1
|
Gupta K, Perkerson RB, Parsons TM, Angom R, Amerna D, Burgess JD, Ren Y, McLean PJ, Mukhopadhyay D, Vibhute P, Wszolek ZK, Zubair AC, Quiñones-Hinojosa A, Kanekiyo T. Secretome from iPSC-derived MSCs exerts proangiogenic and immunosuppressive effects to alleviate radiation-induced vascular endothelial cell damage. Stem Cell Res Ther 2024; 15:230. [PMID: 39075600 PMCID: PMC11287895 DOI: 10.1186/s13287-024-03847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and β-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| | - Ralph B Perkerson
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Ramacharan Angom
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Danilyn Amerna
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Prasanna Vibhute
- Department of Radiology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
- Center of Regenerative Biotherapeutics, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
2
|
Yin Y, Zhu Y, Liu J, Fan Q, Wu X, Zhao S, Wang J, Liu Y, Li Y, Lu W. Long-term spaceflight composite stress induces depressive behaviors in model rats through disrupting hippocampus synaptic plasticity. CNS Neurosci Ther 2024; 30:e14438. [PMID: 37849237 PMCID: PMC10916436 DOI: 10.1111/cns.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/19/2023] Open
Abstract
INTRODUCTION Long-term spaceflight composite stress (LSCS) can cause adverse effects on human systems, including the central nervous system, which could trigger anxiety and depression. AIMS This study aimed to identify changes in hippocampus synaptic plasticity under LSCS. METHODS The present study simulated the real long-term space station environment by conducting a 42-day experiment that involved simulating microgravity, isolation, noise, circadian rhythm disruptions, and low pressure. The mood and behavior of the rats were assessed by behavior test. Transmission electron microscopy and patch-clamp were used to detect the changes in synapse morphology and electrophysiology, and finally, the expression of NMDA receptor channel proteins was detected by western blotting. RESULTS The results showed that significant weight loss, anxiety, and depressive behaviors in rats were observed after being exposed to LSCS environment for 42 days. The synaptic structure was severely damaged, manifested as an obvious decrease in postsynaptic density thickness and synaptic interface curvature (p < 0.05; p < 0.05, respectively). Meanwhile, LTP was significantly impaired (p < 0.0001), and currents in the NMDAR channel were also significantly reduced (p < 0.0001). Further analysis found that LSCS decreased the expression of two key subtype proteins on this channel. CONCLUSION These results suggested that LSCS-induced depressive behaviors by impairing synaptic plasticity in rat hippocampus.
Collapse
Affiliation(s)
- Yi‐Shu Yin
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
- School of Medicine and HealthHarbin Institute of TechnologyHarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbinChina
| | - Yuan‐Bing Zhu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
- School of Medicine and HealthHarbin Institute of TechnologyHarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbinChina
| | - Jun‐Lian Liu
- China Astronaut Research and Training CenterBeijingChina
| | - Quan‐Chun Fan
- China Astronaut Research and Training CenterBeijingChina
| | - Xiao‐Rui Wu
- China Astronaut Research and Training CenterBeijingChina
| | - Shuang Zhao
- China Astronaut Research and Training CenterBeijingChina
| | - Jia‐Ping Wang
- China Astronaut Research and Training CenterBeijingChina
| | - Yu Liu
- China Astronaut Research and Training CenterBeijingChina
| | - Yong‐Zhi Li
- China Astronaut Research and Training CenterBeijingChina
| | - Wei‐Hong Lu
- School of Medicine and HealthHarbin Institute of TechnologyHarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbinChina
- The Intelligent Equipment Research Center for the Exploitation of Characteristic Food & Medicine Resources, Chongqing Research Institute, Harbin Institute of TechnologyChongqingChina
| |
Collapse
|
3
|
Gan X, Zhao J, Li S, Kan G, Zhang Y, Wang B, Zhang P, Ma X, Tian H, Liao M, Ju D, Xu S, Chen X, Guo J. Simulated space environmental factors of weightlessness, noise and low atmospheric pressure differentially affect the diurnal rhythm and the gut microbiome. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:115-125. [PMID: 38245336 DOI: 10.1016/j.lssr.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 01/22/2024]
Abstract
The circadian clock extensively regulates physiology and behavior. In space, astronauts encounter many environmental factors that are dramatically different from those on Earth; however, the effects of these factors on circadian rhythms and the mechanisms remain largely unknown. The present study aimed to investigate the changes in the mouse diurnal rhythm and gut microbiome under simulated space capsule conditions, including microgravity, noise and low atmospheric pressure (LAP). Noise and LAP were loaded in the capsule while the conditions in the animal room remained constant. The mice in the capsule showed disturbed locomotor rhythms and faster adaptation to a 6-h phase advance. RNA sequencing of hypothalamus samples containing the suprachiasmatic nucleus (SCN) revealed that microgravity simulated by hind limb unloading (HU) and exposure to noise and LAP led to decreases in the quantities of differentially expressed genes (DEGs), including circadian clock genes. Changes in the rhythmicity of genes implicated in pathways of cardiovascular deconditioning and more concentrated phases were found under HU or noise and LAP. Furthermore, 16S rRNA sequencing revealed dysbiosis in the gut microbiome, and noise and LAP may repress the temporal discrepancy in the microbiome community structure induced by microgravity. Changes in diurnal oscillations were observed in a number of gut bacteria with critical physiological consequences on metabolism and immunodefense. We also found that the superimposition of noise and LAP may repress normal changes in global gene expression and adaptation in the gut microbiome. Our data demonstrate that in addition to microgravity, exposure to noise and LAP affect the robustness of circadian rhythms and the community structure of the gut microbiome, and these factors may interfere with each other in their adaptation to respective conditions. These findings are important for furthering our understanding of the alterations in circadian rhythms in the complex environment of space.
