1
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
2
|
Goliusova DV, Sharikova MY, Lavrenteva KA, Lebedeva OS, Muranova LK, Gusev NB, Bogomazova AN, Lagarkova MA. Role of Filamin C in Muscle Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1546-1557. [PMID: 39418514 DOI: 10.1134/s0006297924090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the FLNC gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets. Under mechanical stress FLNC can undergo unfolding that increases the risk of its aggregation. FLNC molecules with an impaired native structure could be eliminated by the BAG3-mediated chaperone-assisted selective autophagy. Mutations in the FLNC gene could be accompanied by the changes in FLNC interaction with its protein partners and could lead to formation of aggregates, which overload the autophagy and proteasome protein degradation systems, thus facilitating development of various pathological processes. Molecular mechanisms of the FLNC-associated congenital disorders, called filaminopathies, remain poorly understood. This review is devoted to analysis of the structure and mechanisms of filamin C function in muscle and heart cells in normal state and in the FLNC-associated pathologies. The presented data summarize the results of research at the molecular, cellular, and tissue levels and allow us to outline promising ways for further investigation of pathogenetic mechanisms in filaminopathies.
Collapse
Affiliation(s)
- Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita Y Sharikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Kristina A Lavrenteva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Lidia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
3
|
Guo Y, Zeng Q, Brooks D, Geisbrecht ER. A conserved STRIPAK complex is required for autophagy in muscle tissue. Mol Biol Cell 2023; 34:ar91. [PMID: 37379167 PMCID: PMC10398890 DOI: 10.1091/mbc.e23-01-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Autophagy is important for cellular homeostasis and to prevent the abnormal accumulation of proteins. While many proteins that comprise the canonical autophagy pathway have been characterized, the identification of new regulators may help understand tissue and/or stress-specific responses. Using an in-silico approach, we identified Striatin interacting protein (Strip), MOB kinase activator 4, and fibroblast growth factor receptor 1 oncogene partner 2 as conserved mediators of muscle tissue maintenance. We performed affinity purification-mass spectrometry (AP-MS) experiments with Drosophila melanogaster Strip as a bait protein and copurified additional Striatin-interacting phosphatase and kinase (STRIPAK) complex members from larval muscle tissue. NUAK family kinase 1 (NUAK) and Starvin (Stv) also emerged as Strip-binding proteins and these physical interactions were verified in vivo using proximity ligation assays. To understand the functional significance of the STRIPAK-NUAK-Stv complex, we employed a sensitized genetic assay combined with RNA interference (RNAi) to demonstrate that both NUAK and stv function in the same biological process with genes that encode for STRIPAK complex proteins. RNAi-directed knockdown of Strip in muscle tissue led to the accumulation of ubiquitinated cargo, p62, and Autophagy-related 8a, consistent with a block in autophagy. Indeed, autophagic flux was decreased in Strip RNAi muscles, while lysosome biogenesis and activity were unaffected. Our results support a model whereby the STRIPAK-NUAK-Stv complex coordinately regulates autophagy in muscle tissue.
Collapse
Affiliation(s)
- Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Qiling Zeng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Erika R. Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
4
|
Perez-Bermejo JA, Judge LM, Jensen CL, Wu K, Watry HL, Truong A, Ho JJ, Carter M, Runyon WV, Kaake RM, Pulido EH, Mandegar MA, Swaney DL, So PL, Krogan NJ, Conklin BR. Functional analysis of a common BAG3 allele associated with protection from heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:615-628. [PMID: 39195919 DOI: 10.1038/s44161-023-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/18/2023] [Indexed: 08/29/2024]
Abstract
Multiple genetic association studies have correlated a common allelic block linked to the BAG3 gene with a decreased incidence of heart failure, but the molecular mechanism remains elusive. In this study, we used induced pluripotent stem cells to test if the only coding variant in this allele block, BAG3C151R, alters protein and cellular function in human cardiomyocytes. Quantitative protein interaction analysis identified changes in BAG3C151R protein partners specific to cardiomyocytes. Knockdown of genes encoding for BAG3-interacting factors in cardiomyocytes followed by myofibrillar analysis revealed that BAG3C151R associates more strongly with proteins involved in the maintenance of myofibrillar integrity. Finally, we demonstrate that cardiomyocytes expressing the BAG3C151R variant have improved response to proteotoxic stress in a dose-dependent manner. This study suggests that BAG3C151R could be responsible for the cardioprotective effect of the haplotype block, by increasing cardiomyocyte protection from stress. Preferential binding partners of BAG3C151R may reveal potential targets for cardioprotective therapies.
Collapse
Affiliation(s)
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kenneth Wu
- Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Jaclyn J Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
5
|
Winter L, Staszewska-Daca I, Zittrich S, Elhamine F, Zrelski MM, Schmidt K, Fischer I, Jüngst C, Schauss A, Goldmann WH, Stehle R, Wiche G. Z-Disk-Associated Plectin (Isoform 1d): Spatial Arrangement, Interaction Partners, and Role in Filamin C Homeostasis. Cells 2023; 12:1259. [PMID: 37174658 PMCID: PMC10177080 DOI: 10.3390/cells12091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Plectin, a highly versatile cytolinker protein, is crucial for myofiber integrity and function. Accordingly, mutations in the human gene (PLEC) cause several rare diseases, denoted as plectinopathies, with most of them associated with progressive muscle weakness. Of several plectin isoforms expressed in skeletal muscle and the heart, P1d is the only isoform expressed exclusively in these tissues. Using high-resolution stimulated emission depletion (STED) microscopy, here we show that plectin is located within the gaps between individual α-actinin-positive Z-disks, recruiting and bridging them to desmin intermediate filaments (IFs). Loss of plectin in myofibril bundles led to a complete loss of desmin IFs. Loss of Z-disk-associated plectin isoform P1d led to disorganization of muscle fibers and slower relaxation of myofibrils upon mechanical strain, in line with an observed inhomogeneity of muscle ultrastructure. In addition to binding to α-actinin and thereby providing structural support, P1d forms a scaffolding platform for the chaperone-assisted selective autophagy machinery (CASA) by directly interacting with HSC70 and synpo2. In isoform-specific knockout (P1d-KO) mouse muscle and mechanically stretched plectin-deficient myoblasts, we found high levels of undigested filamin C, a bona fide substrate of CASA. Similarly, subjecting P1d-KO mice to forced swim tests led to accumulation of filamin C aggregates in myofibers, highlighting a specific role of P1d in tension-induced proteolysis activated upon high loads of physical exercise and muscle contraction.
Collapse
Affiliation(s)
- Lilli Winter
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
| | - Ilona Staszewska-Daca
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| | - Stefan Zittrich
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Fatiha Elhamine
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Michaela M. Zrelski
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
| | - Katy Schmidt
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria; (M.M.Z.); (K.S.)
