1
|
Elshamy YS, Kinsey C, Rustandi RR, Sutton AT. Separation of virus-like particles and nano-emulsions for vaccine development by Capillary Zone Electrophoresis. Anal Chim Acta 2025; 1355:344011. [PMID: 40274334 DOI: 10.1016/j.aca.2025.344011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Nano-emulsions with immunogenic properties can be incorporated into vaccines to act as an adjuvant where they can enhance the immune response of a given vaccine. Analytically, studying vaccine antigens, such as Virus-Like Particles (VLPs), in the presence of adjuvants, like nano-emulsions, is very challenging as they are both heterogenous nano species of similar sizes but very different physiochemical properties. Therefore, typical analysis of nanoparticles using separation approaches such as Size Exclusion Chromatography (SEC) and Field-Flow Fractionation (FFF) is difficult due to the size similarities among these nano-species which complicates their separation. RESULTS In this study, a Capillary Zone Electrophoresis (CZE) method was developed, which utilizes a separation mechanism based on the charge-to-size ratio of the analytes. The method was used to quantify VLPs of the Human Papilloma Virus (HPV) and Squalene Nano-Emulsion (SNE) adjuvant mixtures while also measuring buffer excipients, chloride and histidine. The method was assessed according to International Conference on Harmonization (ICH Q2) guidelines with respect to linearity, ranges, accuracy (87-109 %), precision (≤20 %), quantitation and detection limits. SIGNIFICANCE This study was conducted to prove the feasibility of utilizing CZE to characterize VLPs and SNE mixtures with dilution as the only sample preparation. The CZE conditions are simpler than other CZE conditions suggested for VLPs and easily transferred between users. Similar CZE methods could also be developed for other vaccine and adjuvant mixtures as well as other emulsion and nanoparticle-based systems.
Collapse
Affiliation(s)
- Yousef S Elshamy
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26505, USA; Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Caleb Kinsey
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Richard R Rustandi
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Adam T Sutton
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ, 07065, USA.
| |
Collapse
|
2
|
Wei M, Han W, Zhang J, Liu Y, Yu H, Li J, Wang W. Safety, Tolerability, and Immunogenicity of a Recombinant Nonavalent Human Papillomavirus Vaccine ( Escherichia coli) in Healthy Chinese Women Aged 18-45 Years: A Phase 1 Clinical Trial. Vaccines (Basel) 2025; 13:511. [PMID: 40432121 DOI: 10.3390/vaccines13050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Prophylactic human papillomavirus (HPV) vaccination substantially alleviates cervical cancer burden. This study aimed to evaluate the safety, tolerability, and immunogenicity of an Escherichia coli-expressed recombinant nonavalent HPV vaccine. METHODS A dose-escalating phase 1 clinical trial was conducted in Sheyang County, Jiangsu Province, China. Each participant received either the test vaccine or the control vaccine (Gardasil 9) following a 0/2/6-month schedule. Adverse reactions (ARs) within 7 days after vaccination, adverse events (AEs) within 30 days, and serious adverse events (SAEs) throughout the study were recorded. Blood parameters were measured before and 3 days after each dose. Serum immunoglobulin G (IgG) and neutralizing antibodies (nAbs) against nine HPV types were analyzed at months 0, 3, and 7. RESULTS A total of 160 women aged 18-45 years were enrolled, and 155 participants completed the full vaccination regimen. Within 7 days following vaccination, the incidence of ARs ranged from 56.67% to 90.00%, with the low-dose group showing a significantly higher rate than the control group (p = 0.004). Most AEs were mild or moderate, and no vaccine-related SAEs occurred. No significant differences were observed among the four groups regarding the incidence of abnormal laboratory findings. Seroconversion rates for nAbs and IgG against nine HPV types exceeded 97.92% following three doses. High levels of nAbs and IgG were observed at months 3 and 7, with geometric mean titers (GMTs) showing further increases by month 7. CONCLUSIONS This new recombinant nonavalent HPV vaccine exhibits good tolerability and strong immunogenicity among women aged 18-45 years, supporting further efficacy studies in larger populations.
Collapse
Affiliation(s)
- Mingwei Wei
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
- Department of Vaccine Clinical Evaluation, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing 210009, China
- Jiangsu Provincial Medical Innovation Center, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing 210009, China
| | - Weiwei Han
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Jing Zhang
- Sheyang City Center for Disease Control and Prevention, Yancheng 224499, China
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Hongyang Yu
- Beijing Health Guard Biotechnology Inc., Beijing 100176, China
| | - Jingxin Li
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
- Department of Vaccine Clinical Evaluation, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing 210009, China
- Jiangsu Provincial Medical Innovation Center, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing 210009, China
| | - Wenjuan Wang
- Department of Vaccine Clinical Evaluation, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing 210009, China
- Jiangsu Provincial Medical Innovation Center, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing 210009, China
| |
Collapse
|
3
|
Carter JJ, Hurlburt NK, Scherer EM, Singh S, Rodarte JV, Smith RA, Lewis P, Kinzelman R, Kieltyka J, Cabãn ME, Wipf GC, Pancera M, Galloway DA. HPV16 neutralizing monoclonal antibodies show evidence for common developmental pathways and public epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646278. [PMID: 40236113 PMCID: PMC11996370 DOI: 10.1101/2025.03.31.646278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Antibodies to human papillomavirus (HPV) primarily recognize surface exposed residues on five loops of the major capsid protein (L1) that vary significantly among HPV types. We determined which loops were required for neutralization for 70 HPV16 specific human monoclonal antibodies (mAbs) cloned from participants who received an HPV vaccine, and we describe molecular features of those antibodies. Chimeric HPV16 pseudovirus (cpsV), each having one surface loop bearing multiple amino acid substitutions, were used to determine neutralization specificity. The HPV16-FG-loop was the loop most frequently required for neutralization (44 of 70, 62.9%), however, all other surface loops were used for neutralization by multiple mAbs: HI (13, 18.6%), DE (15, 21.4%), EF (six, 8.6%), BC (four, 5.7%). Antibodies that required multiple loops were common (17, 24.3%). Three mAbs (4.3%) required sequences on the c-terminus of L1 and for another three mAbs the neutralization specificity could not be determined. Two types of mAbs appeared to be overrepresented: ten mAbs used V H 2-70 IGHV paired with V L λ1-40, having characteristic mutations in complementarity determining region two (CDRL2). Cryogenic electron microscopy (Cryo-EM) revealed that two of these antibodies bound five Fabs per pentamer interacting with all five L1-surface loops. The other type of mAbs that appeared to be overrepresented were ten mAbs using V H 4-34, seven of which also used D H 3-16*02 with conserved CDRH3 sequences. Cryo-EM for one of these mAbs, that required the FG-loop for neutralization, was shown to bind one Fab per pentamer at the apex, interacting with the DE- and FG-loops, with sequences of the Fab CDRH3 inserted between the DE- and FG-loops from two protomers. These two types of mAbs were found repeatedly in the four participants suggesting that these antibodies shared developmental pathways and bound to similar immunodominant epitopes on the virus. Highlights Most human mAbs recognized L1 surface loops but three of 70 recognized sequences on the C-terminal arm of L1Some antibodies induced by HPV vaccination follow shared developmental pathways. Human monoclonal antibodies using V H 2-70/V L λ1-40 were found in all participants and bound with at a stoichiometry of five Fabs per capsomer. Human monoclonal antibodies using the diversity gene segment D3-16*02 were found in all participants and one Fab was shown to bind with a stoichiometry of one Fab per capsomer. In brief A panel of 70 HPV16 specific human monoclonal antibodies (mAbs), cloned from memory B cells or plasmablasts following HPV vaccination, was characterized by determining the surface loops of the major capsid protein (L1) required for neutralization and examined for shared molecular features. All five L1 loops were found to be used for neutralization by one or more antibodies, but the most frequent target of these antibodies was the FG loop followed by the HI and DE loops. Ten antibodies paired the heavy chain variable gene V H 2-70 with the light chain variable gene V L λ1-40 and these antibodies had conserved mutations in the CDRL2 region of V L λ1-40. Mutating the CDRL2 back to the predicted germline sequence significantly reduced neutralization. Cryo-EM analysis of two V H 2-70/V L λ1-40 mAbs showed five Fabs binding per L1 pentamer and a conserved epitope with Fabs interacting with all five variable loops across two adjacent protomers. Seven other mAbs had a heavy chain composed of the variable region V H 4-34 with the diversity gene D3-16*02 resulting in the sequence motif WSGYR in the CDRH3. Mutation of that sequence to alanine ablated HPV16 neutralization activity. A cryo-EM structure of one of these antibodies showed one Fab binding the pentamer apex with the WSGYR motif inserting between three loops from two protomers. Antibodies with paired V H 2-70/V L λ1-40 and the antibodies with CDRH3 containing the WSGYR sequence, were found in all four study participants suggesting that such antibodies may be commonly elicited following HPV vaccination.
Collapse
|
4
|
Patterson A, Young K, Biever MP, Klein SM, Huang SY, DePhillips PA, Jacobson SC, Jarrold MF, Zlotnick A. Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface. Virology 2024; 600:110211. [PMID: 39276669 PMCID: PMC11560593 DOI: 10.1016/j.virol.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Human Papillomavirus serotype 16 (HPV16) capsid protein (L1) pentamers canonically assemble into T = 7 icosahedral capsids. Such virus-like particles are the basis of the HPV vaccine. We examined assembly of L1 pentamers in response to pH, mild oxidants, and ionic strength and found a mixture of closed, roughly spherical structures from ∼20 to ∼70 nm in diameter, indicating the presence of many kinetically accessible energy minima. Using bulk and single particle techniques we observed that the size distribution changes but does not reach homogeneity. Though heterogenous in size, particles showed uniform responses to low ionic strength dissociation, thermal unfolding, and susceptibility to protease digestion. These assays suggest maturation over time, but at different rates. Cysteine oxidation further stabilized particles at early, but not late, times without changing general characteristics including thermal stability and protease digestion. These data show complex assembly paths to species of different sizes, but with locally similar interactions.
