1
|
Sun Y, Hao L, Liang J, Ye S, Su M. Salinity-induced virulence alteration of Aeromonas hydrophila isolated from Scatophagus argus: insights from transcriptomic profiling and phenotypic characterization. BMC Microbiol 2025; 25:266. [PMID: 40316893 PMCID: PMC12046933 DOI: 10.1186/s12866-025-03977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND The emerging foodborne pathogen, Aeromonas hydrophila, co-infects humans and animals, especially fish, threatening aquacultural production and public health. Previously, we found that Scatophagus argus, a widely cultivated fish species with high economic value, exhibited enhanced growth but increased susceptibility to A. hydrophila infection under freshwater conditions compared to seawater conditions. However, the exact mechanisms involved remain unclear. RESULTS Our study demonstrated that the enhanced virulence of A. hydrophila 201416, isolated from S. argus, in response to increasing salinity was associated with altered quorum sensing-related gene expression and regulated behaviors. Results from virulence assays incorporating phenotypic characterization indicated that elevated salinity levels (from 0 to 35‰) significantly hindered Ah201416 infection of S. argus. This trend correlated with increased biofilm mass and swimming motility, yet was inversely related to bacterial growth. RNA-sequencing and quantitative reverse transcriptional PCR analysis confirmed significant upregulation of genes related to flagellar assembly (flgB, flgH, flgC, flgI, flhA, and fliA), bacterial secretion (HlyD and Ahh1), and quorum sensing (AhyR, LuxO, and LuxE) of Ah201416 in response to elevated salinity. These findings suggested that increased salinity not only enhanced the virulence of Ah201416 but also bolstered the resistance of S. argus, thereby mitigating its susceptibility. CONCLUSIONS This study provides deeper insights into the microbial risks associated with A. hydrophila in aquacultural production, which is critical to developing effective prevention and control strategies and ensuring a safe seafood supply. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yuan Sun
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jianbing Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shiyang Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Akter S, Rahman MA, Ashrafudoulla M, Ha SD. Biofilm formation and analysis of EPS architecture comprising polysaccharides and lipids by Pseudomonas aeruginosa and Escherichia coli on food processing surfaces. Food Res Int 2025; 209:116274. [PMID: 40253144 DOI: 10.1016/j.foodres.2025.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Biofilms are silent but formidable threats in seafood processing, where Pseudomonas aeruginosa and Escherichia coli can quickly transform contact surfaces into reservoirs of contamination. This study explores the dynamic biofilm formation on aluminum, silicone rubber, stainless steel, and polyethylene terephthalate over 24 and 72 h. Quantitative assays including Colony Forming Unit (CFU), Crystal Violet (CV), 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) revealed a significant increase in biofilm density, particularly on aluminum and silicone rubber. Fourier-Transform Infrared Spectroscopy (FTIR) and 1H Nuclear Magnetic Resonance (NMR) analyses showed that biofilm EPS exhibits an evolving amphiphilic nature, with stable polysaccharides and increasing lipid content enhancing resilience. Confocal Laser Scanning Microscopy (CLSM), and Field Emission Scanning Electron Microscopy (FE-SEM) captured the shift from early attachment to mature, dense biofilms. These findings underscore the crucial impact of surface material on biofilm growth and the pressing need for tailored cleaning protocols to curb contamination risks in food processing environments.
Collapse
Affiliation(s)
- Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; Department of Fisheries and Marine Bioscience, Gopalganj Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea.; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea..
| |
Collapse
|
3
|
Shi W, Dai F, Li Y, Sun Z, Meng M, Yang Q, Zhang W. Glucose protects the pacific white shrimp Litopenaeus vannamei against Vibrio alginolyticus by inhibiting biofilm formation. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110368. [PMID: 40286948 DOI: 10.1016/j.fsi.2025.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Biofilms not only enhance the colonization of bacteria on the surface of the host but also increase the pathogenicity of bacteria. In this study, five carbon sources were determined to inhibit the biofilm formation of Vibrio alginolyticus R9 to different levels. Among the tested carbon sources, 0.5 % glucose showed an inhibitory effect on biofilm formation but a promotion in the dispersal of mature biofilms of V. alginolyticus R9, both of which led to significant loss in biofilm mass. It was further shown that glucose inhibited the biofilm formation of V. alginolyticus R9 by inhibiting autoaggregation and promoted the dispersal of mature biofilms by inhibiting isocitrate lyase (aceA) activity. The addition of glucose in diets reduced intestinal tissue damage caused by V. alginolyticus R9 via inhibiting 83.8 % V. alginolyticus R9 colonized in the intestine of the shrimp Litopenaeus vannamei, with a relative percent of survival of 47.4 % and improved pathological symptom. However, the relative abundance of Vibrio in the intestine of L. vannamei decreased 13.4 % in the presence of glucose. It could be concluded that glucose alleviated infection symptoms of L. vannamei mainly by inhibiting the biofilm formation of V. alginolyticus R9 on the intestinal epithelium rather than reducing the relative abundance of Vibrio in the intestine. This is the first study to demonstrate that glucose can inhibit biofilm formation and promote the biofilm cell dispersal of V. alginolyticus, which offers a new strategy for the control of Vibrio infections in aquaculture.
Collapse
Affiliation(s)
- Weibo Shi
- School of Marine Science, Ningbo University, Ningbo, 315832, China
| | - Fa Dai
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Ya Li
- School of Marine Science, Ningbo University, Ningbo, 315832, China
| | - Zihao Sun
- School of Marine Science, Ningbo University, Ningbo, 315832, China
| | - Min Meng
- School of Marine Science, Ningbo University, Ningbo, 315832, China
| | - Qiuyan Yang
- School of Marine Science, Ningbo University, Ningbo, 315832, China
| | - Weiwei Zhang
- School of Marine Science, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
4
|
Nahar S, Mahamud AGMSU, Cho AJ, Ashrafudoulla M, Yu J, Park SH, Ha SD. Flavourzyme Suppresses Pseudomonas aeruginosa Biofilms by Targeting Motility, Quorum Sensing, and Virulence Genes. Curr Microbiol 2025; 82:240. [PMID: 40210784 DOI: 10.1007/s00284-025-04200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/12/2025]
Abstract
The biofilm-mediated persistence of Pseudomonas aeruginosa in the food and biomedical sectors is currently a global concern. In light of this challenge, this study investigated a preventive approach against P. aeruginosa biofilm formation using Flavourzyme, a food-grade peptidase, considering its antibiofilm potential. The results revealed that a co-culture comprising 300 µL/mL (1 × minimum inhibitory concentration [MIC]) of Flavourzyme could kill P. aeruginosa. On the MBEC™ biofilm-forming device, 0.125 × MIC of Flavourzyme inhibited > 4.5 log CFU/peg of biofilm. Cell motilities and the biosynthesis of quorum sensing (QS) molecules such as N-acyl-homoserine lactones (AHLs), including C4-HSL, decreased significantly at 0.06 × MIC of Flavourzyme and became undetectable at 0.125 × MIC. Interestingly, while 0.03 × MIC of Flavourzyme elicited diverse expressions of QS and virulence-regulating genes, ≥ 0.06 × MIC of Flavourzyme remarkably suppressed the relative genomic expressions. This study proposes Flavourzyme as a potent antibiofilm agent against P. aeruginosa biofilms, recommending specific concentrations for effective use in food preservation.
Collapse
Affiliation(s)
- Shamsun Nahar
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO, 65211, USA
| | - A G M Sofi Uddin Mahamud
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Ah Jin Cho
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
- National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jisu Yu
- Lotte R&D Center, 201, Magokjungang-ro, Gangseo-gu, Seoul, 07594, Republic of Korea
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
- GreenTech-Based Food Safety Research Group, Chung-Ang University, BK21 Four, 4726 Seodong-Daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
5
|
Rahman MA, Akter S, Ashrafudoulla M, Rapak MT, Lee KO, Ha SD. Targeted insights into Aeromonas hydrophila biofilms: Surface preferences, resistance mechanisms, and gene expression. Poult Sci 2025; 104:104851. [PMID: 40043669 PMCID: PMC11927691 DOI: 10.1016/j.psj.2025.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/24/2025] Open
Abstract
This study provides a comprehensive analysis of biofilm formation, antibiotic resistance, motility, and gene expression in four Aeromonas hydrophila strains-ATCC 15467, ATCC 7966, KCTC 2358, and KCTC 11533-on stainless steel (SS), silicon rubber (SR), polyethylene terephthalate (PET), and high-density polyethylene (HDPE) surfaces over 24, 48, 72, and 96 h. Biofilm formation peaked at 72 h, with ATCC 7966 demonstrating the highest biofilm density on PET (6.50 ± 0.08 log CFU/cm²), underscoring PET's role as a favorable substrate for biofilm development. In contrast, HDPE consistently exhibited the lowest biofilm levels, reflecting its potential as a biofilm-resistant material. Antibiotic susceptibility profiling revealed multidrug resistance (MDR) in ATCC 15467 and KCTC 11533 (MARI = 0.80), particularly against beta-lactams, aminoglycosides, and fluoroquinolones while ATCC 7966 and KCTC 2358 displayed moderate resistance. Motility assays highlighted strain-specific capabilities, with KCTC 11533 exhibiting the highest swimming motility (76.0 ± 6.6 mm) and KCTC 2358 excelling in swarming (47.7 ± 3.5 mm). Genetic analysis confirmed the presence of luxS and ahyR in all strains, while csgA was exclusive to ATCC 7966, correlating with its superior biofilm formation. Confocal microscopy revealed biofilm maturation dynamics, with red fluorescence indicating cell death and aging at 96 h, while SEM images captured intricate surface-specific biofilm architectures. These findings elucidate the critical interplay between strain characteristics, surface properties, and incubation time, providing a foundation for developing targeted strategies to control A. hydrophila biofilms in food processing environments.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| | - Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Ashrafudoulla
- National Institute of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Meidistria Tandi Rapak
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Kyung Ok Lee
- Food Safety Division Research Institute of Food Hygiene, Hyundai green food, Yongin, Republic of Korea
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea.
| |
Collapse
|
6
|
Nagar V, Ansari F, Vaiyapuri M, Joseph TC. Virulent and multidrug-resistant Aeromonas in aquatic environments of Kerala, India: potential risks to fish and humans. Braz J Microbiol 2025; 56:303-311. [PMID: 39808244 PMCID: PMC11885762 DOI: 10.1007/s42770-024-01601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A. hydrophila (28.6%), and A. jandaei (21.4%). These strains exhibit a high prevalence of virulence genes (act, flaA, ser, gcat, lip, and ela) implicated in pathogenesis in both fish and humans. These findings underline the emergence of A. dhakensis, often misidentified as A. hydrophila, as a potential pathogen, highlighting the necessity for comprehensive identification methods. Significantly, all strains demonstrated beta-hemolysis and moderate to strong biofilm formation, enhancing their infectivity potential. Moreover, all isolates exhibited multidrug resistance, with a multiple antimicrobial resistance (MAR) index ranging from 0.39 to 0.56, and a significant presence of class 1 (500-1100 bp) and class 2 (250-700 bp) integrons, indicating their potential risk to both fish and human populations. Our results underscore the role of aquatic environment as a repository for virulent and multidrug-resistant Aeromonas spp., emphasizing the imperative for prudent antimicrobial usage and regular monitoring of antimicrobial resistance (AMR) in these environments.