- Core Facility for Cell Imaging & Ultrastructure Research (CIUS), University of Vienna, 1030 Vienna, Austria
| | - Irmgard Fischer
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| | - Christian Jüngst
- CECAD Imaging Facility, CECAD Forschungszentrum Cologne, 50931 Cologne, Germany; (C.J.); (A.S.)
| | - Astrid Schauss
- CECAD Imaging Facility, CECAD Forschungszentrum Cologne, 50931 Cologne, Germany; (C.J.); (A.S.)
| | - Wolfgang H. Goldmann
- Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany;
| | - Robert Stehle
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (S.Z.); (F.E.); (R.S.)
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria; (L.W.); (I.S.-D.); (I.F.)
| |
Collapse
|
6
|
Chierichetti M, Cerretani M, Ciammaichella A, Crippa V, Rusmini P, Ferrari V, Tedesco B, Casarotto E, Cozzi M, Mina F, Pramaggiore P, Galbiati M, Piccolella M, Bresciani A, Cristofani R, Poletti A. Identification of HSPB8 modulators counteracting misfolded protein accumulation in neurodegenerative diseases. Life Sci 2022; 322:121323. [PMID: 36574942 DOI: 10.1016/j.lfs.2022.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
AIMS The small Heat Shock Protein B8 (HSPB8) is the core component of the chaperone-assisted selective autophagy (CASA) complex. This complex selectively targets, transports, and tags misfolded proteins for their recognition by autophagic receptors and insertion into autophagosome for clearance. CASA is essential to maintain intracellular proteostasis, especially in heart, muscle, and brain often exposed to various types of cell stresses. In neurons, HSPB8 protects against neurotoxicity caused by misfolded proteins in several models of neurodegenerative diseases; by facilitating autophagy, HSPB8 assists misfolded protein degradation also counteracting proteasome overwhelming and inhibition. MATERIALS AND METHODS To enhance HSPB8 protective activity, we screened a library of approximately 120,000 small molecules to identify compounds capable of increasing HSPB8 gene transcription, translation, or protein stability. We found 83 compounds active in preliminary dose-response assays and further classified them in 19 chemical classes by medicinal chemists' visual inspection. Of these 19 prototypes, 14 induced HSPB8 mRNA and protein levels in SH-SY5Y cells. KEY FINDINGS Out of these 14, 3 successfully reduced the aggregation propensity of a disease-associated mutant misfolded Superoxide Dismutase 1 (SOD1) protein in a flow cytometry-based "aggregation assay" [Flow cytometric analysis of Inclusions and Trafficking" (FloIT)] and induced the expression (mRNA and protein) of some autophagy receptors. Notably, the 3 hits were inactive in HSPB8-depleted cells, confirming that their protective activity is mediated by and requires HSPB8. SIGNIFICANCE Thus, these compounds may be highly relevant for a therapeutic approach in several human disorders, including neurodegenerative diseases, in which enhancement of CASA exerts beneficial activities.
Collapse
Affiliation(s)
- Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mauro Cerretani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Alina Ciammaichella
- Department of Drug Discovery, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
7
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
8
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
9
|
Kötter S, Krüger M. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Front Physiol 2022; 13:914296. [PMID: 35846001 PMCID: PMC9281568 DOI: 10.3389/fphys.2022.914296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Sarcomeres are mainly composed of filament and signaling proteins and are the smallest molecular units of muscle contraction and relaxation. The sarcomere protein titin serves as a molecular spring whose stiffness mediates myofilament extensibility in skeletal and cardiac muscle. Due to the enormous size of titin and its tight integration into the sarcomere, the incorporation and degradation of the titin filament is a highly complex task. The details of the molecular processes involved in titin turnover are not fully understood, but the involvement of different intracellular degradation mechanisms has recently been described. This review summarizes the current state of research with particular emphasis on the relationship between titin and protein quality control. We highlight the involvement of the proteasome, autophagy, heat shock proteins, and proteases in the protection and degradation of titin in heart and skeletal muscle. Because the fine-tuned balance of degradation and protein expression can be disrupted under pathological conditions, the review also provides an overview of previously known perturbations in protein quality control and discusses how these affect sarcomeric proteins, and titin in particular, in various disease states.
Collapse
|
10
|
De Falco F, Perillo A, Del Piero F, Del Prete C, Zizzo N, Marcus I, Roperto S. ERAS Is Constitutively Expressed in the Tissues of Adult Horses and May Be a Key Player in Basal Autophagy. Front Vet Sci 2022; 9:818294. [PMID: 35685342 PMCID: PMC9171053 DOI: 10.3389/fvets.2022.818294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/03/2022] [Indexed: 01/18/2023] Open
Abstract
ERas is a new gene of the Ras family found in murine embryonic stem (ES) cells. Its human ortholog is not expressed in human ES cells. So far ERas gene has only been found to be expressed in the tissues of adult cynomolgus monkeys and cattle; however, information about ERAS expression or its potential functions in equine tissues is lacking. This study was performed to investigate whether Eras is an equine functional gene and whether ERAS is expressed in the tissues of adult horses and determine its potential physiological role. Expression of the ERas gene was detected in all examined adult tissues, and the RT-PCR assay revealed ERAS transcripts. Protein expression was also detected by Western blot analysis. Quantitative real time RT-qPCR analysis revealed that different expression levels of ERAS transcripts were most highly expressed in the testis. Immunohistochemically, ERAS was found to be localized prevalently in the plasmatic membrane as well as cytoplasm of the cells. ERAS was a physical partner of activated PDGFβR leading to the AKT signaling. ERAS was found to interact with a network of proteins (BAG3, CHIP, Hsc70/Hsp70, HspB8, Synpo2, and p62) known to play a role in the chaperone-assisted selective autophagy (CASA), which is also known as BAG3-mediated selective macroautophagy, an adaptive mechanism to maintain cellular homeostasis. Furthermore, ERAS was found to interact with parkin. PINK1, BNIP3, laforin. All these proteins are known to play a role in parkin-dependent and -independent mitophagy. This is the first study demonstrating that Eras is a functional gene, and that ERAS is constitutively expressed in the tissues of adult horses. ERAS appears to play a physiological role in cellular proteostasis maintenance, thus mitigating the proteotoxicity of accumulated misfolded proteins and contributing to protection against disease. Finally, it is conceivable that activation of AKT pathway by PDGFRs promotes actin reorganization, directed cell movements, stimulation of cell growth.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Antonella Perillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Fabio Del Piero
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory-LADDL, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Chiara Del Prete
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Nicola Zizzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Ioan Marcus
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- *Correspondence: Sante Roperto ; orcid.org/0000-0001-6210-5519
| |
Collapse
|
11
|
Lohanadan K, Molt S, Dierck F, van der Ven PFM, Frey N, Höhfeld J, Fürst DO. Isoform-specific functions of synaptopodin-2 variants in cytoskeleton stabilization and autophagy regulation in muscle under mechanical stress. Exp Cell Res 2021; 408:112865. [PMID: 34637763 DOI: 10.1016/j.yexcr.2021.112865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022]
Abstract
Protein homeostasis (proteostasis) in multicellular organisms depends on the maintenance of force-bearing and force-generating cellular structures. Within myofibrillar Z-discs of striated muscle, isoforms of synaptopodin-2 (SYNPO2/myopodin) act as adapter proteins that are engaged in proteostasis of the actin-crosslinking protein filamin C (FLNc) under mechanical stress. SYNPO2 directly binds F-actin, FLNc and α-actinin and thus contributes to the architectural features of the actin cytoskeleton. By its association with autophagy mediating proteins, i.e. BAG3 and VPS18, SYNPO2 is also engaged in protein quality control and helps to target mechanical unfolded and damaged FLNc for degradation. Here we show that deficiency of all SYNPO2-isoforms in myotubes leads to decreased myofibrillar stability and deregulated autophagy under mechanical stress. In addition, isoform-specific proteostasis functions were revealed. The PDZ-domain containing variant SYNPO2b and the shorter, PDZ-less isoform SYNPO2e both localize to Z-discs. Yet, SYNPO2e is less stably associated with the Z-disc than SYNPO2b, and is dynamically transferred into FLNc-containing myofibrillar lesions under mechanical stress. SYNPO2e also recruits BAG3 into these lesions via interaction with the WW domain of BAG3. Our data provide evidence for a role of myofibrillar lesions as a transient quality control compartment essential to prevent and repair contraction-induced myofibril damage in muscle and indicate an important coordinating activity for SYNPO2 therein.