Collapse
Affiliation(s)
- Angela Patterson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Kim Young
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - MacRyan P Biever
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Shelby M Klein
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Sheng-Yuan Huang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Pete A DePhillips
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
5
|
Barrientos RC, Singh AN, Ukaegbu O, Hemida M, Wang H, Haidar Ahmad I, Hu H, Dunn ZD, Appiah-Amponsah E, Regalado EL. Two-Dimensional SEC-SEC-UV-MALS-dRI Workflow for Streamlined Analysis and Characterization of Biopharmaceuticals. Anal Chem 2024; 96:4960-4968. [PMID: 38436624 DOI: 10.1021/acs.analchem.3c05969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The emergence of complex biological modalities in the biopharmaceutical industry entails a significant expansion of the current analytical toolbox to address the need to deploy meaningful and reliable assays at an unprecedented pace. Size exclusion chromatography (SEC) is an industry standard technique for protein separation and analysis. Some constraints of traditional SEC stem from its restricted ability to resolve complex mixtures and notoriously long run times while also requiring multiple offline separation conditions on different pore size columns to cover a wider molecular size distribution. Two-dimensional liquid chromatography (2D-LC) is becoming an important tool not only to increase peak capacity but also to tune selectivity in a single online method. Herein, an online 2D-LC framework in which both dimensions utilize SEC columns with different pore sizes is introduced with a goal to increase throughput for biomolecule separation and characterization. In addition to improving the separation of closely related species, this online 2D SEC-SEC approach also facilitated the rapid analysis of protein-based mixtures of a wide molecular size range in a single online experimental run bypassing time-consuming deployment of different offline SEC methods. By coupling the second dimension with multiangle light scattering (MALS) and differential refractive index (dRI) detectors, absolute molecular weights of the separated species were obtained without the use of calibration curves. As illustrated in this report for protein mixtures and vaccine processes, this workflow can be used in scenarios where rapid development and deployment of SEC assays are warranted, enabling bioprocess monitoring, purity assessment, and characterization.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew N Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ophelia Ukaegbu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mohamed Hemida
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Hang Hu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zachary D Dunn
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Emmanuel Appiah-Amponsah
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
6
|
Chen CW, Saubi N, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24098060. [PMID: 37175776 PMCID: PMC10179162 DOI: 10.3390/ijms24098060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Narcís Saubi
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Chen CW, Saubi N, Kilpeläinen A, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines (Basel) 2022; 11:vaccines11010015. [PMID: 36679860 PMCID: PMC9861546 DOI: 10.3390/vaccines11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Athina Kilpeläinen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
8
|
Zhao FH, Wu T, Hu YM, Wei LH, Li MQ, Huang WJ, Chen W, Huang SJ, Pan QJ, Zhang X, Hong Y, Zhao C, Li Q, Chu K, Jiang YF, Li MZ, Tang J, Li CH, Guo DP, Ke LD, Wu X, Yao XM, Nie JH, Lin BZ, Zhao YQ, Guo M, Zhao J, Zheng FZ, Xu XQ, Su YY, Zhang QF, Sun G, Zhu FC, Li SW, Li YM, Pan HR, Zhang J, Qiao YL, Xia NS. Efficacy, safety, and immunogenicity of an Escherichia coli-produced Human Papillomavirus (16 and 18) L1 virus-like-particle vaccine: end-of-study analysis of a phase 3, double-blind, randomised, controlled trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1756-1768. [PMID: 36037823 DOI: 10.1016/s1473-3099(22)00435-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND This Escherichia coli-produced bivalent HPV 16 and 18 vaccine was well tolerated and effective against HPV 16 and 18 associated high-grade genital lesions and persistent infection in interim analysis of this phase 3 trial. We now report data on long-term efficacy and safety after 66 months of follow-up. METHODS This phase 3, double-blind, randomised, controlled trial was done in five study sites in China. Eligible participants were women aged 18-45 years, with intact cervix and 1-4 lifetime sexual partners. Women who were pregnant or breastfeeding, had chronic disease or immunodeficiency, or had HPV vaccination history were excluded. Women were stratified by age (18-26 and 27-45 years) and randomly (1:1) allocated by software (block randomisation with 12 codes to a block) to receive three doses of the E coli-produced HPV 16 and 18 vaccine or hepatitis E vaccine (control) and followed-up for 66 months. The primary outcomes were high-grade genital lesions and persistent infection (longer than 6 months) associated with HPV 16 or 18 in the per-protocol susceptible population. This trial was registered with ClinicalTrials.gov, NCT01735006. FINDINGS Between Nov 22, 2012, and April 1, 2013, 8827 women were assessed for eligibility. 1455 women were excluded, and 7372 women were enrolled and randomly assigned to receive the HPV vaccine (n=3689) or control (n=3683). Vaccine efficacy was 100·0% (95% CI 67·2-100·0) against high-grade genital lesions (0 [0%] of 3310 participants in the vaccine group and 13 [0·4%] of 3302 participants in the control group) and 97·3% (89·9-99·7) against persistent infection (2 [0·1%] of 3262 participants in the vaccine group and 73 [2·2%] of 3271 participants in the control group) in the per-protocol population. Serious adverse events occurred at a similar rate between vaccine (267 [7·2%] of 3691 participants) and control groups (290 [7·9%] of 3681); none were considered related to vaccination. INTERPRETATION The E coli-produced HPV 16 and 18 vaccine was well tolerated and highly efficacious against HPV 16 and 18 associated high-grade genital lesions and persistent infection and would supplement the global HPV vaccine availability and accessibility for cervical cancer prevention. FUNDING National Natural Science Foundation of China, National Key R&D Program of China, Fujian Provincial Project, Fundamental Funds for the Central Universities, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and Xiamen Innovax.
Collapse
Affiliation(s)
- Fang-Hui Zhao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Yue-Mei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Li-Hui Wei
- Peking University People's Hospital, Beijing, China
| | - Ming-Qiang Li
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Wei-Jin Huang
- National Institute for Food and Drug Control, Beijing, China
| | - Wen Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Shou-Jie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Qin-Jing Pan
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xun Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ying Hong
- the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Zhao
- Peking University People's Hospital, Beijing, China
| | - Qing Li
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Kai Chu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Yun-Fei Jiang
- the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ming-Zhu Li
- Peking University People's Hospital, Beijing, China
| | - Jie Tang
- Funing Center for Disease Control and Prevention, Funing, Jiangsu, China
| | - Cai-Hong Li
- Xinmi Maternal and Child Health Hospital, Xinmi, Henan, China
| | - Dong-Ping Guo
- Yangcheng Maternal and Child Health Hospital, Yangcheng, Shanxi, China
| | - Li-Dong Ke
- Fengning Hospital of Traditional Chinese Medicine, Fengning, Hebei, China
| | - Xin Wu
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, China
| | - Xing-Mei Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jian-Hui Nie
- National Institute for Food and Drug Control, Beijing, China
| | - Bi-Zhen Lin
- Xiamen Innovax Biotech Xiamen, Fujian, China
| | - Yu-Qian Zhao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Meng Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | | | - Xiao-Qian Xu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | | | - Guang Sun
- Xiamen Innovax Biotech Xiamen, Fujian, China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Shao-Wei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Yi-Min Li
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, China
| | | | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China.
| | - You-Lin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, Xiamen, Fujian, China; Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, China
| |
Collapse
|
9
|
Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022; 33:2018-2034. [PMID: 35487503 PMCID: PMC9673152 DOI: 10.1021/acs.bioconjchem.2c00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite remarkable advances over the past several decades, many therapeutic nanomaterials fail to overcome major in vivo delivery barriers. Controlling immunogenicity, optimizing biodistribution, and engineering environmental responsiveness are key outstanding delivery problems for most nanotherapeutics. However, notable exceptions exist including some lipid and polymeric nanoparticles, some virus-based nanoparticles, and nanoparticle vaccines where immunogenicity is desired. Self-assembling protein nanoparticles offer a powerful blend of modularity and precise designability to the field, and have the potential to solve many of the major barriers to delivery. In this review, we provide a brief overview of key designable features of protein nanoparticles and their implications for therapeutic delivery applications. We anticipate that protein nanoparticles will rapidly grow in their prevalence and impact as clinically relevant delivery platforms.
Collapse
Affiliation(s)
- Audrey Olshefsky
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Christian Richardson
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| | - Neil P. King
- Institute
for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Rustandi RR. Polysorbate 80 and histidine quantitative analysis by NMR in the presence of virus‐like particles. Electrophoresis 2022; 43:1408-1414. [PMID: 35366009 PMCID: PMC9544792 DOI: 10.1002/elps.202100189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022]
Abstract
Polysorbate‐80 (PS80) and histidine are common excipients in vaccine and therapeutic protein formulation. A simple quantitative NMR method to measure both PS80 and histidine in human papillomavirus (HPV) virus‐like particle (VLP) vaccine for aqueous and alum‐containing samples is described. The new NMR method is compared to current colorimetric methods for PS80 and RP HPLC for histidine. The new NMR method is comparable to current assays with an advantage of a simpler sample treatment for PS80. The efficiency is also increased because one method can now provide two assay results instead of two separate methods. Furthermore, the NMR method can detect PS80 stability due to hydrolysis and oxidation when PS80 is stored in a stainless steel container by observing a change of its NMR line shape profile.