Collapse
Affiliation(s)
- Xihui Gan
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Silin Li
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yin Zhang
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaohong Ma
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Hongni Tian
- National Institute of Biological Sciences, Beijing, China
| | - Meimei Liao
- National Institute of Biological Sciences, Beijing, China
| | - Dapeng Ju
- National Institute of Biological Sciences, Beijing, China
| | - Shuihong Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoping Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China; National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China.
| | - Jinhu Guo
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, School of Life Sciences, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Pathare NN, Fayet-Moore F, Fogarty JA, Jacka FN, Strandwitz P, Strangman GE, Donoviel DB. Nourishing the brain on deep space missions: nutritional psychiatry in promoting resilience. Front Neural Circuits 2023; 17:1170395. [PMID: 37663891 PMCID: PMC10469890 DOI: 10.3389/fncir.2023.1170395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The grueling psychological demands of a journey into deep space coupled with ever-increasing distances away from home pose a unique problem: how can we best take advantage of the benefits of fresh foods in a place that has none? Here, we consider the biggest challenges associated with our current spaceflight food system, highlight the importance of supporting optimal brain health on missions into deep space, and discuss evidence about food components that impact brain health. We propose a future food system that leverages the gut microbiota that can be individually tailored to best support the brain and mental health of crews on deep space long-duration missions. Working toward this goal, we will also be making investments in sustainable means to nourish the crew that remains here on spaceship Earth.
Collapse
Affiliation(s)
- Nihar N. Pathare
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Jennifer A. Fogarty
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
| | - Felice N. Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Gary E. Strangman
- Neural Systems Group, Division of Health Sciences and Technology, Massachusetts General Hospital, Harvard Medical School and Harvard-MIT, Charlestown, MA, United States
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Dorit B. Donoviel
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Cheung HC, De Louche C, Komorowski M. Artificial Intelligence Applications in Space Medicine. Aerosp Med Hum Perform 2023; 94:610-622. [PMID: 37501303 DOI: 10.3357/amhp.6178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
INTRODUCTION:During future interplanetary space missions, a number of health conditions may arise, owing to the hostile environment of space and the myriad of stressors experienced by the crew. When managing these conditions, crews will be required to make accurate, timely clinical decisions at a high level of autonomy, as telecommunication delays and increasing distances restrict real-time support from the ground. On Earth, artificial intelligence (AI) has proven successful in healthcare, augmenting expert clinical decision-making or enhancing medical knowledge where it is lacking. Similarly, deploying AI tools in the context of a space mission could improve crew self-reliance and healthcare delivery.METHODS: We conducted a narrative review to discuss existing AI applications that could improve the prevention, recognition, evaluation, and management of the most mission-critical conditions, including psychological and mental health, acute radiation sickness, surgical emergencies, spaceflight-associated neuro-ocular syndrome, infections, and cardiovascular deconditioning.RESULTS: Some examples of the applications we identified include AI chatbots designed to prevent and mitigate psychological and mental health conditions, automated medical imaging analysis, and closed-loop systems for hemodynamic optimization. We also discuss at length gaps in current technologies, as well as the key challenges and limitations of developing and deploying AI for space medicine to inform future research and innovation. Indeed, shifts in patient cohorts, space-induced physiological changes, limited size and breadth of space biomedical datasets, and changes in disease characteristics may render the models invalid when transferred from ground settings into space.Cheung HC, De Louche C, Komorowski M. Artificial intelligence applications in space medicine. Aerosp Med Hum Perform. 2023; 94(8):610-622.
Collapse
|
6
|
Grigoryan EN. Impact of Microgravity and Other Spaceflight Factors on Retina of Vertebrates and Humans In Vivo and In Vitro. Life (Basel) 2023; 13:1263. [PMID: 37374046 PMCID: PMC10305389 DOI: 10.3390/life13061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Spaceflight (SF) increases the risk of developmental, regenerative, and physiological disorders in animals and humans. Astronauts, besides bone loss, muscle atrophy, and cardiovascular and immune system alterations, undergo ocular disorders affecting posterior eye tissues, including the retina. Few studies revealed abnormalities in the development and changes in the regeneration of eye tissues in lower vertebrates after SF and simulated microgravity. Under microgravity conditions, mammals show disturbances in the retinal vascular system and increased risk of oxidative stress that can lead to cell death in the retina. Animal studies provided evidence of gene expression changes associated with cellular stress, inflammation, and aberrant signaling pathways. Experiments using retinal cells in microgravity-modeling systems in vitro additionally indicated micro-g-induced changes at the molecular level. Here, we provide an overview of the literature and the authors' own data to assess the predictive value of structural and functional alterations for developing countermeasures and mitigating the SF effects on the human retina. Further emphasis is given to the importance of animal studies on the retina and other eye tissues in vivo and retinal cells in vitro aboard spacecraft for understanding alterations in the vertebrate visual system in response to stress caused by gravity variations.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Patel OV, Partridge C, Plaut K. Space Environment Impacts Homeostasis: Exposure to Spaceflight Alters Mammary Gland Transportome Genes. Biomolecules 2023; 13:biom13050872. [PMID: 37238741 DOI: 10.3390/biom13050872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Membrane transporters and ion channels that play an indispensable role in metabolite trafficking have evolved to operate in Earth's gravity. Dysregulation of the transportome expression profile at normogravity not only affects homeostasis along with drug uptake and distribution but also plays a key role in the pathogenesis of diverse localized to systemic diseases including cancer. The profound physiological and biochemical perturbations experienced by astronauts during space expeditions are well-documented. However, there is a paucity of information on the effect of the space environment on the transportome profile at an organ level. Thus, the goal of this study was to analyze the effect of spaceflight on ion channels and membrane substrate transporter genes in the periparturient rat mammary gland. Comparative gene expression analysis revealed an upregulation (p < 0.01) of amino acid, Ca2+, K+, Na+, Zn2+, Cl-, PO43-, glucose, citrate, pyruvate, succinate, cholesterol, and water transporter genes in rats exposed to spaceflight. Genes associated with the trafficking of proton-coupled amino acids, Mg2+, Fe2+, voltage-gated K+-Na+, cation-coupled chloride, as well as Na+/Ca2+ and ATP-Mg/Pi exchangers were suppressed (p < 0.01) in these spaceflight-exposed rats. These findings suggest that an altered transportome profile contributes to the metabolic modulations observed in the rats exposed to the space environment.
