho TS, Cunha CB, Lanceros-Méndez S, Salgado AJ. Electroactive Smart Materials for Neural Tissue Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:6604-6618. [PMID: 35006964 DOI: 10.1021/acsabm.1c00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Repair in the human nervous system is a complex and intertwined process that offers significant challenges to its study and comprehension. Taking advantage of the progress in fields such as tissue engineering and regenerative medicine, the scientific community has witnessed a strong increase of biomaterial-based approaches for neural tissue regenerative therapies. Electroactive materials, increasingly being used as sensors and actuators, also find application in neurosciences due to their ability to deliver electrical signals to the cells and tissues. The use of electrical signals for repairing impaired neural tissue therefore presents an interesting and innovative approach to bridge the gap between fundamental research and clinical applications in the next few years. In this review, first a general overview of electroactive materials, their historical origin, and characteristics are presented. Then a comprehensive view of the applications of electroactive smart materials for neural tissue regeneration is presented, with particular focus on the context of spinal cord injury and brain repair. Finally, the major challenges of the field are discussed and the main challenges for the near future presented. Overall, it is concluded that electroactive smart materials play an ever-increasing role in neural tissue regeneration, appearing as potentially valuable biomaterials for regenerative purposes.
Collapse
Affiliation(s)
- Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal.,Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Cristiana B Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Senentxu Lanceros-Méndez
- Center of Physics, University of Minho, 4710-058 Braga, Portugal.,BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Aronowitz JV, Perez A, O’Brien C, Aziz S, Rodriguez E, Wasner K, Ribeiro S, Green D, Faruk F, Pytte CL. Unilateral vocal nerve resection alters neurogenesis in the avian song system in a region-specific manner. PLoS One 2021; 16:e0256709. [PMID: 34464400 PMCID: PMC8407570 DOI: 10.1371/journal.pone.0256709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
New neurons born in the adult brain undergo a critical period soon after migration to their site of incorporation. During this time, the behavior of the animal may influence the survival or culling of these cells. In the songbird song system, earlier work suggested that adult-born neurons may be retained in the song motor pathway nucleus HVC with respect to motor progression toward a target song during juvenile song learning, seasonal song restructuring, and experimentally manipulated song variability. However, it is not known whether the quality of song per se, without progressive improvement, may also influence new neuron survival. To test this idea, we experimentally altered song acoustic structure by unilateral denervation of the syrinx, causing a poor quality song. We found no effect of aberrant song on numbers of new neurons in HVC, suggesting that song quality does not influence new neuron culling in this region. However, aberrant song resulted in the loss of left-side dominance in new neurons in the auditory region caudomedial nidopallium (NCM), and a bilateral decrease in new neurons in the basal ganglia nucleus Area X. Thus new neuron culling may be influenced by behavioral feedback in accordance with the function of new neurons within that region. We propose that studying the effects of singing behaviors on new neurons across multiple brain regions that differentially subserve singing may give rise to general rules underlying the regulation of new neuron survival across taxa and brain regions more broadly.
Collapse
Affiliation(s)
- Jake V. Aronowitz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Alice Perez
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| | - Christopher O’Brien
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Siaresh Aziz
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Erica Rodriguez
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Kobi Wasner
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Sissi Ribeiro
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Dovounnae Green
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Farhana Faruk
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
| | - Carolyn L. Pytte
- Psychology Department, Queens College, City University of New York, Flushing, NY, United States of America
- Psychology Department, The Graduate Center, City University of New York, New York, NY, United States of America
- Biology Department, The Graduate Center, City University of New York, New York, NY, United States of America
| |
Collapse
|
12
|
Kuwar R, Rolfe A, Di L, Blevins H, Xu Y, Sun X, Bloom GS, Zhang S, Sun D. A Novel Inhibitor Targeting NLRP3 Inflammasome Reduces Neuropathology and Improves Cognitive Function in Alzheimer's Disease Transgenic Mice. J Alzheimers Dis 2021; 82:1769-1783. [PMID: 34219728 DOI: 10.3233/jad-210400] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and the most common type of dementia. A growing body of evidence has implicated neuroinflammation as an essential player in the etiology of AD. Inflammasomes are intracellular multiprotein complexes and essential components of innate immunity in response to pathogen- and danger-associated molecular patterns. Among the known inflammasomes, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a critical role in the pathogenesis of AD. OBJECTIVE We recently developed a novel class of small molecule inhibitors that selectively target the NLRP3 inflammasome. One of the lead compounds, JC124, has shown therapeutic efficacy in a transgenic animal model of AD. In this study we tested the preventative efficacy of JC124 in another strain of transgenic AD mice. METHODS In this study, 5-month-old female APP/PS1 and matched wild type mice were treated orally with JC124 for 3 months. After completion of treatment, cognitive functions and AD pathologies, as well as protein expression levels of synaptic proteins, were assessed. RESULTS We found that inhibition of NLRP3 inflammasome with JC124 significantly decreased multiple AD pathologies in APP/PS1 mice, including amyloid-β (Aβ) load, neuroinflammation, and neuronal cell cycle re-entry, accompanied by preserved synaptic plasticity with higher expression of pre- and post-synaptic proteins, increased hippocampal neurogenesis, and improved cognitive functions. CONCLUSION Our study demonstrates the importance of the NLRP3 inflammasome in AD pathological development, and pharmacological inhibition of NLRP3 inflammasome with small molecule inhibitors represents a potential therapy for AD.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Rolfe
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Long Di
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Blevins
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yiming Xu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuehan Sun
- Departments of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Departments of Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Departments of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
13
|
Extreme Glycemic Fluctuations Debilitate NRG1, ErbB Receptors and Olig1 Function: Association with Regeneration, Cognition and Mood Alterations During Diabetes. Mol Neurobiol 2021; 58:4727-4744. [PMID: 34165684 DOI: 10.1007/s12035-021-02455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Neuronal regeneration is crucial for maintaining intact neural interactions for perpetuation of cognitive and emotional functioning. The NRG1-ErbB receptor signaling is a key pathway for regeneration in adult brain and also associated with learning and mood stabilization by modulating synaptic transmission. Extreme glycemic stress is known to affect NRG1-ErbB-mediated regeneration in brain; yet, it remains unclear how the ErbB receptor subtypes are differentially affected due to such metabolic variations. Here, we assessed the alterations in NRG1, ErbB receptor subtypes to study the regenerative potential, both in rodents as well as in neuronal and glial cell models of hyperglycemia and hypoglycemic insults during hyperglycemia. The pro-oxidant and anti-oxidant status leading to degenerative changes in brain regions were determined. The spatial memory and anxiogenic behaviour of experimental rodents were tested using 'T' maze and Elevated Plus Maze. Our data revealed that the extreme glycemic discrepancies during diabetes and recurrent hypoglycemia lead to altered expression of NRG1, ErbB receptor subtypes, Syntaxin1 and Olig1 that shows association with impaired regeneration, synaptic dysfunction, demyelination, cognitive deficits and anxiety.
Collapse
|
14
|
The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders. Antioxidants (Basel) 2021; 10:antiox10050739. [PMID: 34067012 PMCID: PMC8151966 DOI: 10.3390/antiox10050739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress is a well-known common pathological process involved in mediating acute neurological injuries, such as stroke, traumatic brain injury, epilepsy, and hypoglycemia-related neuronal injury. However, effective therapeutic measures aimed at scavenging free reactive oxygen species have shown little success in clinical trials. Recent studies have revealed that NADPH oxidase, a membrane-bound enzyme complex that catalyzes the production of a superoxide free radical, is one of the major sources of cellular reactive oxygen species in acute neurological disorders. Furthermore, several studies, including our previous ones, have shown that the inhibition of NADPH oxidase can reduce subsequent neuronal injury in neurological disease. Moreover, maintaining appropriate levels of NADPH oxidase has also been shown to be associated with proper neurogenesis after neuronal injury. This review aims to present a comprehensive overview of the role of NADPH oxidase in neuronal death and neurogenesis in multiple acute neurological disorders and to explore potential pharmacological strategies targeting the NADPH-related oxidative stress pathways.