Collapse
|
11
|
Miao C, Ma X, Fan J, Shi L, Wei J. Methylparaben as a preservative in the development of a multi-dose HPV-2 vaccine. Hum Vaccin Immunother 2022; 18:2067421. [PMID: 35471842 PMCID: PMC9302532 DOI: 10.1080/21645515.2022.2067421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus (HPV) vaccine is the simplest, most economical, convenient, and effective method of preventing cervical cancer. However, the current HPV vaccine is supplied as a single-dose vial with a relatively high cost per dose, which hinders its supply to low- and middle-income countries (LMICs), where the demand for HPV vaccine is highest. Therefore, it is necessary to develop a multi-dose HPV vaccine to promote large-scale affordable vaccination in LMICs. Moreover, the addition of preservatives is required to reduce the risk of microbial contamination in multi-dose vaccines within a single vial. In this study, we investigated the effects of six preservatives on HPV 16L1 and 18L1 virus-like particles in solution, as well as the aluminum adsorption status, under normal and high-temperature conditions. Multiple methods were employed, including dynamic light scattering, differential scanning calorimetry, an in vitro relative potency assay, and an in vivo potency assay in mice. Based on the above results, four types of selected preservatives were further studied, and an antimicrobial effectiveness test was performed on the HPV-2 vaccine, which was employed as a model HPV vaccine. Finally, three preservatives were selected based on their performance to evaluate the long-term stability of the HPV-2 vaccine. The results indicated that 0.12% methylparaben is the most suitable preservative for the multi-dose HPV-2 vaccine, guaranteeing the shelf life for at least three years and meeting “B” standards for antimicrobial effectiveness. The formula developed in this study can contribute toward combating cervical cancer in LMICs.
Collapse
Affiliation(s)
- Chenyang Miao
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Xinxing Ma
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Jiang Fan
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Li Shi
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| | - Jian Wei
- Department of Formulation Development, Shanghai Zerun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
12
|
Yang C, Yu C, Zhang M, Yang X, Dong H, Dong Q, Zhang H, Li L, Guo X, Zang H. Investigation of protective effect of ethanol on the natural structure of protein with infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120935. [PMID: 35121476 DOI: 10.1016/j.saa.2022.120935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The stability of biological drugs with protein as an active substance depends heavily on the retention of natural protein structure during freeze-drying. Stabilizers have become important substances in the process of protein freeze-drying. In order to further understand the mechanism of the interaction between protein and stabilizers, human serum albumin (HSA) and simple hydroxyl compound ethanol were used as models. Infrared (IR) spectroscopy combined with chemometrics was implemented to investigate the changes of secondary structure and hydration of HSA when different concentrations of ethanol were considered as interference. Through the analysis of the protein secondary structure and hydrated layer, we found that the addition of ethanol-d6 increased the α-helix of HSA and reduced the disordered structure. The hydrogen bond structure around HSA was enhanced and intermolecular aggregation was reduced through the action of the water molecules. The hypothesis was verified by circular dichroism (CD) and transmission electron microscopy (TEM) observation by adding different concentrations of ethanol-d6. It was found that a small amount of ethanol could protect the native conformation of HSA. In conclusion, this study revealed the mechanism of ethanol as a protein protector, provided a new idea for protein purification process and a theoretical basis for biomolecular interaction.
Collapse
Affiliation(s)
- Cui Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chen Yu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengqi Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangchun Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hailing Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qin Dong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Zhang
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China
| | - Xueping Guo
- Bloomage Biotechnology Corporation Limited, Tianchen Street 678, Jinan, Shandong 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
13
|
Eto Y, Saubi N, Ferrer P, Joseph-Munné J. Expression of Chimeric HPV-HIV Protein L1P18 in Pichia pastoris; Purification and Characterization of the Virus-like Particles. Pharmaceutics 2021; 13:pharmaceutics13111967. [PMID: 34834382 PMCID: PMC8622379 DOI: 10.3390/pharmaceutics13111967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, three human papillomavirus (HPV) vaccines are already licensed and all of them are based on virus-like particles (VLPs) of HPV L1 capsid protein but not worldwide accessible. While about 38.0 million people were living with HIV in 2019, only 68% of HIV-infected individuals were accessing antiretroviral therapy as of the end of June 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against those two viruses are immediately needed. Both HPV and HIV are sexually transmitted infections and one of the main access routes is the mucosal genital tract. Thus, the development of a combined vaccine that would protect against HPV and HIV infections is a logical effort in the fight against these two major global pathogens. In this study, a recombinant Pichia pastoris producing chimeric HPV-HIV L1P18 protein intracellularly was constructed. After cell disruption, the supernatant was collected, and the VLPs were purified by a combination of ammonium sulfate precipitation, size exclusion chromatography, ultracentrifugation, and ultrafiltration. At the end of purification process, the chimeric VLPs were recovered with 96% purity and 9.23% overall yield, and the morphology of VLPs were confirmed by transmission electron microscopy. This work contributes towards the development of an alternative platform for production of a bivalent vaccine against HPV and HIV in P. pastoris.
Collapse
Affiliation(s)
- Yoshiki Eto
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Narcís Saubi
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (Y.E.); (N.S.)
- Correspondence:
| |
Collapse
|
14
|
Miller LM, Bond KM, Draper BE, Jarrold MF. Characterization of Classical Vaccines by Charge Detection Mass Spectrometry. Anal Chem 2021; 93:11965-11972. [PMID: 34435777 DOI: 10.1021/acs.analchem.1c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccines induce immunity by presenting disease antigens through several platforms ranging from individual protein subunits to whole viruses. Due to the large difference in antigen size, the analytical techniques employed for vaccine characterization are often platform-specific. A single, robust analytical technique capable of widespread, cross-platform use would be of great benefit and allow for comparisons across manufacturing processes. One method that spans the antigen mass range is charge detection mass spectrometry (CDMS). CDMS is a single-ion approach where the mass-to-charge ratio (m/z) and charge are measured simultaneously, allowing accurate mass distributions to be measured for heterogeneous analytes over a broad size range. In this work, CDMS was used to characterize the antigens from three classical multivalent vaccines, inactivated poliomyelitis vaccine (IPOL), RotaTeq, and Gardasil-9, directly from commercial samples. For each vaccine, the antigen purity was inspected, and in the whole virus vaccines, empty virus particles were detected. For IPOL, information on the extent of formaldehyde cross-linking was obtained. RotaTeq shows a narrow peak at 61.06 MDa. This is at a slightly lower mass than expected for the double-layer particle, suggesting that around 10 pentonal trimers are missing. For Gardasil-9, buffer exchange of the vaccine resulted in very broad mass distributions. However, removal of the virus-like particles from the aluminum adjuvant using a displacement reaction generated a spectrum with narrow peaks.
Collapse
Affiliation(s)
- Lohra M Miller
- Chemistry Department, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Kevin M Bond
- Chemistry Department, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions, 3750 E Bluebird Lane, Bloomington, Indiana 47401, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
16
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
17
|
Gao J, Wan H, Li X, Rakic Martinez M, Klenow L, Gao Y, Ye Z, Daniels R. Balancing the influenza neuraminidase and hemagglutinin responses by exchanging the vaccine virus backbone. PLoS Pathog 2021; 17:e1009171. [PMID: 33872324 PMCID: PMC8084346 DOI: 10.1371/journal.ppat.1009171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/29/2021] [Accepted: 04/05/2021] [Indexed: 01/14/2023] Open
Abstract
Virions are a common antigen source for many viral vaccines. One limitation to using virions is that the antigen abundance is determined by the content of each protein in the virus. This caveat especially applies to viral-based influenza vaccines where the low abundance of the neuraminidase (NA) surface antigen remains a bottleneck for improving the NA antibody response. Our systematic analysis using recent H1N1 vaccine antigens demonstrates that the NA to hemagglutinin (HA) ratio in virions can be improved by exchanging the viral backbone internal genes, especially the segment encoding the polymerase PB1 subunit. The purified inactivated virions with higher NA content show a more spherical morphology, a shift in the balance between the HA receptor binding and NA receptor release functions, and induce a better NA inhibitory antibody response in mice. These results indicate that influenza viruses support a range of ratios for a given NA and HA pair which can be used to produce viral-based influenza vaccines with higher NA content that can elicit more balanced neutralizing antibody responses to NA and HA. Influenza vaccines are produced on a large scale to meet the annual U.S. and global demand. To efficiently produce the required number of influenza vaccine doses, virions are commonly used as the antigen source due to their high viral protein content. A draw-back to using virions is that the final antigen composition of the vaccine is determined by the inherent properties of the vaccine virus. While this approach for influenza vaccines is beneficial for the more abundant HA antigen, it likely limits the protective response generated by the less abundant NA antigen. Our results demonstrate that the NA and HA content in vaccine viruses can be optimized by changing the internal genes of the vaccine virus, thereby preserving the surface antigens. The increase in the virion NA content that was achieved elicited higher NA antibody titres and generated more balanced neutralizing antibody responses to HA and NA. Since HA and NA neutralizing antibodies are both protective, this approach could help to improve the suboptimal efficacy of current influenza vaccines and to generate vaccines that provide broader coverage against circulating strains.
Collapse
Affiliation(s)
- Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Xing Li
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Mira Rakic Martinez
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Yamei Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Structural basis for the shared neutralization mechanism of three classes of human papillomavirus type 58 antibodies with disparate modes of binding. J Virol 2021; 95:JVI.01587-20. [PMID: 33472937 PMCID: PMC8092703 DOI: 10.1128/jvi.01587-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human papillomavirus type 58 (HPV58) is associated with cervical cancer and poses a significant health burden worldwide. Although the commercial 9-valent HPV vaccine covers HPV58, the structural and molecular-level neutralization sites of the HPV58 complete virion are not fully understood. Here, we report the high-resolution (∼3.5 Å) structure of the complete HPV58 pseudovirus (PsV58) using cryo-electron microscopy (cryo-EM). Three representative neutralizing monoclonal antibodies (nAbs 5G9, 2H3 and A4B4) were selected through clustering from a nAb panel against HPV58. Bypassing the steric hindrance and symmetry-mismatch in the HPV Fab-capsid immune-complex, we present three different neutralizing epitopes in the PsV58, and show that, despite differences in binding, these nAbs share a common neutralization mechanism. These results offer insight into HPV58 genotype specificity and broaden our understanding of HPV58 neutralization sites for antiviral research.IMPORTANCE Cervical cancer primarily results from persistent infection with high-risk types of human papillomavirus (HPV). HPV type 58 (HPV58) is an important causative agent, especially within Asia. Despite this, we still have limited data pertaining to the structural and neutralizing epitopes of HPV58, and this encumbers our in-depth understanding of the virus mode of infection. Here, we show that representative nAbs (5G9, 10B11, 2H3, 5H2 and A4B4) from three different groups share a common neutralization mechanism that appears to prohibit the virus from associating with the extracellular matrix and cell surface. Furthermore, we identify that the nAbs engage via three different binding patterns: top-center binding (5G9 and 10B11), top-fringe binding (2H3 and 5H2), and fringe binding (A4B4). Our work shows that, despite differences in the pattern in binding, nAbs against HPV58 share a common neutralization mechanism. These results provide new insight into the understanding of HPV58 infection.