Collapse
Affiliation(s)
- Osman V Patel
- Cell and Molecular Biology Department, Grand Valley State University, Allendale, MI 49401, USA
| | - Charlyn Partridge
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
8
|
Puukila S, Siu O, Rubinstein L, Tahimic CGT, Lowe M, Tabares Ruiz S, Korostenskij I, Semel M, Iyer J, Mhatre SD, Shirazi-Fard Y, Alwood JS, Paul AM, Ronca AE. Galactic Cosmic Irradiation Alters Acute and Delayed Species-Typical Behavior in Male and Female Mice. Life (Basel) 2023; 13:life13051214. [PMID: 37240858 DOI: 10.3390/life13051214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Exposure to space galactic cosmic radiation is a principal consideration for deep space missions. While the effects of space irradiation on the nervous system are not fully known, studies in animal models have shown that exposure to ionizing radiation can cause neuronal damage and lead to downstream cognitive and behavioral deficits. Cognitive health implications put humans and missions at risk, and with the upcoming Artemis missions in which female crew will play a major role, advance critical analysis of the neurological and performance responses of male and female rodents to space radiation is vital. Here, we tested the hypothesis that simulated Galactic Cosmic Radiation (GCRSim) exposure disrupts species-typical behavior in mice, including burrowing, rearing, grooming, and nest-building that depend upon hippocampal and medial prefrontal cortex circuitry. Behavior comprises a remarkably well-integrated representation of the biology of the whole animal that informs overall neural and physiological status, revealing functional impairment. We conducted a systematic dose-response analysis of mature (6-month-old) male and female mice exposed to either 5, 15, or 50 cGy 5-ion GCRSim (H, Si, He, O, Fe) at the NASA Space Radiation Laboratory (NSRL). Behavioral performance was evaluated at 72 h (acute) and 91-days (delayed) postradiation exposure. Specifically, species-typical behavior patterns comprising burrowing, rearing, and grooming as well as nest building were analyzed. A Neuroscore test battery (spontaneous activity, proprioception, vibrissae touch, limb symmetry, lateral turning, forelimb outstretching, and climbing) was performed at the acute timepoint to investigate early sensorimotor deficits postirradiation exposure. Nest construction, a measure of neurological and organizational function in rodents, was evaluated using a five-stage Likert scale 'Deacon' score that ranged from 1 (a low score where the Nestlet is untouched) to 5 (a high score where the Nestlet is completely shredded and shaped into a nest). Differential acute responses were observed in females relative to males with respect to species-typical behavior following 15 cGy exposure while delayed responses were observed in female grooming following 50 cGy exposure. Significant sex differences were observed at both timepoints in nest building. No deficits in sensorimotor behavior were observed via the Neuroscore. This study revealed subtle, sexually dimorphic GCRSim exposure effects on mouse behavior. Our analysis provides a clearer understanding of GCR dose effects on species typical, sensorimotor and organizational behaviors at acute and delayed timeframes postirradiation, thereby setting the stage for the identification of underlying cellular and molecular events.
Collapse
Affiliation(s)
- Stephanie Puukila
- Oak Ridge Associated Universities, Oak Ridge, TN 37831, USA
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Olivia Siu
- Space Life Sciences Training Program (SLSTP), NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Linda Rubinstein
- Universities Space Research Association, Columbia, MD 21046, USA
- The Joseph Sagol Neuroscience Center, Sheba Hospital, Ramat Gan 52621, Israel
| | - Candice G T Tahimic
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Moniece Lowe
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Steffy Tabares Ruiz
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Ivan Korostenskij
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Maya Semel
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Janani Iyer
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- KBR, Houston, TX 77002, USA
| | - Siddhita D Mhatre
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- KBR, Houston, TX 77002, USA
| | - Yasaman Shirazi-Fard
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Joshua S Alwood
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Amber M Paul
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - April E Ronca
- NASA, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Wake Forest Medical School, Winston-Salem, NC 27101, USA
| |
Collapse
|
9
|
Roggan MD, Kronenberg J, Wollert E, Hoffmann S, Nisar H, Konda B, Diegeler S, Liemersdorf C, Hellweg CE. Unraveling astrocyte behavior in the space brain: Radiation response of primary astrocytes. Front Public Health 2023; 11:1063250. [PMID: 37089489 PMCID: PMC10116417 DOI: 10.3389/fpubh.2023.1063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionExposure to space conditions during crewed long-term exploration missions can cause several health risks for astronauts. Space radiation, isolation and microgravity are major limiting factors. The role of astrocytes in cognitive disturbances by space radiation is unknown. Astrocytes' response toward low linear energy transfer (LET) X-rays and high-LET carbon (12C) and iron (56Fe) ions was compared to reveal possible effects of space-relevant high-LET radiation. Since astronauts are exposed to ionizing radiation and microgravity during space missions, the effect of simulated microgravity on DNA damage induction and repair was investigated.MethodsPrimary murine cortical astrocytes were irradiated with different doses of X-rays, 12C and 56Fe ions at the heavy ion accelerator GSI. DNA damage and repair (γH2AX, 53BP1), cell proliferation (Ki-67), astrocytes' reactivity (GFAP) and NF-κB pathway activation (p65) were analyzed by immunofluorescence microscopy. Cell cycle progression was investigated by flow cytometry of DNA content. Gene expression changes after exposure to X- rays were investigated by mRNA-sequencing. RT-qPCR for several genes of interest was performed with RNA from X-rays- and heavy-ion-irradiated astrocytes: Cdkn1a, Cdkn2a, Gfap, Tnf, Il1β, Il6, and Tgfβ1. Levels of the pro inflammatory cytokine IL-6 were determined using ELISA. DNA damage response was investigated after exposure to X-rays followed by incubation on a 2D clinostat to simulate the conditions of microgravity.ResultsAstrocytes showed distinct responses toward the three different radiation qualities. Induction of radiation-induced DNA double strand breaks (DSBs) and the respective repair was dose-, LET- and time-dependent. Simulated microgravity had no significant influence on DNA DSB repair. Proliferation and cell cycle progression was not affected by radiation qualities examined in this study. Astrocytes expressed IL-6 and GFAP with constitutive NF-κB activity independent of radiation exposure. mRNA sequencing of X-irradiated astrocytes revealed downregulation of 66 genes involved in DNA damage response and repair, mitosis, proliferation and cell cycle regulation.DiscussionIn conclusion, primary murine astrocytes are DNA repair proficient irrespective of radiation quality. Only minor gene expression changes were observed after X-ray exposure and reactivity was not induced. Co-culture of astrocytes with microglial cells, brain organoids or organotypic brain slice culture experiments might reveal whether astrocytes show a more pronounced radiation response in more complex network architectures in the presence of other neuronal cell types.