Collapse
|
15
|
Kumar Mishra S, Khushu S, Gangenahalli G. Neuroprotective response and efficacy of intravenous administration of mesenchymal stem cells in traumatic brain injury mice. Eur J Neurosci 2021; 54:4392-4407. [PMID: 33932318 DOI: 10.1111/ejn.15261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Cellular transplantation of stem cells can be a beneficial treatment approach for neurodegenerative diseases such as traumatic brain injury (TBI). In this study, we investigated the proliferation and differentiation potential of infused mesenchymal stem cells (MSCs) after localisation at the injury site. We evaluated the appropriate homing of infused MSCs through immunohistochemistry, followed by Y-chromosome-specific polymerase chain reaction and fluorescent in situ hybridisation analyses. The proliferation and differentiation of infused MSCs were analysed using exogenous cell tracer 5'-bromo-2'-deoxyuridine (BrdU) labelling and neuronal specific markers, respectively. Structural and functional recovery in TBI mice were examined by performing magnetic resonance imaging and different behavioural assessments, respectively. Results demonstrated a significantly high number of BrdU-positive cells in the lesion region in the MSC-infused group compared with control and TBI groups. Infused MSCs were well differentiated into neural-like cells and expressed significantly more neural markers (neuronal nuclear antigen [NeuN], microtubule-associated protein 2 [MAP2] and glial fibrillary acid protein [GFAP]). Improved tissue abnormalities as well as functional behaviours were observed in MSC-infused TBI mice, implying the substantial proliferation and differentiation of infused MSCs. Our findings support the neuroprotective response and efficacy of MSCs after transplantation in TBI mice, and MSCs may serve as potential therapeutic candidates in regenerative medicine.
Collapse
Affiliation(s)
- Sushanta Kumar Mishra
- MRI Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Subash Khushu
- MRI Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| |
Collapse
|
16
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
17
|
Radovanović J, Antonijević B, Kolarević S, Milutinović-Smiljanić S, Mandić J, Vuković-Gačić B, Bulat Z, Ćurčić M, Kračun-Kolarević M, Sunjog K, Kostić-Vuković J, Marić JJ, Antonijević-Miljaković E, Đukić-Ćosić D, Djordjevic AB, Javorac D, Baralić K, Mandinić Z. Genotoxicity of fluoride subacute exposure in rats and selenium intervention. CHEMOSPHERE 2021; 266:128978. [PMID: 33298328 DOI: 10.1016/j.chemosphere.2020.128978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The aims of this study were to: (i) examine the toxic effects of sodium fluoride (NaF) in blood, liver, spleen, and brain cells of Wistar rats after the subacute exposure; (ii) explore the potential protective properties of selenium (Se) against fluoride toxicity after the simultaneous administration. Twenty male Wistar rats, eight weeks old, weighing approximately 140-190 g, were divided into four experimental groups (n = 5) as follows: I control-tap water; II NaF 150 ppm; III NaF 150 ppm and Se 1.5 mg/L; IV Se 1.5 mg/L, and had available water with solutions ad libitum for 28 days. DNA damage detected by comet assay was confirmed in the liver, spleen, and brain cells, but not in blood. Selenium supplementation together with NaF decreased DNA damage in liver and spleen cells. According to the histological findings, no changes were observed in spleen and brain tissues after NaF administration. Unlike the observed Se protective effect on the DNA level, no significant reduction of liver tissue injury was observed after the NaF and Se treatment, resulting in mild inflammation. Data of this study suggest that DNA damage after NaF subacute exposure at moderately high concentration was reduced in liver and spleen cells due to Se supplementation, but a similar change was not seen in the brain.
Collapse
Affiliation(s)
- Jelena Radovanović
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia; Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Stoimir Kolarević
- Department for Hydroecology and Water Protection, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia; Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | | | - Jelena Mandić
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Branka Vuković-Gačić
- Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Margareta Kračun-Kolarević
- Department for Hydroecology and Water Protection, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Karolina Sunjog
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, 11000, Belgrade, Serbia
| | - Jovana Kostić-Vuković
- Department of Biology and Inland Waters Protection, Institute for Multidisciplinary Research, University of Belgrade, 11000, Belgrade, Serbia
| | - Jovana Jovanović Marić
- Department for Hydroecology and Water Protection, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia; Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Evica Antonijević-Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, 11000, Belgrade, Serbia
| | - Zoran Mandinić
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
18
|
Sharma S, Tiarks G, Haight J, Bassuk AG. Neuropathophysiological Mechanisms and Treatment Strategies for Post-traumatic Epilepsy. Front Mol Neurosci 2021; 14:612073. [PMID: 33708071 PMCID: PMC7940684 DOI: 10.3389/fnmol.2021.612073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death in young adults and a risk factor for acquired epilepsy. Severe TBI, after a period of time, causes numerous neuropsychiatric and neurodegenerative problems with varying comorbidities; and brain homeostasis may never be restored. As a consequence of disrupted equilibrium, neuropathological changes such as circuit remodeling, reorganization of neural networks, changes in structural and functional plasticity, predisposition to synchronized activity, and post-translational modification of synaptic proteins may begin to dominate the brain. These pathological changes, over the course of time, contribute to conditions like Alzheimer disease, dementia, anxiety disorders, and post-traumatic epilepsy (PTE). PTE is one of the most common, devastating complications of TBI; and of those affected by a severe TBI, more than 50% develop PTE. The etiopathology and mechanisms of PTE are either unknown or poorly understood, which makes treatment challenging. Although anti-epileptic drugs (AEDs) are used as preventive strategies to manage TBI, control acute seizures and prevent development of PTE, their efficacy in PTE remains controversial. In this review, we discuss novel mechanisms and risk factors underlying PTE. We also discuss dysfunctions of neurovascular unit, cell-specific neuroinflammatory mediators and immune response factors that are vital for epileptogenesis after TBI. Finally, we describe current and novel treatments and management strategies for preventing PTE.
Collapse
Affiliation(s)
- Shaunik Sharma
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Grant Tiarks
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Joseph Haight
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
19
|
Sallam A, Mousa SA. Neurodegenerative Diseases and Cell Reprogramming. Mol Neurobiol 2020; 57:4767-4777. [PMID: 32785825 DOI: 10.1007/s12035-020-02039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
Neurodegenerative diseases have different types according to the onset of the disease, the time course, and the underlying pathology. Although the dogma that brain cells cannot regenerate has changed, the normal regenerative process of the brain is usually not sufficient to restore brain tissue defects after different pathological insults. Stem cell therapy and more recently cell reprogramming could achieve success in the process of brain renewal. This review article presents recent advances of stem cell therapies in neurodegenerative diseases and the role of cell reprogramming in the scope of optimizing a confined condition that could direct signaling pathways of the cell toward a specific neural lineage. Further, we will discuss different types of transcriptional factors and their role in neural cell fate direction.