Collapse
Affiliation(s)
- Vandan Nagar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Farhat Ansari
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Murugadas Vaiyapuri
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, Kerala, 682029, India
| | - Toms C Joseph
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, Kerala, 682029, India
| |
Collapse
|
7
|
Song H, Kim M, Yoo KS, Ha JH. Rapid and non-destructive classification of salinity levels in brined kimchi cabbage using hyperspectral imaging. Heliyon 2024; 10:e40817. [PMID: 39687090 PMCID: PMC11648222 DOI: 10.1016/j.heliyon.2024.e40817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, we demonstrate the potential of a non-destructive hyperspectral imaging processing method in the near-infrared (NIR) region (874-1734 nm) for classifying the quality of brined kimchi cabbage. The salinity level of brined kimchi cabbage is an important indicator of consumer preference and the quality of kimchi. Hence, we compared the water content and salinity of brined kimchi cabbage via hyperspectral data. We extracted the optimal wavelengths from the hyperspectral image dataset to classify the salinity level of the predicted brined kimchi cabbage, and thus, established a novel approach for classifying kimchi samples into quality-unacceptable and quality-acceptable groups. Standard normal variate and multiplicative scatter correction (MSC) were used for pathlength correction. The Savitzky-Golay first and second derivatives were used for the deconvolution of the raw spectral data. The experimental results confirmed that the decision tree model combined with MSC pathlength correction and Savitzky-Golay first derivative preprocessing was the best classification model. The proposed hyperspectral image-NIR system can be applied to the detection of salinity during industrial kimchi manufacturing.
Collapse
Affiliation(s)
- Hyeyeon Song
- Hygienic Safety and Materials Research Group, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, Republic of Korea
| | - Myounghwan Kim
- AI Research, Elroilab Co., Ltd., 28 Digital-ro 30-gil, Guro-gu, Seoul, Republic of Korea
| | - Kwang Sun Yoo
- AI Research, Elroilab Co., Ltd., 28 Digital-ro 30-gil, Guro-gu, Seoul, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Materials Research Group, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Zhang Y, Hou Y, Ye H, Wang X, Zhang X, Yu J. Transcending antibiotic resistance: The potential of mass Galla chinensis et camelliae Fermentata to Dismantle Helicobacter pylori biofilms and enhance anti-biotic activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118594. [PMID: 39032662 DOI: 10.1016/j.jep.2024.118594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helicobacter pylori (H. pylori) infections are on the rise, presenting a significant global health challenge. Mass Galla chinesis et camelliae Fermentata (Chinese gall leaven, CGL), a traditional Chinese medicinal product made from the fermentation of Rhus chinensis Mill., is frequently employed to address digestive system ailments. Contemporary pharmacological research reveals that CGL exhibits anti-inflammatory, anti-diarrheal, and enzyme-inhibitory activities and holds potential as a treatment for H. pylori infections. However, the precise mechanisms underlying CGL's efficacy against H. pylori remain to be fully elucidated. AIM The objective of the study is to evaluate CGL's ability to disrupt the H. pylori biofilm and to explore its synergistic potential with antibiotics in targeting the biofilm-efflux pump system, a mechanism implicated in bacterial resistance. METHORDS The study determined the Minimum Inhibitory Concentration (MIC) of CGL and metronidazole against H. pylori and evaluated their effects on H. pylori biofilms using an in vitro model. Structural changes induced by drug interventions were compared to those in untreated and antibiotic-treated models through scanning electron microscopy and laser confocal microscopy. The accumulation of H33342 dye in planktonic and biofilm H. pylori before and after drug treatment was assessed to evaluate cell viability and biofilm disruption. The study also involved adding experimental drugs to a biofilm H. pylori medium containing D-glucose, measuring glucose concentrations post-intervention using the glucose oxidase method, and calculating changes in glucose uptake. Finally, the relative expression levels of several genes in planktonic and biofilm H. pylori treated with CGL alone or in combination with antibiotics were measured to understand the impact on the biofilm-efflux pump system. RESULTS Both CGL alone and in combination with metronidazole demonstrated effective disruption of H. pylori biofilms. The combination therapy was particularly effective in reducing the biofilm transfer-enhancing effect of metronidazole and decreasing SpoT expression in the 'SpoT-(p)ppGpp' pathway, especially in biofilms. It showed a greater inhibition of the 'σ54-gluP-sugar uptake' pathway, with significant reductions in rpoN and gluP expression under biofilm conditions compared to CGL or metronidazole alone. The treatment also suppressed H. pylori proliferation and may have altered glucose uptake mechanisms. Moreover, it significantly inhibited the 'hp0939/hp0497/hp0471-RND efflux pump' pathway, with a notable reduction in gene expression compared to the 1/2 MIC metronidazole treatment. CONCLUSION This study demonstrates that CGL effectively hinders the development of drug resistance in H. pylori by targeting biofilm formation and critical molecular pathways associated with antibiotic resistance. The synergistic effect of combining CGL with metronidazole notably enhances biofilm disruption and inhibits the bacterium's metabolic and reparative mechanisms. Further in vivo studies are needed to confirm these results and to investigate additional mechanisms of CGL's action.
Collapse
Affiliation(s)
- Yulong Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yingying Hou
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China.
| | - Xinjie Wang
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China.
| | - Jing Yu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Gandasurya G, Waturangi DE, Papuangan N, Nurhasanah, Julyantoro PGS. Supernatant of plant-associated bacteria potency against biofilms formed by foodborne pathogen and food spoilage bacteria. BMC Res Notes 2024; 17:338. [PMID: 39543762 PMCID: PMC11566819 DOI: 10.1186/s13104-024-06997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVES Food products are often contaminated by pathogens and spoilage bacteria. Most of them can form biofilms, a community of cells embedded in protective extracellular matrix layers resistant to harsh conditions, including antibiotics. Therefore, alternative antibiofilm agents are required to overcome biofilm formation. This study aims to determine and quantify the antibiofilm activity of supernatants from plant-associated bacteria against biofilms of foodborne pathogen and food spoilage bacterium, namely Bacillus cereus and Bacillus subtilis. RESULTS Plant-associated bacteria (PAB) have shown promising antibiofilm activities against biofilm-forming pathogens in previous studies. Thirteen PAB isolated from Ternate, Indonesia were used in this study. Supernatants of PAB were subjected to antimicrobial activity and quorum quenching detection, both using the well diffusion method. Four supernatants inhibited the growth of B. subtilis, but none affected the growth of B. cereus. Eight supernatants were able to disrupt the quorum sensing system of an indicator bacterium, wild-type Chromobacterium violaceum. Biofilm inhibition and destruction were quantified using 96-well microplates. The highest biofilm inhibition and destruction activities of PAB supernatants against each of B. cereus and B. subtilis biofilms were > 76%, and were later confirmed by light microscope and scanning electron microscope. Brine shrimp lethality assay (BSLA) was conducted and revealed that the selected PAB supernatants were non-toxic. The 16S rRNA gene of PAB were sequenced and they showed similarities to Bacillus, Priestia, and Chryseobacterium. Compounds in the supernatants were determined by GC-MS which revealed contents of fatty acids, ethyl esters, and diketopiperazines. Therefore, PAB supernatants have potential as antibiofilm agents against biofilm formed by Bacillus cereus and Bacillus subtilis.