Collapse
Affiliation(s)
- Keerthika Lohanadan
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Sibylle Molt
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Franziska Dierck
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; German Centre for Cardiovascular Research, Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Jörg Höhfeld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
12
|
Salim C, Muders H, Jäger A, Konermann A. Role of chaperone-assisted selective autophagy (CASA) in mechanical stress protection of periodontal ligament cells. J Orofac Orthop 2021; 83:1-12. [PMID: 34735580 PMCID: PMC8766363 DOI: 10.1007/s00056-021-00358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022]
Abstract
Objective The periodontal ligament (PDL) is exposed to constant mechanical forces potentiated by orthodontic tooth movement (OTM). The aim of our study was to investigate the involvement of chaperone-assisted selective autophagy (CASA) in mechanosensing and cellular adaption to forces in the PDL. Materials and methods Human PDL cells were loaded with 2.5, 5, and 10% of static mechanical strain for 24 h in vitro. Untreated cells served as controls. Gene expression of HSPA8, HSPB8, BAG3, STUB1, SYNPO2 was investigated via RT-qPCR (Quantitative reverse transcription PCR). Western blot evidenced protein expression of these molecules and of Filamin A. In vivo analyses of CASA were performed via immunohistochemistry on teeth with and without OTM. Results CASA machinery genes were inherently expressed in PDL cells and exhibited transcriptional induction upon mechanical strain. Protein analyses underlined these findings, even though modulation upon force exertion also demonstrated a decrease for some molecules and loading strengths. In vivo results evidenced again the uniform upregulation of HSPA8, HSPB8, BAG3, STUB1, SYNPO2 and Filamin A in teeth with OTM compared to controls. Experiments generally evidenced a pronounced variability in the expression between donors both on the gene and protein level. Conclusions Our study is the first to identify both the expression and functional relevance of CASA in the PDL. The data reflect its probable central role in adequate adaption to forces exerted by OTM and in mechanical stress protection of cells. Deeper knowledge of the CASA pathway will allow better assessment of predisposing factors regarding side effects during mechanical force application that can be used in orthodontic practice.
Collapse
Affiliation(s)
- Corinna Salim
- Department of Orthodontics, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Hannah Muders
- Department of Orthodontics, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Andreas Jäger
- Department of Orthodontics, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Anna Konermann
- Department of Orthodontics, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| |
Collapse
|
13
|
Willis CRG, Gallagher IJ, Wilkinson DJ, Brook MS, Bass JJ, Phillips BE, Smith K, Etheridge T, Stokes T, McGlory C, Gorissen SHM, Szewczyk NJ, Phillips SM, Atherton PJ. Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans. FASEB J 2021; 35:e21830. [PMID: 34342902 DOI: 10.1096/fj.202100276rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2 O; 3 mL.kg-1 ), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2 O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters ("modules") with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.
Collapse
Affiliation(s)
- Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Iain J Gallagher
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Matthew S Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Joseph J Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nathaniel J Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
14
|
Overexpression of human BAG3 P209L in mice causes restrictive cardiomyopathy. Nat Commun 2021; 12:3575. [PMID: 34117258 PMCID: PMC8196106 DOI: 10.1038/s41467-021-23858-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
An amino acid exchange (P209L) in the HSPB8 binding site of the human co-chaperone BAG3 gives rise to severe childhood cardiomyopathy. To phenocopy the disease in mice and gain insight into its mechanisms, we generated humanized transgenic mouse models. Expression of human BAG3P209L-eGFP in mice caused Z-disc disintegration and formation of protein aggregates. This was accompanied by massive fibrosis resulting in early-onset restrictive cardiomyopathy with increased mortality as observed in patients. RNA-Seq and proteomics revealed changes in the protein quality control system and increased autophagy in hearts from hBAG3P209L-eGFP mice. The mutation renders hBAG3P209L less soluble in vivo and induces protein aggregation, but does not abrogate hBAG3 binding properties. In conclusion, we report a mouse model mimicking the human disease. Our data suggest that the disease mechanism is due to accumulation of hBAG3P209L and mouse Bag3, causing sequestering of components of the protein quality control system and autophagy machinery leading to sarcomere disruption. An amino acid exchange (P209L) in the human co-chaperone BAG3 gives rise to severe childhood restrictive cardiomyopathy. Here the authors describe humanized transgenic mouse models which phenocopy the disease and provide insight into the pathogenic mechanisms.
Collapse
|
15
|
Hernández-Cáceres MP, Munoz L, Pradenas JM, Pena F, Lagos P, Aceiton P, Owen GI, Morselli E, Criollo A, Ravasio A, Bertocchi C. Mechanobiology of Autophagy: The Unexplored Side of Cancer. Front Oncol 2021; 11:632956. [PMID: 33718218 PMCID: PMC7952994 DOI: 10.3389/fonc.2021.632956] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Proper execution of cellular function, maintenance of cellular homeostasis and cell survival depend on functional integration of cellular processes and correct orchestration of cellular responses to stresses. Cancer transformation is a common negative consequence of mismanagement of coordinated response by the cell. In this scenario, by maintaining the balance among synthesis, degradation, and recycling of cytosolic components including proteins, lipids, and organelles the process of autophagy plays a central role. Several environmental stresses activate autophagy, among those hypoxia, DNA damage, inflammation, and metabolic challenges such as starvation. In addition to these chemical challenges, there is a requirement for cells to cope with mechanical stresses stemming from their microenvironment. Cells accomplish this task by activating an intrinsic mechanical response mediated by cytoskeleton active processes and through mechanosensitive protein complexes which interface the cells with their mechano-environment. Despite autophagy and cell mechanics being known to play crucial transforming roles during oncogenesis and malignant progression their interplay is largely overlooked. In this review, we highlight the role of physical forces in autophagy regulation and their potential implications in both physiological as well as pathological conditions. By taking a mechanical perspective, we wish to stimulate novel questions to further the investigation of the mechanical requirements of autophagy and appreciate the extent to which mechanical signals affect this process.