Collapse
Affiliation(s)
- Abeer Sallam
- Department of Physiology, Faculty of Medicine, Alexandria University, Governorate, Alexandria, Egypt.,Center of Excellence for Research in Regenerative Medicine and its Applications (CERRMA) Faculty of Medicine, Alexandria University, Alexandria, Governorate, Egypt
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA.
| |
Collapse
|
20
|
Sivandzade F, Alqahtani F, Cucullo L. Traumatic Brain Injury and Blood-Brain Barrier (BBB): Underlying Pathophysiological Mechanisms and the Influence of Cigarette Smoking as a Premorbid Condition. Int J Mol Sci 2020; 21:E2721. [PMID: 32295258 PMCID: PMC7215684 DOI: 10.3390/ijms21082721] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is among the most pressing global health issues and prevalent causes of cerebrovascular and neurological disorders all over the world. In addition to the brain injury, TBI may also alter the systemic immune response. Thus, TBI patients become vulnerable to infections, have worse neurological outcomes, and exhibit a higher rate of mortality and morbidity. It is well established that brain injury leads to impairments of the blood-brain barrier (BBB) integrity and function, contributing to the loss of neural tissue and affecting the response to neuroprotective drugs. Thus, stabilization/protection of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage, and acute neurodegeneration. Herein, we present a review highlighting the significant post-traumatic effects of TBI on the cerebrovascular system. These include the loss of BBB integrity and selective permeability, impact on BBB transport mechanisms, post-traumatic cerebral edema formation, and significant pathophysiological factors that may further exacerbate post-traumatic BBB dysfunctions. Furthermore, we discuss the post-traumatic impacts of chronic smoking, which has been recently shown to act as a premorbid condition that impairs post-TBI recovery. Indeed, understanding the underlying molecular mechanisms associated with TBI damage is essential to better understand the pathogenesis and progression of post-traumatic secondary brain injury and the development of targeted treatments to improve outcomes and speed up the recovery process. Therapies aimed at restoring/protecting the BBB may reduce the post-traumatic burden of TBI by minimizing the impairment of brain homeostasis and help to restore an optimal microenvironment to support neuronal repair.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA;
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
21
|
Prolactin, Estradiol and Testosterone Differentially Impact Human Hippocampal Neurogenesis in an In Vitro Model. Neuroscience 2020; 454:15-39. [PMID: 31930958 PMCID: PMC7839971 DOI: 10.1016/j.neuroscience.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Human hippocampal progenitor cells (HPCs) and tissue express classical sex hormone receptors. Prolactin does not impact human HPCs maintained in a proliferative state. Prolactin increases neuronal differentiation of human HPCs only in the short term. Estradiol and testosterone both increase the cell density of proliferating HPCs. Estradiol and testosterone have no observed effect on differentiating HPCs.
Previous studies have indicated that sex hormones such as prolactin, estradiol and testosterone may play a role in the modulation of adult hippocampal neurogenesis (AHN) in rodents and non-human primates, but so far there has been no investigation of their impact on human hippocampal neurogenesis. Here, we quantify the expression levels of the relevant receptors in human post-mortem hippocampal tissue and a human hippocampal progenitor cell (HPC) line. Secondly, we investigate how these hormones modulate hippocampal neurogenesis using a human in vitro cellular model. Human female HPCs were cultured with biologically relevant concentrations of either prolactin, estradiol or testosterone. Bromodeoxyuridine (BrdU) incorporation, immunocytochemistry (ICC) and high-throughput analyses were used to quantify markers determining cell fate after HPCs were either maintained in a proliferative state or allowed to differentiate in the presence of these hormones. In proliferating cells, estrogen and testosterone increased cell density but had no clear effect on markers of proliferation or cell death to account for this. In differentiating cells, a 3-day treatment of prolactin elicited a transient effect, whereby it increased the proportion of microtubule-associated protein 2 (MAP2)-positive and Doublecortin (DCX)-positive cells, but this effect was not apparent after 7-days. At this timepoint we instead observe a decrease in proliferation. Overall, our study demonstrates relatively minor, and possibly short-term effects of sex hormones on hippocampal neurogenesis in human cells. Further work will be needed to understand if our results differ to previous animal research due to species-specific differences, or whether it relates to limitations of our in vitro model.
Collapse
|
22
|
Gothié J, Vancamp P, Demeneix B, Remaud S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol (Oxf) 2020; 228:e13316. [PMID: 31121082 PMCID: PMC9286394 DOI: 10.1111/apha.13316] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro‐ and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro‐ and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.
Collapse
Affiliation(s)
- Jean‐David Gothié
- Department of Neurology & Neurosurgery Montreal Neurological Institute & Hospital, McGill University Montreal Quebec Canada
| | - Pieter Vancamp
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| | | | - Sylvie Remaud
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| |
Collapse
|
23
|
Zhou C, Chen H, Zheng JF, Guo ZD, Huang ZJ, Wu Y, Zhong JJ, Sun XC, Cheng CJ. Pentraxin 3 contributes to neurogenesis after traumatic brain injury in mice. Neural Regen Res 2020; 15:2318-2326. [PMID: 32594056 PMCID: PMC7749468 DOI: 10.4103/1673-5374.285001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that pentraxin 3 is an acute-phase protein that is linked with the immune response to inflammation. It is also a newly discovered marker of anti-inflammatory A2 reactive astrocytes, and potentially has multiple protective effects in stroke; however, its role in the adult brain after traumatic brain injury is unknown. In the present study, a moderate model of traumatic brain injury in mice was established using controlled cortical impact. The models were intraventricularly injected with recombinant pentraxin 3 (the recombinant pentraxin 3 group) or an equal volume of vehicle (the control group). The sham-operated mice underwent craniotomy, but did not undergo the controlled cortical impact. The potential neuroprotective and neuroregenerative roles of pentraxin 3 were investigated on days 14 and 21 after traumatic brain injury. Western blot assay showed that the expression of endogenous pentraxin 3 was increased after traumatic brain injury in mice. Furthermore, the neurological severity test and wire grip test revealed that recombinant pentraxin 3 treatment reduced the neurological severity score and increased the wire grip score, suggesting an improved recovery of sensory-motor functions. The Morris water maze results demonstrated that recombinant pentraxin 3 treatment reduced the latency to the platform, increased the time spent in the correct quadrant, and increased the number of times traveled across the platform, thus suggesting an improved recovery of cognitive function. In addition, to investigate the effects of pentraxin 3 on astrocytes, specific markers of A2 astrocytes were detected in primary astrocyte cultures in vitro using western blot assay. The results demonstrated that pentraxin 3 administration activates A2 astrocytes. To explore the protective mechanisms of pentraxin 3, immunofluorescence staining was used. Intraventricular injection of recombinant pentraxin 3 increased neuronal maintenance in the peri-injured cortex and ipsilateral hippocampus, increased the number of doublecortin-positive neural progenitor cells in the subventricular and subgranular zones, and increased the number of bromodeoxyuridine (proliferation) and neuronal nuclear antigen (mature neuron) double-labeled cells in the hippocampus and peri-injured cortex. Pentraxin 3 administration also increased the number of neurospheres and the number of bromodeoxyuridine and doublecortin double-labeled cells in neurospheres, and enhanced the proliferation of neural progenitor cells in primary neural progenitor cell cultures in vitro. In conclusion, recombinant pentraxin 3 administration activated A2 astrocytes, and consequently improved the recovery of neural function by increasing neuronal survival and enhancing neurogenesis. All experiments were approved by the Animal Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China on March 1, 2016.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Feng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zong-Duo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Jian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Qiu X, Ping S, Kyle M, Longo J, Chin L, Zhao LR. S100 Calcium-Binding Protein A9 Knockout Contributes to Neuroprotection and Functional Improvement after Traumatic Brain Injury. J Neurotrauma 2019; 37:950-965. [PMID: 31621496 DOI: 10.1089/neu.2018.6170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
S100 calcium-binding protein A9 (S100a9), a proinflammatory protein, has been shown to be involved in the development of neuroinflammatory disorders and neurodegenerative diseases. Upregulation of S100a9 in the brain during acute brain injury has been proposed to be associated with acute neuroinflammation. However, it remains unclear whether eliminating S100a9 expression will show beneficial outcomes after traumatic brain injury (TBI). Using S100a9 knockout mice, this study has demonstrated that S100a9 deletion ameliorates post-TBI anxiety, improves TBI-impaired motor and cognitive function, reduces lesion size, prevents perilesional neuron loss and neurodegeneration, diminishes neuroinflammation and TBI-induced neurogenesis, and enhances perilesional expression of neuroplasticity protein. These findings suggest that S100a9 plays a detrimental role in TBI. Genetic deletion of S100a9 enhances neuroprotection and improves functional outcome after TBI. This study sheds light on the pathological involvement of S100a9 in TBI, which would provide a new therapeutic target to minimize TBI-induced brain damage.