Collapse
Affiliation(s)
- Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), Cologne, Germany
| | - Esther Wollert
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sven Hoffmann
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- *Correspondence: Christine E. Hellweg
| |
Collapse
|
10
|
Seidler RD, Stern C, Basner M, Stahn AC, Wuyts FL, zu Eulenburg P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front Neural Circuits 2022; 16:876789. [PMID: 35991346 PMCID: PMC9387435 DOI: 10.3389/fncir.2022.876789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research directions in this area to help characterize the risk and identify possible countermeasures and strategies to mitigate the spaceflight-induced brain and eye alterations. The experts identified 14 critical future research directions that would substantially advance our knowledge of the effects of spending prolonged periods of time in the spaceflight environment on SANS, as well as brain structure and function. They used a paired comparison approach to rank the relative importance of these 14 recommendations, which are discussed in detail in the main report and are summarized briefly below.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR) and ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- *Correspondence: Claudia Stern,
| | - Mathias Basner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Department of Physics, University of Antwerp, Antwerp, Belgium
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), Antwerp, Belgium
| | - Peter zu Eulenburg
- German Vertigo and Balance Center, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| |
Collapse
|
11
|
Monitoring the Impact of Spaceflight on the Human Brain. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071060. [PMID: 35888147 PMCID: PMC9323314 DOI: 10.3390/life12071060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Extended exposure to radiation, microgravity, and isolation during space exploration has significant physiological, structural, and psychosocial effects on astronauts, and particularly their central nervous system. To date, the use of brain monitoring techniques adopted on Earth in pre/post-spaceflight experimental protocols has proven to be valuable for investigating the effects of space travel on the brain. However, future (longer) deep space travel would require some brain function monitoring equipment to be also available for evaluating and monitoring brain health during spaceflight. Here, we describe the impact of spaceflight on the brain, the basic principles behind six brain function analysis technologies, their current use associated with spaceflight, and their potential for utilization during deep space exploration. We suggest that, while the use of magnetic resonance imaging (MRI), positron emission tomography (PET), and computerized tomography (CT) is limited to analog and pre/post-spaceflight studies on Earth, electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and ultrasound are good candidates to be adapted for utilization in the context of deep space exploration.
Collapse
|
12
|
Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-Aleman YM, Rivero-Jiménez RA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Mar Drugs 2022; 20:md20050299. [PMID: 35621951 PMCID: PMC9143897 DOI: 10.3390/md20050299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | - Federico Bolognesi
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplant Unit, IRCCS-Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy;
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, University of Milan, Via Celoria 11, 20133 Milan, Italy;
- Columbus Clinic Center, Via Michelangelo Buonarroti 48, 20145 Milan, Italy
| | - Pierdanilo Sanna
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yandy Marx Castillo-Aleman
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - René Antonio Rivero-Jiménez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Antonio Alfonso Bencomo-Hernandez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Michela Altea
- TOLO Green, Via San Damiano 2, 20122 Milan, Italy; (M.A.); (G.G.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | | | - Federico Biglioli
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-3317186201
| |
Collapse
|
13
|
Clark KB. Smart Device-Driven Corticolimbic Plasticity in Cognitive-Emotional Restructuring of Space-Related Neuropsychiatric Disease and Injury. Life (Basel) 2022; 12:236. [PMID: 35207523 PMCID: PMC8875345 DOI: 10.3390/life12020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Escalating government and commercial efforts to plan and deploy viable manned near-to-deep solar system exploration and habitation over the coming decades now drives next-generation space medicine innovations. The application of cutting-edge precision medicine, such as brain stimulation techniques, provides powerful clinical and field/flight situation methods to selectively control vagal tone and neuroendocrine-modulated corticolimbic plasticity, which is affected by prolonged cosmic radiation exposure, social isolation or crowding, and weightlessness in constricted operational non-terran locales. Earth-based clinical research demonstrates that brain stimulation approaches may be combined with novel psychotherapeutic integrated memory structure rationales for the corrective reconsolidation of arousing or emotional experiences, autobiographical memories, semantic schema, and other cognitive structures to enhance neuropsychiatric patient outcomes. Such smart cotherapies or countermeasures, which exploit natural, pharmaceutical, and minimally invasive neuroprosthesis-driven nervous system activity, may optimize the cognitive-emotional restructuring of astronauts suffering from space-related neuropsychiatric disease and injury, including mood, affect, and anxiety symptoms of any potential severity and pathophysiology. An appreciation of improved neuropsychiatric healthcare through the merging of new or rediscovered smart theragnostic medical technologies, capable of rendering personalized neuroplasticity training and managed psychotherapeutic treatment protocols, will reveal deeper insights into the illness states experienced by astronauts. Future work in this area should emphasize the ethical role of telemedicine and/or digital clinicians to advance the (semi)autonomous, technology-assisted medical prophylaxis, diagnosis, treatment, monitoring, and compliance of astronauts for elevated health, safety, and performance in remote extreme space and extraterrestrial environments.
Collapse
Affiliation(s)
- Kevin B. Clark
- Felidae Conservation Fund, Mill Valley, CA 94941, USA;
- Cures Within Reach, Chicago, IL 60602, USA
- Domain and Campus Champions Program, NSF Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Multi-Omics and Systems Biology Analysis Working Group, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- SETI Institute, Mountain View, CA 94043, USA
- NASA NfoLD, NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Nanotechnology and Biometrics Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016-5997, USA
| |
Collapse
|
14
|
Soler I, Yun S, Reynolds RP, Whoolery CW, Tran FH, Kumar PL, Rong Y, DeSalle MJ, Gibson AD, Stowe AM, Kiffer FC, Eisch AJ. Multi-Domain Touchscreen-Based Cognitive Assessment of C57BL/6J Female Mice Shows Whole-Body Exposure to 56Fe Particle Space Radiation in Maturity Improves Discrimination Learning Yet Impairs Stimulus-Response Rule-Based Habit Learning. Front Behav Neurosci 2021; 15:722780. [PMID: 34707486 PMCID: PMC8543003 DOI: 10.3389/fnbeh.2021.722780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Astronauts during interplanetary missions will be exposed to galactic cosmic radiation, including charged particles like 56Fe. Most preclinical studies with mature, "astronaut-aged" rodents suggest space radiation diminishes performance in classical hippocampal- and prefrontal cortex-dependent tasks. However, a rodent cognitive touchscreen battery unexpectedly revealed 56Fe radiation improves the performance of C57BL/6J male mice in a hippocampal-dependent task (discrimination learning) without changing performance in a striatal-dependent task (rule-based learning). As there are conflicting results on whether the female rodent brain is preferentially injured by or resistant to charged particle exposure, and as the proportion of female vs. male astronauts is increasing, further study on how charged particles influence the touchscreen cognitive performance of female mice is warranted. We hypothesized that, similar to mature male mice, mature female C57BL/6J mice exposed to fractionated whole-body 56Fe irradiation (3 × 6.7cGy 56Fe over 5 days, 600 MeV/n) would improve performance vs. Sham conditions in touchscreen tasks relevant to hippocampal and prefrontal cortical function [e.g., location discrimination reversal (LDR) and extinction, respectively]. In LDR, 56Fe female mice more accurately discriminated two discrete conditioned stimuli relative to Sham mice, suggesting improved hippocampal function. However, 56Fe and Sham female mice acquired a new simple stimulus-response behavior and extinguished this acquired behavior at similar rates, suggesting similar prefrontal cortical function. Based on prior work on multiple memory systems, we next tested whether improved hippocampal-dependent function (discrimination learning) came at the expense of striatal stimulus-response rule-based habit learning (visuomotor conditional learning). Interestingly, 56Fe female mice took more days to reach criteria in this striatal-dependent rule-based test relative to Sham mice. Together, our data support the idea of competition between memory systems, as an 56Fe-induced decrease in striatal-based learning is associated with enhanced hippocampal-based learning. These data emphasize the power of using a touchscreen-based battery to advance our understanding of the effects of space radiation on mission critical cognitive function in females, and underscore the importance of preclinical space radiation risk studies measuring multiple cognitive processes, thereby preventing NASA's risk assessments from being based on a single cognitive domain.