Collapse
|
19
|
Naupu PN, van Zyl AR, Rybicki EP, Hitzeroth II. Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs). Vaccines (Basel) 2020; 8:vaccines8040740. [PMID: 33291259 PMCID: PMC7762164 DOI: 10.3390/vaccines8040740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is ranked fourth among the top cancers in women and is the second most common cancer in low- and middle-income regions, with ~570,000 new cases reported in 2018, which attributed to 84% of worldwide cervical cancer cases. Three commercially available prophylactic Human papillomavirus (HPV) vaccines are effective at preventing HPV infections. However, these vaccines are expensive due to their complex production systems, therefore limiting their use in developing countries. Recently, the use of plants to produce vaccines has emerged as a cost-effective alternative to conventionally used expression systems. Here, L1 proteins of eight high-risk (HPV 16, 18, 31, 33, 35, 45, 52, and 58) and two low risk (HPV 6 and 34) HPV types were successfully expressed in Nicotiana benthamiana, and transmission electron microscopy (TEM) analysis showed the presence of VLPs and/or capsomeres. Immunogenicity studies were conducted in mice utilizing HPV 35, 52, and 58 and showed that type-specific L1-specific antibodies were produced which were able to successfully neutralize homologous HPV pseudovirions in pseudovirion-based neutralization assays (PBNAs). This work demonstrated the potential for using plant-based transient expression systems to produce affordable and immunogenic HPV vaccines, particularly for developing countries.
Collapse
Affiliation(s)
- Paulina N. Naupu
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Correspondence: ; Tel.: +27-21-650-5232
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| |
Collapse
|
20
|
Chen S, Huang X, Li Y, Wang X, Pan H, Lin Z, Zheng Q, Li S, Zhang J, Xia N, Zhao Q. Altered antigenicity and immunogenicity of human papillomavirus virus-like particles in the presence of thimerosal. Eur J Pharm Biopharm 2019; 141:221-231. [PMID: 31154067 DOI: 10.1016/j.ejpb.2019.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Abstract
Thimerosal has been widely used as a preservative in human vaccines for decades. Thimerosal, a thiol capping agent with ethyl mercury being the active degradant, could have impacts on the vaccine potency due to potential thiol modification. The effects on the antigenicity and immunogenicity of human papillomavirus (HPV) virus-like particles (VLPs) in the presence of thimerosal was studied. In general, reduced binding activity was observed between HPV antigens and monoclonal antibodies (mAbs) upon thimerosal treatment, accompanied by reduced protein conformational stability. The immunogenicity of a pentavalent vaccine formulation (HPV6, HPV11, HPV16, HPV18 and hepatitis E virus) with or without thimerosal was studied in mice. The functional antibody titres, as well as the binding titres, were determined, showing a substantial decrease for vaccine formulations containing thimerosal for HPV16/18. Similarly, epitope-specific competition assays using specific and functional mAbs as tracers also showed a significant reduction in immunogenicity for HPV16/18 in the presence of thimerosal. Structural alterations in the capsid protein for HPV18 were observed with cryo-electron microscopy and 3-dimensional reconstruction in the comparative structural analysis. The results should alert scientists in formulation development field on the choice for vaccine preservatives, in particular for thiol-containing antigens.
Collapse
Affiliation(s)
- Siyi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China
| | - Xiaofen Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yike Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, Xiamen, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, Xiamen, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China; School of Life Science, Xiamen University, Xiamen, China.
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
21
|
Kondylis P, Schlicksup CJ, Zlotnick A, Jacobson SC. Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids. Anal Chem 2019; 91:622-636. [PMID: 30383361 PMCID: PMC6472978 DOI: 10.1021/acs.analchem.8b04824] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Panagiotis Kondylis
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Christopher J. Schlicksup
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Stephen C. Jacobson
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| |
Collapse
|
22
|
Shardlow E, Mold M, Exley C. Unraveling the enigma: elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2018; 14:80. [PMID: 30455719 PMCID: PMC6223008 DOI: 10.1186/s13223-018-0305-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023]
Abstract
Aluminium salts are by far the most commonly used adjuvants in vaccines. There are only two aluminium salts which are used in clinically-approved vaccines, Alhydrogel® and AdjuPhos®, while the novel aluminium adjuvant used in Gardasil® is a sulphated version of the latter. We have investigated the physicochemical properties of these two aluminium adjuvants and specifically in milieus approximating to both vaccine vehicles and the composition of injection sites. Additionally we have used a monocytic cell line to establish the relationship between their physicochemical properties and their internalisation and cytotoxicity. We emphasise that aluminium adjuvants used in clinically approved vaccines are chemically and biologically dissimilar with concomitantly potentially distinct roles in vaccine-related adverse events.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG UK
| | - Matthew Mold
- The Birchall Centre, Lennard Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG UK
| | - Christopher Exley
- The Birchall Centre, Lennard Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG UK
| |
Collapse
|
23
|
Wei M, Wang D, Li Z, Song S, Kong X, Mo X, Yang Y, He M, Li Z, Huang B, Lin Z, Pan H, Zheng Q, Yu H, Gu Y, Zhang J, Li S, Xia N. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg Microbes Infect 2018; 7:160. [PMID: 30254257 PMCID: PMC6156512 DOI: 10.1038/s41426-018-0158-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/03/2022]
Abstract
Human papillomavirus (HPV) is the causative agent in genital warts and nearly all cervical, anogenital, and oropharyngeal cancers. Nine HPV types (6, 11, 16, 18, 31, 33, 45, 52, and 58) are associated with about 90% of cervical cancers and 90% of genital warts. HPV neutralization by vaccine-elicited neutralizing antibodies can block viral infection and prevent HPV-associated diseases. However, there is only one commercially available HPV vaccine, Gardasil 9, produced from Saccharomyces cerevisiae that covers all nine types, raising the need for microbial production of broad-spectrum HPV vaccines. Here, we investigated whether N-terminal truncations of the major HPV capsid proteins L1, improve their soluble expression in Escherichia coli. We found that N-terminal truncations promoted the soluble expression of HPV 33 (truncated by 10 amino acids [aa]), 52 (15 aa), and 58 (10 aa). The resultant HPV L1 proteins were purified in pentamer form and extensively characterized with biochemical, biophysical, and immunochemical methods. The pentamers self-assembled into virus-like particles (VLPs) in vitro, and 3D cryo-EM reconstructions revealed that all formed T = 7 icosahedral particles having 50–60-nm diameters. Moreover, we formulated a nine-valent HPV vaccine candidate with aluminum adjuvant and L1 VLPs from four genotypes used in this study and five from previous work. Immunogenicity assays in mice and non-human primates indicated that this HPV nine-valent vaccine candidate elicits neutralizing antibody titers comparable to those induced by Gardasil 9. Our study provides a method for producing a nine-valent HPV vaccine in E. coli and may inform strategies for the soluble expression of other vaccine candidates. • N-terminal truncations promote the soluble expression of HPV L1 proteins in E. coli and their self-assembly of T = 7 icosahedral particle in vitro • An HPV 9-valent vaccine candidate was formulated with E. coli-derived HPV 6, 11, 16, 18, 31, 33, 45, 52, and 58 VLPs, and conferred comparable immunogenicity with Gardasil 9
Collapse
Affiliation(s)
- Minxi Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Daning Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Zhihai Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Shuo Song
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xianglin Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xiaobing Mo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Yurou Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Maozhou He
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Zhongyi Li
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Bo Huang
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Zhijie Lin
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, 361022, Xiamen, China
| | - Qingbing Zheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Hai Yu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Jun Zhang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Public Health, Xiamen University, 361102, Xiamen, China.
| |
Collapse
|
24
|
Toprani VM, Cheng Y, Wahome N, Khasa H, Kueltzo LA, Schwartz RM, Middaugh CR, Joshi SB, Volkin DB. Structural Characterization and Formulation Development of a Trivalent Equine Encephalitis Virus-Like Particle Vaccine Candidate. J Pharm Sci 2018; 107:2544-2558. [PMID: 29883665 DOI: 10.1016/j.xphs.2018.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
The zoonotic equine encephalitis viruses (EEVs) can cause debilitating and life-threatening disease, leading to ongoing vaccine development efforts for an effective virus-like particle (VLP) vaccine based on 3 strains of EEV (Eastern, Western, and Venezuelan or EEE, WEE and VEE VLPs, respectively). In this work, transmission electron microscopy and light scattering studies showed enveloped, spherical, and ∼70 nm sized VLPs. Biophysical studies demonstrated optimal VLP physical stability in the pH range of 7.5-8.5 and at temperatures below ∼50°C. Interestingly, the individual stability profiles differed notably between the 3 VLPs. Numerous pharmaceutical excipients were screened for their VLP stabilizing effects against thermal stress. Sucrose, sorbitol, sodium chloride, and pluronic F-68 were identified as promising stabilizers and the concentrations and combinations of these additives were optimized. Candidate monovalent VLP bulk formulations were incubated at temperatures ranging from -80°C to 40°C to establish freeze-thaw, long-term (2°C-8°C) and accelerated stability trends. Good VLP stability profiles were observed at each storage temperature, except for a distinct instability observed at -20°C. The interaction of monovalent and trivalent VLP formulations with aluminum adjuvants was examined, both in terms of antigen adsorption and desorption over time. The implications of these findings on future vaccine formulation development of EEV VLPs are discussed.