Collapse
Affiliation(s)
- Gabriella Gandasurya
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk Lapan, Tangerang, Banten, 15345, Indonesia
| | - Diana Elizabeth Waturangi
- Department of Master in Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| | - Nurmaya Papuangan
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| | - Nurhasanah
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, 80361, Indonesia
| |
Collapse
|
10
|
Beshiru A, Igbinosa IH, Salami JO, Uwhuba KE, Ogofure AG, Azazi GM, Igere BE, Anegbe B, Evuen UF, Igbinosa EO. Curcuma longa rhizome extract: a potential antibiofilm agent against antibiotic-resistant foodborne pathogens. BIOFOULING 2024; 40:932-947. [PMID: 39624852 DOI: 10.1080/08927014.2024.2432963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
The traditional medicinal value of Curcuma longa (turmeric) and its potential relevance in modern healthcare suggests that traditional remedies and natural products can provide valuable solutions to contemporary challenges, such as combating biofilms and antibiotic-resistant pathogens, potentially offering new strategies for addressing health and safety issues in the fields of food and medicine. This study assessed the antibiofilm and antibacterial characterization of Curcuma longa rhizome extract against antibiotic-resistant foodborne pathogens. Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier-transform infrared (FTIR) analysis were determined to check for the compounds, functional groups, and constituents of the plant extract. In-vitro antibiofilm and antibacterial bioassay of the extract were determined using standard bacteriological procedures. Potential mechanisms of the plant extract were also studied using standard biological methods. The important chemical constituents from the GC-MS extract of C. longa are arturmerone, cinnamyl angelate, tumerone, γ-atlantone, atlantone, α-atlantone, γ-atlantone and curlone. The FTIR analysis of the extract comprises alkyl halides, bromoalkanes, alkanes, ethylene molecules, arenes, amines, alcohols, sulfones, carboxylic acids and their derivatives, aromatic compounds, and phenols. The MIC of C. longa crude extract ranges from ethanol extract (0.03125 - 0.5 mg/mL) and acetone extract (0.0625 - 0.5 mg/mL). The MBC range is as follows: ethanol extract (0.125 - 1 mg/mL), acetone extract (0.125 - 1 mg/mL). The time-kill kinetics showed significant cell reduction with time. The bacterial isolates' nucleic acids and protein leakage were consistent with increased extract concentration and time. There was a reduction in the biofilm cell on the shrimp surface and EPS with increased concentration and time. C. longa exerted significant anti-biofilm activity by removing existing biofilms, disrupting cell connections, and decreasing cells in biofilms. These findings can aid food protection from microbial contamination and prevent biofilms-related infections.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Isoken H Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
- Department of Environmental Management and Toxicology, University of Benin, Benin City, Nigeria
| | - Joshua O Salami
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
| | - Kate E Uwhuba
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Abraham G Ogofure
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
| | - Gift M Azazi
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Bright E Igere
- Department of Microbiology, Biotechnology Unit, Delta State University, Abraka, Nigeria
| | - Bala Anegbe
- Department of Basic and Industrial Chemistry, College of Natural and Applied Science, Western Delta University, Oghara, Nigeria
| | - Uduenevwo F Evuen
- Department of Biochemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Etinosa O Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
11
|
Cho AJ, Han S, Nahar S, Her E, Kang JG, Ha SD. Synergistic effects of ε-poly-l-lysine and lysozyme against Pseudomonas aeruginosa and Listeria monocytogenes biofilms on beef and food contact surfaces. Meat Sci 2024; 214:109534. [PMID: 38749270 DOI: 10.1016/j.meatsci.2024.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/28/2024]
Abstract
This study investigated the synergistic effects of ε-poly- L -lysine (ε-PL) and lysozyme against P. aeruginosa and L. monocytogenes biofilms. Single-culture biofilms of two bacteria were formed on silicone rubber (SR), stainless steel (SS), and beef surfaces and then treated with lysozyme (0.05-5 mg/mL) and ε-PL at minimum inhibitory concentrations (MICs) of 1 to 4 separately or in combination. On the SR surface, P. aeruginosa biofilm was reduced by 1.4 and 1.9 log CFU/cm2 within 2 h when treated with lysozyme (5 mg/mL) and ε-PL (4 MIC), respectively, but this reduction increased significantly to 4.1 log CFU/cm2 (P < 0.05) with the combined treatment. On beef surface, P. aeruginosa and L. monocytogenes biofilm was reduced by 4.2-5.0, and 3.3-4.2 log CFU/g when lysozyme was combined with 1, 2, and 4 MIC of ε-PL at 25 °C, respectively. Compared to 5 mg/mL lysozyme alone, the combined treatment with 1, 2, and 4 MIC of ε-PL on beef surface achieved additional reduction against P. aeruginosa biofilm of 0.5, 0.8, and 0.7 log CFU/g, respectively, at 25 °C. In addition, 0.25 mg/mL lysozyme and 0.5 MIC of ε-PL significantly (P < 0.05) suppressed the quorum-sensing (agrA) and virulence-associated (hlyA and prfA) genes of L. monocytogenes.
Collapse
Affiliation(s)
- Ah Jin Cho
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sangha Han
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Shamsun Nahar
- NextGen Precision Health, University of Missouri, Columbia, USA
| | - Eun Her
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - June Gu Kang
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
12
|
Das S, Kaledhonkar S. Physiochemical characterization of a potential Klebsiella phage MKP-1 and analysis of its application in reducing biofilm formation. Front Microbiol 2024; 15:1397447. [PMID: 39086652 PMCID: PMC11288805 DOI: 10.3389/fmicb.2024.1397447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
The common intestinal pathogen Klebsiella pneumoniae (K. pneumoniae) is one of the leading causes of fatal superbug infections that can resist the effects of commonly prescribed medicines. The uncontrolled use or misuse of antibiotics has increased the prevalence of drug-resistant K. pneumoniae strains in the environment. In the quest to search for alternative therapeutics for treating these drug-resistant infections, bacteriophages (bacterial viruses) emerged as potential candidates for in phage therapy against Klebsiella. The effective formulation of phage therapy against drug-resistant Klebsiella infections demands thorough characterization and screening of many bacteriophages. To contribute effectively to the formulation of successful phage therapy against superbug infections by K. pneumoniae, this study includes the isolation and characterization of a novel lytic bacteriophage MKP-1 to consider its potential to be used as therapeutics in treating drug-resistant Klebsiella infections. Morphologically, having a capsid attached to a long non-contractile tail, it was found to be a siphovirus that belongs to the class Caudoviricetes and showed infectivity against different strains of the target host bacterium. Comparatively, this double-stranded DNA phage has a large burst size and is quite stable in various physiological conditions. More interestingly, it has the potential to degrade the tough biofilms formed by K. pneumoniae (Klebsiella pneumoniae subsp. pneumoniae (Schroeter) Trevisan [ATCC 15380]) significantly. Thus, the following study would contribute effectively to considering phage MKP-1 as a potential candidate for phage therapy against Klebsiella infection.
Collapse
Affiliation(s)
| | - Sandip Kaledhonkar
- Department of Bioscience and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
13
|
Charalambous EG, Mériaux SB, Guebels P, Muller CP, Leenen FAD, Elwenspoek MMC, Thiele I, Hertel J, Turner JD. The oral microbiome is associated with HPA axis response to a psychosocial stressor. Sci Rep 2024; 14:15841. [PMID: 38982178 PMCID: PMC11233668 DOI: 10.1038/s41598-024-66796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Intense psychosocial stress during early life has a detrimental effect on health-disease balance in later life. Simultaneously, despite its sensitivity to stress, the developing microbiome contributes to long-term health. Following stress exposure, HPA-axis activation regulates the "fight or flight" response with the release of glucose and cortisol. Here, we investigated the interaction between the oral microbiome and the stress response. We used a cohort of 115 adults, mean age 24, who either experienced institutionalisation and adoption (n = 40) or were non-adopted controls (n = 75). Glucose and cortisol measurements were taken from participants following an extended socially evaluated cold pressor test (seCPT) at multiple time points. The cohort´s oral microbiome was profiled via 16S-V4 sequencing on microbial DNA from saliva and buccal samples. Using mixed-effect linear regressions, we identified 12 genera that exhibited an interaction with host's cortisol-glucose response to stress, strongly influencing intensity and clearance of cortisol and glucose following stress exposure. Particularly, the identified taxa influenced the glucose and cortisol release profiles and kinetics following seCPT exposure. In conclusion, our study provided evidence for the oral microbiome modifying the effect of stress on the HPA-axis and human metabolism, as shown in glucose-cortisol time series data.
Collapse
Affiliation(s)
- Eleftheria G Charalambous
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur Alzette, Luxembourg
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greisfwald, Germany
- Department of Psychology, University of Cyprus, 2109, Nicosia, Cyprus
| | - Sophie B Mériaux
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Pauline Guebels
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Claude P Muller
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Fleur A D Leenen
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Martha M C Elwenspoek
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Galway, Galway, Ireland
- Division of Microbiology, National University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Johannes Hertel
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur Alzette, Luxembourg
- German Center for Cardiovascular Diseases (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
14
|
Xie H, Huang Y, Wang S, Che J, Luo T, Li L, Bao B. Deletion of speA and aroC genes impacts the pathogenicity of Vibrio anguillarum in spotted sea bass. Microb Pathog 2024; 189:106597. [PMID: 38395316 DOI: 10.1016/j.micpath.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.
Collapse
Affiliation(s)
- Haisheng Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yajuan Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shengming Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jingyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Tuyan Luo
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Lekang Li
- Jiujiang Academy of Fishery Sciences, Jiujiang, 332000, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
15
|
Carusi J, Kabuki DY, de Seixas Pereira PM, Cabral L. Aeromonas spp. in drinking water and food: Occurrence, virulence potential and antimicrobial resistance. Food Res Int 2024; 175:113710. [PMID: 38128981 DOI: 10.1016/j.foodres.2023.113710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Aeromonas sp. is a Gram-negative, non-spore-forming, rod-shaped, oxidase-positive, facultative anaerobic bacterium and a natural contaminant found in aquatic environments. Some species can invade, colonize, and damage host cells due to the presence of virulence factors, such as flagella, elastase, hemolysins, aerolysins, adhesins, enterotoxins, phospholipases and lipases, that lead to pathogenic activities. Consequently, can cause many health disorders that range from gastrointestinal problems, enteric infections, and ulcers to hemorrhagic septicemia. Aeromonas has been isolated and identified from a variety of sources, including drinking water and ready-to-eat foods (fish, meat, fresh vegetables, dairy products, and others). Some species of this opportunistic pathogen are resistant to several commercial antibiotics, including some used as a last resort for treatment, which represents a major challenge in the clinical segment. Antimicrobial resistance can be attributed to the indiscriminate use of antibiotics by society in aquaculture and horticulture. In addition, antibiotic resistance is attributed to plasmid transfer between microorganisms and horizontal gene transfer. This review aimed to (i) verify the occurrence of Aeromonas species in water and food intended for human consumption; (ii) identify the methods used to detect Aeromonas species; (iii) report on the virulence genes carried by different species; and (iv) report on the antimicrobial resistance of this genus in the last 5 years of research. Additionally, we present the existence of Aeromonas spp. resistant to antimicrobials in food and drinking water represents a potential threat to public health.
Collapse
Affiliation(s)
- Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Pedro Marques de Seixas Pereira
- Department of Mechanical Engineering, School of Engineering, São Paulo State University Júlio de Mesquita Filho (UNESP), Ilha Solteira, SP, Brazil
| | - Lucélia Cabral
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
16
|
Yakubu I, Kong HG. The Relationship between the Sugar Preference of Bacterial Pathogens and Virulence on Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:529-537. [PMID: 38081313 PMCID: PMC10721386 DOI: 10.5423/ppj.rw.06.2023.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Plant pathogenic bacteria colonize plant surfaces and inner tissues to acquire essential nutrients. Nonstructural sugars hold paramount significance among these nutrients, as they serve as pivotal carbon sources for bacterial sustenance. They obtain sugar from their host by diverting nonstructural carbohydrates en route to the sink or enzymatic breakdown of structural carbohydrates within plant tissues. Despite the prevalence of research in this domain, the area of sugar selectivity and preferences exhibited by plant pathogenic bacteria remains inadequately explored. Within this expository framework, our present review endeavors to elucidate the intricate variations characterizing the distribution of simple sugars within diverse plant tissues, thus influencing the virulence dynamics of plant pathogenic bacteria. Subsequently, we illustrate the apparent significance of comprehending the bacterial preference for specific sugars and sugar alcohols, postulating this insight as a promising avenue to deepen our comprehension of bacterial pathogenicity. This enriched understanding, in turn, stands to catalyze the development of more efficacious strategies for the mitigation of plant diseases instigated by bacterial pathogens.