Collapse
Affiliation(s)
- Ivan Soler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sanghee Yun
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ryan P. Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Cody W. Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fionya H. Tran
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Priya L. Kumar
- University of Pennsylvania, Philadelphia, PA, United States
| | - Yuying Rong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew J. DeSalle
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Adam D. Gibson
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ann M. Stowe
- Department of Neurology and Neurological Therapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Frederico C. Kiffer
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Ainsbury EA, Moquet J, Sun M, Barnard S, Ellender M, Lloyd D. The future of biological dosimetry in mass casualty radiation emergency response, personalized radiation risk estimation and space radiation protection. Int J Radiat Biol 2021; 98:421-427. [PMID: 34515621 DOI: 10.1080/09553002.2021.1980629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this brief personal, high level review is to consider the state of the art for biological dosimetry for radiation routine and emergency response, and the potential future progress in this fascinating and active field. Four areas in which biomarkers may contribute to scientific advancement through improved dose and exposure characterization, as well as potential contributions to personalized risk estimation, are considered: emergency dosimetry, molecular epidemiology, personalized medical dosimetry, and space travel. CONCLUSION Ionizing radiation biodosimetry is an exciting field which will continue to benefit from active networking and collaboration with the wider fields of radiation research and radiation emergency response to ensure effective, joined up approaches to triage; radiation epidemiology to assess long term, low dose, radiation risk; radiation protection of workers, optimization and justification of radiation for diagnosis or treatment of patients in clinical uses, and protection of individuals traveling to space.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK.,Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - Mingzhu Sun
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - David Lloyd
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| |
Collapse
|
16
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
17
|
Bychkov A, Reshetnikova P, Bychkova E, Podgorbunskikh E, Koptev V. The current state and future trends of space nutrition from a perspective of astronauts' physiology. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Life-long brain compensatory responses to galactic cosmic radiation exposure. Sci Rep 2021; 11:4292. [PMID: 33619310 PMCID: PMC7900210 DOI: 10.1038/s41598-021-83447-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Galactic cosmic radiation (GCR) composed of high-energy, heavy particles (HZE) poses potentially serious hazards to long-duration crewed missions in deep space beyond earth’s magnetosphere, including planned missions to Mars. Chronic effects of GCR exposure on brain structure and cognitive function are poorly understood, thereby limiting risk reduction and mitigation strategies to protect against sequelae from exposure during and after deep-space travel. Given the selective vulnerability of the hippocampus to neurotoxic insult and the importance of this brain region to learning and memory, we hypothesized that GCR-relevant HZE exposure may induce long-term alterations in adult hippocampal neurogenesis, synaptic plasticity, and hippocampal-dependent learning and memory. To test this hypothesis, we irradiated 3-month-old male and female mice with a single, whole-body dose of 10, 50, or 100 cGy 56Fe ions (600 MeV, 181 keV/μm) at Brookhaven National Laboratory. Our data reveal complex, dynamic, time-dependent effects of HZE exposure on the hippocampus. Two months post exposure, neurogenesis, synaptic plasticity and learning were impaired compared to sham-irradiated, age-matched controls. By six months post-exposure, deficits in spatial learning were absent in irradiated mice, and synaptic potentiation was enhanced. Enhanced performance in spatial learning and facilitation of synaptic plasticity in irradiated mice persisted 12 months post-exposure, concomitant with a dramatic rebound in adult-born neurons. Synaptic plasticity and spatial learning remained enhanced 20 months post-exposure, indicating a life-long influence on plasticity and cognition from a single exposure to HZE in young adulthood. These findings suggest that GCR-exposure can persistently alter brain health and cognitive function during and after long-duration travel in deep space.
Collapse
|
19
|
Khurana VG, Jithoo R, Barnett M. Aerospace Implications of Key Neurological Conditions. Aerosp Med Hum Perform 2021; 92:113-119. [PMID: 33468292 DOI: 10.3357/amhp.5744.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: The neurological impact (or lack thereof) of certain medical histories and imaging findings is important to understand in the context of air and spaceflight. There are a number of neurological conditions that, if present in pilots and astronauts, carry variable (and sometimes adverse) functional implications for safety and overall mission success. In this systematic overview, the authors will refer to the relevant clinical and radiological features of brain tumors and vascular anomalies, cerebral edema and intracranial hypertension, concussion and the traumatic brain injury (TBI) spectrum, hematomas, cerebrospinal fluid circulation anomalies including hydrocephalus and sequestrations, spinal degenerative changes, and cerebral ischemia and demyelination. It is notable that these last two conditions have recently been reported to be a complication in some people with coronavirus disease 2019 (COVID-19). A paradigm for practical neurological workup of symptomatic pilots and astronauts will be discussed, as will the controversial notion of pre-emptive radiological screening (vs. not screening) in asymptomatic or clinically occult situations. The concepts of medical surveillance in the setting of known or diagnosed pathologies, and expert panel review and simulator and flight checks in complex neurological cases, are also elaborated on in this paper. We believe this overview will contribute toward the enhancement of a broad understanding of neurological conditions, their clinical workup, and their precautionary management in the setting of aviation and aerospace.Khurana VG, Jithoo R, Barnett M. Aerospace implications of key neurological conditions. Aerosp Med Hum Perform. 2021; 92(2):113119.