Collapse
Affiliation(s)
- Vishal M Toprani
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Yuan Cheng
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Newton Wahome
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Harshit Khasa
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Lisa A Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Schwartz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - C Russell Middaugh
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Sangeeta B Joshi
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Macromolecule and Vaccine Stabilization Center, Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|
25
|
Kim HJ, Cho SY, Park MH, Kim HJ. Comparison of the size distributions and immunogenicity of human papillomavirus type 16 L1 virus-like particles produced in insect and yeast cells. Arch Pharm Res 2018; 41:544-553. [PMID: 29637494 DOI: 10.1007/s12272-018-1024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
Insect and yeast cells are considered the expression systems of choice for producing virus-like particles (VLPs), and numerous types of VLPs have been produced in these systems. However, previous studies were restricted to identifying the characteristics of individual VLP preparations. No direct comparison of the structures and immunogenic properties of insect and yeast-derived VLPs has so far been made. In the present study, the size distribution and immunogenic properties of human papillomavirus type 16 (HPV16) L1 VLPs produced in Spodoptera frugipedra-9 insect cells and Saccharomyces cerevisiae were compared. The insect cell-derived VLPs were larger than the yeast ones (P < 0.0001), with median sizes of 34 and 26 nm, respectively. In addition, the insect-derived VLPs appeared to be more diverse in size than the yeast-derived VLPs. Immunization of mice with 30 ng per dose of VLPs elicited 2.7- and 2.4-fold higher anti-HPV16 L1 IgG and anti-HPV16 neutralizing antibody titers than immunization with the same amounts of the yeast-derived VLPs after the 4th immunizations, respectively. Our results suggest that the choice of expression system critically affects the particle size and immunogenic property of HPV16 L1 VLPs.
Collapse
Affiliation(s)
- Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Seo Young Cho
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Min-Hye Park
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
26
|
Guan J, Bywaters SM, Brendle SA, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. High-Resolution Structure Analysis of Antibody V5 and U4 Conformational Epitopes on Human Papillomavirus 16. Viruses 2017; 9:v9120374. [PMID: 29211035 PMCID: PMC5744149 DOI: 10.3390/v9120374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 01/14/2023] Open
Abstract
Cancers attributable to human papillomavirus (HPV) place a huge burden on the health of both men and women. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Identifying the conformational epitopes on the virus capsid supports the development of improved recombinant vaccines to maximize long-term protection against multiple types of HPV. Fragments of antibody (Fab) digested from the neutralizing monoclonal antibodies H16.V5 (V5) and H16.U4 (U4) were bound to HPV16 capsids and the structures of the two virus-Fab complexes were solved to near atomic resolution using cryo-electron microscopy. The structures reveal virus conformational changes, the Fab-binding mode to the capsid, the residues comprising the epitope and indicate a potential interaction of U4 with the minor structural protein, L2. Competition enzyme-linked immunosorbent assay (ELISA) showed V5 outcompetes U4 when added sequentially, demonstrating a steric interference even though the footprints do not overlap. Combined with our previously reported immunological and structural results, we propose that the virus may initiate host entry through an interaction between the icosahedral five-fold vertex of the capsid and receptors on the host cell. The highly detailed epitopes identified for the two antibodies provide a framework for continuing biochemical, genetic and biophysical studies.
Collapse
Affiliation(s)
- Jian Guan
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Stephanie M Bywaters
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Sarah A Brendle
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Robert E Ashley
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260, USA.
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260, USA.
| | - Neil D Christensen
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Susan Hafenstein
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Millennium Science Complex, University Park, State College, PA 16802, USA.
| |
Collapse
|
27
|
Zhang Z, Zhang J, Xia N, Zhao Q. Expanded strain coverage for a highly successful public health tool: Prophylactic 9-valent human papillomavirus vaccine. Hum Vaccin Immunother 2017; 13:2280-2291. [PMID: 28699820 PMCID: PMC5647960 DOI: 10.1080/21645515.2017.1346755] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/31/2017] [Accepted: 06/21/2017] [Indexed: 12/21/2022] Open
Abstract
Human papillomavirus is considered the causative factor for cervical cancer, which accounts for approximately 5% of the global cancer burden and more than 600,000 new cases annually that are attributable to HPV infection worldwide. The first-generation prophylactic HPV vaccines, Gardasil® and Cervarix®, were licensed approximately a decade ago. Both vaccines contain the most prevalent high-risk types, HPV16 and 18, which are associated with 70% of cervical cancer. To further increase the type coverage, 5 additional oncogenic HPV types (31, 33, 45, 52 and 58) were added to the existing Gardasil-4 to develop a 9-valent HPV vaccine (9vHPV), Gardasil 9®, increasing the potential level of protection from ∼70% to ∼90%. The efficacy of the vaccine lies primarily in its ability to elicit type-specific and neutralizing antibodies to fend off the viral infection. Therefore, type-specific and neutralizing murine monoclonal antibodies (mAbs) were used to quantitate the antigenicity of the individual vaccine antigens and to measure the antibody levels in the serum samples from vaccinees in a type- and epitope-specific manner in a competitive immunoassay. Assays for 9vHPV are extended from the proven platform used for 4vHPV by developing and adding new mAbs against the additional types. In Phase III clinical trials, comparable safety profile and immunogenicity against the original 4 types were demonstrated for the 9vHPV vaccine, and these were comparable to the 4vHPV vaccine. The efficacy of the 9vHPV vaccine was established in trials with young women. Immunobridging for younger boys and girls was performed, and the results showed higher immunogenicity in the younger age group. In a subsequent clinical trial, the 2-dose regimen of the 9vHPV vaccine used among girls and boys aged 9-14 y showed non-inferior immunogenicity to the regular 3-dose regimen for young women (aged 16-26 years). Overall, the clinical data and cost-effectiveness analysis for the 9vHPV vaccine support its widespread use to maximize the impact of this important, life-saving vaccine.
Collapse
Affiliation(s)
- Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
- School of Life Science, Xiamen University, Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
28
|
Crystal Structures of Two Immune Complexes Identify Determinants for Viral Infectivity and Type-Specific Neutralization of Human Papillomavirus. mBio 2017; 8:mBio.00787-17. [PMID: 28951471 PMCID: PMC5615192 DOI: 10.1128/mbio.00787-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Persistent, high-risk human papillomavirus (HPV) infection is the primary cause of cervical cancer. Neutralizing antibodies elicited by L1-only virus-like particles (VLPs) can block HPV infection; however, the lack of high-resolution structures has limited our understanding of the mode of virus infection and the requirement for type specificity at the molecular level. Here, we describe two antibodies, A12A3 and 28F10, that specifically bind to and neutralize HPV58 and HPV59, respectively, through two distinct binding stoichiometries. We show that the epitopes of A12A3 are clustered in the DE loops of two adjacent HPV58 L1 monomers, whereas 28F10 recognizes the HPV59 FG loop of a single monomer. Via structure-based mutagenesis and analysis of antibody binding, we further identified the residues HPV58 D154, S168, and N170 and HPV59 M267, Q270, E273, Y276, K278, and R283, which play critical roles in virus infection. By substituting these strategic epitope residues into other HPV genotypes, we could then redirect the type-specific binding of the antibodies to these genotypes, thus highlighting the importance of these specific residues, HPV58 R161, S168, and N308 and HPV59 Q270, E273, and D281. Overall, our findings provide molecular insights into potential structural determinants of HPV required for infectivity and type specificity. High-risk human papillomaviruses (HPVs) are considered the major causative pathogens of cancers that affect epithelial mucosa, such as cervical cancer. However, because of the lack of high-resolution structural information on the sites of neutralization, we have yet to determine the precise mode of HPV infection and how different types of HPV cause infection. Our crystal structures in this study have uncovered discrete binding stoichiometries for two different antibodies. We show that one A12A3 Fab binds to the center of one HPV58 pentamer, whereas five 28F10 Fabs bind along the top fringe of one HPV59 pentamer. Furthermore, through targeted epitope analysis, we show that 6 to 7 discontinuous residues of the L1 major capsid protein of HPV are determinants, at least in part, for virus infection and type specificity. This knowledge will help us to unravel the process of HPV infection and can potentially be used to drive the development of therapeutics that target neutralization-sensitive sites.
Collapse
|
29
|
Gu Y, Wei M, Wang D, Li Z, Xie M, Pan H, Wu T, Zhang J, Li S, Xia N. Characterization of an Escherichia coli-derived human papillomavirus type 16 and 18 bivalent vaccine. Vaccine 2017; 35:4637-4645. [PMID: 28736197 DOI: 10.1016/j.vaccine.2017.06.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/26/2022]
Abstract
Human papillomavirus (HPV) types 16 and 18 account for approximately 70% of cervical cancer worldwide. Neutralizing HPV prophylactic vaccines offer significant benefit, as they block HPV infection and prevent subsequent disease. However, the three licensed HPV vaccines that cover these two genotypes were produced in eukaryotic cells, which is expensive, particularly for low-income countries where HPV is highest. Here, we report a new HPV16 and -18 bivalent candidate vaccine produced from Escherichia coli. We used two strategies of N-terminal truncation of HPV L1 proteins and soluble non-fusion expression to generate HPV16 and HPV18 L1-only virus-like particles (VLPs) in a scalable process. Through comprehensive characterization of the bivalent candidate vaccine, we confirm lot consistency in a pilot scale-up of 30L, 100L and 500L. Using cryo-EM 3D reconstruction, we found that HPV16 and -18VLPs present in a T=7 icosahedral arrangement, similar in shape and size to that of the native virions. This HPV16/18 bivalent vaccine shares comparable immunogenicity with the licensed vaccines. Overall, we show that the production of a HPV16/18 bivalent vaccine from an E. coli expression system is robust and scalable, with potentially good accessibility worldwide as a population-based immunization strategy.