Collapse
Affiliation(s)
- Maria Paz Hernández-Cáceres
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Leslie Munoz
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Javiera M. Pradenas
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Pena
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Lagos
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Pablo Aceiton
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Gareth I. Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Laboratory of Investigation in Oncology, Faculty of Biological Sciences Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
| | - Alfredo Criollo
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Autophagy Research Center, Santiago de Chile, Chile
- Facultad De Odontología, Instituto De Investigación En Ciencias Odontológicas (ICOD), Universidad De Chile, Santiago, Chile
| | - Andrea Ravasio
- Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Bertocchi
- Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica De Chile, Santiago, Chile
| |
Collapse
|
16
|
BAG3 Proteomic Signature under Proteostasis Stress. Cells 2020; 9:cells9112416. [PMID: 33158300 PMCID: PMC7694386 DOI: 10.3390/cells9112416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidate the dynamic and multifunctional action of BAG3 in response to stress, we established BAG3 interactomes under basal and proteostasis stress conditions by employing affinity purification combined with quantitative mass spectrometry. In addition to the identification of novel potential BAG3 interactors, we defined proteins whose interaction with BAG3 was altered upon stress. By functional annotation and protein-protein interaction enrichment analysis of the identified potential BAG3 interactors, we confirmed the multifunctionality of BAG3 and highlighted its crucial role in diverse cellular signaling pathways and processes, ensuring cellular proteostasis and cell viability. These include protein folding and degradation, gene expression, cytoskeleton dynamics (including cell cycle and transport), as well as granulostasis, in particular.
Collapse
|
17
|
Cristofani R, Crippa V, Cicardi ME, Tedesco B, Ferrari V, Chierichetti M, Casarotto E, Piccolella M, Messi E, Galbiati M, Rusmini P, Poletti A. A Crucial Role for the Protein Quality Control System in Motor Neuron Diseases. Front Aging Neurosci 2020; 12:191. [PMID: 32792938 PMCID: PMC7385251 DOI: 10.3389/fnagi.2020.00191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are fatal diseases characterized by loss of motor neurons in the brain cortex, in the bulbar region, and/or in the anterior horns of the spinal cord. While generally sporadic, inherited forms linked to mutant genes encoding altered RNA/protein products have also been described. Several different mechanisms have been found altered or dysfunctional in MNDs, like the protein quality control (PQC) system. In this review, we will discuss how the PQC system is affected in two MNDs—spinal and bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis (ALS)—and how this affects the clearance of aberrantly folded proteins, which accumulate in motor neurons, inducing dysfunctions and their death. In addition, we will discuss how the PQC system can be targeted to restore proper cell function, enhancing the survival of affected cells in MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Barbara Tedesco
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratorio di Biologia Applicata, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2022, Università degli Studi di Milano, Milan, Italy.,Center of Excellence on Neurodegenerative Diseases (CEND), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Deval C, Calonne J, Coudy-Gandilhon C, Vazeille E, Bechet D, Polge C, Taillandier D, Attaix D, Combaret L. Mitophagy and Mitochondria Biogenesis Are Differentially Induced in Rat Skeletal Muscles during Immobilization and/or Remobilization. Int J Mol Sci 2020; 21:ijms21103691. [PMID: 32456262 PMCID: PMC7279154 DOI: 10.3390/ijms21103691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle mass. We focused on the regulation of mitochondrial quality control during immobilization and remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along microtubules, and addressing to autophagy. Our data indicated that mitochondria quality control adapted differently to immobilization and remobilization in GA and TA muscles. Data showed i) a disruption of mitochondria dynamic that occurred earlier in the immobilized TA, ii) an overriding role of mitophagy that involved Parkin-dependent and/or independent processes during immobilization in the GA and during remobilization in the TA, and iii) increased mitochondria biogenesis during remobilization in both muscles. This strongly emphasized the need to consider several muscle groups to study the mechanisms involved in muscle atrophy and their ability to recover, in order to provide broad and/or specific clues for the development of strategies to maintain muscle mass and improve the health and quality of life of patients.
Collapse
Affiliation(s)
- Christiane Deval
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Julie Calonne
- Department of Medicine, Université de Fribourg, CH-1700 Fribourg, Switzerland;
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Emilie Vazeille
- Centre Hospitalier Universitaire, 63000 Clermont-Ferrand, France;
| | - Daniel Bechet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Cécile Polge
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Didier Attaix
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (C.D.); (C.C.-G.); (D.B.); (C.P.); (D.T.); (D.A.)
- Correspondence: ; Tel.: +33-4-73-62-48-24; Fax: +33-4-73-62-47-55
| |
Collapse
|
19
|
Brooks D, Naeem F, Stetsiv M, Goetting SC, Bawa S, Green N, Clark C, Bashirullah A, Geisbrecht ER. Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover. PLoS Genet 2020; 16:e1008700. [PMID: 32320396 PMCID: PMC7176095 DOI: 10.1371/journal.pgen.1008700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/28/2020] [Indexed: 11/18/2022] Open
Abstract
The inability to remove protein aggregates in post-mitotic cells such as muscles or neurons is a cellular hallmark of aging cells and is a key factor in the initiation and progression of protein misfolding diseases. While protein aggregate disorders share common features, the molecular level events that culminate in abnormal protein accumulation cannot be explained by a single mechanism. Here we show that loss of the serine/threonine kinase NUAK causes cellular degeneration resulting from the incomplete clearance of protein aggregates in Drosophila larval muscles. In NUAK mutant muscles, regions that lack the myofibrillar proteins F-actin and Myosin heavy chain (MHC) instead contain damaged organelles and the accumulation of select proteins, including Filamin (Fil) and CryAB. NUAK biochemically and genetically interacts with Drosophila Starvin (Stv), the ortholog of mammalian Bcl-2-associated athanogene 3 (BAG3). Consistent with a known role for the co-chaperone BAG3 and the Heat shock cognate 71 kDa (HSC70)/HSPA8 ATPase in the autophagic clearance of proteins, RNA interference (RNAi) of Drosophila Stv, Hsc70-4, or autophagy-related 8a (Atg8a) all exhibit muscle degeneration and muscle contraction defects that phenocopy NUAK mutants. We further demonstrate that Fil is a target of NUAK kinase activity and abnormally accumulates upon loss of the BAG3-Hsc70-4 complex. In addition, Ubiquitin (Ub), ref(2)p/p62, and Atg8a are increased in regions of protein aggregation, consistent with a block in autophagy upon loss of NUAK. Collectively, our results establish a novel role for NUAK with the Stv-Hsc70-4 complex in the autophagic clearance of proteins that may eventually lead to treatment options for protein aggregate diseases.