Collapse
Affiliation(s)
- Ismaila Yakubu
- Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju 28644, Korea
- Department of Crop Protection, Faculty of Agriculture/Institute for Agricultural Research, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Hyun Gi Kong
- Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
17
|
Lu L, Wang J, Qin T, Chen K, Xie J, Xi B. Carvacrol Inhibits Quorum Sensing in Opportunistic Bacterium Aeromonas hydrophila. Microorganisms 2023; 11:2027. [PMID: 37630587 PMCID: PMC10459158 DOI: 10.3390/microorganisms11082027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial quorum sensing (QS) plays a crucial role in chemical communication between bacteria involving autoinducers and receptors and controls the production of virulence factors in bacteria. Therefore, reducing the concentration of signaling molecules in QS is an effective strategy for mitigating the virulence of pathogenic bacteria. In this study, we demonstrated that carvacrol at 15.625 μg/mL (1/4 MIC), a natural compound found in plants, exhibits potent inhibitory activity against QS in Chromobacterium violaceum, as evidenced by a significant reduction (62.46%) in violacein production. Based on its impressive performance, carvacrol was employed as a natural QS inhibitor to suppress the pathogenicity of Aeromonas hydrophila NJ-35. This study revealed a significant reduction (36.01%) in the concentration of N-acyl-homoserine lactones (AHLs), a QS signal molecular secreted by A. hydrophila NJ-35, after 1/4 MIC carvacrol treatment. Moreover, carvacrol was found to down-regulate the expression of ahyR/I, two key genes in the QS system, which further inhibited the QS system of A. hydrophila NJ-35. Finally, based on the above results and molecular docking, we proposed that carvacrol alleviate the pathogenicity of A. hydrophila NJ-35 through QS inhibition. These results suggest that carvacrol could serve as a potential strategy for reducing the virulence of pathogenic bacteria and minimizing the reliance on antibiotics in aquaculture.
Collapse
Affiliation(s)
- Liushen Lu
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Junwei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China;
| | - Ting Qin
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Kai Chen
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Jun Xie
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
| | - Bingwen Xi
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (L.L.); (T.Q.); (K.C.); (J.X.)
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China;
| |
Collapse
|
18
|
Li S, Yang Q, Cheng B, Liu Y, Zhou S, Ai X, Dong J. Neem oil against Aeromonas hydrophila infection by disrupting quorum sensing and biofilm formation. BIOFOULING 2023; 39:867-878. [PMID: 37968931 DOI: 10.1080/08927014.2023.2279998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Aeromonas hydrophila is an opportunistic pathogen that can cause a number of infectious diseases in fish and is widely distributed in aquatic environments. Antibiotics are the main approach against A. hydrophila infections, while the emergence of resistant bacteria limits the application of antibiotics. Here, quorum-sensing (QS) was defined as the target and the inhibitory effects of neem oil against QS of A. hydrophila was studied. The results showed that neem oil could dose-dependently reduce aerolysin, protease, lipase, acyl-homoserine lactones (AHLs), biofilm and swarming motility at sub-inhibitory concentrations. Results of real-time PCR demonstrated that neem oil could down-regulate the transcription of aerA, ahyI and ahyR. Moreover, neem oil showed significant protections to A549 cells and a fish infection model. Taken together, these results indicated that neem oil could be chosen as a promising candidate for the treatment of A. hydrophila infections.
Collapse
Affiliation(s)
- Shengping Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Bo Cheng
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
19
|
Wang W, Cao Y, Li J, Lu S, Ge H, Pan S, Pan X, Wang L. The impact of osmotic stresses on the biofilm formation, immunodetection, and morphology of Aeromonas hydrophila. Microbiol Res 2023; 269:127301. [PMID: 36689842 DOI: 10.1016/j.micres.2023.127301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Aeromonas hydrophila (Ah) is a zoonotic pathogen of great importance to aquaculture and human health. This study systematically evaluated the impact of salinity, sugar, ammonia nitrogen, and nitric nitrogen levels on the fitness of Ah by using Luria-Bertani (LB) broth supplemented with different concentrations of NaCl, sucrose, NH4Cl, urea, NaNO2 or NaNO3. Results showed that the static biofilm formation of Ah was higher at 28 °C compared to 37 °C (P < 0.05). At 28 °C, as the NaCl (>1 %) and sucrose levels increased, the Ah biofilm formation and the binding between Ah cells and monoclonal antibodies (mAbs, for immunodetection) decreased. Elevated ammonia nitrogen and nitric nitrogen levels generated no significant impact on Ah biofilm formation or immunodetection (P > 0.05). The expression of mAbs-targeted Omp remained unchanged under high NaCl or sucrose conditions. Further analysis showed that high sucrose conditions led to the over-expression of the extracellular polysaccharides (PS) and promoted the formation of capsule-like structures. These over-expressed PS and capsule structures might be one reason explaining the inhibited immunodetection efficacy. Results generated from this study provide crucial insights for the design of recovery and detection protocols for Ah present in food or environmental samples.
Collapse
Affiliation(s)
- Wenbin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Ye Cao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Jing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Shuaichen Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Hongxing Ge
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Saikun Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Xiaoyi Pan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province; Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Ding Y, Huang C, Zhu W, Li Z, Zhang Y, Wang J, Pan H, Li H, Wang X. Characterization of a novel Jerseyvirus phage T102 and its inhibition effect on biofilms of multidrug-resistant Salmonella. Virus Res 2023; 326:199054. [PMID: 36717022 DOI: 10.1016/j.virusres.2023.199054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Biofilm, as a complex microbial community, is a serious and major safety concern in the food industry. Interestingly, some phages could effectively disrupt biofilms. This study characterized a novel isolated Salmonella bacteriophage T102, and its ability to control and remove biofilm produced by multidrug-resistant Salmonella. Phage T102 exhibited a broad host range within the Salmonella genus, especially drug-resistant Salmonella. The genome of phage T102 was comprised of 41,941 bp with 49.7% G + C composition, and with no genes associated with antibiotic resistance or virulence factors. The structural protein profile of phage T102 was subjected to SDS-PAGE and UPLC-MS/MS analysis, among them, 34 peptides were consistent with the hypothetical protein sequences annotated in the genome of T102. The biofilm inhibition assay revealed that phage T102 inhibited the formation of 6 h biofilms by two multidrug-resistant S. Typhimurium strains by 43.17 and 32.42%, respectively. 24 h biofilms formed by S. Typhimurium decreased by 54.94 and 53.67%, respectively, after 2 h of exposure to phage T102. Microscopic observation confirmed the inhibition effect of phage T102 on biofilm formation on spiked lettuce. Overall, our results support new research into the application of bacteriophage for biofilm reduction.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenxi Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjuan Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhiwei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hui Pan
- Jingzhou Institute for Food and Drug Control, Jingzhou 434000, China.
| | - Huihui Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Zhao J, Li Y, Huang Y, Jin L, Xu Y, Xu M, Quan C, Chen M. Heterologous expression of quorum sensing transcriptional regulator LitR and its function in virulence-related gene regulation in foodborne pathogen Aeromonas hydrophila. Mol Biol Rep 2023; 50:2049-2060. [PMID: 36542235 DOI: 10.1007/s11033-022-07866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aeromonas hydrophila is an important foodborne and zoonotic pathogen causing serious diseases. Hence, revealing the pathogenic mechanism of A. hydrophila will be of importance in the development of novel therapies. Aeromonas hydrophila litR was reported to be regulated by two quorum sensing (QS) pathways, indicating that it is involved in QS network regulation correlated with bacterial virulence. However, the function of LitR is currently not understood. Therefore, we aimed to reveal the potential regulatory mechanisms of LitR on virulence-related genes. METHODS AND RESULTS In this study, amino acid sequences analysis of LitR was conducted, providing bioinformatics evidence for its function as a potential transcriptional regulator. LitR protein was heterologous expressed, purified and its in-vitro multimeric forms were observed with gel filtration chromatography. The correlation between intracellular LitR expression level and cell density was analyzed with immunoblots. Regulation mechanisms of LitR on several important virulence-related factors were investigated with qRT-PCR, EMSA, DNase I footprinting and microscale thermophoresis binding assays, etc. Results showed that recombinant LitR protein aggregated mainly as dimer and hexamer in vitro. Intracellular expression level of LitR was positively correlated with cell density of A. hydrophila. Furthermore, LitR exhibited complicated regulation modes on virulence-related genes; it could directly bind to promoter regions of the hemolysin, serine protease and T6SS effector protein VgrG encoded genes. The promoter region of the hemolysin gene showed high binding affinity and mainly two binding sites for LitR. Different dissociation constants were obtained for LitR interaction with the hemolysin gene binding motifs I and II. Assays focusing on physiological characteristics of A. hydrophila prove that LitR positively regulated hemolytic and total extracellular protease activities. CONCLUSIONS This study investigated the function of LitR as a quorum sensing transcriptional regulator in regulation of virulence-related genes, which will help reveal the mechanisms of A. hydrophila pathogenicity. LitR could serve as a potential target for development of new antimicrobial agents from the perspective of QS regulation.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yue Li
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Huang
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Menghao Xu
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China.
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| | - Ming Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
22
|
Desem MI, Handharyani E, Setiyono A, Safika S, Subekti DT, Ekawasti F. Morphology, Biochemical, and Molecular Characterization of Pasteurella multocida Causing Hemorrhagic Septicemia in Indonesia. Vet Med Int 2023; 2023:7778707. [PMID: 36941952 PMCID: PMC10024624 DOI: 10.1155/2023/7778707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
Pasteurella multocida is a Gram-negative bacterium that causes hemorrhagic septicemia (HS) in buffaloes and cattle. The disease causes serious problems in Indonesian livestock and is classified as a serious transmissible animal disease. Previous research has determined the diversity of P. multocida using a serotyping method based on the antigenic properties of capsule polysaccharides. An alternative method for analysis utilizes sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and random amplified polymorphic DNA (RAPD). This study aimed to characterize and determine P. multocida diversity in several regions of Indonesia based on phenotypic character, protein profile, and the band pattern of RAPD results. Bacterial identification was performed using traditional biochemical techniques and API® 20NE systems and then confirmed molecularly using polymerase chain reaction (PCR). The freeze-thawing technique was performed to obtain the bacterial protein extract, and DNA extraction was executed using DNAzol. The extracted protein and RAPD product were then electrophoresed on 12% polyacrylamide gel and 1.5% agarose gel, respectively. The results indicate that the molecular weight range of the protein bands is 12-209 kDa, and the band pattern of the RAPD results ranged from 307-3,100 bp. Based on phenotypical analysis, P. multocida from South Sulawesi Province exhibited a variety of growth characteristics in MacConkey agar media. Using the hierarchical clustering analysis of the band patterns of RAPD and the whole-cell protein profiles, four and five clusters were formed, respectively. These results indicate molecular diversity among P. multocida from several regions of Indonesia.