Collapse
Affiliation(s)
- Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Suning Ping
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York
| | - John Longo
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Lawrence Chin
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York.,VA Health Care Upstate New York, Syracuse VA Medical Center, Syracuse, New York
| |
Collapse
|
25
|
Tandean S, Japardi I, Loe ML, Riawan W, July J. Protective Effects of Propolis Extract in a Rat Model of Traumatic Brain Injury via Hsp70 Induction. Open Access Maced J Med Sci 2019; 7:2763-2766. [PMID: 31844433 PMCID: PMC6901855 DOI: 10.3889/oamjms.2019.736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND: Traumatic brain injury (TBI) is one of the major global health problems. Secondary brain injury is a complex inflammation cascades process that causes brain cell apoptosis. Propolis is a natural product that has neuroprotective property. AIM: This study aimed to investigate the effect of propolis toward Hsp70 expression with apoptosis marker in brain tissue after TBI. METHODS: Thirty-three Sprague Dawley rats were randomised into three treatments group, i.e. sham-operated controls, closed head injury (CHI), and CHI with propolis extract (treatment group). In the treatment group, propolis was given 200 mg/kg per oral for 7 days then harvested brain tissues after sacrificed by cervical dislocation at day 8. We investigated Hsp70, Caspase 3, apoptosis-inducing factor (AIF), and TUNEL assay expression using immunohistochemistry staining. Statistical test using one-way ANOVA test and Tukey HSD as post hoc test. RESULTS: Mean of positive Hsp70 stained cells in group 1 was 6.82 ± 2.14, group 2 was 3.91 ± 2.26, and group 3 was 9.64 ± 3.53 with a significant difference of Hsp70 expression distribution within groups (p = 0.0001). Mean of positive caspase 3 stained cells in group 1 was 5.45 ± 2.30, group 2 was 13.82 ± 2.44, and group 3 was 7.03 ± 1.54 with a significant difference of caspase3 expression distribution within groups (p=0.0001). Mean of positive AIF stained cells in group 1 was 5.36 ± 2.11, group 2 was 12.82 ± 1.40, and group 3 was 8.09 ± 1.81 with a significant difference of AIF expression distribution within groups (p = 0.0001). Mean of positive TUNEL assay stained cells in group 1 was 4.82 ± 2.04, group 2 was 11.55 ± 1.51, and group 3 was 7.64 ± 1.96 with a significant difference of TUNEL test expression distribution within groups (p = 0.0001). CONCLUSION: Propolis may protect brain cell from apoptosis after injury by maintaining Hsp70 expression in addition to antioxidant and anti-inflammatory.
Collapse
Affiliation(s)
- Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Iskandar Japardi
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Michael Lumintang Loe
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Wibi Riawan
- Department of Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Julius July
- Department of Neurosurgery, Faculty of Medicine, Universitas Pelita Harapan (UPH), Neuroscience Centre Siloam Hospital Lippo Village, Tanggerang, Indonesia
| |
Collapse
|
26
|
A stochastic model of adult neurogenesis coupling cell cycle progression and differentiation. J Theor Biol 2019; 475:60-72. [PMID: 31128140 DOI: 10.1016/j.jtbi.2019.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/22/2022]
Abstract
Long-term tissue homeostasis requires a precise balance between stem cell self-renewal and the generation of differentiated progeny. Recently, it has been shown that in the adult murine brain, neural stem cells (NSCs) divide mostly symmetrically. This finding suggests that the required balance for tissue homeostasis is accomplished at the population level. However, it remains unclear how this balance is enabled. Furthermore, there is experimental evidence that proneural differentiation factors not only promote differentiation, but also cell cycle progression, suggesting a link between the two processes in NSCs. To study the effect of such a link on NSC dynamics, we developed a stochastic model in which stem cells have an intrinsic probability to progress through cell cycle and to differentiate. Our results show that increasing heterogeneity in differentiation probabilities leads to a decreased probability of long-term tissue homeostasis, and that this effect can be compensated when cell cycle progression and differentiation are positively coupled. Using single-cell RNA-Seq profiling of adult NSCs, we found a positive correlation in the expression levels of cell cycle and differentiation markers. Our findings suggest that a coupling between cell cycle progression and differentiation on the cellular level is part of the process that maintains tissue homeostasis in the adult brain.
Collapse
|
27
|
Alves JL, Rato J, Silva V. Why Does Brain Trauma Research Fail? World Neurosurg 2019; 130:115-121. [PMID: 31284053 DOI: 10.1016/j.wneu.2019.06.212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) represents a major health care problem and a significant social and economic issue worldwide. Considering the generalized failure in introducing effective drugs and clinical protocols, there is an urgent need for efficient treatment modalities, able to improve devastating posttraumatic morbidity and mortality. In this work, the status of brain trauma research is analyzed in all its aspects, including basic and translational science and clinical trials. Implicit and explicit challenges to different lines of research are discussed and clinical trial structures and outcomes are scrutinized, along with possible explanations for systematic therapeutic failures and their implications for future development of drug and clinical trials. Despite significant advances in basic and clinical research in recent years, no specific therapeutic protocols for TBI have been shown to be effective. New potential therapeutic targets have been identified, following a better understanding of pathophysiologic mechanisms underlying TBI, although with disappointing results. Several reasons can be pinpointed at different levels, from inaccurate animal models of disease to faulty preclinical and clinical trials, with poor design and subjective outcome measures. Distinct strategies can be delineated to overcome specific shortcomings of research studies. Identifying and contextualizing the failures that have dominated TBI research is mandatory. This review analyzes current approaches and discusses possible strategies for improving outcomes.