Collapse
|
20
|
Owlett L, Belcher EK, Dionisio-Santos DA, Williams JP, Olschowka JA, O'Banion MK. Space radiation does not alter amyloid or tau pathology in the 3xTg mouse model of Alzheimer's disease. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:89-98. [PMID: 34756235 DOI: 10.1016/j.lssr.2020.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 05/27/2023]
Abstract
Space radiation is comprised of highly charged ions (HZE particles) and protons that are able to pass through matter and cause radiation-induced injury, including neuronal damage and degeneration, glial activation, and oxidative stress. Previous work demonstrated a worsening of Alzheimer's disease pathology in the APP/PS1 transgenic mouse model, however effects of space radiation on tau pathology have not been studied. To determine whether tau pathology is altered by HZE particle or proton irradiation, we exposed 3xTg mice, which acquire both amyloid plaque and tau pathology with age, to iron, silicon, or solar particle event (SPE) irradiation at 9 months of age and evaluated behavior and brain pathology at 16 months of age. We found no differences in performance in fear conditioning and novel object recognition tasks between groups of mice exposed to sham, iron (10 and 100 cGy), silicon (10 and 100 cGy), or solar particle event radiation (200 cGy), though female mice had higher freezing responses than males. 200 cGy SPE irradiated female mice had fewer plaques than sham-irradiated females but had no differences in tau pathology. Overall, females had worse amyloid and tau pathology at 16 months of age and demonstrated a reduced neuroinflammatory gene expression response to radiation. These findings uncover differences between mouse models following radiation injury and corroborate prior reports of sex differences within the 3xTg mouse model.
Collapse
Affiliation(s)
- Laura Owlett
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Elizabeth K Belcher
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Dawling A Dionisio-Santos
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box EHSC, Rochester, NY, 14642, USA
| | - John A Olschowka
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Del Monte Neuroscience Institute, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Del Monte Neuroscience Institute, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA.
| |
Collapse
|
21
|
Zhang S, Wimmer-Schweingruber RF, Yu J, Wang C, Fu Q, Zou Y, Sun Y, Wang C, Hou D, Böttcher SI, Burmeister S, Seimetz L, Schuster B, Knierim V, Shen G, Yuan B, Lohf H, Guo J, Xu Z, Freiherr von Forstner JL, Kulkarni SR, Xu H, Xue C, Li J, Zhang Z, Zhang H, Berger T, Matthiä D, Hellweg CE, Hou X, Cao J, Chang Z, Zhang B, Chen Y, Geng H, Quan Z. First measurements of the radiation dose on the lunar surface. SCIENCE ADVANCES 2020; 6:eaaz1334. [PMID: 32978156 PMCID: PMC7518862 DOI: 10.1126/sciadv.aaz1334] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/12/2020] [Indexed: 05/21/2023]
Abstract
Human exploration of the Moon is associated with substantial risks to astronauts from space radiation. On the surface of the Moon, this consists of the chronic exposure to galactic cosmic rays and sporadic solar particle events. The interaction of this radiation field with the lunar soil leads to a third component that consists of neutral particles, i.e., neutrons and gamma radiation. The Lunar Lander Neutrons and Dosimetry experiment aboard China's Chang'E 4 lander has made the first ever measurements of the radiation exposure to both charged and neutral particles on the lunar surface. We measured an average total absorbed dose rate in silicon of 13.2 ± 1 μGy/hour and a neutral particle dose rate of 3.1 ± 0.5 μGy/hour.
Collapse
Affiliation(s)
- Shenyi Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- University of Chinese Academy of Science, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| | - Robert F Wimmer-Schweingruber
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China.
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Jia Yu
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Chi Wang
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
| | - Qiang Fu
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing, PR China
- Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Beijing, PR China
| | - Yongliao Zou
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
| | - Yueqiang Sun
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| | - Chunqin Wang
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| | - Donghui Hou
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- University of Chinese Academy of Science, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| | - Stephan I Böttcher
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Sönke Burmeister
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Lars Seimetz
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Björn Schuster
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Violetta Knierim
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Guohong Shen
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| | - Bin Yuan
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| | - Henning Lohf
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Jingnan Guo
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
- University of Science and Technology of China, Hefei, PR China
- CAS Center for Excellence in Comparative Planetology, Hefei, PR China
| | - Zigong Xu
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | | | - Shrinivasrao R Kulkarni
- Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel, Germany
| | - Haitao Xu
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
| | - Changbin Xue
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
| | - Jun Li
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
| | - Zhe Zhang
- Lunar Exploration and Space Engineering Center, Beijing, PR China
| | - He Zhang
- China Academy of Space Technology, Beijing, PR China
| | - Thomas Berger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Daniel Matthiä
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Christine E Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Xufeng Hou
- 18th Research Institute, China Electronics Technology Group Corporation, Tianjin, PR China
| | | | - Zhen Chang
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| | - Binquan Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| | - Yuesong Chen
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
| | - Hao Geng
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
| | - Zida Quan
- National Space Science Center, Chinese Academy of Sciences, Beijing, PR China
- Beijing Key Laboratory of Space Environment Exploration, Beijing, PR China
- Key Laboratory of Environmental Space Situation Awareness Technology, Beijing, PR China
| |
Collapse
|
22
|
Affiliation(s)
- Michael H Lev
- From the Department of Radiology, Harvard Medical School, Cambridge, Mass; and Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| |
Collapse
|
23
|
Schmidt MA, Meydan C, Schmidt CM, Afshinnekoo E, Mason CE. The NASA Twins Study: The Effect of One Year in Space on Long-Chain Fatty Acid Desaturases and Elongases. Lifestyle Genom 2020; 13:107-121. [PMID: 32375154 DOI: 10.1159/000506769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND At present, there is no clear understanding of the effect of long-duration spaceflight on the major enzymes that govern the metabolism of omega-6 and omega-3 fatty acids. To address this gap in knowledge, we used data from the NASA Twins Study, which includes a multiscale omics investigation of the changes that occurred during a year-long (340 days) human spaceflight. Embedded within the NASA Twins data are specific analytes associated with fatty acid metabolism. OBJECTIVES To examine the long-chain fatty acid desaturases and elongases in a single human during 1 year in space. METHOD One male twin was on board the International Space Station (ISS) for 1 year, while his monozygotic twin served as a genetically matched ground control. Longitudinal assessments included the genome, epige-nome, transcriptome, proteome, metabolome, microbiome, and immunome during the mission, as well as 6 months before and after. The gene-specific fatty acid desaturase and elongase transcriptome data (FADS1, FADS2, ELOVL2, and ELOVL5) were extracted from untargeted RNA-seq measurements derived from white blood cell fractions. RESULTS Most data from the elongases and desaturases exhibited relatively similar expression profiles (R2 >0.6) over time for the CD8, CD19, and lymphocyte-depleted (LD) cell fractions, indicating overall conservation of function within and between the subjects. Both cell-type and temporal specificity was observed in some cases, and some differences were also apparent between the polyadenylated (polyA) fraction of processed RNAs versus the ribodepleted (ribo-) fraction. The flight subject showed a stronger enrichment of the fatty acid metabolic process pathway across almost all cell types (columns, CD4, CD8, CPT, and LD), most especially in the ribodepleted fraction of RNA, but also with the polyA+ fraction of RNA. Gene set enrichment analysis (GSEA) measures across three related fatty acid metabolism pathways showed a differential between the ground and the flight subject. CONCLUSIONS There appears to be no persistent alteration of desaturase and elongase gene expression associated with 1 year in space. However, these data provide evidence that cellular lipid metabolism can be responsive and dynamic to spaceflight, even though it appears cell-type and context specific, most notably in terms of the fraction of RNA measured and the collection protocols. These results also provide new evidence of mid-flight spikes in expression of selected genes, which may indicate transient responses to specific insults during spaceflight.
