1
|
Den Hartogh DJ, MacPherson REK, Tsiani E. Muscle cell palmitate-induced insulin resistance, JNK, IKK/NF-κB, and STAT3 activation are attenuated by carnosic and rosmarinic acid. Appl Physiol Nutr Metab 2025; 50:1-14. [PMID: 39805098 DOI: 10.1139/apnm-2024-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids, often observed in obesity, lead to impaired insulin action, and promote the development of insulin resistance and type 2 diabetes mellitus. c-Jun N-terminal kinase (JNK), inhibitor of kappa B (IκB) kinase (IKK)-nuclear factor-kappa B (NF-κB), and signal transducer and activator of transcription 3 (STAT3) are known to be involved in skeletal muscle insulin resistance. We reported previously that carnosic acid (CA) and rosmarinic acid (RA) attenuated the palmitate-induced skeletal muscle insulin resistance, an effect that was associated with increased AMPK activation and reduced mammalian target of rapamycin-p70S6K signaling. In the present study, we examined the effects of CA and RA on JNK, IKK-NF-κB, and STAT3. Exposure of cells to palmitate increased the phosphorylation/activation of JNK, IKKα/β, IκBα, NF-κBp65, and STAT3. Importantly, CA and RA attenuated the deleterious effects of palmitate. Our data indicate that CA and RA have the potential to counteract the palmitate-induced skeletal muscle cell insulin resistance by modulating JNK, IKK-NF-κB, and STAT3 signaling.
Collapse
Affiliation(s)
- Danja J Den Hartogh
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S3A1, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
2
|
de Oliveira E Silva AM, Pereira RO, Oliveira AKDS, Harris FS, de Melo ILP, Almeida-Souza TH, Yoshime LT, Dos Santos Melo C, Lopes Dos Santos J, de Andrade-Wartha ERS, Cogliati B, Granato D, Mancini-Filho J. Ameliorative effects of aqueous extract from rosemary on oxidative stress and inflammation pathways caused by a high-fat diet in C57BL/6 mice. Appl Physiol Nutr Metab 2024; 49:459-472. [PMID: 38048548 DOI: 10.1139/apnm-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Rosemary is an herb exhibits biological properties, attenuates inflammation, oxidative stress, and improves lipid profile. Here, we evaluated the effects of rosemary aqueous extract (RE) on mice fed with a high-fat diet (HFD). Male C57BL/6 mice were administered a control diet or HFD for 10 weeks. The treated groups received RE in the diet at different concentrations: 25, 250, and 500 mg/100 g. After 10 weeks, serum concentrations of glucose, lipid, insulin, leptin, adiponectin, and cytokines were evaluated and the oxygen radical absorbance capacity was determined. Histological analysis was performed to determine the concentrations of triacylglycerides (TG), total cholesterol, cytokines, and antioxidant enzymes as well as the expression of genes involved in lipid metabolism, oxidative stress, and inflammation. The dietary RE ameliorated HFD-induced weight gain, adipose tissue weight, glucose intolerance, and insulin, leptin, and free fatty acid levels. Reduction in hepatic TG deposition was observed. The levels of inflammatory cytokines decreased, and the expression of genes involved in lipid metabolism increased. RE mitigated oxidative stress and reduced the production of reactive oxygen species in HepG2 and 3T3-L1 cells. Therefore, RE is a potential therapeutic agent for the prevention of inflammation and oxidative stress outcomes associated with obesity.
Collapse
Affiliation(s)
- Ana Mara de Oliveira E Silva
- Nutrition Sciences Graduate Program, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
- Health Sciences Graduate Program, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | - Raquel Oliveira Pereira
- Health Sciences Graduate Program, Federal University of Sergipe (UFS), Aracaju, Sergipe, Brazil
| | | | - Fernanda Santana Harris
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Illana Louise Pereira de Melo
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | | | - Luciana Tedesco Yoshime
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Caroline Dos Santos Melo
- Nutrition Sciences Graduate Program, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Jymmys Lopes Dos Santos
- Department of Morphology, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | | | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jorge Mancini-Filho
- Department of Food and Experimental Nutrition, Laboratory of Lipids, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Meng D, Zhang F, Yu W, Zhang X, Yin G, Liang P, Feng Y, Chen S, Liu H. Biological Role and Related Natural Products of SIRT1 in Nonalcoholic Fatty Liver. Diabetes Metab Syndr Obes 2023; 16:4043-4064. [PMID: 38089432 PMCID: PMC10715014 DOI: 10.2147/dmso.s437865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease(NAFLD) is an umbrella term for a range of diseases ranging from hepatic fat accumulation and steatosis to non-alcoholic steatohepatitis (NASH) in the absence of excessive alcohol consumption and other definite liver damage factors. The incidence of NAFLD has increased significantly in recent years and will continue to grow in the coming decades. NAFLD has become a huge health problem and economic burden. SIRT1 is a member of Sirtuins, a group of highly conserved histone deacetylases regulated by NAD+, and plays a vital role in regulating cholesterol and lipid metabolism, improving oxidative stress, inflammation, and insulin resistance through deacetylating some downstream transcription factors and thus improving NAFLD. Although there are no currently approved drugs for treating NAFLD and some unresolved limitations in developing SIRT1 activators, SIRT1 holds promise as a proper therapeutic target for NAFLD and other metabolic diseases. In recent years, natural products have played an increasingly important role in drug development due to their safety and efficacy. It has been discovered that some natural products may be able to prevent and treat NAFLD by targeting SIRT1 and its related pathways. This paper reviews the mechanism of SIRT1 in the improvement of NALFD and the natural products that regulate NAFLD through SIRT1 and its associated pathways, and discusses the potential of SIRT1 as a therapeutic target for treating NAFLD and the effectiveness of these related natural products as clinical drugs or dietary supplements. These works may provide some new ideas and directions for finding new therapeutic targets for NAFLD and the development of anti-NAFLD drugs with good pharmacodynamic properties.