Collapse
Affiliation(s)
- David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Fawwaz Naeem
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Marta Stetsiv
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Samantha C Goetting
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Nicole Green
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
20
|
Abstract
The WW domain is a modular protein structure that recognizes the proline-rich Pro-Pro-x-Tyr (PPxY) motif contained in specific target proteins. The compact modular nature of the WW domain makes it ideal for mediating interactions between proteins in complex networks and signaling pathways of the cell (e.g. the Hippo pathway). As a result, WW domains play key roles in a plethora of both normal and disease processes. Intriguingly, RNA and DNA viruses have evolved strategies to hijack cellular WW domain-containing proteins and thereby exploit the modular functions of these host proteins for various steps of the virus life cycle, including entry, replication, and egress. In this review, we summarize key findings in this rapidly expanding field, in which new virus-host interactions continue to be identified. Further unraveling of the molecular aspects of these crucial virus-host interactions will continue to enhance our fundamental understanding of the biology and pathogenesis of these viruses. We anticipate that additional insights into these interactions will help support strategies to develop a new class of small-molecule inhibitors of viral PPxY-host WW-domain interactions that could be used as antiviral therapeutics.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore, Singapore 119077.,Center for Computational Biology, DUKE-NUS Medical School, Singapore 169857
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Singapore 119077.,Laboratory of Cancer Signaling and Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597.,Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, Singapore 117411.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
21
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
22
|
Autophagy and Inflammasome Activation in Dilated Cardiomyopathy. J Clin Med 2019; 8:jcm8101519. [PMID: 31546610 PMCID: PMC6832472 DOI: 10.3390/jcm8101519] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background: The clinical outcome of patients affected by dilated cardiomyopathy (DCM) is heterogeneous, since its pathophysiology is only partially understood. Interleukin 1β levels could predict the mortality and necessity of cardiac transplantation of DCM patients. Objective: To investigate mechanisms triggering sterile inflammation in dilated cardiomyopathy (DCM). Methods: Hearts explanted from 62 DCM patients were compared with 30 controls, employing immunohistochemistry, cellular and molecular biology, as well as metabolomics studies. Results: Although misfolded protein accumulation and aggresome formation characterize DCM hearts, aggresomes failed to trigger the autophagy lysosomal pathway (ALP), with consequent accumulation of both p62SQSTM1 and dysfunctional mitochondria. In line, DCM hearts are characterized by accumulation of lipoperoxidation products and activation of both redox responsive pathways and inflammasome. Consistently with the fact that mTOR signaling may impair ALP, we observed, an increase in DCM activation, together with a reduction in the nuclear localization of Transcription Factor EB -TFEB- (a master regulator of lysosomal biogenesis). These alterations were coupled with metabolomic alterations, including accumulation of branched chain amino acids (BCAAs), known mTOR activators. Consistently, reduced levels of PP2Cm, a phosphatase that regulates the key catabolic step of BCAAs, coupled with increased levels of miR-22, a regulator of PP2Cm levels that triggers senescence, characterize DCM hearts. The same molecular defects were present in clinically relevant cells isolated from DCM hearts, but they could be reverted by downregulating miR-22. Conclusion: We identified, in human DCM, a complex series of events whose key players are miR-22, PP2Cm, BCAA, mTOR, and ALP, linking loss of proteostasis with inflammasome activation. These potential therapeutic targets deserve to be further investigated.
Collapse
|
23
|
Cristofani R, Rusmini P, Galbiati M, Cicardi ME, Ferrari V, Tedesco B, Casarotto E, Chierichetti M, Messi E, Piccolella M, Carra S, Crippa V, Poletti A. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Front Neurosci 2019; 13:796. [PMID: 31427919 PMCID: PMC6688727 DOI: 10.3389/fnins.2019.00796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Misfolding protein diseases are a wide class of disorders in which the aberrantly folded protein aggregates accumulate in affected cells. In the brain and in the skeletal muscle, misfolded protein accumulation induces a variety of cell dysfunctions that frequently lead to cell death. In motoneuron diseases (MNDs), misfolded proteins accumulate primarily in motoneurons, glial cells and/or skeletal muscle cells, altering motor function. The deleterious effects of misfolded proteins can be counteracted by the activity of the protein quality control (PQC) system, composed of chaperone proteins and degradative systems. Here, we focus on a PQC system component: heat shock protein family B (small) member 8 (HSPB8), a chaperone induced by harmful stressful events, including proteotoxicity. In motoneuron and muscle cells, misfolded proteins activate HSPB8 transcription and enhance HSPB8 levels, which contributes to prevent aggregate formation and their harmful effects. HSPB8 acts not only as a chaperone, but also facilitates the autophagy process, to enable the efficient clearance of the misfolded proteins. HSPB8 acts as a dimer bound to the HSP70 co-chaperone BAG3, a scaffold protein that is also capable of binding to HSP70 (associated with the E3-ligase CHIP) and dynein. When this complex is formed, it is transported by dynein to the microtubule organization center (MTOC), where aggresomes are formed. Here, misfolded proteins are engulfed into nascent autophagosomes to be degraded via the chaperone-assisted selective autophagy (CASA). When CASA is insufficient or impaired, HSP70 and CHIP associate with an alternative co-chaperone, BAG1, which routes misfolded proteins to the proteasome for degradation. The finely tuned equilibrium between proteasome and CASA activity is thought to be crucial for maintaining the functional cell homeostasis during proteotoxic stresses, which in turn is essential for cell survival. This fine equilibrium seems to be altered in MNDs, like Amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA), contributing to the onset and the progression of disease. Here, we will review how misfolded proteins may affect the PQC system and how the proper activity of this system can be restored by boosting or regulating HSPB8 activity, with the aim to ameliorate disease progression in these two fatal MNDs.
Collapse
Affiliation(s)
- Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Maria Elena Cicardi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Elio Messi
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Serena Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza Sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy.,Centro Interuniversitario Sulle Malattie Neurodegenerative, Università degli Studi di Firenze, Roma Tor Vergata, Milan, Italy
| |
Collapse
|
24
|
Tang M, Harrison J, Deaton CA, Johnson GVW. Tau Clearance Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:57-68. [PMID: 32096028 DOI: 10.1007/978-981-32-9358-8_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient quality control mechanisms are essential for a healthy, functional neuron. Recognition and degradation of misfolded, damaged, or potentially toxic proteins, is a crucial aspect of protein quality control. Tau is a protein that is highly expressed in neurons, and plays an important role in modulating a number of physiological processes. Maintaining appropriate levels of tau is key for neuronal health; hence perturbations in tau clearance mechanisms are likely significant contributors to neurodegenerative diseases such as Alzheimer's disease and frontotemporal lobar degeneration. In this chapter we will first briefly review the two primary degradative mechanisms that mediate tau clearance: the proteasome system and the autophagy-lysosome pathway. This will be followed by a discussion about what is known about the contribution of each of these pathways to tau clearance. We will also present recent findings on tau degradation through the endolysosomal system. Further, how deficits in these degradative systems may contribute to the accumulation of dysfunctional or toxic forms of tau in neurodegenerative conditions is considered.