Collapse
Affiliation(s)
- Muhammad Ibrahim Desem
- 1National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
- 2Graduate School of Veterinary Medicine and Biomedicine, Bogor Agricultural University, Bogor 16880, Indonesia
| | - Ekowati Handharyani
- 3Department of Clinic, Reproduction and Pathology, School of Veterinary Medicine and Biomedicine, Bogor Agricultural University, Bogor 16880, Indonesia
| | - Agus Setiyono
- 3Department of Clinic, Reproduction and Pathology, School of Veterinary Medicine and Biomedicine, Bogor Agricultural University, Bogor 16880, Indonesia
| | - Safika Safika
- 4Department of Animal Disease and Animal Public Health, School of Veterinary Medicine and Biomedicine, Bogor Agricultural University, Bogor 16880, Indonesia
| | - Didik Tulus Subekti
- 5Center for Biomedical Research, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Fitrine Ekawasti
- 1National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| |
Collapse
|
23
|
Genomic analysis and in vivo efficacy of Pediococcus acidilactici as a potential probiotic to prevent hyperglycemia, hypercholesterolemia and gastrointestinal infections. Sci Rep 2022; 12:20429. [PMID: 36443433 PMCID: PMC9705362 DOI: 10.1038/s41598-022-24791-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Lactic acid bacteria are the well acknowledged probiotics that can cure a variety of diseases. In this study, we observed the in vivo potentials of Pediococcus to treat hyperglycemia, hypercholesterolemia and gastrointestinal infections. A total of 77 Lactobacillus were isolated from the milk of 10 cows and 10 goats, four of those strains inhibited both carbohydrates-hydrolyzing enzymes, α-glucosidase, and α-amylase. They all showed antagonistic effects on pathogenic E. coli and S. Typhimurium which were confirmed by performing pathogen challenge test and visualizing on Electron microscopy. 16S rRNA gene sequence identified that all four strains belong to Pediococcus genus which were further distinguished as Pediococcus acidilactici by pheS gene sequence. Whole genome sequence analysis revealed their non-pathogenic properties for human and the presence of probiotic genes responsible for stress resistance, immunomodulation, adhesion, metal and drug resistance. In vivo trial with diabetes-induced mice ascertained that all Pediococcus acidilactici had significant potentials to reduce elevated glucose and low-density lipoprotein level in blood. Interestingly, two out of four strains were significantly more effective (p < 0.0001 each) than metformin in reducing the blood glucose level. This in vivo study demonstrated that Pediococcus acidilactici might be a promising probiotic to prevent hyperglycemia, hypercholesterolemia and gastrointestinal infections.
Collapse
|
24
|
Xiao G, Zheng X, Li J, Yang Y, Yang J, Xiao N, Liu J, Sun Z. Contribution of the EnvZ/OmpR two-component system to growth, virulence and stress tolerance of colistin-resistant Aeromonas hydrophila. Front Microbiol 2022; 13:1032969. [PMID: 36312957 PMCID: PMC9597241 DOI: 10.3389/fmicb.2022.1032969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2024] Open
Abstract
Aeromonas hydrophila is an important zoonotic pathogen responsible for septicemia, diarrhea and gastroenteritis, and has attracted considerable attention. The EnvZ/OmpR two-component system (TCS) mediates environmental stress responses in gram-negative bacteria. We investigated the role of the TCS in A. hydrophila by comparing the characteristics of the parental (23-C-23), EnvZ/OmpR knockout (23-C-23:ΔEnvZ/OmpR), and complemented strains (23-C-23:CΔEnvZ/OmpR). Under non-stress conditions, the 23-C-23:ΔEnvZ/OmpR strain showed a significant decrease in growth rate compared to that of 23-C-23. Transcriptome and metabonomic analysis indicated that many metabolic pathways were remarkably affected in the ΔEnvZ/OmpR strain, including the TCA cycle and arginine biosynthesis. In addition, the virulence of the ΔEnvZ/OmpR strain was attenuated in a Kunming mouse model. The ΔEnvZ/OmpR strain exhibited notably reduced tolerance to environmental stresses, including high temperature, different pH conditions, oxidative stress, and high osmotic stress. The downregulated expression of genes related to cell metabolism, motility, and virulence in the ΔEnvZ/OmpR mutant strain was further validated by real-time quantitative PCR. Consequently, our data suggest that the EnvZ/OmpR TCS is required for growth, motility, virulence, and stress response in A. hydrophila, which has significant implications in the development of novel antibacterial and vaccine therapies targeting EnvZ/OmpR against A. hydrophila.
Collapse
Affiliation(s)
- Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Ning Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Junqi Liu
- Veterinary Drug Laboratory, Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|
25
|
Mondal P, Mallick B, Dutta M, Dutta S. Isolation, characterization, and application of a novel polyvalent lytic phage STWB21 against typhoidal and nontyphoidal Salmonella spp. Front Microbiol 2022; 13:980025. [PMID: 36071966 PMCID: PMC9441917 DOI: 10.3389/fmicb.2022.980025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the common causal agents of bacterial gastroenteritis-related morbidity and mortality among children below 5 years and the elderly populations. Salmonellosis in humans is caused mainly by consuming contaminated food originating from animals. The genus Salmonella has several serovars, and many of them are recently reported to be resistant to multiple drugs. Therefore, isolation of lytic Salmonella bacteriophages in search of bactericidal activity has received importance. In this study, a Salmonella phage STWB21 was isolated from a lake water sample and found to be a novel lytic phage with promising potential against the host bacteria Salmonella typhi. However, some polyvalence was observed in their broad host range. In addition to S. typhi, the phage STWB21 was able to infect S. paratyphi, S. typhimurium, S. enteritidis, and a few other bacterial species such as Sh. flexneri 2a, Sh. flexneri 3a, and ETEC. The newly isolated phage STWB21 belongs to the Siphoviridae family with an icosahedral head and a long flexible non-contractile tail. Phage STWB21 is relatively stable under a wide range of pH (4–11) and temperatures (4°C–50°C) for different Salmonella serovars. The latent period and burst size of phage STWB21 against S. typhi were 25 min and 161 plaque-forming units per cell. Since Salmonella is a foodborne pathogen, the phage STWB21 was applied to treat a 24 h biofilm formed in onion and milk under laboratory conditions. A significant reduction was observed in the bacterial population of S. typhi biofilm in both cases. Phage STWB21 contained a dsDNA of 112,834 bp in length, and the GC content was 40.37%. Also, genomic analysis confirmed the presence of lytic genes and the absence of any lysogeny or toxin genes. Overall, the present study reveals phage STWB21 has a promising ability to be used as a biocontrol agent of Salmonella spp. and proposes its application in food industries.
Collapse
Affiliation(s)
- Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- *Correspondence: Moumita Dutta, ;
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Lipid-rich endo-metabolites from a vertically transmitted fungal endophyte Penicillium sp. PM031 attenuate virulence factors of phytopathogenic Ralstonia solanacearum. Microbiol Res 2022; 261:127058. [DOI: 10.1016/j.micres.2022.127058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
27
|
Influence of glucose on swarming and quorum sensing of Dickeya solani. PLoS One 2022; 17:e0263124. [PMID: 35192621 PMCID: PMC8863224 DOI: 10.1371/journal.pone.0263124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Dickeya solani is a pathogen most frequently responsible for infecting potato plants in Europe. As in the case of most plant pathogens, its ability to colonize and invade the host depends on chemotaxis and motility. The coordinated movement of Dickeya over solid surfaces is governed by a quorum sensing mechanism. In D. solani motility is regulated by ExpI-ExpR proteins, homologous to luxI-luxR system from Vibrio fisheri, in which N-acyl-homoserine lactones (AHLs) serve as signaling molecules. Moreover, in many Gram-negative bacteria motility is coupled with central metabolism via carbon catabolite repression. This enables them to reach more nutrient-efficient niches. The aim of this study was to analyze the swarming motility of D. solani depending on the volume of the medium in the cultivation plate and glucose content. We show that the ability of this bacterium to move is strictly dependent on both these factors. Moreover, we analyze the production of AHLs and show that the quorum sensing mechanism in D. solani is also influenced by the availability of glucose in the medium and that the distribution of these signaling molecules are different depending on the volume of the medium in the plate.
Collapse
|
28
|
Zhu T, Xu L, Peng J, Chen M, Xu H. Molecular characteristics and immune function of ubiquitin C-terminal hydrolase-L3 in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2022; 121:295-304. [PMID: 35032678 DOI: 10.1016/j.fsi.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin C-terminal hydrolase-L3 (UCHL3) is a deubiquitinating enzyme involved in the repair mechanism of homologous recombinations of DNA double strand breaks (DBS). However, the role of UCHL3 in crustacean immune regulation has not been studied. In this experiment, we cloned and analyzed the expression profile of the UCHL3 gene from Macrobrachium nipponense (MnUCHL3). The obtained full-length cDNA of the MnUCHL3 transcript was 1192 bp, and it had a 687 bp open reading frame encoding a 228 amino acid protein, and the structure of UCHL3 is highly similar to that of other invertebrates. Real-time PCR results indicated that MnUCHL3 was expressed in all detected tissues, with the highest expression levels in the hepatopancreas, and the expression of MnUCHL3 in the gill and hepatopancreas was downregulated to different degrees within 48 h after the infection of viruses and bacteria. Furthermore, knockdown of MnUCHL3 expression by double-stranded RNA (dsRNA) injection in Aeromonas hydrophila-infected prawns increased prawn mortality and bacterial growth. In addition, overexpression of MnUCHL3 in HEK293T cells in vitro suggested that MnUCHL3 could activate the NF-κB signal path and the expression levels of NF-κB signaling cascade members and AMPs, exhibiting remarkable downregulation in the MnUCHL3-silenced group. The above experimental conclusions revealed that UCHL3 gene might be involved in the innate immune response to bacterial infection by regulating the synthesis of a series of AMPs, and these results might provide new insights into UCHL3 in invertebrates.