Collapse
Affiliation(s)
- Decheng Meng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Wenfei Yu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Guoliang Yin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Pengpeng Liang
- Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, Shenzhen, 518001, People’s Republic of China
| | - Yanan Feng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Suwen Chen
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| | - Hongshuai Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
| |
Collapse
|
4
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023; 11:biomedicines11020545. [PMID: 36831081 PMCID: PMC9953345 DOI: 10.3390/biomedicines11020545] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Carnosic acid (CA) and carnosol (CAR) are two major diterpenes of the rosemary plant (Rosmarinus officinalis). They possess a phenolic structural moiety and are endowed with the power to remove cellular reactive oxygen species (ROS) either through direct scavenging reaction or indirectly through upregulation of antioxidant defences. Hand in hand with these activities are their multiple biological effects and therapeutic potential orchestrated through modulating various signalling pathways of inflammation, including the NF-κB, MAPK, Nrf2, SIRT1, STAT3 and NLRP3 inflammasomes, among others. Consequently, they ameliorate the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1 and IL-6), adhesion molecules, chemokines and prostaglandins. These anti-inflammatory mechanisms of action as a therapeutic link to various effects of these compounds, as in many other natural products, are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
5
|
Jin B, Li H, Zhang H, Yang J, Ma W, Lv M, Zheng X, Li X, Liu L, Wang K. Effects of carnosic acid on arsenic-induced liver injury in mice: A comparative transcriptomics analysis. J Trace Elem Med Biol 2022; 71:126953. [PMID: 35202923 DOI: 10.1016/j.jtemb.2022.126953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Long-term chronic exposure to arsenic can cause different degrees of liver injury. Till date, its molecular mechanism has not meant fully elucidated. Evidence indicates that Carnosic acid (CA) has a protective role in arsenic-induced liver injury. This study aimed to reveal the potential targets and evaluate the potential effect of CA intervention at transcriptional level, and provide reference for the intervention of arsenic-induced liver injury. METHODS Arsenic-induced liver injury and CA intervention models were established in C57BL/6 mice. RNA sequencing technique was carried out to obtain the differentially expressed gene (DEG) profiles. The common covariant DEGs between arsenic induction and CA intervention was screened by comparative transcriptomic analysis methods. QRT-PCR was used to verify the covariant DEGs. RESULTS Transcriptome results showed that 220 DEGs were identified after arsenic induction. 267 DEGs were identified after CA intervention (|fold change| > 2.0 and adjusted P < 0.05). 42 covariant DEGs were discovered between the comparison of "AS vs Control" and "AS & CA vs AS". In addition, hub gene analysis revealed a total of 8 covariant DEGs (Ehhadh, Fgf21, Cyp2b10, Plin2, Aacs, Cyp7a1, Per2 and Mylip). The mRNA expressions of Fgf21 and Plin2 were significantly increased (P < 0.05) and the mRNA expressions of Cyp2b10, Cyp7a1, Per2 and Mylip were significantly decreased (P < 0.05) after arsenic induction. On the contrary, the changes of these DEGs were reversed after CA intervention. CONCLUSION The present study would be helpful to understand the potential health effects of arsenic-induced liver injury and identify new potential targets, and provide a reference for the intervention of CA.
Collapse
Affiliation(s)
- Baiming Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China; Department of Preventive Medicine, Qiqihar Medical University, Qiqihar 161006, PR China.
| | - Haonan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Hua Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Jie Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Wenjing Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Man Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Xiujuan Zheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China; Harbin Municipal Center for Disease Control and Prevention, Harbin 150056, PR China.
| | - Xuying Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Lele Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| | - Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, PR China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin 150081, PR China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,Harbin Medical University, Harbin 150081, PR China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
6
|
Carnosic Acid Attenuates the Free Fatty Acid-Induced Insulin Resistance in Muscle Cells and Adipocytes. Cells 2022; 11:cells11010167. [PMID: 35011728 PMCID: PMC8750606 DOI: 10.3390/cells11010167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated blood free fatty acids (FFAs), as seen in obesity, impair insulin action leading to insulin resistance and Type 2 diabetes mellitus. Several serine/threonine kinases including JNK, mTOR, and p70 S6K cause serine phosphorylation of the insulin receptor substrate (IRS) and have been implicated in insulin resistance. Activation of AMP-activated protein kinase (AMPK) increases glucose uptake, and in recent years, AMPK has been viewed as an important target to counteract insulin resistance. We reported previously that carnosic acid (CA) found in rosemary extract (RE) and RE increased glucose uptake and activated AMPK in muscle cells. In the present study, we examined the effects of CA on palmitate-induced insulin-resistant L6 myotubes and 3T3L1 adipocytes. Exposure of cells to palmitate reduced the insulin-stimulated glucose uptake, GLUT4 transporter levels on the plasma membrane, and Akt activation. Importantly, CA attenuated the deleterious effect of palmitate and restored the insulin-stimulated glucose uptake, the activation of Akt, and GLUT4 levels. Additionally, CA markedly attenuated the palmitate-induced phosphorylation/activation of JNK, mTOR, and p70S6K and activated AMPK. Our data indicate that CA has the potential to counteract the palmitate-induced muscle and fat cell insulin resistance.
Collapse
|
7
|
Nair DS, Niharika D, Madhavan A, Sharma S, Joshi AKR. Recent updates on antidiabetic and antiobesity potential of carnosic acid. EXCLI JOURNAL 2021; 20:1476-1481. [PMID: 34803556 PMCID: PMC8600157 DOI: 10.17179/excli2021-4259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Diya S Nair
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Digumarthy Niharika
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Aishwariya Madhavan
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Shweta Sharma
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| | - Apurva Kumar Ramesh Joshi
- Department of Biochemistry, School of Sciences (B1), Jain (Deemed to be University), JC Road, Bangalore, Karnataka, India 560041
| |
Collapse
|
8
|
An Exploration of the Effects of an Early Postpartum Intravenous Infusion with Carnosic Acid on Physiological Responses of Transition Dairy Cows. Antioxidants (Basel) 2021; 10:antiox10091478. [PMID: 34573111 PMCID: PMC8466393 DOI: 10.3390/antiox10091478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/18/2023] Open
Abstract
The objective of the present study was to evaluate the effects of an antioxidant and anti-inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2– than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at 5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation performance in peripartal dairy cows.
Collapse
|
9
|
Wang Z, Zhao Y, Zhao H, Zhou J, Feng D, Tang F, Li Y, Lv L, Chen Z, Ma X, Tian X, Yao J. Inhibition of p66Shc Oxidative Signaling via CA-Induced Upregulation of miR-203a-3p Alleviates Liver Fibrosis Progression. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:751-763. [PMID: 32781430 PMCID: PMC7417942 DOI: 10.1016/j.omtn.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
We previously found that inhibition of p66Shc confers protection against hepatic stellate cell (HSC) activation during liver fibrosis. However, the effect of p66Shc on HSC proliferation, as well as the mechanism by which p66Shc is modulated, remains unknown. Here, we elucidated the effect of p66Shc on HSC proliferation and evaluated microRNA (miRNA)-p66Shc-mediated reactive oxidative species (ROS) generation in liver fibrosis. An in vivo model of carbon tetrachloride (CCl4)-induced liver fibrosis in rats and an LX-2 cell model were developed. p66Shc expression was significantly upregulated in rats with CCl4-induced liver fibrosis and in human fibrotic livers. Additionally, p66Shc knockdown in vitro attenuated mitochondrial ROS generation and HSC proliferation. Interestingly, p66Shc promoted HSC proliferation via β-catenin dephosphorylation in vitro. MicroRNA (miR)-203a-3p, which was identified by microarray and bioinformatics analyses, directly inhibited p66Shc translation and attenuated HSC proliferation in vitro. Importantly, p66Shc was found to play an indispensable role in the protective effect of miR-203a-3p. Furthermore, carnosic acid (CA), the major antioxidant compound extracted from rosemary leaves, protected against CCl4-induced liver fibrosis through the miR-203a-3p/p66Shc axis. Collectively, these results suggest that p66Shc, which is directly suppressed by miR-203a-3p, is a key regulator of liver fibrosis. This finding may lead to the development of therapeutic targets for liver fibrosis.