Collapse
Affiliation(s)
- Michael A Schmidt
- Advanced Pattern Analysis & Countermeasures Group, Boulder, Colorado, USA,
- Sovaris Aerospace, Boulder, Colorado, USA,
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, Colorado, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
24
|
Whoolery CW, Yun S, Reynolds RP, Lucero MJ, Soler I, Tran FH, Ito N, Redfield RL, Richardson DR, Shih HY, Rivera PD, Chen BPC, Birnbaum SG, Stowe AM, Eisch AJ. Multi-domain cognitive assessment of male mice shows space radiation is not harmful to high-level cognition and actually improves pattern separation. Sci Rep 2020; 10:2737. [PMID: 32066765 PMCID: PMC7026431 DOI: 10.1038/s41598-020-59419-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired associates learning, suggesting preserved functional integrity of supporting brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern separation task; irradiated mice learned faster and were more accurate than controls. Improved pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view that space radiation is detrimental to cognition.
Collapse
Affiliation(s)
- Cody W Whoolery
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P Reynolds
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melanie J Lucero
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Soler
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naoki Ito
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Oriental Medicine Research Center, Kitasato University, Tokyo, Japan
| | - Rachel L Redfield
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon R Richardson
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hung-Ying Shih
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phillip D Rivera
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biology, Hope College, Holland, MI, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shari G Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Overbey EG, Paul AM, da Silveira WA, Tahimic CGT, Reinsch SS, Szewczyk N, Stanbouly S, Wang C, Galazka JM, Mao XW. Mice Exposed to Combined Chronic Low-Dose Irradiation and Modeled Microgravity Develop Long-Term Neurological Sequelae. Int J Mol Sci 2019; 20:ijms20174094. [PMID: 31443374 PMCID: PMC6747492 DOI: 10.3390/ijms20174094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Spaceflight poses many challenges for humans. Ground-based analogs typically focus on single parameters of spaceflight and their associated acute effects. This study assesses the long-term transcriptional effects following single and combination spaceflight analog conditions using the mouse model: simulated microgravity via hindlimb unloading (HLU) and/or low-dose γ-ray irradiation (LDR) for 21 days, followed by 4 months of readaptation. Changes in gene expression and epigenetic modifications in brain samples during readaptation were analyzed by whole transcriptome shotgun sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). The results showed minimal gene expression and cytosine methylation alterations at 4 months readaptation within single treatment conditions of HLU or LDR. In contrast, following combined HLU+LDR, gene expression and promoter methylation analyses showed multiple altered pathways involved in neurogenesis and neuroplasticity, the regulation of neuropeptides, and cellular signaling. In brief, neurological readaptation following combined chronic LDR and HLU is a dynamic process that involves pathways that regulate neuronal function and structure and may lead to late onset neurological sequelae.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian A da Silveira
- Institute for Global Food Security (IGF), School of Biological Sciences, Queen's University, Belfast, Northern Ireland BT7 1NN, UK
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- KBR, Moffett Field, CA 94035, USA
| | - Sigrid S Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Nathaniel Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research & National Institute for Health Research Nottingham Biomedical Research Centre, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK
| | - Seta Stanbouly
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
26
|
Reptiles in Space Missions: Results and Perspectives. Int J Mol Sci 2019; 20:ijms20123019. [PMID: 31226840 PMCID: PMC6627973 DOI: 10.3390/ijms20123019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
Reptiles are a rare model object for space research. However, some reptile species demonstrate effective adaptation to spaceflight conditions. The main scope of this review is a comparative analysis of reptile experimental exposure in weightlessness, demonstrating the advantages and shortcomings of this model. The description of the known reptile experiments using turtles and geckos in the space and parabolic flight experiments is provided. Behavior, skeletal bones (morphology, histology, and X-ray microtomography), internal organs, and the nervous system (morphology, histology, and immunohistochemistry) are studied in the spaceflight experiments to date, while molecular and physiological results are restricted. Therefore, the results are discussed in the scope of molecular data collected from mammalian (mainly rodents) specimens and cell cultures in the parabolic and orbital flights and simulated microgravity. The published data are compared with the results of the gecko model studies after the 12–44.5-day spaceflights with special reference to the unique peculiarities of the gecko model for the orbital experiments. The complex study of thick-toed geckos after three spaceflights, in which all geckos survived and demonstrated effective adaptation to spaceflight conditions, was performed. However, future investigations are needed to study molecular mechanisms of gecko adaptation in space.