Collapse
|
25
|
Winter L, Unger A, Berwanger C, Spörrer M, Türk M, Chevessier F, Strucksberg KH, Schlötzer-Schrehardt U, Wittig I, Goldmann WH, Marcus K, Linke WA, Clemen CS, Schröder R. Imbalances in protein homeostasis caused by mutant desmin. Neuropathol Appl Neurobiol 2018; 45:476-494. [PMID: 30179276 DOI: 10.1111/nan.12516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022]
Abstract
AIMS We investigated newly generated immortalized heterozygous and homozygous R349P desmin knock-in myoblasts in conjunction with the corresponding desminopathy mice as models for desminopathies to analyse major protein quality control processes in response to the presence of R349P mutant desmin. METHODS We used hetero- and homozygous R349P desmin knock-in mice for analyses and for crossbreeding with p53 knock-out mice to generate immortalized R349P desmin knock-in skeletal muscle myoblasts and myotubes. Skeletal muscle sections and cultured muscle cells were investigated by indirect immunofluorescence microscopy, proteasomal activity measurements and immunoblotting addressing autophagy rate, chaperone-assisted selective autophagy and heat shock protein levels. Muscle sections were further analysed by transmission and immunogold electron microscopy. RESULTS We demonstrate that mutant desmin (i) increases proteasomal activity, (ii) stimulates macroautophagy, (iii) dysregulates the chaperone assisted selective autophagy and (iv) elevates the protein levels of αB-crystallin and Hsp27. Both αB-crystallin and Hsp27 as well as Hsp90 displayed translocation patterns from Z-discs as well as Z-I junctions, respectively, to the level of sarcomeric I-bands in dominant and recessive desminopathies. CONCLUSIONS Our findings demonstrate that the presence of R349P mutant desmin causes a general imbalance in skeletal muscle protein homeostasis via aberrant activity of all major protein quality control systems. The augmented activity of these systems and the subcellular shift of essential heat shock proteins may deleteriously contribute to the previously observed increased turnover of desmin itself and desmin-binding partners, which triggers progressive dysfunction of the extrasarcomeric cytoskeleton and the myofibrillar apparatus in the course of the development of desminopathies.
Collapse
Affiliation(s)
- L Winter
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany.,Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - A Unger
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany.,Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - C Berwanger
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - M Spörrer
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - M Türk
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany
| | - F Chevessier
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - K-H Strucksberg
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - I Wittig
- Functional Proteomics, SFB815 Core Unit, Medical School, Goethe University, Frankfurt, Germany
| | - W H Goldmann
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - K Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - W A Linke
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany.,Institute of Physiology II, University of Münster, Münster, Germany
| | - C S Clemen
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - R Schröder
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Han Z, Schwoerer MP, Hicks P, Liang J, Ruthel G, Berry CT, Freedman BD, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Harty RN. Host Protein BAG3 is a Negative Regulator of Lassa VLP Egress. Diseases 2018; 6:diseases6030064. [PMID: 30011814 PMCID: PMC6163595 DOI: 10.3390/diseases6030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lassa fever virus (LFV) belongs to the Arenaviridae family and can cause acute hemorrhagic fever in humans. The LFV Z protein plays a central role in virion assembly and egress, such that independent expression of LFV Z leads to the production of virus-like particles (VLPs) that mimic egress of infectious virus. LFV Z contains both PTAP and PPPY L-domain motifs that are known to recruit host proteins that are important for mediating efficient virus egress and spread. The viral PPPY motif is known to interact with specific host WW-domain bearing proteins. Here we identified host WW-domain bearing protein BCL2 Associated Athanogene 3 (BAG3) as a LFV Z PPPY interactor using our proline-rich reading array of WW-domain containing mammalian proteins. BAG3 is a stress-induced molecular co-chaperone that functions to regulate cellular protein homeostasis and cell survival via Chaperone-Assisted Selective Autophagy (CASA). Similar to our previously published findings for the VP40 proteins of Ebola and Marburg viruses, our results using VLP budding assays, BAG3 knockout cells, and confocal microscopy indicate that BAG3 is a WW-domain interactor that negatively regulates egress of LFV Z VLPs, rather than promoting VLP release. Our results suggest that CASA and specifically BAG3 may represent a novel host defense mechanism, whereby BAG3 may dampen egress of several hemorrhagic fever viruses by interacting and interfering with the budding function of viral PPxY-containing matrix proteins.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Michael P Schwoerer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Philip Hicks
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Cari A Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, TX 78957, USA.
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, TX 78957, USA.
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M1C 1A4, Canada.
| | - Marius Sudol
- Department of Physiology, Institute for Molecular and Cell Biology (IMCB, AStar), National University of Singapore, Singapore 119077, Singapore.
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Jokl EJ, Hughes GL, Cracknell T, Pownall ME, Blanco G. Transcriptional upregulation of Bag3, a chaperone-assisted selective autophagy factor, in animal models of KY-deficient hereditary myopathy. Dis Model Mech 2018; 11:dmm033225. [PMID: 29914939 PMCID: PMC6078408 DOI: 10.1242/dmm.033225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
The importance of kyphoscoliosis peptidase (KY) in skeletal muscle physiology has recently been emphasised by the identification of novel human myopathies associated with KY deficiency. Neither the pathogenic mechanism of KY deficiency nor a specific role for KY in muscle function have been established. However, aberrant localisation of filamin C (FLNC) in muscle fibres has been shown in humans and mice with loss-of-function mutations in the KY gene. FLNC turnover has been proposed to be controlled by chaperone-assisted selective autophagy (CASA), a client-specific and tension-induced pathway that is required for muscle maintenance. Here, we have generated new C2C12 myoblast and zebrafish models of KY deficiency by CRISPR/Cas9 mutagenesis. To obtain insights into the pathogenic mechanism caused by KY deficiency, expression of the co-chaperone BAG3 and other CASA factors was analyzed in the cellular, zebrafish and ky/ky mouse models. Ky-deficient C2C12-derived clones show trends of higher transcription of CASA factors in differentiated myotubes. The ky-deficient zebrafish model (kyyo1/kyyo1 ) lacks overt signs of pathology, but shows significantly increased bag3 and flnca/b expression in embryos and adult muscle. Additionally, kyyo1/kyyo1 embryos challenged by swimming in viscous media show an inability to further increase expression of these factors in contrast with wild-type controls. The ky/ky mouse shows elevated expression of Bag3 in the non-pathological exterior digitorum longus (EDL) and evidence of impaired BAG3 turnover in the pathological soleus. Thus, upregulation of CASA factors appears to be an early and primary molecular hallmark of KY deficiency.
Collapse
Affiliation(s)
- Elliot J Jokl
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gideon L Hughes
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Tobias Cracknell
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Mary E Pownall
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
28
|
Roperto S, Russo V, Rosati A, Ceccarelli DM, Munday JS, Turco MC, Roperto F. Chaperone-assisted selective autophagy in healthy and papillomavirus-associated neoplastic urothelium of cattle. Vet Microbiol 2018; 221:134-142. [PMID: 29981700 DOI: 10.1016/j.vetmic.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
Abstract
Chaperone-assisted selective autophagy (CASA) is a newly-described selective tension-induced macroautophagy pathway mediated by Bag3 that is believed to be essential for mechanotransduction in skeletal muscle and to be an important regulator of the immune system. We investigated CASA machinery both in healthy and in fifteen papillomavirus-associated neoplastic bovine urothelium. The components of CASA complex, that comprises the molecular chaperones HspA8/Hsc70 and Hsp8B/Hsp22 and the cochaperones Bag3 and STUB1/CHIP, were studied by molecular, microscopic and submicroscopic investigations. CASA complex was found to be constitutively expressed in healthy bovine urothelium; its expression increased in urothelial cancers of cattle, namely thirteen papillary carcinomas and two papillary urothelial neoplasm of low malignant potential (PUNLMPs). We suggest that basal levels of CASA are important in the healthy urothelium which interfaces with the community of urinary microbiota thus representing an important epithelial cell-autonomous mechanism of antibacterial defense. Co-immunoprecipitation studies using an antibody against bovine papillomavirus E5 protein revealed that the oncoprotein co-localized with CASA complex in urothelial cancer cells. This suggests that infection by BPV E5 could influence cell behaviour by interfering with basal autophagy processes although this study did not conclusively show that this interaction increased the expression of CASA proteins. In neoplastic urothelium, CASA could be involved in regulating fundamental cellular processes such adhesion, migration, and proliferation and so might influence the biological behaviour of urothelial tumors in cattle.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy.