Collapse
Affiliation(s)
- Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Huanyu Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Dongcheng Feng
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Fan Tang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Yang Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Li Lv
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
10
|
Bao TQ, Li Y, Qu C, Zheng ZG, Yang H, Li P. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1353-1368. [PMID: 33016104 DOI: 10.1142/s0192415x20500664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Diabetes mellitus is a chronic endocrine disease result from absolute or relative insulin secretion deficiency, insulin resistance, or both, and has become a major and growing public healthy menace worldwide. Currently, clinical antidiabetic drugs still have some limitations in efficacy and safety such as gastrointestinal side effects, hypoglycemia, or weight gain. Rosmarinus officinalis is an aromatic evergreen shrub used as a food additive and medicine, which has been extensively used to treat hyperglycemia, atherosclerosis, hypertension, and diabetic wounds. A great deal of pharmacological research showed that rosemary extract and its phenolic constituents, especially carnosic acid, rosmarinic acid, and carnosol, could significantly improve diabetes mellitus by regulating glucose metabolism, lipid metabolism, anti-inflammation, and anti-oxidation, exhibiting extremely high research value. Therefore, this review summarizes the pharmacological effects and underlying mechanisms of rosemary extract and its primary phenolic constituents on diabetes and relative complications both in vitro and in vivo studies from 2000 to 2020, to provide some scientific evidence and research ideas for its clinical application.
Collapse
Affiliation(s)
- Tian-Qi Bao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy China, Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
11
|
Teng L, Fan L, Peng Y, He X, Chen H, Duan H, Yang F, Lin D, Lin Z, Li H, Shao B. Carnosic Acid Mitigates Early Brain Injury After Subarachnoid Hemorrhage: Possible Involvement of the SIRT1/p66shc Signaling Pathway. Front Neurosci 2019; 13:26. [PMID: 30890904 PMCID: PMC6411796 DOI: 10.3389/fnins.2019.00026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Carnosic acid (CA) has been reported to exhibit a variety of bioactivities including antioxidation, neuroprotection, and anti-inflammation; however, the impact of CA on subarachnoid hemorrhage (SAH) has never been elucidated. The current study was undertaken to explore the role of CA in early brain injury (EBI) secondary to SAH and the underlying mechanisms. Adult male Sprague-Dawley rats were perforated to mimic a clinical aneurysm with SAH. CA or vehicle was administered intravenously immediately after the SAH occurred. Mortality, SAH grade, neurologic function scores, brain water content, Evans blue extravasation, and the levels of reactive oxygen species (ROS) levels in the ipsilateral cortex were determined 24 h after the SAH occurred. Western blot, immunofluorescence, Fluoro-Jade C (FJC) and TUNEL staining were also performed. Our results showed that CA decreased ROS levels, alleviated brain edema and blood-brain barrier permeability, reduced neuronal cell death, and promoted neurologic function improvement. To probe into the potential mechanisms. We showed that CA increased SIRT1, MnSOD, and Bcl-2 expression, as well as decreased p66shc, Bax, and cleaved caspase-3 expression. Interestingly, sirtinol, a selective inhibitor of SIRT1, abolished the anti-apoptotic effects of CA. Taken together, these data revealed that CA has a neuroprotective role in EBI secondary to SAH. The potential mechanism may involve suppression of neuronal apoptosis through the SIRT1/p66shc signaling pathway. CA may provide a promising therapeutic regimen for management of SAH.
Collapse
Affiliation(s)
- Lingfang Teng
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Linfeng Fan
- Department of Pediatric Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Yujiang Peng
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Xijun He
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Huihui Chen
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Hongyu Duan
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Fan Yang
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Da Lin
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Zheng Lin
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Huiyong Li
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| | - Bo Shao
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
12
|
Lee YH, Lim W, Sung MK. Carnosic Acid Modulates Increased Hepatic Lipogenesis and Adipocytes Differentiation in Ovariectomized Mice Fed Normal or High-Fat Diets. Nutrients 2018; 10:nu10121984. [PMID: 30558262 PMCID: PMC6315337 DOI: 10.3390/nu10121984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/24/2022] Open
Abstract
As postmenopausal women experience a rapid increase in cardiovascular disease (CVD) risk with an increase in abdominal fat, dietary interventions to reduce CVD risk have been emphasized. This study was aimed at investigating the effect of a high-fat diet (HFD) in combination with an ovariectomy on liver and adipose tissue fat metabolism. The efficacy of carnosic acid (CA) supplementation in the suppression of HFD- and ovariectomy-induced obesity was also evaluated. Ovariectomized (OVX) or sham-operated mice at eight weeks of age were fed with a normal diet (ND), HFD, ND and 0.02% CA, or HFD and 0.02% CA for 12 weeks. All of the animals were sacrificed at the age of 20 weeks. The blood and tissue markers of the lipogenesis and adipocyte differentiation were measured. As expected, ovariectomy decreased the uterus weight and serum 17β-estradiol concentration. The HFD and ovariectomy significantly contributed to increases in the body weight and total fat mass, which were effectively inhibited by CA supplementation. The circulating concentrations of insulin, leptin, and TG (triglyceride) were significantly higher in the HFD group, and the concentrations were two to five times higher in the OVX and HFD group compared with those of the ND group. The CA supplementation significantly lowered the insulin, leptin, and TG concentrations in the OVX and HFD mice. The hepatic protein expressions of pAMPK and pACC were up-regulated by CA supplementation in OVX mice fed either ND or HFD. The expressions of hepatic SREBP1c and FAS mRNA were the highest in the OVX and HFD group, which were suppressed by CA supplementation. The adipose tissue PPARγ, aP2, and lipoprotein lipase (LPL) mRNA expressions were up-regulated by a HFD or ovariectomy, while they were significantly reduced in the mice fed a CA supplemented diet. The TNF-α and IL-6 mRNA levels in the adipose tissue were decreased by providing CA in the OVX groups. These results suggest that HFD and ovariectomy independently contribute to body fat accumulation, and CA effectively alleviated the ovariectomy-induced increases in lipogenesis and adipocyte differentiation. Further human trials are required in order to evaluate the efficacy of rosemary-derive CA as natural anti-adipogenic compounds, especially in postmenopausal women.