Collapse
Affiliation(s)
- Tingyao Zhu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Liaoyi Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Jiacheng Peng
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Ming Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China; South Taihu Lake Modern Agricultural Science and Technology Extension Center of Huzhou, Zhejiang University, 768, Luwang Road, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
29
|
Jha S, Bhadani NK, Kumar A, Sengupta TK. Glucose-Induced Biofilm Formation in Bacillus thuringiensis KPWP1 is Associated with Increased Cell Surface Hydrophobicity and Increased Production of Exopolymeric Substances. Curr Microbiol 2021; 79:24. [PMID: 34905099 DOI: 10.1007/s00284-021-02699-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis is an agriculturally and medically important bacteria as it produces insecticidal Cry proteins and can form biofilm on different plant surfaces. Previous studies reported that the ubiquitous carbon source glucose could induce restricted motility and fractal pattern formation in the growing colonies of pH, salt and arsenate tolerant Bacillus thuringiensis KPWP1. As bacteria are evolved with the ability to exhibit multicellular behavior and biofilm formation under limiting conditions for survival, the present study was focused on exploring the effect of glucose in biofilm formation by Bacillus thuringiensis KPWP1. A significant rise in biofilm loads was observed with increased glucose concentrations in growth media. Compared to control, six times more biofilm load was marked in presence of 2% of glucose. Interestingly, it was observed that the effect was glucose specific and also not due to any change in the sugar-induced physicochemical property of the growth media as the addition of galactose or arabinose could not induce any significant increase in KPWP1 biofilm load. Scanning electron-, confocal laser scanning-microscopic studies and biochemical tests revealed that increased concentrations of glucose could induce increased production of exopolymeric substances, increased number of densely-packed micro-colonies in KPWP1 biofilm and increased hydrophobicity and adherence properties in KPWP1cells.
Collapse
Affiliation(s)
- Sushmita Jha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Nirbhay K Bhadani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Abhinash Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Tapas K Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India.
| |
Collapse
|
30
|
Diba F, Khan MZH, Uddin SZ, Istiaq A, Shuvo MSR, Ul Alam ASMR, Hossain MA, Sultana M. Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency. Sci Rep 2021; 11:21312. [PMID: 34716390 PMCID: PMC8556249 DOI: 10.1038/s41598-021-00745-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/15/2021] [Indexed: 12/02/2022] Open
Abstract
Arsenotrophic bacteria play an essential role in lowering arsenic contamination by converting toxic arsenite [As (III)] to less toxic and less bio-accumulative arsenate [As (V)]. The current study focused on the qualitative and electrocatalytic detection of the arsenite oxidation potential of an arsenite-oxidizing bacteria A. xylosoxidans BHW-15 (retrieved from As-contaminated tube well water), which could significantly contribute to arsenic detoxification, accumulation, and immobilization while also providing a scientific foundation for future electrochemical sensor development. The minimum inhibitory concentration (MIC) value for the bacteria was 15 mM As (III). Scanning Electron Microscopy (SEM) investigation validated its intracellular As uptake capacity and demonstrated a substantial association with the MIC value. During the stationary phase, the strain’s As (III) transformation efficiency was 0.0224 mM/h. Molecular analysis by real-time qPCR showed arsenite oxidase (aioA) gene expression increased 1.6-fold in the presence of As (III) compared to the untreated cells. The immobilized whole-cell also showed As (III) conversion up to 18 days. To analyze the electrochemical oxidation in water, we developed a modified GCE/P-Arg/ErGO-AuNPs electrode, which successfully sensed and quantified conversion of As (III) into As (V) by accepting electrons; implying a functional As oxidase enzyme activity in the cells. To the best of our knowledge, this is the first report on the electrochemical observation of the As-transformation mechanism with Achromobactersp. Furthermore, the current work highlighted that our isolate might be employed as a promising candidate for arsenic bioremediation, and information acquired from this study may be helpful to open a new window for the development of a cost-effective, eco-friendly biosensor for arsenic species detection in the future.
Collapse
Affiliation(s)
- Farzana Diba
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Institute of Tissue Banking and Biomaterial Research (ITBBR), Atomic Energy Research Establishment (AERE), Savar, Dhaka, 1349, Bangladesh
| | - Md Zaved Hossain Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Salman Zahir Uddin
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
31
|
Song H, Lee JY, Lee HW, Ha JH. Inactivation of bacteria causing soft rot disease in fresh cut cabbage using slightly acidic electrolyzed water. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Pieranski MK, Rychlowski M, Grinholc M. Optimization of Streptococcus agalactiae Biofilm Culture in a Continuous Flow System for Photoinactivation Studies. Pathogens 2021; 10:1212. [PMID: 34578244 PMCID: PMC8465167 DOI: 10.3390/pathogens10091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus agalactiae is a relevant cause of neonatal mortality. It can be transferred to infants via the vaginal tract and cause meningitis, pneumonia, arthritis, or sepsis, among other diseases. The cause of therapy ineffectiveness and infection recurrence is the growth of bacteria as biofilms. To date, several research teams have attempted to find a suitable medium for the cultivation of S. agalactiae biofilms. Among others, simulated vaginal fluid has been used; however, biofilm production in this medium has been found to be lower than that in tryptic soy broth. We have previously shown that S. agalactiae can be successfully eradicated by photoinactivation in planktonic culture, but there have been no studies on biofilms. The aim of this study was to optimize S. agalactiae biofilm culture conditions to be used in photoinactivation studies. We compared biofilm production by four strains representing the most common serotypes in four different broth media with crystal violet staining. Then, we evaluated stationary biofilm culture in microtiter plates and biofilm growth in a CDC Biofilm Reactor® (BioSurface Technologies, Bozeman, MT, USA) under continuous flow conditions. Subsequently, we applied Rose Bengal-mediated photoinactivation to both biofilm models. We have shown that photoinactivation is efficient in biofilm eradication and is not cyto/phototoxic to human keratinocytes. We found conditions allowing for stable and repetitive S. agalactiae biofilm growth in continuous flow conditions, which can be successfully utilized in photoinactivation assays and potentially in all other antibacterial studies.
Collapse
Affiliation(s)
- Michal K. Pieranski
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| |
Collapse
|
33
|
Akter S, Roy PC, Ferdaus A, Ibnat H, Alam ASMRU, Nigar S, Jahid IK, Hossain MA. Prevalence and stability of SARS-CoV-2 RNA on Bangladeshi banknotes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146133. [PMID: 33740558 PMCID: PMC9752560 DOI: 10.1016/j.scitotenv.2021.146133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 05/06/2023]
Abstract
Originating in December 2019 in China, SARS-CoV-2 has emerged as the deadliest pandemic in humankind's history. Along with direct contact and droplet contaminations, the possibility of infections through contaminated surfaces and fomites is investigating. This study aims to assess SARS-CoV-2 viral RNA's prevalence by real-time one-step reverse transcriptase PCR on banknotes circulating in Bangladesh. We also evaluated the persistence of the virus on banknotes spiked with SARS-CoV-2 positive diluted human nasopharyngeal samples. Among the 425 banknote samples collected from different entities, 7.29% (n = 31) were tested positive for targeted genes. Twenty-four positive representative samples were assessed for n gene fragments by conventional PCR and sequenced. All the samples that carry viral RNA belonged to the GR clade, the predominantly circulating clade in Bangladesh. In the stability test, the n gene was detected for up to 72 h on banknotes spiked with nasopharyngeal samples, and CT values increase significantly with time (p < 0.05). orf1b gene was observed to be less stable, especially on old banknotes, and usually went beyond detectable limit within 8 to 10 h. The stability of virus RNA well fitted by the Weibull model and concave curve for new banknotes and convex curve for old banknotes revealed. Handling banknotes is unavoidable; hence, these findings imply that proper hygiene practice is needed to limit SARS-CoV-2 transmission through banknotes.
Collapse
Affiliation(s)
- Selina Akter
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Pravas Chandra Roy
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Amina Ferdaus
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Habiba Ibnat
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - A S M Rubayet Ul Alam
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - M Anwar Hossain
- Jashore University of Science and Technology, Jashore, Bangladesh; Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
34
|
Kim HS, Ashrafudoulla M, Kim BR, Mizan MFR, Jung SJ, Sadekuzzaman M, Park SH, Ha SD. The application of bacteriophage to control Cronobacter sakazakii planktonic and biofilm growth in infant formula milk. BIOFOULING 2021; 37:606-614. [PMID: 34190008 DOI: 10.1080/08927014.2021.1943741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The goal was to identify the biofilm-forming ability of Cronobacter sakazakii on surfaces of stainless steel (SS) and silicone rubber (SR) in contact with infant formula milk. Two representative bacteriophages (PBES04 and PBES19) were used to control the growth of C. sakazakii as well as its biofilm forming ability on either SS or SR surfaces. Bacterial growth was confirmed at 20 °C when PBES04 and PBES19 were used, whereas C. sakazakii was not normally detected in infant formula milk treated with both bacteriophages for 6 h. In an additional biofilm reduction experiment, the biofilm on SS or SR surfaces were reduced by 3.07 and 1.92 log CFU cm-2, respectively after PBES04 treatment, and 3.06 and 2.14 log CFU cm-2, respectively, after PBES19 treatment. These results demonstrate that bacteriophages can be effective in inactivating C. sakazakii in biofilms which could potentially increase food safety in commercial facilities.