Collapse
|
27
|
Minkoff BB, Bruckbauer ST, Sabat G, Cox MM, Sussman MR. Covalent Modification of Amino Acids and Peptides Induced by Ionizing Radiation from an Electron Beam Linear Accelerator Used in Radiotherapy. Radiat Res 2019; 191:447-459. [PMID: 30849023 PMCID: PMC6506356 DOI: 10.1667/rr15288.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To identify modifications to amino acids that are directly induced by ionizing radiation, free amino acids and 3-residue peptides were irradiated using a linear accelerator (Linac) radiotherapy device. Mass spectrometry was performed to detail the relative sensitivity to radiation as well as identify covalent, radiation-dependent adducts. The order of reactivity of the 20 common amino acids was generally in agreement with published literature except for His (most reactive of the 20) and Cys (less reactive). Novel and previously identified modifications on the free amino acids were detected. Amino acids were far less reactive when flanked by glycine residues in a tripeptide. Order of reactivity, with GVG most and GEG least, was substantially altered, as were patterns of modification. Radiation reactivity of amino acids is clearly and strongly affected by conversion of the α-amino and α-carboxyl groups to peptide bonds, and the presence of neighboring amino acid residues.
Collapse
Affiliation(s)
- Benjamin B. Minkoff
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Steven T. Bruckbauer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Grzegorz Sabat
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Michael R. Sussman
- Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
28
|
Walsh L, Schneider U, Fogtman A, Kausch C, McKenna-Lawlor S, Narici L, Ngo-Anh J, Reitz G, Sabatier L, Santin G, Sihver L, Straube U, Weber U, Durante M. Research plans in Europe for radiation health hazard assessment in exploratory space missions. LIFE SCIENCES IN SPACE RESEARCH 2019; 21:73-82. [PMID: 31101157 DOI: 10.1016/j.lssr.2019.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 05/04/2023]
Abstract
The European Space Agency (ESA) is currently expanding its efforts in identifying requirements and promoting research towards optimizing radiation protection of astronauts. Space agencies use common limits for tissue (deterministic) effects on the International Space Station. However, the agencies have in place different career radiation exposure limits (for stochastic effects) for astronauts in low-Earth orbit missions. Moreover, no specific limits for interplanetary missions are issued. Harmonization of risk models and dose limits for exploratory-class missions are now operational priorities, in view of the short-term plans for international exploratory-class human missions. The purpose of this paper is to report on the activity of the ESA Topical Team on space radiation research, whose task was to identify the most pertinent research requirements for improved space radiation protection and to develop a European space radiation risk model, to contribute to the efforts to reach international consensus on dose limits for deep space. The Topical Team recommended ESA to promote the development of a space radiation risk model based on European-specific expertise in: transport codes, radiobiological modelling, risk assessment, and uncertainty analysis. The model should provide cancer and non-cancer radiation risks for crews implementing exploratory missions. ESA should then support the International Commission on Radiological Protection to harmonize international models and dose limits in deep space, and guarantee continuous support in Europe for accelerator-based research configured to improve the models and develop risk mitigation strategies.
Collapse
Affiliation(s)
- L Walsh
- Department of Physics, Science Faculty, University of Zürich, Zurich, Switzerland
| | - U Schneider
- Department of Physics, Science Faculty, University of Zürich, Zurich, Switzerland
| | | | - C Kausch
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | | | - L Narici
- Department of Physics, University Tor Vergata, and INFN, Roma-2 Section, Rome, Italy
| | - J Ngo-Anh
- ESA-ESTEC, Nordwijk, the Netherlands
| | - G Reitz
- Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czechia; Radiation Biology, Institue for Aerospace Medicine, DLR, Cologne, Germany
| | - L Sabatier
- Fundamental Research Division, D3P, CEA, Paris-Saclay, France
| | - G Santin
- ESA-ESTEC, Nordwijk, the Netherlands
| | - L Sihver
- Atominstitut, Technische Universität Wien, Wien, Austria; MedAustron, Wiener Neustadt, Austria
| | | | - U Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - M Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
29
|
Löbrich M, Jeggo PA. Hazards of human spaceflight. SCIENCE (NEW YORK, N.Y.) 2019; 364:127-128. [PMID: 30975876 DOI: 10.1126/science.aaw7086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
30
|
Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int J Mol Sci 2018; 19:E2608. [PMID: 30177626 PMCID: PMC6163331 DOI: 10.3390/ijms19092608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The space environment chiefly includes microgravity and radiation, which seriously threatens the health of astronauts. Bone loss and muscle atrophy are the two most significant changes in mammals after long-term residency in space. In this review, we summarized current understanding of the effects of microgravity and radiation on the musculoskeletal system and discussed the corresponding mechanisms that are related to iron overload and oxidative damage. Furthermore, we enumerated some countermeasures that have a therapeutic potential for bone loss and muscle atrophy through using iron chelators and antioxidants. Future studies for better understanding the mechanism of iron and redox homeostasis imbalance induced by the space environment and developing the countermeasures against iron overload and oxidative damage consequently may facilitate human to travel more safely in space.
Collapse
Affiliation(s)
- Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
| |
Collapse
|
31
|
The Role of the Nuclear Factor κB Pathway in the Cellular Response to Low and High Linear Energy Transfer Radiation. Int J Mol Sci 2018; 19:ijms19082220. [PMID: 30061500 PMCID: PMC6121395 DOI: 10.3390/ijms19082220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Astronauts are exposed to considerable doses of space radiation during long-term space missions. As complete shielding of the highly energetic particles is impracticable, the cellular response to space-relevant radiation qualities has to be understood in order to develop countermeasures and to reduce radiation risk uncertainties. The transcription factor Nuclear Factor κB (NF-κB) plays a fundamental role in the immune response and in the pathogenesis of many diseases. We have previously shown that heavy ions with a linear energy transfer (LET) of 100–300 keV/µm have a nine times higher potential to activate NF-κB compared to low-LET X-rays. Here, chemical inhibitor studies using human embryonic kidney cells (HEK) showed that the DNA damage sensor Ataxia telangiectasia mutated (ATM) and the proteasome were essential for NF-κB activation in response to X-rays and heavy ions. NF-κB’s role in cellular radiation response was determined by stable knock-down of the NF-κB subunit RelA. Transfection of a RelA short-hairpin RNA plasmid resulted in higher sensitivity towards X-rays, but not towards heavy ions. Reverse Transcriptase real-time quantitative PCR (RT-qPCR) showed that after exposure to X-rays and heavy ions, NF-κB predominantly upregulates genes involved in intercellular communication processes. This process is strictly NF-κB dependent as the response is completely absent in RelA knock-down cells. NF-κB’s role in the cellular radiation response depends on the radiation quality.
Collapse
|