Collapse
Affiliation(s)
- Yoon-Hee Lee
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Chungpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea.
| | - Whasun Lim
- Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579 beon-gil, Gangneung-si, Gangwon-do 210-701, Republic of Korea.
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Chungpa-ro 47-gil 100, Yongsan-gu, Seoul 140-742, Republic of Korea.
| |
Collapse
|
13
|
Attenuation of Free Fatty Acid-Induced Muscle Insulin Resistance by Rosemary Extract. Nutrients 2018; 10:nu10111623. [PMID: 30400151 PMCID: PMC6267446 DOI: 10.3390/nu10111623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Elevated blood free fatty acids (FFAs), as seen in obesity, impair muscle insulin action leading to insulin resistance and Type 2 diabetes mellitus. Serine phosphorylation of the insulin receptor substrate (IRS) is linked to insulin resistance and a number of serine/threonine kinases including JNK, mTOR and p70 S6K have been implicated in this process. Activation of the energy sensor AMP-activated protein kinase (AMPK) increases muscle glucose uptake, and in recent years AMPK has been viewed as an important target to counteract insulin resistance. We reported recently that rosemary extract (RE) increased muscle cell glucose uptake and activated AMPK. However, the effect of RE on FFA-induced muscle insulin resistance has never been examined. In the current study, we investigated the effect of RE in palmitate-induced insulin resistant L6 myotubes. Exposure of myotubes to palmitate reduced the insulin-stimulated glucose uptake, increased serine phosphorylation of IRS-1, and decreased the insulin-stimulated phosphorylation of Akt. Importantly, exposure to RE abolished these effects and the insulin-stimulated glucose uptake was restored. Treatment with palmitate increased the phosphorylation/activation of JNK, mTOR and p70 S6K whereas RE completely abolished these effects. RE increased the phosphorylation of AMPK even in the presence of palmitate. Our data indicate that rosemary extract has the potential to counteract the palmitate-induced muscle cell insulin resistance and further studies are required to explore its antidiabetic properties.
Collapse
|
14
|
Liu KL, Kuo WC, Lin CY, Lii CK, Liu YL, Cheng YH, Tsai CW. Prevention of 4-hydroxynonenal-induced lipolytic activation by carnosic acid is related to the induction of glutathione S-transferase in 3T3-L1 adipocytes. Free Radic Biol Med 2018; 121:1-8. [PMID: 29698741 DOI: 10.1016/j.freeradbiomed.2018.04.567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023]
Abstract
UNLABELLED Induction of 4-hydroxynonenal (4-HNE), a major lipid peroxidation aldehyde, is observed in patients with obesity and type 2 diabetes mellitus. The lipolytic response by 4-HNE has been linked to insulin resistance. In this study, we investigated the effects of carnosic acid (CA) on 4-HNE-induced lipolysis and the inhibition of β-oxidation in 3T3-L1 adipocytes. The results indicated that cells pretreated with CA reduced 4-HNE-mediated free fatty acid (FFA) release. Furthermore, CA reversed the inhibition of phosphorylation of Tyr632 of insulin receptor substrate-1 (IRS-1) and Akt and the phosphorylation of Ser307 of IRS-1. CA inhibited 4-HNE-induced phosphorylation of protein kinase A (PKA) and hormone-sensitive lipase (HSL), and reversed the suppression by 4-HNE of phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (p < 0.05). Pretreatment of cells with forskolin (a cAMP agonist) and compound C (an AMPK inhibitor) reversed these effects, respectively (p < 0.05). In human subcutaneous adipocytes, CA also attenuated 4-HNE-induced FFA release and the phosphorylation of PKA and HSL (p < 0.05). Moreover, CA increased the protein expression of glutathione S-transferase (GST) A and M. Pretreatment with ethacrynic acid, a GST inhibitor, prevented the 4-HNE-conjugated proteins suppression, the PKA and HSL phosphorylation reduction, and the FFA release inhibition by CA (p < 0.05). CONCLUSION The attenuation by CA of the lipolytic response by 4-HNE is likely related to the induction of GST, which in turn reduced 4-HNE-conjugated proteins and decreased the activation of the PKA/HSL pathway. The observed effects may explain how CA improves 4-HNE-induced insulin resistance.
Collapse
Affiliation(s)
- Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Dietitian, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Chen Kuo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yen-Lin Liu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yun-Hsin Cheng
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
15
|
Arctigenin protects against steatosis in WRL68 hepatocytes through activation of phosphoinositide 3-kinase/protein kinase B and AMP-activated protein kinase pathways. Nutr Res 2018. [DOI: 10.1016/j.nutres.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Zhang S, Wang Z, Zhu J, Xu T, Zhao Y, Zhao H, Tang F, Li Z, Zhou J, Gao D, Tian X, Yao J. Carnosic Acid Alleviates BDL-Induced Liver Fibrosis through miR-29b-3p-Mediated Inhibition of the High-Mobility Group Box 1/Toll-Like Receptor 4 Signaling Pathway in Rats. Front Pharmacol 2018; 8:976. [PMID: 29403377 PMCID: PMC5780338 DOI: 10.3389/fphar.2017.00976] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Fibrosis reflects a progression to liver cancer or cirrhosis of the liver. Recent studies have shown that high-mobility group box-1 (HMGB1) plays a major role in hepatic injury and fibrosis. Carnosic acid (CA), a compound extracted from rosemary, has been reported to alleviate alcoholic and non-alcoholic fatty liver injury. CA can also alleviate renal fibrosis. We hypothesized that CA might exert anti-liver fibrosis properties through an HMGB1-related pathway, and the results of the present study showed that CA treatment significantly protected against hepatic fibrosis in a bile duct ligation (BDL) rat model. CA reduced the liver expression of α-smooth muscle actin (α-SMA) and collagen 1 (Col-1). Importantly, we found that CA ameliorated the increase in HMGB1 and Toll-like receptor 4 (TLR4) caused by BDL, and inhibited NF-κB p65 nuclear translocation in fibrotic livers. In vitro, CA inhibited LX2 cell activation by inhibiting HMGB1/TLR4 signaling pathway. Furthermore, miR-29b-3p decreased HMGB1 expression, and a dual-luciferase assay validated these results. Moreover, CA down-regulated HMGB1 and inhibited LX2 cell activation, and these effects were significantly counteracted by antago-miR-29b-3p, indicating that the CA-mediated inhibition of HMGB1 expression might be miR-29b-3p dependent. Collectively, the results demonstrate that a miR-29b-3p/HMGB1/TLR4/NF-κB signaling pathway, which can be modulated by CA, is important in liver fibrosis, and indicate that CA might be a prospective therapeutic drug for liver fibrosis.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jie Zhu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Ting Xu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Huanyu Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Fan Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhenlu Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Naimi M, Vlavcheski F, Murphy B, Hudlicky T, Tsiani E. Carnosic acid as a component of rosemary extract stimulates skeletal muscle cell glucose uptake via AMPK activation. Clin Exp Pharmacol Physiol 2017; 44:94-102. [PMID: 27716981 DOI: 10.1111/1440-1681.12674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023]