Collapse
Affiliation(s)
- Hyung Suk Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, South Korea
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, South Korea
| | - Bo-Ram Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, South Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, South Korea
| | - Soo-Jin Jung
- Department of Food Science and Technology, Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, South Korea
| | | | - Si Hong Park
- Food Science and Technology Department, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, South Korea
| |
Collapse
|
35
|
Ashrafudoulla M, Rahaman Mizan MF, Park SH, Ha SD. Antibiofilm activity of carvacrol against Listeria monocytogenes and Pseudomonas aeruginosa biofilm on MBEC™ biofilm device and polypropylene surface. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Roy PK, Ha AJW, Mizan MFR, Hossain MI, Ashrafudoulla M, Toushik SH, Nahar S, Kim YK, Ha SD. Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression. Poult Sci 2021; 100:101209. [PMID: 34089933 PMCID: PMC8182266 DOI: 10.1016/j.psj.2021.101209] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Salmonella is a foodborne pathogen and an emerging zoonotic bacterial threat in the food industry. The aim of this study was to evaluate the biofilm formation by a cocktail culture of 3 wild isolates of Salmonella enterica serotype Kentucky on plastic (PLA), silicon rubber (SR), and chicken skin surfaces under various temperatures (4, 10, 25, 37, and 42°C) and pH values (4.0, 5.0, 6.0, 7.0, and 8.0). Then, at the optimum temperature and pH, the effects of supplementation with glucose (0, 0.025, 0.05, and 0.4% w/v) on biofilm formation were assessed on each of the surfaces. The results indicated that higher temperatures (25 to 42°C) and pH values (7.0 and 8.0) led to more robust biofilm formation than lower temperatures (4 and 10°C) and lower pH levels (4.0 to 6.0). Moreover, biofilm formation was induced by 0.025% glucose during incubation at the optimum temperature (37°C) and pH (7.0) but inhibited by 0.4% glucose. Consistent with this finding, virulence related gene (rpoS, rpoH, hilA, and avrA) expression was increased at 0.025% glucose and significantly reduced at 0.4% glucose. This results also confirmed by field emission scanning electron microscope, confocal laser scanning microscopy, and autoinducer-2 determination. This study concluded that optimum environmental conditions (temperature 37°C, pH 7.0, and 0.25% glucose) exhibited strong biofilm formation on food and food contract surfaces as well as increased the virulence gene expression levels, indicating that these environmental conditions might be threating conditions for food safety.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Angela Ji-Won Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Ashrafudoulla
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Sazzad Hossen Toushik
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Shamsun Nahar
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Yu Kyung Kim
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Sang-Do Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea.
| |
Collapse
|
37
|
Chen Q, Zhang Z, Tang H, Zhou L, Ao S, Zhou Y, Zhu X, Gao X, Jiang Q, Tu C, Zhang X. Aeromonas hydrophila associated with red spot disease in Macrobrachium nipponense and host immune-related gene expression profiles. J Invertebr Pathol 2021; 182:107584. [PMID: 33811849 DOI: 10.1016/j.jip.2021.107584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
In September 2018, a serious disease causing high mortality with red spot syndrome occurred in a Macrobrachium nipponense aquaculture farm in Jintan County, Jiangsu Province, China. In this study, a pathogenic isolate 5-S3 was isolated from diseased M. nipponense and was identified as Aeromonas hydrophila by phenotypically and molecularly. The pathogenicity of the isolate 5-S3 to M. nipponense was determined by challenge experiments. Results of artificial challenge showed A. hydrophila was pathogenic to M. nipponense, the LD50 was 9.58 × 104 CFU/mL, and histopathological analysis revealed that the hepatopancreas of infected M. nipponense exhibited obvious inflammatory responses to A. hydrophila infection. The isolate showed significant phenotypical activities such as the lecithinase, esterase, caseinase and hemolysin which are indicative of their virulence potential. Besides, virulence genes such as aerA, act, fla, ahpβ, alt, lip, eprCAI, hlyA, acg and gcaT were detected in the isolate 5-S3. Subsequently, the immune-related genes expression in M. nipponense were evaluated by quantitative real-time PCR (qRT-PCR), and the results showed that the expression levels of dorsal, relish, crustin1, crustin2, anti-lipopolysaccharide factors 1 (ALF1), anti-lipopolysaccharide factors 2 (ALF2), hemocyanin, i-lysozyme and prophenoloxidase were significantly up-regulated in hepatopancreas of M. nipponense after A. hydrophila infection, the stat, p38, crustin3, anti-lipopolysaccharide factors 3 (ALF3) genes had no significant change during the infection. The present results reveal that A. hydrophila was an etiological agent causing red spot syndrome and mass mortality of M. nipponense and the influence of A. hydrophila infection on host immune genes.
Collapse
Affiliation(s)
- Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zirui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huanyu Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Liying Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chuandeng Tu
- Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, 5 Yangzhou 225127, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
38
|
Lau TTV, Puah SM, Tan JAMA, Puthucheary SD, Chua KH. Characterization of the relationship between polar and lateral flagellar genes in clinical Aeromonas dhakensis: phenotypic, genetic and biochemical analyses. Braz J Microbiol 2021; 52:517-529. [PMID: 33768508 DOI: 10.1007/s42770-021-00457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/23/2021] [Indexed: 11/25/2022] Open
Abstract
Flagellar-mediated motility is a crucial virulence factor in many bacterial species. A dual flagellar system has been described in aeromonads; however, there is no flagella-related study in the emergent human pathogen Aeromonas dhakensis. Using 46 clinical A. dhakensis, phenotypic motility, genotypic characteristics (flagellar genes and sequence types), biochemical properties and their relationship were investigated in this study. All 46 strains showed swimming motility at 30 °C in 0.3% Bacto agar and carried the most prevalent 6 polar flagellar genes cheA, flgE, flgG, flgH, flgL, and flgN. On the contrary, only 18 strains (39%) demonstrated swarming motility on 0.5% Eiken agar at 30 °C and they harbored 11 lateral flagellar genes lafB, lafK, lafS, lafT, lafU, flgCL, flgGL, flgNL, fliEL, fliFL, and fliGL. No association was found between biochemical properties and motility phenotypes. Interestingly, a significant association between swarming and strains isolated from pus was observed (p = 0.0171). Three strains 187, 277, and 289 isolated from pus belonged to novel sequence types (ST522 and ST524) exhibited fast swimming and swarming profiles, and they harbored > 90% of the flagellar genes tested. Our findings provide a fundamental understanding of flagellar-mediated motility in A. dhakensis.
Collapse
Affiliation(s)
- Tien-Tien Vicky Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suat-Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - S D Puthucheary
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek-Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
39
|
Modulation of quorum sensing-associated virulence in bacteria: carbohydrate as a key factor. Arch Microbiol 2021; 203:1881-1890. [PMID: 33641039 DOI: 10.1007/s00203-021-02235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
Quorum sensing (QS) is a method of inter-cellular communication that permits bacteria to dispense information about cell density and to synchronize the gene expression accordingly. Gram-positive and Gram-negative bacteria utilize distinct quorum sensing mechanisms for effective pathogenesis. Virulence factor production by pathogenic bacteria is one of the important traits that is under the control of QS. A growing body of evidence has indicated the role of the nutritional environment notably by carbohydrates in dictating the QS-associated virulence gene regulation. The modulation of QS by carbohydrates mitigates the survival and establishment of the pathogen within its host which in turn leads to an increase in morbidity and mortality. This mini-review throws light on the predilection of pathogenic bacteria to rapidly regulate its QS-linked virulence gene expression based on the changing nutrient levels that assist them in prospering within diverse niches.
Collapse
|
40
|
Białucha A, Gospodarek-Komkowska E, Kwiecińska-Piróg J, Skowron K. Influence of Selected Factors on Biofilm Formation by Salmonella enterica Strains. Microorganisms 2020; 9:microorganisms9010043. [PMID: 33375734 PMCID: PMC7824446 DOI: 10.3390/microorganisms9010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Biofilm formed by S. enterica on the surface of gallstones or biomaterials promotes the development and spread of chronic infection. The aim of the study was to assess biofilm formation on the surface of polystyrene depending on nutritional conditions and the effect of 0.5, 1.0, and 2.0% glucose and 3.0% bile and sub-inhibitory concentrations of ampicillin on biofilm formation of S. enterica. Sixty-nine clinical strains of S. enterica isolated from feces (92.8%) and blood (7.2%) collected from patients (66.7%) and carriers (33.3%) were used in the study. Assessment of forming 24-h biofilm by these strains was performed on the surface of polystyrene 96-well plates at 37 °C. In this study, it was indicated that 1.0% glucose and 3.0% bovine bile inhibit biofilm formation. Biofilm formation was inhibited in all examined sub-MIC of ampicillin. Biofilm formation is varied in different conditions, depending on the serovar.
Collapse
|
41
|
Mizan MFR, Cho HR, Ashrafudoulla M, Cho J, Hossain MI, Lee DU, Ha SD. The effect of physico-chemical treatment in reducing Listeria monocytogenes biofilms on lettuce leaf surfaces. BIOFOULING 2020; 36:1243-1255. [PMID: 33401969 DOI: 10.1080/08927014.2020.1867848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this research was to characterize Listeria monocytogenes from several environmental and clinical sources and assess the efficacy of single and combined physico-chemical treatments in reducing biofilm on lettuce leaves. PCR analysis of L. monocytogenes isolates collected from different clinical (10 strains) and environmental sources (12 strains) was used to look for the presence of one Listeria-specific gene and five virulence genes. Biofilms of L. monocytogenes were developed on lettuce leaves over 24 h. A 5-min ultrasound and a 300-ppm sodium hypochlorite (NaOCl) wash resulted in similar reductions in cell numbers of 0.82 log CFU cm-2. For chlorine dioxide (ClO2) at 60 ppm, the cell numbers were reduced by ∼5.45 log CFU cm-2. A combined treatment of 5 min of ultrasound plus 300 ppm NaOCl or 40 ppm ClO2, provided maximal efficacy, reducing the number of L. monocytogenes on the lettuce surface to non-detectable levels. Therefore, ClO2 has the potential to replace NaOCl for the disinfection of food products in the food industry.
Collapse
Affiliation(s)
| | - Hye Ran Cho
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Junbin Cho
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Md Iqbal Hossain
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Dong-Un Lee
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
42
|
Dong W, Cai Y, Xu Z, Fu B, Chen Q, Cui Y, Ruan Z, Liang Y, Peng N, Zhao S. Heterologous expression of AHL lactonase AiiK by Lactobacillus casei MCJΔ1 with great quorum quenching ability against Aeromonas hydrophila AH-1 and AH-4. Microb Cell Fact 2020; 19:191. [PMID: 33028330 PMCID: PMC7542731 DOI: 10.1186/s12934-020-01448-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background Nowadays, microbial infections have caused increasing economic losses in aquaculture industry and deteriorated worldwide environments. Many of these infections are caused by opportunistic pathogens through cell-density mediated quorum sensing (QS). The disruption of QS, known as quorum quenching (QQ), is an effective and promising way to prevent and control pathogens, driving it be the potential bio-control agents. In our previous studies, AHL lactonase AiiK was identified with many characteristics, and constitutive expression vector pELX1 was constructed to express heterologous proteins in Lactobacillus casei MCJΔ1 (L. casei MCJΔ1). In this study, recombinant strain pELCW-aiiK/L. casei MCJΔ1 (LcAiiK) and wild-type Aeromonas hydrophila (A. hydrophila) were co-cultured to test the QQ ability of LcAiiK against A. hydrophila. Results A cell wall-associated expression vector pELCW for L. casei MCJΔ1 was constructed. Localization assays revealed that the expressed AiiK was anchored at the surface layer of LcAiiK via vector pELCW-aiiK. LcAiiK (OD600 = 0.5) degraded 24.13 μM of C6-HSL at 2 h, 40.99 μM of C6-HSL at 12 h, and 46.63 μM of C6-HSL at 24 h. Over 50% LcAiiK cells maintained the pELCW-aiiK plasmid after 15 generations of cultivation without erythromycin. Furthermore, LcAiiK inhibited the swimming motility, extracellular proteolytic activity, haemolytic activity and biofilm formation of A. hydrophila AH-1 and AH-4. Conclusion The AHL lactonase AiiK is firstly and constitutively expressed at the surface layer of L. casei MCJΔ1. LcAiiK displayed considerable AHL lactonase activity and great QQ abilities against A. hydrophila AH-1 and AH-4 by attenuating their QS processes instead of killing them. Therefore, the LcAiiK can be exploited as an anti-pathogenic drug or a bio-control agent to control the AHL-mediated QS of pathogenic bacteria.