Collapse
Affiliation(s)
- Ying Gu
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Minxi Wei
- Xiamen Innovax Biotech Company, Ltd, Xiamen, Fujian 361022, China
| | - Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhihai Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Minghui Xie
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huirong Pan
- Xiamen Innovax Biotech Company, Ltd, Xiamen, Fujian 361022, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
30
|
The C-Terminal Arm of the Human Papillomavirus Major Capsid Protein Is Immunogenic and Involved in Virus-Host Interaction. Structure 2017; 24:874-85. [PMID: 27276427 DOI: 10.1016/j.str.2016.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 01/22/2023]
Abstract
Cervical cancer is the second most prevalent malignant tumor among women worldwide. High-risk human papillomaviruses (HPVs) are believed to be the major causative pathogens of mucosal epithelial cancers including cervical cancer. The HPV capsid is made up of 360 copies of major (L1) and 72 copies of minor (L2) capsid proteins. To date, limited high-resolution structural information about the HPV capsid has hindered attempts to understand details concerning the mechanisms by which HPV assembles and infects cells. In this study, we have constructed a pseudo-atomic model of the HPV59 L1-only capsid and demonstrate that the C-terminal arm of L1 participates in virus-host interactions. Moreover, when conjugated to a scaffold protein, keyhole limpet hemocyanin (KLH), this arm is immunogenic in vivo. These results provide new insights that will help elucidate HPV biology, and hence pave a way for the design of next-generation HPV vaccines.
Collapse
|
31
|
Pan H, Li Z, Wang J, Song S, Wang D, Wei M, Gu Y, Zhang J, Li S, Xia N. Bacterially expressed human papillomavirus type 6 and 11 bivalent vaccine: Characterization, antigenicity and immunogenicity. Vaccine 2017; 35:3222-3231. [DOI: 10.1016/j.vaccine.2017.04.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/14/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
|
32
|
Dhar JP, Essenmacher L, Dhar R, Magee A, Ager J, Sokol RJ. The safety and immunogenicity of Quadrivalent HPV (qHPV) vaccine in systemic lupus erythematosus. Vaccine 2017; 35:2642-2646. [PMID: 28404357 DOI: 10.1016/j.vaccine.2017.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/09/2017] [Accepted: 04/03/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study evaluated the safety and immunogenicity of qHPV vaccine in SLE. METHODS Subjects: 34 women ages 19-50years (yrs.) with mild to moderate SLE & minimally active or inactive SLE received qHPV vaccine at the standard dosing schedule. EXCLUSION CRITERIA active SLE disease (SELENA-SLEDAI>2), history of severe SLE disease, deep venous thrombosis, on >400mg/day of hydroxychloroquine, on >15mg/day of prednisone, or active infections. Patients were monitored for adverse events (AE), SLE flare, generation of thrombogenic antibodies and thrombosis. Antibody (Ab) levels to HPV 6, 11, 16 & 18 were measured by HPV competitive Luminex Immunoassay and Geometric Mean Titers (GMTs) were calculated for each HPV type. Seroconversion was assessed for those seronegative at baseline. RESULTS The women in the study: African-American (79%), mean age=38.1years, mean age at diagnosis of SLE=28.6years, 35.3% had a history of smoking, 91% had 4 or more sexual partners, 50% had a history of sexually transmitted diseases, and 27.3% used condoms on a regular basis. Vaccine site reactions (VSRs) occurred in 62%, all mild. Ninety-seven percent experienced at least 1 non vaccine adverse event (nvAE) with a total of 493 nvAEs in 33 patients, of which 90% were mild and none were related to vaccine or SLE. There were 9 serious AEs, none were related to vaccine or SLE, all resolved. No patient experienced an SLE flare, thrombosis, or generation of thrombogenic antibodies. Seroconversion rate was 100% with mean GMTs comparable to Gardasil® package insert data. CONCLUSION In this SLE vaccine study, qHPV vaccine was generally safe, well tolerated, and highly immunogenic. This clinical trial is registered on Clinical Trials.gov under number, NCT01741012 and was conducted under the FDA IND BB14113.
Collapse
Affiliation(s)
- J Patricia Dhar
- Wayne State University School of Medicine, Detroit, MI, United States; Central Michigan University College of Medicine, Mt. Pleasant/Saginaw, MI, United States.
| | | | - Renee Dhar
- Central Michigan University College of Medicine, Mt. Pleasant, MI, United States
| | - Ardella Magee
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Joel Ager
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert J Sokol
- Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
33
|
Huang X, Wang X, Zhang J, Xia N, Zhao Q. Escherichia coli-derived virus-like particles in vaccine development. NPJ Vaccines 2017; 2:3. [PMID: 29263864 PMCID: PMC5627247 DOI: 10.1038/s41541-017-0006-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Recombinant virus-like particle-based vaccines are composed of viral structural proteins and mimic authentic native viruses but are devoid of viral genetic materials. They are the active components in highly safe and effective vaccines for the prevention of infectious diseases. Several expression systems have been used for virus-like particle production, ranging from Escherichia coli to mammalian cell lines. The prokaryotic expression system, especially Escherichia coli, is the preferred expression host for producing vaccines for global use. Hecolin, the first licensed virus-like particle vaccine derived from Escherichia coli, has been demonstrated to possess good safety and high efficacy. In this review, we focus on Escherichia coli-derived virus-like particle based vaccines and vaccine candidates that are used for prevention (immunization against microbial pathogens) or disease treatment (directed against cancer or non-infectious diseases). The native-like spatial or higher-order structure is essential for the function of virus-like particles. Thus, the tool box for analyzing the key physicochemical, biochemical and functional attributes of purified virus-like particles will also be discussed. In summary, the Escherichia coli expression system has great potentials for producing a range of proteins with self-assembling properties to be used as vaccine antigens given the proper epitopes were preserved when compared to those in the native pathogens or disease-related target molecules.
Collapse
Affiliation(s)
- Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Life Science, Xiamen University, Xiamen, Fujian 361102 PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361102 PR China.,School of Public Health, Xiamen University, Xiamen, Fujian 361102 PR China
| |
Collapse
|
34
|
Guan J, Bywaters SM, Brendle SA, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. Cryoelectron Microscopy Maps of Human Papillomavirus 16 Reveal L2 Densities and Heparin Binding Site. Structure 2017; 25:253-263. [PMID: 28065506 DOI: 10.1016/j.str.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/07/2016] [Accepted: 12/12/2016] [Indexed: 11/24/2022]
Abstract
Human papillomavirus (HPV) is a significant health burden and leading cause of virus-induced cancers. The current commercial vaccines are genotype specific and provide little therapeutic benefit to patients with existing HPV infections. Host entry mechanisms represent an excellent target for alternative therapeutics, but HPV receptor use, the details of cell attachment, and host entry are inadequately understood. Here we present near-atomic resolution structures of the HPV16 capsid and HPV16 in complex with heparin, both determined from cryoelectron micrographs collected with direct electron detection technology. The structures clarify details of capsid architecture for the first time, including variation in L1 major capsid protein conformation and putative location of L2 minor protein. Heparin binds specifically around the capsid icosahedral vertices and may recapitulate the earliest stage of infection, providing a framework for continuing biochemical, genetic, and biophysical studies.
Collapse
Affiliation(s)
- Jian Guan
- Division of Infectious Diseases, Department of Medicine, Penn State College of Medicine, The Pennsylvania State University College of Medicine, Mail Code H036, 500 University Drive, P.O. Box 850, Hershey, PA 17033-0850, USA
| | - Stephanie M Bywaters
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Sarah A Brendle
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Robert E Ashley
- Division of Infectious Diseases, Department of Medicine, Penn State College of Medicine, The Pennsylvania State University College of Medicine, Mail Code H036, 500 University Drive, P.O. Box 850, Hershey, PA 17033-0850, USA
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA 15260, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA 15260, USA
| | - Neil D Christensen
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Susan Hafenstein
- Division of Infectious Diseases, Department of Medicine, Penn State College of Medicine, The Pennsylvania State University College of Medicine, Mail Code H036, 500 University Drive, P.O. Box 850, Hershey, PA 17033-0850, USA.
| |
Collapse
|
35
|
Abstract
We describe the development and potential use of various designs of recombinant HIV-1 envelope glycoprotein trimers that mimic the structure of the virion-associated spike, which is the target for neutralizing antibodies. The goal of trimer development programs is to induce broadly neutralizing antibodies with the potential to intervene against multiple circulating HIV-1 strains. Among the topics we address are the designs of various constructs; how native-like trimers can be produced and purified; the properties of such trimers in vitro and their immunogenicity in various animals; and the immunization strategies that may lead to the eventual elicitation of broadly neutralizing antibodies. In summary, native-like trimers are a now a platform for structure- and immunology-based design improvements that could eventually yield immunogens of practical value for solving the long-standing HIV-1 vaccine problem.