Collapse
Affiliation(s)
- José Luís Alves
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - Joana Rato
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Vitor Silva
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Li J, Han Y, Li M, Nie C. Curcumin Promotes Proliferation of Adult Neural Stem Cells and the Birth of Neurons in Alzheimer's Disease Mice via Notch Signaling Pathway. Cell Reprogram 2019; 21:152-161. [PMID: 31145652 DOI: 10.1089/cell.2018.0027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jun Li
- Department of Neurology, Qinyang People's Hospital, Qinyang, China
| | - Yazhou Han
- Department of Neurology, Qinyang People's Hospital, Qinyang, China
| | - Mingduo Li
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Caixia Nie
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Daping Hospital & Institute of Surgery Research, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
29
|
Arnold C. Sensory Overload? Air Pollution and Impaired Olfaction. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:62001. [PMID: 31190551 PMCID: PMC6791585 DOI: 10.1289/ehp3621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
30
|
Wu F, Xu K, Liu L, Zhang K, Xia L, Zhang M, Teng C, Tong H, He Y, Xue Y, Zhang H, Chen D, Hu A. Vitamin B 12 Enhances Nerve Repair and Improves Functional Recovery After Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury. Front Pharmacol 2019; 10:406. [PMID: 31105562 PMCID: PMC6491933 DOI: 10.3389/fphar.2019.00406] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most common causes of neurological damage in young human populations. Vitamin B12 has been reported to promote axon growth of neuronal cells after peripheral nerve injury, which is currently used for the treatment of peripheral nerve damage in the clinical trial. Thus, we hypothesized that TBI can be attenuated by vitaminB12 treatment through its beneficial role on axon regeneration after nerve injury. To confirm it, the biological function of vitaminB12 was characterized using hematoxylin and eosin (H&E) staining, Luxol fast blue (LFB) staining, western blot analysis, and immunohistochemistry staining. The results showed that the neurological functional recovery was improved in the VitaminB12-treated group after TBI, which may be due to downregulation of the endoplasmic reticulum stress-related apoptosis signaling pathway. Moreover, the microtubule stabilization, remyelination and myelin reparation were rescued by vitamin B12, which was consistent with the treatment of 4-phenylbutyric acid (4-PBA), an endoplasmic reticulum stress inhibitor. The study suggests that vitamin B12 may be useful as a novel neuroprotective drug for TBI.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Lei Liu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kairui Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leilei Xia
- Department of Emergency, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Man Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chenhuai Teng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Heyan Tong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yifang He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yujie Xue
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Aiping Hu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Agoston DV, Kamnaksh A. Protein biomarkers of epileptogenicity after traumatic brain injury. Neurobiol Dis 2019; 123:59-68. [PMID: 30030023 PMCID: PMC6800147 DOI: 10.1016/j.nbd.2018.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for acquired epilepsy. Post-traumatic epilepsy (PTE) develops over time in up to 50% of patients with severe TBI. PTE is mostly unresponsive to traditional anti-seizure treatments suggesting distinct, injury-induced pathomechanisms in the development of this condition. Moderate and severe TBIs cause significant tissue damage, bleeding, neuron and glia death, as well as axonal, vascular, and metabolic abnormalities. These changes trigger a complex biological response aimed at curtailing the physical damage and restoring homeostasis and functionality. Although a positive correlation exists between the type and severity of TBI and PTE, there is only an incomplete understanding of the time-dependent sequelae of TBI pathobiologies and their role in epileptogenesis. Determining the temporal profile of protein biomarkers in the blood (serum or plasma) and cerebrospinal fluid (CSF) can help to identify pathobiologies underlying the development of PTE, high-risk individuals, and disease modifying therapies. Here we review the pathobiological sequelae of TBI in the context of blood- and CSF-based protein biomarkers, their potential role in epileptogenesis, and discuss future directions aimed at improving the diagnosis and treatment of PTE.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA.
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
32
|
Prospects and modalities for the treatment of genetic ocular anomalies. Hum Genet 2019; 138:1019-1026. [DOI: 10.1007/s00439-018-01968-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022]
|
33
|
Zhang Y, Chopp M, Zhang ZG, Zhang Y, Zhang L, Lu M, Zhang T, Winter S, Doppler E, Brandstäetter H, Mahmood A, Xiong Y. Cerebrolysin Reduces Astrogliosis and Axonal Injury and Enhances Neurogenesis in Rats After Closed Head Injury. Neurorehabil Neural Repair 2019; 33:15-26. [PMID: 30499355 DOI: 10.1177/1545968318809916] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cerebrolysin is a neuropeptide preparation with neuroprotective and neurotrophic properties. Our previous study demonstrates that cerebrolysin significantly improves functional recovery in rats after mild traumatic brain injury (mTBI). OBJECTIVE To determine histological outcomes associated with therapeutic effects of cerebrolysin on functional recovery after TBI. METHODS In this prospective, randomized, blinded, and placebo-controlled study, adult Wistar rats with mild TBI induced by a closed head impact were randomly assigned to one of the cerebrolysin dose groups (0.8, 2.5, 7.5 mL/kg) or placebo, which were administered 4 hours after TBI and then daily for 10 consecutive days. Functional tests assessed cognitive, behavioral, motor, and neurological performance. Study end point was day 90 after TBI. Brains were processed for histological tissue analyses of astrogliosis, axonal injury, and neurogenesis. RESULTS Compared with placebo, cerebrolysin significantly reduced amyloid precursor protein accumulation, astrogliosis, and axonal damage in various brain regions and increased the number of neuroblasts and neurogenesis in the dentate gyrus. There was a significant dose effect of cerebrolysin on functional outcomes at 3 months after injury compared with saline treatment. Cerebrolysin at a dose of ⩾0.8 mL/kg significantly improved cognitive function, whereas at a dose of ⩾2.5 mL/kg, cerebrolysin also significantly improved sensorimotor function at various time points. There were significant correlations between multiple histological and functional outcomes 90 days after mTBI. CONCLUSIONS Our findings demonstrate that cerebrolysin reduces astrogliosis and axonal injury and promotes neurogenesis, which may contribute to improved functional recovery in rats with mTBI.
Collapse
Affiliation(s)
| | - Michael Chopp
- 1 Henry Ford Hospital, Detroit, MI, USA
- 2 Oakland University, Rochester, MI, USA
| | | | - Yi Zhang
- 1 Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- 1 Henry Ford Hospital, Detroit, MI, USA
| | - Mei Lu
- 1 Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | - Ye Xiong
- 1 Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
34
|
Wang J, Ma MW, Dhandapani KM, Brann DW. NADPH oxidase 2 deletion enhances neurogenesis following traumatic brain injury. Free Radic Biol Med 2018; 123:62-71. [PMID: 29782989 DOI: 10.1016/j.freeradbiomed.2018.05.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
The NADPH oxidase (NOX) enzyme family is a major source of reactive oxygen species (ROS) and contributor to the secondary pathology underlying traumatic brain injury (TBI). However, little is known about how NOX-derived ROS influences the proliferation and cell-fate determination of neural stem/progenitor cells (NSCs/NPCs) following TBI. In the current study, we found that deletion of NOX2 (NOX2-KO) significantly decreases the population of radial glia-like NSCs and neuroblasts but maintains the population of non-radial Sox2 expressing stem cells under physiological (non-injury) conditions. Surprisingly, the brains of NOX2-KO mice demonstrated a robust increase in the number of neuroblasts during the first week after TBI, as compared to the wild-type group. This increase may result from an enhanced proliferation of NPCs in a lower ROS environment after brain injury, as further examination revealed a significant increase of dividing neuroblasts in both NOX2-KO and NOX inhibitor-treated mouse brain during the first week following TBI. Finally, 5-Bromo-2'-deoxyuridine (BrdU) lineage tracing demonstrated a significantly increased number of newborn neurons were present in the perilesional cortex of NOX2-KO mice at 5 weeks post TBI, indicating that deletion of NOX2 promotes long-term neurogenesis in the injured brain following TBI. Altogether, these findings suggest that targeting NOX through genetic deletion or inhibition enhances post-injury neurogenesis, which may be beneficial for recovery following TBI.