Abstract
Compounds that increase the activity of the energy sensor AMP-activated kinase (AMPK) have the potential to regulate blood glucose levels. Although rosemary extract (RE) has been reported to activate AMPK and reduce blood glucose levels in vivo, the chemical components responsible for these effects are not known. In the present study, we measured the levels of the polyphenol carnosic acid (CA) in RE and examined the effects and the mechanism of action of CA on glucose transport system in muscle cells. High performance liquid chromatography (HPLC) was used to measure the levels of CA in RE. Parental and GLUT4myc or GLUT1myc overexpressing L6 rat myotubes were used. Glucose uptake was assessed using [3 H]-2-deoxy-d-glucose. Total and phosphorylated levels of Akt and AMPK were measured by immunoblotting. Plasma membrane GLUT4myc and GLUT1myc levels were examined using a GLUT translocation assay. Statistics included analysis of variance (ANOVA) followed by Tukey's post-hoc test. At concentrations found in rosemary extract, CA stimulated glucose uptake in L6 myotubes. At 2.0 μmol/L CA a response (226 ± 9.62% of control, P=.001), similar to maximum insulin (201 ± 7.86% of control, P=.001) and metformin (213 ± 10.74% of control, P=.001) was seen. Akt phosphorylation was not affected by CA while AMPK and ACC phosphorylation was increased and the CA-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C. Plasma membrane GLUT4 or GLUT1 glucose transporter levels were not affected by CA. Our study shows increased muscle cell glucose uptake and AMPK activation by low CA concentrations, found in rosemary extract, indicating that CA may be responsible for the antihyperglycemic properties of rosemary extract seen in vivo.
Collapse
Affiliation(s)
- Madina Naimi
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Filip Vlavcheski
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Brennan Murphy
- Department of Chemistry, Brock University, St. Catharines, ON, Canada
| | - Tomas Hudlicky
- Department of Chemistry, Brock University, St. Catharines, ON, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
18
|
Rosenzweig T, Skalka N, Rozenberg K, Elyasiyan U, Pinkus A, Green B, Stanevsky M, Drori E. Red wine and wine pomace reduced the development of insulin resistance and liver steatosis in HFD-fed mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Xu T, Zhou J, Zhu J, Zhang S, Zhang N, Zhao Y, Ding C, Shi X, Yao J. Carnosic acid protects non-alcoholic fatty liver-induced dopaminergic neuron injury in rats. Metab Brain Dis 2017; 32:483-491. [PMID: 27957651 DOI: 10.1007/s11011-016-9941-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been reported to induce cognitive impairments of hippocampus and may influence central nervous system. In the present study, we investigated whether carnosic acid (CA) ameliorates dopaminergic neuron injury in a rat model of NAFLD. In order to induce NAFLD, rats were fed with high-fat diet (HFD) for 10 weeks. We found that continued CA administration reduced lipid accumulation marked by decreases in alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels, and an increase in high-density lipoprotein cholesterol (HDL-C) level in the serum. H&E staining revealed that feeding CA reduced lipid droplets accumulation, and alleviated oxidative stress by increasing in superoxide dismutase (SOD) level and decreasing in malondialdehyde (MDA) level in the liver. In addition, by measuring several parameters of gait analysis, we demonstrated that CA treatment ameliorated behavioral impairments, as evidenced by decreased duration and maximum variation, accompanied by increased average speed and cadence. Furthermore, CA treated-animals displayed an increase in the contents of dopamine (DA) and its metabolites 3,4-dihydroxyphenylacelic acid (DOPAC) and elevated the expressions of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) as well as the TH protein in the striatum. Together, these findings suggest that CA may be an effective agent in protecting rats from NAFLD-induced dopaminergic neuron injury.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China.
| | - Jie Zhu
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Shuai Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Ning Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
- Department of Pharmacy, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Chunchun Ding
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xue Shi
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
20
|
Xie Z, Wan X, Zhong L, Yang H, Li P, Xu X. Carnosic acid alleviates hyperlipidemia and insulin resistance by promoting the degradation of SREBPs via the 26S proteasome. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
21
|
Baselga-Escudero L, Souza-Mello V, Pascual-Serrano A, Rachid T, Voci A, Demori I, Grasselli E. Beneficial effects of the Mediterranean spices and aromas on non-alcoholic fatty liver disease. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Lou K, Yang M, Duan E, Zhao J, Yu C, Zhang R, Zhang L, Zhang M, Xiao Z, Hu W, He Z. Rosmarinic acid stimulates liver regeneration through the mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1574-1582. [PMID: 27823621 DOI: 10.1016/j.phymed.2016.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 09/14/2016] [Accepted: 09/28/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rosemary (Rosmarinus offcinsalis L) has a liver protection function under various conditions of liver damage. Rosmarinic acid, one of the pharmacological constituents of rosemary, exhibited protective effects against organ injury, including acute liver injury. HYPOTHESIS We hypothesize that RA stimulates liver regeneration. STUDY DESIGN In the present study, we investigated the effects and mechanism of RA administration on liver regeneration using partial hepatectomy (PH), a well-validated liver regeneration model in mice. METHODS We use a 2/3 partial hepatectomy (PH) model to induce liver regeneration. RA was administered prior to and simultaneously with PH. The regeneration process was estimated by the index of the liver to body weight (ILBW) and the expression of proliferating cell nuclear antigen (PCNA) and liver transaminases. RESULTS The administration of rosmarinic acid stimulated hepatocyte proliferation based on activation of the mTOR/S6K pathway. Rosmarinic acid treatment also rescued impaired liver function due to PH. CONCLUSION These data demonstrate that RA is potentially useful to promote liver regeneration.