Collapse
Affiliation(s)
- Rogier W. Sanders
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
- Department of Medical MicrobiologyAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - John P. Moore
- Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkNYUSA
| |
Collapse
|
36
|
Jin S, Zheng DD, Sun B, Yu X, Zha X, Liu Y, Wu S, Wu Y. Controlled Hybrid-Assembly of HPV16/18 L1 Bi VLPs in Vitro. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34244-34251. [PMID: 27998118 DOI: 10.1021/acsami.6b12456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Based on the helix4-exchanged HPV16 L1 and HPV18 L1, HPV16 L1 Bi and HPV18 L1 Bi, we have successfully realized the controlled hybrid-assembly of HPV16/18 L1 Bi VLPs (bihybrid-VLPs) in vitro. The bihybrid-VLPs were further confirmed by fluorescence resonance energy transfer (FRET) and complex-immunoprecipitation (Co-IP) assays. The ratio of 16 L1 Bi and 18 L1 Bi in bihybrid-VLPs was verified to be 3:5 based on a modified magnetic Co-IP procedure, when mixing 1 equiv pentamer in assembly buffer solution, but it changed with conditions. In addition, the bihybrid-VLPs showed identical thermal stability as that of normal VLPs, suggesting high potential in practical applications. The present study is significant because it modified one of the vital steps of virus life cycle at the stage of virus assembly, supplying a new approach not only to deepen structural insights but also a possibility to prepare stable, low-cost, bivalent antivirus vaccine. Furthermore, the controlled hybrid-assembly of bihybrid-VLPs in vitro provides suggestions for the design of effective multivalent hybrid-VLPs, being a potential to develop broad-spectrum vaccines for the prevention of infection with multiple types of HPV.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Zha
- Sichuan Tumor Hospital & Institute , Chengdu 610041, China
| | | | - Shuming Wu
- Beijing Health Guard Inc., Beijing 100176, China
| | | |
Collapse
|
37
|
Li M, Wang X, Cao L, Lin Z, Wei M, Fang M, Li S, Zhang J, Xia N, Zhao Q. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants. Vaccine 2016; 34:4422-8. [PMID: 27426626 DOI: 10.1016/j.vaccine.2016.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/16/2022]
Abstract
Human papillomavirus (HPV) 6 is a human pathogen which causes genital warts. Recombinant virus-like particle (VLP) based antigens are the active components in prophylactic vaccines to elicit functional antibodies. The binding and functional characteristics of a panel of 15 murine monoclonal antibodies (mAbs) against HPV6 was quantitatively assessed. Elite conformational indicators, recognizing the conformational epitopes, are also elite viral neutralizers as demonstrated with their viral neutralization efficiency (5 mAbs with neutralization titer below 4ng/mL) in a pseudovirion (PsV)-based system. The functionality of a given mAb is closely related to the nature of the corresponding epitope, rather than the apparent binding affinity to antigen. The epitope-specific antigenicity assays can be used to assess the binding activity of PsV or VLP preparations to neutralizing mAbs. These mAb-based assays can be used for process monitoring and for product release and characterization to confirm the existence of functional epitopes in purified antigen preparations. Due to the particulate nature of the alum adjuvants, the vaccine antigen adsorbed on adjuvants was considered largely as "a black box" due to the difficulty in analysis and visualization. Here, a novel method with fluorescence-based high content imaging for visualization and quantitating the immunoreactivity of adjuvant-adsorbed VLPs with neutralizing mAbs was developed, in which antigen desorption was not needed. The facile and quantitative in situ antigenicity analysis was amendable for automation. The integrity of a given epitope or two non-overlapping epitopes on the recombinant VLPs in their adjuvanted form can be assessed in a quantitative manner for cross-lot or cross-product comparative analysis with minimal manipulation of samples.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Lu Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Zhijie Lin
- Innovax Corporation, Xiamen, Fujian 361000, PR China.
| | - Minxi Wei
- Innovax Corporation, Xiamen, Fujian 361000, PR China.
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China; School of Life Science, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005, PR China; School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
38
|
Stewart PL. Cryo-electron microscopy and cryo-electron tomography of nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 06/02/2016] [Indexed: 01/04/2023]
|
39
|
Characterization of Influenza Vaccine Hemagglutinin Complexes by Cryo-Electron Microscopy and Image Analyses Reveals Structural Polymorphisms. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:483-495. [PMID: 27074939 PMCID: PMC4895014 DOI: 10.1128/cvi.00085-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022]
Abstract
Influenza virus afflicts millions of people worldwide on an annual basis. There is an ever-present risk that animal viruses will cross the species barrier to cause epidemics and pandemics resulting in great morbidity and mortality. Zoonosis outbreaks, such as the H7N9 outbreak, underscore the need to better understand the molecular organization of viral immunogens, such as recombinant influenza virus hemagglutinin (HA) proteins, used in influenza virus subunit vaccines in order to optimize vaccine efficacy. Here, using cryo-electron microscopy and image analysis, we show that recombinant H7 HA in vaccines formed macromolecular complexes consisting of variable numbers of HA subunits (range, 6 to 8). In addition, HA complexes were distributed across at least four distinct structural classes (polymorphisms). Three-dimensional (3D) reconstruction and molecular modeling indicated that HA was in the prefusion state and suggested that the oligomerization and the structural polymorphisms observed were due to hydrophobic interactions involving the transmembrane regions. These experiments suggest that characterization of the molecular structures of influenza virus HA complexes used in subunit vaccines will lead to better understanding of the differences in vaccine efficacy and to the optimization of subunit vaccines to prevent influenza virus infection.
Collapse
|
40
|
Bryan JT, Buckland B, Hammond J, Jansen KU. Prevention of cervical cancer: journey to develop the first human papillomavirus virus-like particle vaccine and the next generation vaccine. Curr Opin Chem Biol 2016; 32:34-47. [DOI: 10.1016/j.cbpa.2016.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
|
41
|
Challenges and opportunities of using liquid chromatography and mass spectrometry methods to develop complex vaccine antigens as pharmaceutical dosage forms. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:23-38. [PMID: 27071526 DOI: 10.1016/j.jchromb.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Liquid chromatographic methods, combined with mass spectrometry, offer exciting and important opportunities to better characterize complex vaccine antigens including recombinant proteins, virus-like particles, inactivated viruses, polysaccharides, and protein-polysaccharide conjugates. The current abilities and limitations of these physicochemical methods to complement traditional in vitro and in vivo vaccine potency assays are explored in this review through the use of illustrative case studies. Various applications of these state-of-the art techniques are illustrated that include the analysis of influenza vaccines (inactivated whole virus and recombinant hemagglutinin), virus-like particle vaccines (human papillomavirus and hepatitis B), and polysaccharide linked to protein carrier vaccines (pneumococcal). Examples of utilizing these analytical methods to characterize vaccine antigens in the presence of adjuvants, which are often included to boost immune responses as part of the final vaccine dosage form, are also presented. Some of the challenges of using chromatographic and LC-MS as physicochemical assays to routinely test complex vaccine antigens are also discussed.
Collapse
|
42
|
Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, Zhao Q. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins. Hum Vaccin Immunother 2016; 11:1277-92. [PMID: 25751641 DOI: 10.1080/21645515.2015.1016675] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recombinant VLP-based vaccines have been successfully used against 3 diseases caused by viral infections: Hepatitis B, cervical cancer and hepatitis E. The VLP approach is attracting increasing attention in vaccine design and development for human and veterinary use. This review summarizes the clinically relevant epitopes on the VLP antigens in successful human vaccines. These virion-like epitopes, which can be delineated with molecular biology, cryo-electron microscopy and x-ray crystallographic methods, are the prerequisites for these efficacious vaccines to elicit functional antibodies. The critical epitopes and key factors influencing these epitopes are discussed for the HEV, HPV and HBV vaccines. A pentamer (for HPV) or a dimer (for HEV and HBV), rather than a monomer, is the basic building block harboring critical epitopes for the assembly of VLP antigen. The processing and formulation of VLP-based vaccines need to be developed to promote the formation and stabilization of these epitopes in the recombinant antigens. Delineating the critical epitopes is essential for antigen design in the early phase of vaccine development and for critical quality attribute analysis in the commercial phase of vaccine manufacturing.
Collapse
Affiliation(s)
- Xiao Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University ; Xiamen , Fujian , PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Li SW, Zhao Q, Wu T, Chen S, Zhang J, Xia NS. The development of a recombinant hepatitis E vaccine HEV 239. Hum Vaccin Immunother 2016; 11:908-14. [PMID: 25714510 DOI: 10.1080/21645515.2015.1008870] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the main causes of acute hepatitis worldwide. A recombinant hepatitis E vaccine, HEV 239, has been licensed in China for immunizing adults of 16 y old and above. The vaccine antigen contains pORF2 aa 368 - 606 of the HEV genotype 1 expressed in E. coli. The quality of the vaccine is controlled through a combination of biophysical, biochemical and immunochemical methods. The vaccine is well tolerated in adults. The efficacy of the HEV 239 vaccine against symptomatic and asymptomatic infection had been proven to be high during a Phase III clinical trial and long-term follow up. The safety and efficacy of HEV 239 vaccine in certain high-risk populations remains to be further investigated.