Collapse
Affiliation(s)
- Jing Wang
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Merry W Ma
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Krishnan M Dhandapani
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA
| | - Darrell W Brann
- Charlie Norwood Medical Center, One Freedom Way, Augusta, GA 30904, USA; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30909, USA.
| |
Collapse
|
35
|
Freret-Hodara B, Cui Y, Griveau A, Vigier L, Arai Y, Touboul J, Pierani A. Enhanced Abventricular Proliferation Compensates Cell Death in the Embryonic Cerebral Cortex. Cereb Cortex 2018; 27:4701-4718. [PMID: 27620979 DOI: 10.1093/cercor/bhw264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 07/25/2016] [Indexed: 12/30/2022] Open
Abstract
Loss of neurons in the neocortex is generally thought to result in a final reduction of cerebral volume. Yet, little is known on how the developing cerebral cortex copes with death of early-born neurons. Here, we tackled this issue by taking advantage of a transgenic mouse model in which, from early embryonic stages to mid-corticogenesis, abundant apoptosis is induced in the postmitotic compartment. Unexpectedly, the thickness of the mutant cortical plate at E18.5 was normal, due to an overproduction of upper layer neurons at E14.5. We developed and simulated a mathematical model to investigate theoretically the recovering capacity of the system and found that a minor increase in the probability of proliferative divisions of intermediate progenitors (IPs) is a powerful compensation lever. We confirmed experimentally that mutant mice showed an enhanced number of abventricular progenitors including basal radial glia-like cells and IPs. The latter displayed increased proliferation rate, sustained Pax6 expression and shorter cell cycle duration. Altogether, these results demonstrate the remarkable plasticity of neocortical progenitors to adapt to major embryonic insults via the modulation of abventricular divisions thereby ensuring the production of an appropriate number of neurons.
Collapse
Affiliation(s)
- Betty Freret-Hodara
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion , 75205Paris Cedex, France
| | - Yi Cui
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, 75205 Paris Cedex, France.,Center for Interdisciplinary Research in Biology (CIRB)-Collège de France and INRIA Paris, EPI MYCENAE, 11, Place Marcelin Berthelot, 75005 Paris, France.,Ecole Doctorale Cerveau Cognition Comportement (ED3C, ED n°158), Université Pierre et Marie Curie, 7 Quai Saint Bernard, 75005 Paris, France
| | - Amélie Griveau
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion , 75205Paris Cedex, France
| | - Lisa Vigier
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion , 75205Paris Cedex, France
| | - Yoko Arai
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion , 75205Paris Cedex, France
| | - Jonathan Touboul
- Center for Interdisciplinary Research in Biology (CIRB)-Collège de France and INRIA Paris, EPI MYCENAE, 11, Place Marcelin Berthelot , 75005Paris, France
| | - Alessandra Pierani
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion , 75205Paris Cedex, France
| |
Collapse
|
36
|
Affiliation(s)
- Fakher Rahim
- Health Research Institute, Ahvaz Jundishapur University of Medical Sciences; Thalassemia & Hemoglobinopathy Research Center; Golestan Avenue Ahvaz Khuzestan Iran 61537-15794
| | - Babak Arjmand
- Imam Khomeini Hospital, Tehran University of Medical Sciences; Brain and Spinal Cord Injury Research Center; Keshavarz Bulvar Tehran Iran
| | - Roshanak Tirdad
- Ahvaz Jundishapur University of Medical Sciences; Department of Molecular Medicine and Molecular Epidemiology; Golestan Ahvaz Khuzestan Iran 61537-15794
| | - Amal Saki Malehi
- Ahvaz Jundishapur University of Medical Sciences; Department of Biostatistics and Epidemiology, School of Public Health; Golestan Ahvaz Khuzestan Iran 61537-15794
| |
Collapse
|
37
|
Xiong Y, Mahmood A, Chopp M. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chin J Traumatol 2018; 21:137-151. [PMID: 29764704 PMCID: PMC6034172 DOI: 10.1016/j.cjtee.2018.02.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA; Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
38
|
Comparative regenerative mechanisms across different mammalian tissues. NPJ Regen Med 2018; 3:6. [PMID: 29507774 PMCID: PMC5824955 DOI: 10.1038/s41536-018-0044-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Stimulating regeneration of complex tissues and organs after injury to effect complete structural and functional repair, is an attractive therapeutic option that would revolutionize clinical medicine. Compared to many metazoan phyla that show extraordinary regenerative capacity, which in some instances persists throughout life, regeneration in mammalians, particularly humans, is limited or absent. Here we consider recent insights in the elucidation of molecular mechanisms of regeneration that have come from studies of tissue homeostasis and injury repair in mammalian tissues that span the spectrum from little or no self-renewal, to those showing active cell turnover throughout life. These studies highlight the diversity of factors that constrain regeneration, including immune responses, extracellular matrix composition, age, injury type, physiological adaptation, and angiogenic and neurogenic capacity. Despite these constraints, much progress has been made in elucidating key molecular mechanisms that may provide therapeutic targets for the development of future regenerative therapies, as well as previously unidentified developmental paradigms and windows-of-opportunity for improved regenerative repair.
Collapse
|
39
|
Saraulli D, Costanzi M, Mastrorilli V, Farioli-Vecchioli S. The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age. Curr Neuropharmacol 2018; 15:519-533. [PMID: 27000776 PMCID: PMC5543673 DOI: 10.2174/1570159x14666160412150223] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The rapid lengthening of life expectancy has raised the problem of providing social programs to counteract the age-related cognitive decline in a growing number of older people. Physical activity stands among the most promising interventions aimed at brain wellbeing, because of its effective neuroprotective action and low social cost. The purpose of this review is to describe the neuroprotective role exerted by physical activity in different life stages. In particular, we focus on adult neurogenesis, a process which has proved being highly responsive to physical exercise and may represent a major factor of brain health over the lifespan. METHODS The most recent literature related to the subject has been reviewed. The text has been divided into three main sections, addressing the effects of physical exercise during childhood/ adolescence, adulthood and aging, respectively. For each one, the most relevant studies, carried out on both human participants and rodent models, have been described. RESULTS The data reviewed converge in indicating that physical activity exerts a positive effect on brain functioning throughout the lifespan. However, uncertainty remains about the magnitude of the effect and its biological underpinnings. Cellular and synaptic plasticity provided by adult neurogenesis are highly probable mediators, but the mechanism for their action has yet to be conclusively established. CONCLUSION Despite alternative mechanisms of action are currently debated, age-appropriate physical activity programs may constitute a large-scale, relatively inexpensive and powerful approach to dampen the individual and social impact of age-related cognitive decline.
Collapse
Affiliation(s)
- Daniele Saraulli
- Institute of Cell Biology and Neurobiology, National Research Council, & Fondazione S. Lucia, Rome. Italy
| | - Marco Costanzi
- Department of Human Sciences, LUMSA University, Rome. Italy
| | - Valentina Mastrorilli
- Institute of Cell Biology and Neurobiology, National Research Council, & Fondazione S. Lucia, Rome. Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Via del Fosso di Fiorano 64, 00143 Rome. Italy
| |
Collapse
|
40
|
Yan Y, Kong L, Xia Y, Liang W, Wang L, Song J, Yao Y, Lin Y, Yang J. Osthole promotes endogenous neural stem cell proliferation and improved neurological function through Notch signaling pathway in mice acute mechanical brain injury. Brain Behav Immun 2018; 67:118-129. [PMID: 28823624 DOI: 10.1016/j.bbi.2017.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/19/2023] Open
Abstract
Mechanical brain injury (MBI) is a common neurotrosis disorder of the central nervous system (CNS), which has a higher mortality and disability. In the case of MBI, neurons death leads to loss of nerve function. To date, there was no satisfactory way to restore neural deficits caused by MBI. Endogenous neural stem cells (NSCs) can proliferate, differentiate and migrate to the lesions after brain injury, to replace and repair the damaged neural cells in the subventricular zone (SVZ), hippocampus and the regions of brain injury. In the present study, we first prepared a mouse model of cortical stab wound brain injury. Using the immunohistochemical and hematoxylin-eosin (H&E) staining method, we demonstrated that osthole (Ost), a natural coumarin derivative, was capable of promoting the proliferation of endogenous NSCs and improving neuronal restoration. Then, using the Morris water maze (MWM) test, we revealed that Ost significantly improved the learning and memory function in the MBI mice, increased the number of neurons in the regions of brain injury, hippocampus DG and CA3 regions. Additionally, we found that Ost up-regulated the expression of self-renewal genes Notch 1 and Hes 1. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the expression of Notch 1 and Hes 1 mRNA was down-regulated, augmentation of NICD and Hes 1 protein was ameliorated, the proliferation-inducing effect of Ost was abolished. These results suggested that the effects of Ost were at least in part mediated by activation of Notch signaling pathway. Our findings support that Ost is a potential drug for treating MBI due to its neuronal restoration.