Collapse
Affiliation(s)
- Kaihan Lou
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Min Yang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Erdan Duan
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Jiahui Zhao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Cong Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Rongping Zhang
- Biomedical Engineering Research Centre, Kunming Medical University, Kunming 650500, China
| | - Lanchun Zhang
- Biomedical Engineering Research Centre, Kunming Medical University, Kunming 650500, China
| | - Ming Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Zhicheng Xiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne 3800, Australia
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Zhiyong He
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne 3800, Australia.
| |
Collapse
|
23
|
Fujiwara M, Mori N, Sato T, Tazaki H, Ishikawa S, Yamamoto I, Arai T. Changes in fatty acid composition in tissue and serum of obese cats fed a high fat diet. BMC Vet Res 2015; 11:200. [PMID: 26268360 PMCID: PMC4534048 DOI: 10.1186/s12917-015-0519-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/31/2015] [Indexed: 11/10/2022] Open
Abstract
Background Obesity and overweight have been frequently observed in dogs and cats in recent years as in humans. The compositions of fatty acids (FAs) in the accumulated lipids in tissues of obese animals may have important roles in the process and mechanisms related to the onset of metabolic disorders. The purpose of this study was to evaluate the effects of a high fat (HF) diet, which contained a higher proportion of saturated FAs, on FA metabolism and distribution in obese cats. Cats (N = 12) were divided into control diet group (crude fat; 16.0 %) (n = 4) or a high fat (HF) diet group (crude fat; 23.9 %) (n = 8). The HF diet contained up to 60 % of calories from fat and was rich in stearic acid. Blood samples were collected at 0, 2, 4 and 6 weeks after the feeding. Adipose and liver tissues were collected at the 6th week after feeding. We performed analysis of histological findings and fatty acid composition in serum and tissues. Results Body weights of the cats significantly increased in the HF group. The increased activities of hepatic enzymes and the accumulation of lipid droplets were found in hepatocytes in the HF group at the 6th week after feeding. In this study, the stearic acid (C18:0)-rich HF diet contained less oleic acid (C18:1n-9) and more linoleic acid (C18:2n-6) than the control. However, the composition of oleic acid in the liver was higher, and those of stearic acid and linoleic acid were lower in the HF group at the 6th week after feeding. The higher oleic acid:stearic acid ratio suggests an increase in the conversion from saturated FA to mono-unsaturated FAs, which may reflect the hepatic storage of FAs as a relatively harmless form. Conclusion The stearic acid-rich HF diet increased hepatic lipid accumulation accompanied by the increased of hepatic oleic acid, increased serum oleic acid and activation of hepatic enzymes. These findings could be an important sign of early stages of dyslipidemia and hepatic damage. Also, the higher oleic acid:stearic acid ratio might be related to the increased activity of SCD-1, which suggests that the stearic acid-rich HF diet evoked hepatic lipogenesis in the feline liver.
Collapse
Affiliation(s)
- Megumi Fujiwara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Senndagi, Bunkyou-ku, Tokyo, 113-8602, Japan.
| | - Nobuko Mori
- Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-City, Tokyo, 180-8602, Japan.
| | - Touko Sato
- Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-City, Tokyo, 180-8602, Japan.
| | - Hiroyuki Tazaki
- Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-City, Tokyo, 180-8602, Japan.
| | - Shingo Ishikawa
- Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-City, Tokyo, 180-8602, Japan.
| | - Ichiro Yamamoto
- Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-City, Tokyo, 180-8602, Japan.
| | - Toshiro Arai
- Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-City, Tokyo, 180-8602, Japan.
| |
Collapse
|
24
|
Shan W, Gao L, Zeng W, Hu Y, Wang G, Li M, Zhou J, Ma X, Tian X, Yao J. Activation of the SIRT1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease. Cell Death Dis 2015. [PMID: 26203862 PMCID: PMC4650741 DOI: 10.1038/cddis.2015.196] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated that miR-34a expression is significantly upregulated and associated with apoptosis in nonalcoholic fatty liver disease (NAFLD). Carnosic acid (CA) is a novel antioxidant and a potential inhibitor of apoptosis in organ injury, including liver injury. This study aimed to investigate the signaling mechanisms underlying miR-34a expression and the antiapoptotic effect of CA in NAFLD. CA treatment significantly reduced the high-fat diet (HFD)-induced elevations in aminotransferase activity as well as in serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and malondialdehyde (MDA) levels but increased serum high-density lipoprotein cholesterol (HDL-C) and hepatic superoxide dismutase (SOD) levels. Moreover, CA treatment ameliorated the increase in cleaved caspase-3 caused by HFD exposure and completely reversed the HFD-induced decreases in manganese superoxide dismutase (MnSOD) and B-cell lymphoma-extra large expression. CA also counteracted the HFD- or palmitic acid (PA)-induced increases in caspase-3 and caspase-9 activity. Mechanistically, CA reversed the HFD- or PA-induced upregulation of miR-34a, which is the best-characterized regulator of SIRT1. Importantly, the decrease in miR-34a expression was closely associated with the activation of the SIRT1/p66shc pathway, which attenuates hepatocyte apoptosis in liver ischemia/reperfusion injury. A dual luciferase assay in L02 cells validated the modulation of SIRT1 by CA, which occurs at least partly via miR-34a. In addition, miR-34a overexpression was significantly counteracted by CA, which prevented the miR-34a-dependent repression of the SIRT1/p66shc pathway and apoptosis. Collectively, our results support a link between liver cell apoptosis and the miR-34a/SIRT1/p66shc pathway, which can be modulated by CA in NAFLD.
Collapse
Affiliation(s)
- W Shan
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - L Gao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - W Zeng
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Y Hu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - G Wang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - M Li
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - J Zhou
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - X Ma
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - X Tian
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - J Yao
- Department of Pharmacology, Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Birtić S, Dussort P, Pierre FX, Bily AC, Roller M. Carnosic acid. PHYTOCHEMISTRY 2015; 115:9-19. [PMID: 25639596 DOI: 10.1016/j.phytochem.2014.12.026] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 05/09/2023]
Abstract
Carnosic acid (salvin), which possesses antioxidative and antimicrobial properties, is increasingly exploited within the food, nutritional health and cosmetics industries. Since its first extraction from a Salvia species (∼70 years ago) and its identification (∼50 years ago), numerous articles and patents (∼400) have been published on specific food and medicinal applications of Rosmarinus and Salvia plant extracts abundant in carnosic acid. In contrast, relevant biochemical, physiological or molecular studies in planta have remained rare. In this overview, recent advances in understanding of carnosic acid distribution, biosynthesis, accumulation and role in planta, and its applications are summarised. We also discuss the deficiencies in our understanding of the relevant biochemical processes, and suggest the molecular targets of carnosic acid. Finally, future perspectives and studies related to its potential roles are highlighted.