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Alessandra Rosati
- Dipartimento di Medicina Chirurgia ed Odontoiatria, Schola Medica Salernitana, Università di Salerno, Baronissi, Italy
| | - Dora M Ceccarelli
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - John S Munday
- Pathobiology, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Maria C Turco
- Dipartimento di Medicina Chirurgia ed Odontoiatria, Schola Medica Salernitana, Università di Salerno, Baronissi, Italy
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|
29
|
Glazier AA, Hafeez N, Mellacheruvu D, Basrur V, Nesvizhskii AI, Lee LM, Shao H, Tang V, Yob JM, Gestwicki JE, Helms AS, Day SM. HSC70 is a chaperone for wild-type and mutant cardiac myosin binding protein C. JCI Insight 2018; 3:99319. [PMID: 29875314 PMCID: PMC6124431 DOI: 10.1172/jci.insight.99319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022] Open
Abstract
Cardiac myosin binding protein C (MYBPC3) is the most commonly mutated gene associated with hypertrophic cardiomyopathy (HCM). Haploinsufficiency of full-length MYBPC3 and disruption of proteostasis have both been proposed as central to HCM disease pathogenesis. Discriminating the relative contributions of these 2 mechanisms requires fundamental knowledge of how turnover of WT and mutant MYBPC3 proteins is regulated. We expressed several disease-causing mutations in MYBPC3 in primary neonatal rat ventricular cardiomyocytes. In contrast to WT MYBPC3, mutant proteins showed reduced expression and failed to localize to the sarcomere. In an unbiased coimmunoprecipitation/mass spectrometry screen, we identified HSP70-family chaperones as interactors of both WT and mutant MYBPC3. Heat shock cognate 70 kDa (HSC70) was the most abundant chaperone interactor. Knockdown of HSC70 significantly slowed degradation of both WT and mutant MYBPC3, while pharmacologic activation of HSC70 and HSP70 accelerated degradation. HSC70 was expressed in discrete striations in the sarcomere. Expression of mutant MYBPC3 did not affect HSC70 localization, nor did it induce a protein folding stress response or ubiquitin proteasome dysfunction. Together these data suggest that WT and mutant MYBPC3 proteins are clients for HSC70, and that the HSC70 chaperone system plays a major role in regulating MYBPC3 protein turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Lap Man Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | - Vi Tang
- Department of Molecular and Integrative Physiology
| | | | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases, UCSF, San Francisco, California, USA
| | | | - Sharlene M. Day
- Department of Molecular and Integrative Physiology
- Department of Internal Medicine
| |
Collapse
|
30
|
Bouhy D, Juneja M, Katona I, Holmgren A, Asselbergh B, De Winter V, Hochepied T, Goossens S, Haigh JJ, Libert C, Ceuterick-de Groote C, Irobi J, Weis J, Timmerman V. A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathol 2018; 135:131-148. [PMID: 28780615 PMCID: PMC5756276 DOI: 10.1007/s00401-017-1756-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces impairments in autophagy that may aggravate the phenotype.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Manisha Juneja
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Anne Holmgren
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Bob Asselbergh
- VIB Center for Molecular Neurology, University of Antwerp, Antwerpen, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium
| | - Tino Hochepied
- Transgenic Mouse Core Facility, VIB Inflammation Research Center, Gent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Steven Goossens
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
- VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Jody J Haigh
- Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Claude Libert
- VIB Inflammation Research Center, Ghent University, Gent, Belgium
| | - Chantal Ceuterick-de Groote
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge and Translational Neurosciences, University of Antwerp, Antwerpen, Belgium
| | - Joy Irobi
- Neurofunctional Genomics, Biomedical Research Institute (BIOMED), Hasselt University/Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences and Institute Born Bunge, University of Antwerp, Universiteitsplein 1, 2610, Antwerpen, Belgium.
| |
Collapse
|
31
|
Varlet AA, Fuchs M, Luthold C, Lambert H, Landry J, Lavoie JN. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 2017; 22:553-567. [PMID: 28275944 PMCID: PMC5465032 DOI: 10.1007/s12192-017-0780-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.
Collapse
Affiliation(s)
- Alice Anaïs Varlet
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Margit Fuchs
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Carole Luthold
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Herman Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Jacques Landry
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada
| | - Josée N Lavoie
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada.
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada.
| |
Collapse
|
32
|
Zientara-Rytter K, Sirko A. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants. FEBS J 2017; 283:3534-3555. [PMID: 26991113 DOI: 10.1111/febs.13712] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/21/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The efficient utilization and subsequent reuse of cell components is a key factor in determining the proper growth and functioning of all cells under both optimum and stress conditions. The process of intracellular and intercellular recycling is especially important for the appropriate control of cellular metabolism and nutrient management in immobile organisms, such as plants. Therefore, the accurate recycling of amino acids, lipids, carbohydrates or micro- and macronutrients available in the plant cell becomes a critical factor that ensures plant survival and growth. Plant cells possess two main degradation mechanisms: a ubiquitin-proteasome system and autophagy, which, as a part of an intracellular trafficking system, is based on vesicle transport. This review summarizes knowledge of both the ubiquitin-proteasome system and autophagy pathways, describes the cross-talk between the two and discusses the relationships between autophagy and the vesicular transport systems.
Collapse
Affiliation(s)
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
33
|
Stürner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci 2017; 10:177. [PMID: 28680391 PMCID: PMC5478690 DOI: 10.3389/fnmol.2017.00177] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023] Open
Abstract
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.
Collapse
Affiliation(s)
- Elisabeth Stürner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| |
Collapse
|
34
|
Liang J, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Han Z, Harty RN. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. PLoS Pathog 2017; 13:e1006132. [PMID: 28076420 PMCID: PMC5226679 DOI: 10.1371/journal.ppat.1006132] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Cari A. Sagum
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas Smithville, Smithville, TX, United States of America
| | - Mark T. Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas Smithville, Smithville, TX, United States of America
| | - Sachdev S. Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Mechanobiology Institute and Institute for Molecular and Cell Biology (IMCB, A*STAR), Republic of Singapore
| | - Ziying Han
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Kathage B, Gehlert S, Ulbricht A, Lüdecke L, Tapia VE, Orfanos Z, Wenzel D, Bloch W, Volkmer R, Fleischmann BK, Fürst DO, Höhfeld J. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:62-75. [PMID: 27756573 DOI: 10.1016/j.bbamcr.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain.