Collapse
Affiliation(s)
- Yuhui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Liang Kong
- China First Mandarin Group Northeast International Hospital, Shenyang 110623, PR China
| | - Yang Xia
- Department of Engineering, University of Oxford, Oxford OX1 3LZ, UK
| | - Wenbo Liang
- School of Medicine, Dalian University, Dalian 116622, PR China
| | - Litong Wang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital of Dalian Medical University, Dalian 116600, Liaoning, PR China
| | - Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Yingjia Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Ying Lin
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China
| | - Jingxian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, PR China.
| |
Collapse
|
41
|
Mahumane GD, Kumar P, du Toit LC, Choonara YE, Pillay V. 3D scaffolds for brain tissue regeneration: architectural challenges. Biomater Sci 2018; 6:2812-2837. [DOI: 10.1039/c8bm00422f] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Critical analysis of experimental studies on 3D scaffolds for brain tissue engineering.
Collapse
Affiliation(s)
- Gillian Dumsile Mahumane
- Wits Advanced Drug Delivery Platform Research Unit
- Department of Pharmacy and Pharmacology
- School of Therapeutic Science
- Faculty of Health Sciences
- University of the Witwatersrand
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit
- Department of Pharmacy and Pharmacology
- School of Therapeutic Science
- Faculty of Health Sciences
- University of the Witwatersrand
| | - Lisa Claire du Toit
- Wits Advanced Drug Delivery Platform Research Unit
- Department of Pharmacy and Pharmacology
- School of Therapeutic Science
- Faculty of Health Sciences
- University of the Witwatersrand
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit
- Department of Pharmacy and Pharmacology
- School of Therapeutic Science
- Faculty of Health Sciences
- University of the Witwatersrand
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit
- Department of Pharmacy and Pharmacology
- School of Therapeutic Science
- Faculty of Health Sciences
- University of the Witwatersrand
| |
Collapse
|
42
|
Ludwig PE, Thankam FG, Patil AA, Chamczuk AJ, Agrawal DK. Brain injury and neural stem cells. Neural Regen Res 2018; 13:7-18. [PMID: 29451199 PMCID: PMC5840995 DOI: 10.4103/1673-5374.224361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Many therapies with potential for treatment of brain injury have been investigated. Few types of cells have spurred as much interest and excitement as stem cells over the past few decades. The multipotentiality and self-renewing characteristics of stem cells confer upon them the capability to regenerate lost tissue in ischemic or degenerative conditions as well as trauma. While stem cells have not yet proven to be clinically effective in many such conditions as was once hoped, they have demonstrated some effects that could be manipulated for clinical benefit. The various types of stem cells have similar characteristics, and largely differ in terms of origin; those that have differentiated to some extent may exhibit limited capability in differentiation potential. Stem cells can aid in decreasing lesion size and improving function following brain injury.
Collapse
Affiliation(s)
- Parker E. Ludwig
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Finosh G. Thankam
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Arun A. Patil
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
- Department of Neurosurgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Andrea J. Chamczuk
- Department of Neurosurgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
43
|
Greer K, Chen J, Brickler T, Gourdie R, Theus MH. Modulation of gap junction-associated Cx43 in neural stem/progenitor cells following traumatic brain injury. Brain Res Bull 2017; 134:38-46. [PMID: 28648814 PMCID: PMC5597487 DOI: 10.1016/j.brainresbull.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022]
Abstract
Restoration of learning and memory deficits following traumatic brain injury (TBI) is attributed, in part, to enhanced neural stem/progenitor cell (NSPCs) function. Recent findings suggest gap junction (GJ)-associated connexin 43 (Cx43) plays a key role in the cell cycle regulation and function of NSPCs and is modulated following TBI. Here, we demonstrate that Cx43 is up-regulated in the dentate gyrus following TBI and is expressed on vimentin-positive cells in the subgranular zone. To test the role of Cx43 on NSPCs, we exposed primary cultures to the α-connexin Carboxyl Terminal (αCT1) peptide which selectively modulates GJ-associated Cx43. Treatment with αCT1 substantially reduced proliferation and increased caspase 3/7 expression on NSPCs in a dose-dependent manner. αCT1 exposure also reduced overall expression of Cx43 and phospho (p)-Serine368. These findings demonstrate that Cx43 positively regulates adult NPSCs; the modulation of which may influence changes in the dentate gyrus following TBI.
Collapse
Affiliation(s)
- Kisha Greer
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - Jiang Chen
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - Thomas Brickler
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA
| | - Robert Gourdie
- Virgnia Tech Carillion Research Institute, College of Medicine, 2 Riverside Circle, Roanoke, VA 24016, USA
| | - Michelle H Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, 215 Duck Pond Drive, Blacksburg, VA 24061, USA.
| |
Collapse
|
44
|
Neuberger EJ, Swietek B, Corrubia L, Prasanna A, Santhakumar V. Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility. Stem Cell Reports 2017; 9:972-984. [PMID: 28826852 PMCID: PMC5599224 DOI: 10.1016/j.stemcr.2017.07.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/17/2023] Open
Abstract
Hippocampal dentate gyrus is a focus of enhanced neurogenesis and excitability after traumatic brain injury. Increased neurogenesis has been proposed to aid repair of the injured network. Our data show that an early increase in neurogenesis after fluid percussion concussive brain injury is transient and is followed by a persistent decrease compared with age-matched controls. Post-injury changes in neurogenesis paralleled changes in neural precursor cell proliferation and resulted in a long-term decline in neurogenic capacity. Targeted pharmacology to restore post-injury neurogenesis to control levels reversed the long-term decline in neurogenic capacity. Limiting post-injury neurogenesis reduced early increases in dentate excitability and seizure susceptibility. Our results challenge the assumption that increased neurogenesis after brain injury is beneficial and show that early post-traumatic increases in neurogenesis adversely affect long-term outcomes by exhausting neurogenic potential and enhancing epileptogenesis. Treatments aimed at limiting excessive neurogenesis can potentially restore neuroproliferative capacity and limit epilepsy after brain injury. Increase in neurogenesis after TBI is transient and leads to long-term decline Altered neural precursor proliferation underlies post-TBI changes in neurogenesis Brief antagonism of VEGFR2 restores post-injury neurogenesis to control levels Limiting neurogenesis improves excitability and seizure susceptibility after TBI
Collapse
Affiliation(s)
- Eric J Neuberger
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Bogumila Swietek
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Lucas Corrubia
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Anagha Prasanna
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Rutgers Biomedical & Health Sciences, MSB-H-512, 185 S. Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
45
|
Dekmak A, Mantash S, Shaito A, Toutonji A, Ramadan N, Ghazale H, Kassem N, Darwish H, Zibara K. Stem cells and combination therapy for the treatment of traumatic brain injury. Behav Brain Res 2016; 340:49-62. [PMID: 28043902 DOI: 10.1016/j.bbr.2016.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/30/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI.