Collapse
Affiliation(s)
- Simona Birtić
- Naturex SA, Site d'Agroparc BP 1218, 84911 Avignon Cedex 9, France.
| | - Pierre Dussort
- Naturex SA, Site d'Agroparc BP 1218, 84911 Avignon Cedex 9, France
| | | | - Antoine C Bily
- Naturex SA, Site d'Agroparc BP 1218, 84911 Avignon Cedex 9, France
| | - Marc Roller
- Naturex SA, Site d'Agroparc BP 1218, 84911 Avignon Cedex 9, France
| |
Collapse
|
26
|
Zhao Y, Sedighi R, Wang P, Chen H, Zhu Y, Sang S. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4843-4852. [PMID: 25929334 DOI: 10.1021/acs.jafc.5b01246] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we investigated the preventive effects of carnosic acid (CA) as a major bioactive component in rosemary extract (RE) on high-fat-diet-induced obesity and metabolic syndrome in mice. The mice were given a low-fat diet, a high-fat diet or a high-fat diet supplemented with either 0.14% or 0.28% (w/w) CA-enriched RE (containing 80% CA, RE#1L and RE#1H), or 0.5% (w/w) RE (containing 45% CA, RE#2), for a period of 16 weeks. There was the same CA content in the RE#1H and RE#2 diets and half of this amount in the RE#1L diet. The dietary RE supplementation significantly reduced body weight gain, percent of fat, plasma ALT, AST, glucose, insulin levels, liver weight, liver triglyceride, and free fatty acid levels in comparison with the mice fed with a HF diet without RE treatment. RE administration also decreased the levels of plasma and liver malondialdehyde, advanced glycation end products (AGEs), and the liver expression of receptor for AGE (RAGE) in comparison with those for mice of the HF group. Histological analyses of liver samples showed decreased lipid accumulation in hepatocytes in mice administrated with RE in comparison with that of HF-diet-fed mice. Meanwhile, RE administration enhanced fecal lipid excretion to inhibit lipid absorption and increased the liver GSH/GSSG ratio to perform antioxidant activity compared with HF group. Our results demonstrate that rosemary is a promising dietary agent to reduce the risk of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Yantao Zhao
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Rashin Sedighi
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Pei Wang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Huadong Chen
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yingdong Zhu
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
27
|
Park MY, Sung MK. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation. J Cancer Prev 2015; 20:41-9. [PMID: 25853102 PMCID: PMC4384713 DOI: 10.15430/jcp.2015.20.1.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 01/31/2023] Open
Abstract
Background: Excess body fat accumulation contributes to the development of metabolic disorders that can cause adverse health effects. Carnosic acid (CA), a major bioactive component of rosemary (Rosemarinus officinalis), has been suggested to possess anti-adipogenic properties. The present study was conducted to elucidate the mechanism underlying the anti-adipogenic effects of CA. Methods: 3T3-L1 pre-adipocytes were treated with CA (0.1, 1, and 10 μM) from day 0 to day 8 of differentiation. On day 8, biochemical markers of lipid accumulation and the degree of fatty acid desaturation were measured. Results: Oil Red O staining results, triglyceride (TG) accumulation, and glycerol 3-phosphate dehydrogenase activity suggested that CA significantly inhibited lipid accumulation in 3T3-L1 adipocytes. CA significantly decreased mRNA expression of peroxisome proliferator-activated receptor-γ, sterol regulatory element-binding protein 1, and CCAAT/enhancer binding protein-α in a dose-dependent manner. Moreover, it decreased the ratio of both C16:1/C16:0 and C18:1/C18:0, with reduced expression of stearoyl CoA desaturase 1 mRNA and protein. Conclusions: These results suggest that CA efficiently suppressed adipogenesis in 3T3-L1 adipocytes and its action, at least in part, is associated with the downregulation of adipogenesis-related genes and the fatty acid composition of TG accumulated in adipocytes.
Collapse
Affiliation(s)
- Mi-Young Park
- Department of Food and Nutrition Education, Graduate School of Education, Soonchunhyang University, Asan
| | - Mi-Kyung Sung
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
28
|
Jung MA, Lee SY, Han SH, Hong J, Na JR, Lee JY, Kim Y, Kim S. Hypocholesterolemic effects ofCurcuma longaL. withNelumbo nuciferaleaf in anin vitromodel and a high cholesterol diet-induced hypercholesterolemic mouse model. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2014.992953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Lipina C, Hundal HS. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell Signal 2014; 26:2343-9. [PMID: 25038454 DOI: 10.1016/j.cellsig.2014.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/14/2014] [Indexed: 02/08/2023]
Abstract
Carnosic acid (CA) is a major constituent of the labiate herbal plant Rosemary (Rosmarinus officinalis), which has been shown to exhibit a number of beneficial health properties. In particular, recently there has been growing interest into the anti-obesity effects conveyed by CA, including its ability to counteract obesity-associated hyperglycaemia and insulin resistance. However, the mechanisms underlying its anti-diabetic responses are not fully understood. In this study, we hypothesized that CA may act to improve glycaemic status through enhancing peripheral glucose clearance. Herein, we demonstrate that CA acts to mimic the metabolic actions of insulin by directly stimulating glucose uptake in rat skeletal L6 myotubes, concomitant with increased translocation of the GLUT4 glucose transporter to the plasma membrane. Mechanistically, CA-induced glucose transport was found to be dependent on protein kinase B (PKB/Akt) but not AMPK, despite both kinases being activated by CA. Crucially, in accordance with its ability to activate PKB and stimulate glucose uptake, we show that CA conveys these effects through a pathway involving PME-1 (protein phosphatase methylesterase-1), a key negative regulator of the serine/threonine phosphatase PP2A (protein phosphatase 2A). Herein, we demonstrate that CA promotes PME-1 mediated demethylation of the PP2A catalytic subunit leading to its suppressed activity, and in doing so, alleviates the repressive action of PP2A towards PKB. Collectively, our findings provide new insight into how CA may improve glucose homeostasis through enhancing peripheral glucose clearance in tissues such as skeletal muscle through a PME-1/PP2A/PKB signalling axis, thereby mitigating pathological effects associated with the hyperglycaemic state.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
30
|
Yao X, Hou S, Zhang D, Xia H, Wang YC, Jiang J, Yin H, Ying H. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell Biosci 2014; 4:38. [PMID: 25105012 PMCID: PMC4124172 DOI: 10.1186/2045-3701-4-38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/15/2014] [Indexed: 12/20/2022] Open
Abstract
Background Thyroid hormones (THs) are potent hormones modulating liver lipid homeostasis. The perturbation of lipid homeostasis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a very common liver disorder. It was reported that NAFLD patients were associated with higher incidence of hypothyroidism. However, whether abnormal thyroid function contributes to the pathogenesis of NAFLD remains unclear. Results We used in vivo models to investigate the influence of hypothyroidism and TH on hepatic lipid homeostasis. We did not observe hepatic triglyceride accumulation in the liver of hypothyroid mice, although the liver was enlarged. We then characterized the hepatic fatty acid composition with gas chromatography–mass spectrometry in mice under different thyroid states. We found that hypothyroidism decreased saturated fatty acid (SFA) content while TH treatment restored the level of SFA. In agreement with this finding, we observed that the expression of acetyl-CoA carboxylase 1 and fatty acid synthase, the rate-limit enzymes for de novo lipogenesis (DNL), decreased in hypothyroid mice while increased after TH treatment. We also found that the ratio of C18:1n-9/C18:0 and C16:1n-7/C16:0 was decreased by TH treatment, suggesting the activity of stearoyl-CoA desaturase-1 was suppressed. This finding indicated that TH is able to suppress triglyceride accumulation by reducing fatty acid desaturation. Additionally, we found that hepatic glycogen content was substantially influenced by TH status, which was associated with glycogen synthase expression. The increased glycogen storage might explain the enlarged liver we observed in hypothyroid mice. Conclusions Taken together, our study here suggested that hypothyroidism in mice might not lead to the development of NAFLD although the liver became enlarged. However, disturbed TH levels led to altered hepatic fatty acid composition and glycogen accumulation.