Collapse
Affiliation(s)
- Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Sebastian Gehlert
- German Sport University Cologne, Department of Molecular and Cellular Sport Medicine, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Anna Ulbricht
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Laura Lüdecke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Victor E Tapia
- Department of Medicinal Immunology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Zacharias Orfanos
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Wilhelm Bloch
- German Sport University Cologne, Department of Molecular and Cellular Sport Medicine, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Rudolf Volkmer
- Department of Medicinal Immunology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
36
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
37
|
Gianfranceschi G, Caragnano A, Piazza S, Manini I, Ciani Y, Verardo R, Toffoletto B, Finato N, Livi U, Beltrami CA, Scoles G, Sinagra G, Aleksova A, Cesselli D, Beltrami AP. Critical role of lysosomes in the dysfunction of human Cardiac Stem Cells obtained from failing hearts. Int J Cardiol 2016; 216:140-50. [DOI: 10.1016/j.ijcard.2016.04.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 12/01/2022]
|
38
|
Fuchs M, Luthold C, Guilbert SM, Varlet AA, Lambert H, Jetté A, Elowe S, Landry J, Lavoie JN. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis. PLoS Genet 2015; 11:e1005582. [PMID: 26496431 PMCID: PMC4619738 DOI: 10.1371/journal.pgen.1005582] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023] Open
Abstract
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation. Small heat shock proteins (sHSP/HSPB) form a diverse family of ATP-independent chaperones. Some of them protect the proteome against aggregation during stress and others regulate normal biological processes through ill-defined mechanisms. Interactions between HSPB proteins and elements of the cytoskeleton are increasingly linked to their implication in human degenerative diseases and cancer. For instance, a multichaperone complex containing HSPB8 and its co-chaperone BAG3 would maintain muscle cell integrity by promoting the autophagic clearance of damaged components within F-actin structures. Selective autophagy is a targeted protein degradation mechanism for elimination of damaged organelles and proteins. It may also regulate removal of signaling proteins from their functionally relevant sites during intense remodeling of the cytoskeleton, as it occurs during mitosis. Here, we report a novel role for HSPB8 and BAG3 during mitosis in mammalian cells that involves the autophagic receptor p62/SQSTM1. We show that a reduction of any protein within the HSPB8-BAG3-p62/SQSTM signaling axis similarly impairs mitotic progression and chromosome segregation by affecting orientation of the mitotic spindle and assembly of mitotic-specific actin structures. Our findings establish a unique role for HSPB8 in a novel function of BAG3 in mitotic cell division and genome stability, through effect on remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Margit Fuchs
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Carole Luthold
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Solenn M. Guilbert
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Alice Anaïs Varlet
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Alexandra Jetté
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Sabine Elowe
- Reproduction, Perinatal Health and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Pédiatrie, Université Laval, Quebec, Canada
| | - Jacques Landry
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer de l’Université Laval and Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec, Canada
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
39
|
Iorio V, Festa M, Rosati A, Hahne M, Tiberti C, Capunzo M, De Laurenzi V, Turco MC. BAG3 regulates formation of the SNARE complex and insulin secretion. Cell Death Dis 2015; 6:e1684. [PMID: 25766323 PMCID: PMC4385931 DOI: 10.1038/cddis.2015.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 01/07/2023]
Abstract
Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release.
Collapse
Affiliation(s)
- V Iorio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - M Festa
- 1] Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - A Rosati
- 1] Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - M Hahne
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - C Tiberti
- Department of Clinical Sciences, University of Rome Sapienza, Rome, Italy
| | - M Capunzo
- Department of Medicine and Surgery, University of Salerno, Via S. Allende, Baronissi, SA, Italy
| | - V De Laurenzi
- 1] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] Department of Experimental and Clinical Sciences, University G. D'Annunzio and Fondazione G. D'Annunzio, Ce.S.I., Chieti, Italy
| | - M C Turco
- 1] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] Department of Medicine and Surgery, University of Salerno, Via S. Allende, Baronissi, SA, Italy
| |
Collapse
|
40
|
Guilbert SM, Varlet AA, Fuchs M, Lambert H, Landry J, Lavoie JN. Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathol 2014; 128:821-33. [PMID: 25273835 DOI: 10.1007/s00401-014-1344-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022]
Abstract
Mutations in the co-chaperone Bcl2-associated athanogene 3 (BAG3) can cause myofibrillar myopathy (MFM), a childhood-onset progressive muscle disease, characterized by the formation of protein aggregates and myofibrillar disintegration. In contrast to other MFM-causing proteins, BAG3 has no direct structural role, but regulates autophagy and the degradation of misfolded proteins. To investigate the mechanism of disease in BAG3-related MFM, we expressed wild-type BAG3 or the dominant MFM-causing BAG3 (BAG3(P209L)) in zebrafish. Expression of the mutant protein results in the formation of aggregates that contain wild-type BAG3. Through the stimulation and inhibition of autophagy, we tested the prevailing hypothesis that impaired autophagic function is responsible for the formation of protein aggregates. Contrary to the existing theory, our studies reveal that inhibition of autophagy is not sufficient to induce protein aggregation. Expression of the mutant protein, however, did not induce myofibrillar disintegration and we therefore examined the effect of knocking down Bag3 function. Loss of Bag3 resulted in myofibrillar disintegration, but not in the formation of protein aggregates. Remarkably, BAG3(P209L) is able to rescue the myofibrillar disintegration phenotype, further demonstrating that its function is not impaired. Together, our knockdown and overexpression experiments identify a mechanism whereby BAG3(P209L) aggregates form, gradually reducing the pool of available BAG3, which eventually results in BAG3 insufficiency and myofibrillar disintegration. This mechanism is consistent with the childhood onset and progressive nature of MFM and suggests that reducing aggregation through enhanced degradation or inhibition of nucleation would be an effective therapy for this disease.
Collapse
|
42
|
Protein folding, misfolding and quality control: the role of molecular chaperones. Essays Biochem 2014; 56:53-68. [DOI: 10.1042/bse0560053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells have to cope with stressful conditions and adapt to changing environments. Heat stress, heavy metal ions or UV stress induce damage to cellular proteins and disturb the balanced status of the proteome. The adjusted balance between folded and folding proteins, called protein homoeostasis, is required for every aspect of cellular functionality. Protective proteins called chaperones are expressed under extreme conditions in order to prevent aggregation of cellular proteins and safeguard protein quality. These chaperones co-operate during de novo folding, refolding and disaggregation of damaged proteins and in many cases refold them to their functional state. Even under physiological conditions these machines support protein homoeostasis and maintain the balance between de novo folding and degradation. Mutations generating unstable proteins, which are observed in numerous human diseases such as Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis and cystic fibrosis, also challenge the protein quality control system. A better knowledge of how the protein homoeostasis system is regulated will lead to an improved understanding of these diseases and provide potential targets for therapy.
Collapse
|