Collapse
Affiliation(s)
- AmiraSan Dekmak
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Sarah Mantash
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Amer Toutonji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nouhad Kassem
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Laboratory of Cardiovascular Diseases and Stem Cells, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
46
|
Zhang X, Zhu C, Luo Q, Dong J, Liu L, Li M, Zhu H, Ma X, Wang J. Impact of siRNA targeting of β-catenin on differentiation of rat neural stem cells and gene expression of Ngn1 and BMP4 following in vitro hypoxic-ischemic brain damage. Mol Med Rep 2016; 14:3595-601. [PMID: 27573468 PMCID: PMC5042732 DOI: 10.3892/mmr.2016.5667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 04/14/2016] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the possible damage-repair mechanisms of neural stem cells (NSCs) following hypoxic-ischemic brain damage (HIBD). NSCs obtained from Sprague Dawley rats were treated with tissue homogenate from normal or HIBD tissue, and β-catenin expression was silenced using siRNA. The differentiation of NSCs was observed by immunofluorescence, and semiquantitative reverse transcription-polymerase chain reaction and western blot analysis were applied to detect the mRNA and protein expression levels of Ngn1 and BMP4 in the NSCs. Compared with control NSCs, culture with brain tissue homogenate significantly increased the differentiation of NSCs into neurons and oligodendrocytes (P<0.05), whereas differentiation into astrocytes was significantly reduced (P<0.05). Compared with negative control-transfected cells, knockdown of β-catenin expression significantly decreased the differentiation of NSCs into neurons and oligodendrocytes (P<0.01), whereas the percentage of NSCs differentiated into astrocytes was significantly increased (P<0.01). Compared with control NSCs, the mRNA and protein expression levels of Ngn1 were significantly increased (P<0.01) and BMP4 levels were significantly reduced (P<0.01) by exposure of the cells to brain tissue homogenate. Compared with the negative control plasmid-transfected NSCs, the levels of Ngn1 mRNA and protein were significantly reduced by β-catenin siRNA (P<0.01), whereas BMP4 levels were significantly increased (P<0.01). In summary, the damaged brain tissues in HIBD may promote NSCs to differentiate into neurons for self-repair processes. β-Catenin, BMP4 and Ngn1 may be important for the coordination of NSC proliferation and differentiation following HIBD.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Cuicui Zhu
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Qiong Luo
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Jv Dong
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Lv Liu
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Min Li
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Hongtao Zhu
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Xiangping Ma
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| | - Jun Wang
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang 830054, P.R. China
| |
Collapse
|
47
|
Clark AR, Carter AB, Hager LE, Price EM. In Vivo Neural Tissue Engineering: Cylindrical Biocompatible Hydrogels That Create New Neural Tracts in the Adult Mammalian Brain. Stem Cells Dev 2016; 25:1109-18. [PMID: 27295980 DOI: 10.1089/scd.2016.0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individuals with neurodegenerative disorders or brain injury have few treatment options and it has been proposed that endogenous adult neural stem cells can be harnessed to repopulate dysfunctional nonneurogenic regions of the brain. We have accomplished this through the development of rationally designed hydrogel implants that recruit endogenous cells from the adult subventricular zone to create new relatively long tracts of neuroblasts. These implants are biocompatible and biodegradable cylindrical hydrogels consisting of fibrin and immobilized neurotrophic factors. When implanted into rat brain such that the cylinder intersected the migratory path of endogenous neural progenitors (the rostral migratory stream) and led into the nonneurogenic striatum, we observed a robust neurogenic response in the form of migrating neuroblasts with long (>100 μm) complex neurites. The location of these new neural cells in the striatum was directly coincident with the original track of the fibrin implant, which itself had completely degraded, and covered a significant area and distance (>2.5 mm). We also observed a significant number of neuroblasts in the striatal region between the implant track and the lateral ventricle. When these fibrin cylinders were implanted into hemiparkinson rats, correction of parkinsonian behavior was observed. There were no obvious behavioral, inflammatory or tumorigenic sequelae as a consequence of the implants. In conclusion, we have successfully engineered neural tissue in vivo, using neurogenic biomaterials cast into a unique cylindrical architecture. These results represent a novel approach to efficiently induce neurogenesis in a controlled and targeted manner, which may lead toward a new therapeutic modality for neurological disorders.
Collapse
Affiliation(s)
- Amanda R Clark
- Department of Biology, Marshall University , Huntington, West Virginia
| | - Arrin B Carter
- Department of Biology, Marshall University , Huntington, West Virginia
| | - Lydia E Hager
- Department of Biology, Marshall University , Huntington, West Virginia
| | - Elmer M Price
- Department of Biology, Marshall University , Huntington, West Virginia
| |
Collapse
|
48
|
Kline AE, Bondi CO. Brain injury and recovery. Brain Res 2016; 1640:1-4. [PMID: 26923162 DOI: 10.1016/j.brainres.2016.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Anthony E Kline
- Department of Physical Medicine & Rehabilitation, 3471 Fifth Avenue, Suite 201, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Pittsburgh, PA 15213, USA; Critical Care Medicine, Pittsburgh, PA 15213, USA; Psychology, Pittsburgh, PA 15213, USA; Center for Neuroscience, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, 3471 Fifth Avenue, Suite 201, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Pittsburgh, PA 15213, USA; Neurobiology, Pittsburgh, PA 15213, USA.
| |
Collapse
|
49
|
Ibrahim S, Hu W, Wang X, Gao X, He C, Chen J. Traumatic Brain Injury Causes Aberrant Migration of Adult-Born Neurons in the Hippocampus. Sci Rep 2016; 6:21793. [PMID: 26898165 PMCID: PMC4761898 DOI: 10.1038/srep21793] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) promotes neural stem/progenitor cell (NSC) proliferation in an attempt to initiate innate repair mechanisms. However, all immature neurons in the CNS are required to migrate from their birthplace to their final destination to develop into functional neurons. Here we assessed the destination of adult-born neurons following TBI. We found that a large percentage of immature neurons migrated past their normal stopping site at the inner granular cell layer (GCL), and became misplaced in the outer GCL of the hippocampal dentate gyrus. The aberrant migration of adult-born neurons in the hippocampus occurred 48 hours after TBI, and lasted for 8 weeks, resulting in a great number of newly generated neurons misplaced in the outer GCL in the hippocampus. Those misplaced neurons were able to become mature and differentiate into granular neurons, but located ectopically in the outer GCL with reduced dendritic complexity after TBI. The adult-born neurons at the misplaced position may make wrong connections with inappropriate nearby targets in the pre-existing neural network. These results suggest that although stimulation of endogenous NSCs following TBI might offer new avenues for cell-based therapy, additional intervention is required to further enhance successful neurogenesis for repairing the damaged brain.
Collapse
Affiliation(s)
- Sara Ibrahim
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| | - Weipeng Hu
- Department of Neurosurgery, 2nd Affiliated Hospital, Fujian Medical University, Quanzhou, 362000, China
| | - Xiaoting Wang
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| | - Chunyan He
- School of Biomedical Sciences, Huaqiao University, Quanzhou, 362000, China
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Department of Neurosurgery, Stark Neuroscience Research Institute, Indianapolis, Indiana, United States of America
| |
Collapse
|
50
|
Lesniak A, Pick CG, Misicka A, Lipkowski AW, Sacharczuk M. Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI). Neuropharmacology 2016; 101:506-18. [DOI: 10.1016/j.neuropharm.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
|