Collapse
Affiliation(s)
- Shao-Wei Li
- a National Institute of Diagnostics and Vaccine Development in Infectious Diseases ; Xiamen University ; Xiamen , PR China
| | | | | | | | | | | |
Collapse
|
44
|
Xia L, Xian Y, Wang D, Chen Y, Huang X, Bi X, Yu H, Fu Z, Liu X, Li S, An Z, Luo W, Zhao Q, Xia N. A human monoclonal antibody against HPV16 recognizes an immunodominant and neutralizing epitope partially overlapping with that of H16.V5. Sci Rep 2016; 6:19042. [PMID: 26750243 PMCID: PMC4707464 DOI: 10.1038/srep19042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr(135) and Val(141) on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Yangfei Xian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Yuanzhi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xingjian Bi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Zheng Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Xinlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston TX77030, USA
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University; Xiamen 361105, China
| |
Collapse
|
45
|
Zhang X, Li S, Modis Y, Li Z, Zhang J, Xia N, Zhao Q. Functional assessment and structural basis of antibody binding to human papillomavirus capsid. Rev Med Virol 2015; 26:115-28. [PMID: 26676802 DOI: 10.1002/rmv.1867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/05/2023]
Abstract
Persistent high-risk human papillomavirus (HPV) infection is linked to cervical cancer. Two prophylactic virus-like particle (VLP)-based vaccines have been marketed globally for nearly a decade. Here, we review the HPV pseudovirion (PsV)-based assays for the functional assessment of the HPV neutralizing antibodies and the structural basis for these clinically relevant epitopes. The PsV-based neutralization assay was developed to evaluate the efficacy of neutralization antibodies in sera elicited by vaccination or natural infection or to assess the functional characteristics of monoclonal antibodies. Different antibody binding modes were observed when an antibody was complexed with virions, PsVs or VLPs. The neutralizing epitopes are localized on surface loops of the L1 capsid protein, at various locations on the capsomere. Different neutralization antibodies exert their neutralizing function via different mechanisms. Some antibodies neutralize the virions by inducing conformational changes in the viral capsid, which can result in concealing the binding site for a cellular receptor like 1A1D-2 against dengue virus, or inducing premature genome release like E18 against enterovirus 71. Higher-resolution details on the epitope composition of HPV neutralizing antibodies would shed light on the structural basis of the highly efficacious vaccines and aid the design of next generation vaccines. In-depth understanding of epitope composition would ensure the development of function-indicating assays for the comparability exercise to support process improvement or process scale up. Elucidation of the structural elements of the type-specific epitopes would enable rational design of cross-type neutralization via epitope re-engineering or epitope grafting in hybrid VLPs.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China.,School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China.,School of Public Health, Xiamen University, Xiamen, Fujian, China.,School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Yorgo Modis
- Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Zhihai Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China.,School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China.,School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China.,School of Public Health, Xiamen University, Xiamen, Fujian, China.,School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China.,School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
46
|
The U4 Antibody Epitope on Human Papillomavirus 16 Identified by Cryo-electron Microscopy. J Virol 2015; 89:12108-17. [PMID: 26401038 DOI: 10.1128/jvi.02020-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human papillomavirus (HPV) major structural protein L1 composes capsomers that are linked together through interactions mediated by the L1 C terminus to constitute a T=7 icosahedral capsid. H16.U4 is a type-specific monoclonal antibody recognizing a conformation-dependent neutralizing epitope of HPV thought to include the L1 protein C terminus. The structure of human papillomavirus 16 (HPV16) complexed with H16.U4 fragments of antibody (Fab) was solved by cryo-electron microscopy (cryo-EM) image reconstruction. Atomic structures of virus and Fab were fitted into the corresponding cryo-EM densities to identify the antigenic epitope. The antibody footprint mapped predominately to the L1 C-terminal arm with an additional contact point on the side of the capsomer. This footprint describes an epitope that is presented capsid-wide. However, although the H16.U4 epitope suggests the presence of 360 potential binding sites exposed in the capsid valley between each capsomer, H16.U4 Fab bound only to epitopes located around the icosahedral five-fold vertex of the capsid. Thus, the binding characteristics of H16.U4 defined in this study showed a distinctive selectivity for local conformation-dependent interactions with specific L1 invading arms between five-fold related capsomers. IMPORTANCE Human papillomavirus 16 (HPV16) is the most prevalent oncogenic genotype in HPV-associated anogenital and oral cancers. Here we use cryo-EM reconstruction techniques to solve the structures of the HPV16 capsid complexes using H16.U4 fragment of antibody (Fab). Different from most other antibodies directed against surface loops, H16.U4 monoclonal antibody is unique in targeting the C-terminal arm of the L1 protein. This monoclonal antibody (MAb) is used throughout the HPV research community in HPV serological and vaccine development and to define mechanisms of HPV uptake. The unique binding mode of H16.U4 defined here shows important conformation-dependent interactions within the HPV16 capsid. By targeting an important structural and conformational epitope, H16.U4 may identify subtle conformational changes in different maturation stages of the HPV capsid and provide a key probe to analyze the mechanisms of HPV uptake during the early stages of virus infection. Our analyses precisely define important conformational epitopes on HPV16 capsids that are key targets for successful HPV prophylactic vaccines.
Collapse
|
47
|
Guan J, Bywaters SM, Brendle SA, Lee H, Ashley RE, Makhov AM, Conway JF, Christensen ND, Hafenstein S. Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization. Virology 2015; 483:253-63. [PMID: 25996608 DOI: 10.1016/j.virol.2015.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 01/29/2023]
Abstract
Cryo-electron microscopy (cryo-EM) was used to solve the structures of human papillomavirus type 16 (HPV16) complexed with fragments of antibody (Fab) from three different neutralizing monoclonals (mAbs): H16.1A, H16.14J, and H263.A2. The structure-function analysis revealed predominantly monovalent binding of each Fab with capsid interactions that involved multiple loops from symmetry related copies of the major capsid protein. The residues identified in each Fab-virus interface map to a conformational groove on the surface of the capsomer. In addition to the known involvement of the FG and HI loops, the DE loop was also found to constitute the core of each epitope. Surprisingly, the epitope mapping also identified minor contributions by EF and BC loops. Complementary immunological assays included mAb and Fab neutralization. The specific binding characteristics of mAbs correlated with different neutralizing behaviors in pre- and post-attachment neutralization assays.
Collapse
Affiliation(s)
- Jian Guan
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Stephanie M Bywaters
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Sarah A Brendle
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Hyunwook Lee
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Robert E Ashley
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260 USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Ave, Pittsburgh, PA 15260 USA
| | - Neil D Christensen
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Susan Hafenstein
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 USA.
| |
Collapse
|
48
|
Zhang Y, Li M, Yang F, Li Y, Zheng Z, Zhang X, Lin Q, Wang Y, Li S, Xia N, Zhang J, Zhao Q. Comparable quality attributes of hepatitis E vaccine antigen with and without adjuvant adsorption-dissolution treatment. Hum Vaccin Immunother 2015; 11:1129-39. [PMID: 26018442 PMCID: PMC4514398 DOI: 10.1080/21645515.2015.1009343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/24/2014] [Accepted: 11/08/2014] [Indexed: 12/17/2022] Open
Abstract
Most vaccines require adjuvants for antigen stabilization and immune potentiation. Aluminum-based adjuvants are the most widely used adjuvants for human vaccines. Previous reports demonstrated the preservation of antigen conformation and other antigen characteristics after recovery from adjuvanted Hepatitis B and human papillomavirus vaccines. In this study, we used a combination of various physiochemical and immunochemical methods to analyze hepatitis E vaccine antigen quality attributes after recovery from adjuvants. All biochemical and biophysical methods showed similar characteristics of the p239 protein after recovery from adjuvanted vaccine formulation compared to the antigen in solution which never experienced adsorption/desorption process. Most importantly, we demonstrated full preservation of key antigen epitopes post-recovery from adjuvanted vaccine using a panel of murine monoclonal antibodies as exquisite probes. Antigenicity of p239 was probed with a panel of 9 mAbs using competition/blocking ELISA, surface plasmon resonance and sandwich ELISA methods. These multifaceted analyses demonstrated the preservation of antigen key epitopes and comparable protein thermal stability when adsorbed on adjuvants or of the recovered antigen post-dissolution treatment. A better understanding of the antigen conformation in adjuvanted vaccine will enhanced our knowledge of antigen-adjuvant interactions and facilitate an improved process control and development of stable vaccine formulation.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Life Science; Xiamen University; Xiamen, Fujian, PR China
| | - Min Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Fan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Yufang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Xiao Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Qingshan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Life Science; Xiamen University; Xiamen, Fujian, PR China
| | - Ying Wang
- China National Center for Biotechnology Development; Beijing, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Life Science; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Life Science; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University; Xiamen, Fujian, PR China
- School of Public Health; Xiamen University; Xiamen, Fujian, PR China
| |
Collapse
|
49
|
A cryo-electron microscopy study identifies the complete H16.V5 epitope and reveals global conformational changes initiated by binding of the neutralizing antibody fragment. J Virol 2014; 89:1428-38. [PMID: 25392224 DOI: 10.1128/jvi.02898-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Human papillomavirus 16 (HPV16) is a worldwide health threat and an etiologic agent of cervical cancer. To understand the antigenic properties of HPV16, we pursued a structural study to elucidate HPV capsids and antibody interactions. The cryo-electron microscopy (cryo-EM) structures of a mature HPV16 particle and an altered capsid particle were solved individually and as complexes with fragment of antibody (Fab) from the neutralizing antibody H16.V5. Fitted crystal structures provided a pseudoatomic model of the virus-Fab complex, which identified a precise footprint of H16.V5, including previously unrecognized residues. The altered-capsid-Fab complex map showed that binding of the Fab induced significant conformational changes that were not seen in the altered-capsid structure alone. These changes included more ordered surface loops, consolidated so-called "invading-arm" structures, and tighter intercapsomeric connections at the capsid floor. The H16.V5 Fab preferentially bound hexavalent capsomers likely with a stabilizing effect that directly correlated with the number of bound Fabs. Additional cryo-EM reconstructions of the virus-Fab complex for different incubation times and structural analysis provide a model for a hyperstabilization of the capsomer by H16.V5 Fab and showed that the Fab distinguishes subtle differences between antigenic sites. IMPORTANCE Our analysis of the cryo-EM reconstructions of the HPV16 capsids and virus-Fab complexes has identified the entire HPV.V5 conformational epitope and demonstrated a detailed neutralization mechanism of this clinically important monoclonal antibody against HPV16. The Fab bound and ordered the apical loops of HPV16. This conformational change was transmitted to the lower region of the capsomer, resulting in enhanced intercapsomeric interactions evidenced by the more ordered capsid floor and "invading-arm" structures. This study advances the understanding of the neutralization mechanism used by H16.V5.
Collapse
|
50
|
Sung JJ, Pardeshi NN, Mulder AM, Mulligan SK, Quispe J, On K, Carragher B, Potter CS, Carpenter JF, Schneemann A. Transmission electron microscopy as an orthogonal method to characterize protein aggregates. J Pharm Sci 2014; 104:750-9. [PMID: 25231267 DOI: 10.1002/jps.24157] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 01/18/2023]
Abstract
Aggregation of protein-based therapeutics is a challenging problem in the biopharmaceutical industry. Of particular concern are implications for product efficacy and clinical safety because of potentially increased immunogenicity of the aggregates. We used transmission electron microscopy (TEM) to characterize biophysical and morphological features of antibody aggregates formed upon controlled environmental stresses. TEM results were contrasted with results obtained in parallel by independent methods, including size-exclusion chromatography, dynamic light scattering, microflow imaging, and nanoparticle tracking. For TEM, stressed samples were imaged by negative staining and in the frozen-hydrated state. In both cases, aggregates appeared amorphous but differed in fine structural detail. Specifically, negatively stained aggregates were compact and consisted of smaller globular structures that had a notable three-dimensional character. Elements of the native IgG structure were retained, suggesting that the aggregates were not assembled from denatured protein. In contrast, aggregates in frozen-hydrated samples appeared as extended, branched protein networks with large surface area. Using multiple scales of magnification, a wide range of particle sizes was observed and semiquantitatively characterized. The detailed information provided by TEM extended observations obtained with the independent methods, demonstrating the suitability of TEM as a complementary approach to submicron particle analysis.
Collapse
Affiliation(s)
- Joyce J Sung
- Department of Research and Development, NanoImaging Services Inc., San Diego, California, 92121
| | | | | | | | | | | | | | | | | | | |
Collapse
|