Collapse
Affiliation(s)
- Xuan Yao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sarina Hou
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Duo Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongfeng Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Cheng Wang
- Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Nutrition, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
31
|
The protection of Rhein lysinate to liver in diabetic mice induced by high-fat diet and streptozotocin. Arch Pharm Res 2014; 38:885-92. [DOI: 10.1007/s12272-014-0423-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
|
32
|
Crude extracts from Lycium barbarum suppress SREBP-1c expression and prevent diet-induced fatty liver through AMPK activation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:196198. [PMID: 25013763 PMCID: PMC4071778 DOI: 10.1155/2014/196198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is well known in traditional Chinese herbal medicine that, has beneficial effects. Previous study reported that LBP reduced blood glucose and serum lipids. However, the underlying LBP-regulating mechanisms remain largely unknown. The main purpose of this study was to investigate whether LBP prevented fatty liver through activation of adenosine monophosphate-activated protein kinase (AMPK) and suppression of sterol regulatory element-binding protein-1c (SREBP-1c). Male C57BL/6J mice were fed a low-fat diet, high-fat diet, or 100 mg/kg LBP-treatment diet for 24 weeks. HepG2 cells were treated with LBP in the presence of palmitic acid. In our study, LBP can improve body compositions and lipid metabolic profiles in high-fat diet-fed mice. Oil Red O staining in vivo and in vitro showed that LBP significantly reduced hepatic intracellular triacylglycerol accumulation. H&E staining also showed that LBP can attenuate liver steatosis. Hepatic genes expression profiles demonstrated that LBP can activate the phosphorylation of AMPK, suppress nuclear expression of SREBP-1c, and decrease protein and mRNA expression of lipogenic genes in vivo or in vitro. Moreover, LBP significantly elevated uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression of brown adipose tissue. In summary, LBP possesses a potential novel treatment in preventing diet-induced fatty liver.
Collapse
|
33
|
Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, Hou Y, Han ZM, Schatten H, Sun QY. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:159-64. [PMID: 24316659 PMCID: PMC3915265 DOI: 10.1289/ehp.1307047] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 12/05/2013] [Indexed: 05/25/2023]
Abstract
BACKGROUND Maternal obesity has adverse effects on oocyte quality, embryo development, and the health of the offspring. OBJECTIVES To understand the underlying mechanisms responsible for the negative effects of maternal obesity, we investigated the DNA methylation status of several imprinted genes and metabolism-related genes. METHODS Using a high-fat-diet (HFD)-induced mouse model of obesity, we analyzed the DNA methylation of several imprinted genes and metabolism-related genes in oocytes from control and obese dams and in oocytes and liver from their offspring. Analysis was performed using combined bisulfite restriction analysis (COBRA) and bisulfite sequencing. RESULTS DNA methylation of imprinted genes in oocytes was not altered in either obese dams or their offspring; however, DNA methylation of metabolism-related genes was changed. In oocytes of obese mice, the DNA methylation level of the leptin (Lep) promoter was significantly increased and that of the Ppar-α promoter was reduced. Increased methylation of Lep and decreased methylation of Ppar-α was also observed in the liver of female offspring from dams fed the high-fat diet (OHFD). mRNA expression of Lep and Ppar-α was also significantly altered in the liver of these OHFD. In OHFD oocytes, the DNA methylation level of Ppar-α promoter was increased. CONCLUSIONS Our results indicate that DNA methylation patterns of several metabolism-related genes are changed not only in oocytes of obese mice but also in oocytes and liver of their offspring. These data may contribute to the understanding of adverse effects of maternal obesity on reproduction and health of the offspring.
Collapse
Affiliation(s)
- Zhao-Jia Ge
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rull A, Geeraert B, Aragonès G, Beltrán-Debón R, Rodríguez-Gallego E, García-Heredia A, Pedro-Botet J, Joven J, Holvoet P, Camps J. Rosiglitazone and fenofibrate exacerbate liver steatosis in a mouse model of obesity and hyperlipidemia. A transcriptomic and metabolomic study. J Proteome Res 2014; 13:1731-43. [PMID: 24479691 DOI: 10.1021/pr401230s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR) play an important role in the regulation of lipid and glucose metabolism, inflammatory, and vascular responses. We show the effect of treatment with two PPAR agonists, fenofibrate (FF) and rosiglitazone (RSG), on ob/ob and LDLR-double deficient mice, by combined gene-expression and metabolomic analyses. Male mice were daily treated for 12 weeks with RSG (10 mg·kg(1-)·day(-1) per os (p.o.), n = 8) and FF (50 mg·kg(1-)·day(-1) p.o., n = 8). Twelve untreated ob/ob and LDLR-double deficient mice were used as controls. To integrate the transcriptomic and metabolomic results, we designed a hierarchical algorithm, based on the average linkage method in clustering. Data were also interpreted with the Ingenuity Pathway Analysis program. FF and RSG treatments significantly increased the hepatic triglyceride content in the liver when compared with the control group, and the treatments induced an increase in the number and size of hepatic lipid droplets. Both drugs simultaneously activate pro-steatotic and antisteatotic metabolic pathways with a well-ordered result of aggravation of the hepatic lipid accumulation. The present study is a cautionary note not only to researchers on the basic mechanism of the action of PPAR activators but also to the use of these compounds in clinical practice.
Collapse
Affiliation(s)
- Anna Rull
- Unitat de Recerca Biomèdica (CRB-URB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|