Collapse
Affiliation(s)
- Weiwei Dong
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyuan Cai
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilong Xu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Biao Fu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qitong Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxin Cui
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
43
|
Ashrafudoulla M, Mizan MFR, Ha AJW, Park SH, Ha SD. Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiol 2020; 91:103500. [PMID: 32539983 DOI: 10.1016/j.fm.2020.103500] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/16/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022]
Abstract
The objective of this study was to investigate the antibacterial and antibiofilm activity of eugenol against V. parahaemolyticus planktonic and biofilm cells and the involved mechanisms as well. Atime-kill assay, a biofilm formation assay on the surface of crab shells, an assay to determine the reduction of virulence using eugenol at different concentrations, energy-filtered transmission electron microscope (EF-TEM), field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscope (CLSM) and high-performance liquid chromatography (HPLC) were performed to evaluate the antibacterial and antibiofilm activity of eugenol. The results indicated that different concentrations of eugenol (0.1-0.6%) significantly reduced biofilm formation, metabolic activities, and secretion of extracellular polysaccharide (EPS), with effective antibacterial effect. Eugenol at 0.4% effectively eradicated the biofilms formed by clinical and environmental V. parahaemolyticus on crab surface by more than 4.5 and 4 log CFU/cm2, respectively. At 0.6% concentration, the reduction rates of metabolic activities for ATCC27969 and NIFS29 were 79% and 68%, respectively. Whereas, the reduction rates of EPS for ATCC27969 and NIFS29 were 78% and 71%, respectively. On visual evaluation, significant results were observed for biofilm reduction, live/dead cell detection, and quorum sensing (QS). This study demonstrated that eugenol can be used to control V. parahaemolyticus biofilms and biofilm-related infections and can be employed for the protection of seafood.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyunggi-do, 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyunggi-do, 456-756, Republic of Korea
| | - Angela Jie-Won Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyunggi-do, 456-756, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Gyunggi-do, 456-756, Republic of Korea.
| |
Collapse
|
44
|
Understanding the influence of heavy water stress on the physiology of Salmonella Typhimurium. Appl Radiat Isot 2020; 159:108990. [PMID: 32250754 DOI: 10.1016/j.apradiso.2019.108990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022]
Abstract
The heavy isotope of water is used in understanding the physiology of bacteria. Deuterium (D2O) reduces chemical reaction kinetics. In the present study, the survivability of the food-borne pathogen Salmonella Typhimurium grown in D2O supplemented medium is studied under various stress conditions. The growth of S, Typhimurium was studied in rich (Luria Broth-LB) and minimal medium (M9) prepared in D2O. The reduced growth rate of S. tTyphimurium in M9 (2.4 fold) as compared to that in LB (1.6 fold) was observed. S. tTyphimurium grown in D2O supplemented medium was significantly more tolerant to heat and gamma radiation (1.2 fold), but was sensitive to extreme pH (both alkaline and acidic) and osmotic stress (10 fold). These results suggest that the change in the biological reaction kinetics in the cell due to D2O may modify the stress tolerance of S. tTyphimurium. This is the first study carried out to understand how a bacterial system (S. Typhimurium) in D2O responds to different stresses. This study suggests that investigations on bacterial physiology in D2O supplemented medium helps in understanding the underlying mechanisms of stress tolerance.
Collapse
|
45
|
Hossain MI, Mizan MFR, Ashrafudoulla M, Nahar S, Joo HJ, Jahid IK, Park SH, Kim KS, Ha SD. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108864] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Saccharide sources do not influence the biofilm formation in Scedosporium/Lomentospora species. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2019.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractScedosporium and Lomentospora species are ubiquitous saprophytic filamentous fungi that emerged as human pathogens with impressive multidrug-resistance profile. The ability to form biofilm over several biotic and abiotic surfaces is one of the characteristics that contributes to their resistance patterns against almost all currently available antifungals. Herein, we have demonstrated that Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans were able to form biofilm, in similar amounts, when conidial cells were incubated in a polystyrene substrate containing Sabouraud medium supplemented or not with different concentrations (2%, 5% and 10%) of glucose, fructose, sucrose and lactose. Likewise, the glucose supplementation of culture media primarily composed of amino acids (SCFM, synthetic cystic fibrosis medium) and salts (YNB, yeast nitrogen base) did not modulate the biofilm formation of Scedosporium/Lomentospora species. Collectively, the present data reinforce the ability of these opportunistic fungi to colonize and to build biofilm structures under different environmental conditions.
Collapse
|
47
|
Kang M, Kim SJ, Yoon SR, Lee HW, Lee JY, Ha JH. Determination of Transfer Patterns of Pectobacterium carotovorum subsp. carotovorum Planktonic Cells and Biofilms During Mechanical Cutting of Kimchi Cabbage. J Food Sci 2019; 84:2603-2609. [PMID: 31518463 DOI: 10.1111/1750-3841.14749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/29/2022]
Abstract
Cross-contamination of Pectobacterium carotovorum subsp. carotovorum (PCC) from a stainless-steel surface to cabbage (Brassica rapa L. subsp. pekinensis) was evaluated. To investigate the PCC transfer pattern from mechanical knife surfaces to cabbage during 100 cuts, two mathematical models (power and logarithmic model) were fitted to the mean log10 detection data from cabbage. Overall, regression analysis determined that the best-fitting regression curves of planktonic cells and detached cells from biofilms transferred onto fresh cabbage were Y = 3.7X-0.41 , RMSE = 0.371 and Y = 4.6X-0.35 , RMSE = 0.254, respectively. For salted cabbage, the best-fit regression curves of planktonic cells and biofilm were Y = 5.8X-0.38 , RMSE = 0.209 and Y = 5.4X-0.23 , RMSE = 0.195, respectively. Our data provide a meaningful indication of the level of PCC cross-contamination.
Collapse
Affiliation(s)
- Miran Kang
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - Su-Ji Kim
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - So-Ra Yoon
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - Hae-Won Lee
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - Jae Yong Lee
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Inst. of Kimchi, Gwangju, 61755, Korea
| |
Collapse
|
48
|
Ashrafudoulla M, Mizan MFR, Park H, Byun KH, Lee N, Park SH, Ha SD. Genetic Relationship, Virulence Factors, Drug Resistance Profile and Biofilm Formation Ability of Vibrio parahaemolyticus Isolated From Mussel. Front Microbiol 2019; 10:513. [PMID: 30949142 PMCID: PMC6435529 DOI: 10.3389/fmicb.2019.00513] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to investigate the virulence factors, genetic relationship, antibiotic resistance profile and the biofilm formation ability of Vibrio parahaemolyticus isolates on shrimp and mussel surfaces at 30°C. In this study, eight (n = 8) V. parahaemolyticus isolated from mussel were examined. We used the polymerase chain reaction (PCR) to examine the distribution of different genes, and Repetitive Extragenic Palindromic-PCR (REP-PCR) to compare the genetic relationship. Disk diffusion technique was used to assess antibiotic and multiple-antibiotic resistance. The biofilm formation assay, and field emission scanning electron microscopy (FE-SEM) were used to evaluate biofilm formation ability. Transmission Electron Microscope (TEM) was used to observe the morphological structure of bacterial cell. Our results indicated that the biofilm-associated genes, 16S rRNA, toxR, and tdh, were present in all the tested V. parahaemolyticus isolates (n = 8). Approximately, 62.5% (5 isolates among 8 isolates) isolates showed strong multiple-antibiotic resistance index with an average value of 0.56. All isolates (n = 8) showed strong genetic relationship and significant biofilm formation ability on shrimp and mussel surfaces. This study demonstrated that the presence of virulence factors, high multiple antibiotic resistance index (MARI) values, and effective biofilm formation ability of V. parahaemolyticus isolates could be a great threat to human health and economic values in future. It was also suggested that a high resistance rate to antibiotic could be ineffective for treating V. parahaemolyticus infections. The continuous monitoring of V. parahaemolyticus antibiotic, molecular and biofilm characteristics is needed to increase seafood safety.
Collapse
Affiliation(s)
- Md. Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| | - Md. Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| | - Heedae Park
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| | - Kye-Hwan Byun
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| | - Nari Lee
- Food Safety Research Group, Korea Food Research Institute, Seongnam, South Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, United States
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
49
|
Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB. The genus Aeromonas: A general approach. Microb Pathog 2019; 130:81-94. [PMID: 30849490 DOI: 10.1016/j.micpath.2019.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The genus Aeromonas comprises more than thirty Gram-negative bacterial species which mostly act as opportunistic microorganisms. These bacteria are distributed naturally in diverse aquatic ecosystems, where they are easily isolated from animals such as fish and crustaceans. A capacity for adaptation also makes Aeromonas able to colonize terrestrial environments and their inhabitants, so these microorganisms can be identified from different sources, such as soils, plants, fruits, vegetables, birds, reptiles, amphibians, among others. Infectious processes usually develop in immunocompromised humans; in fish and other marine animals this process occurs under conditions of stress. Such events are most often associated with incorrect practices in aquaculture. Aeromonas has element diverse ranges, denominated virulence factors, which promote adhesion, colonization and invasion into host cells. These virulence factors, such as membrane components, enzymes and toxins, for example, are differentially expressed among species, making some strains more virulent than others. Due to their diversity, no single virulence factor was considered determinant in the infectious process generated by these microorganisms. Unlike other genera, Aeromonas species are erroneously differentiated by conventional biochemical tests. Therefore, molecular assays are necessary for this purpose. Nevertheless, new means of identification have been considered in order to generate methods that, like molecular tests, can correctly identify these microorganisms. The main objectives of this review are to explain environmental and structural characteristics of the Aeromonas genus and to discuss virulence mechanisms that these bacteria use to infect aquatic organisms and humans, which are important aspects for aquaculture and public health, respectively. In addition, this review aims to clarify new tests for the precise identification of the species of Aeromonas, contributing to the exact and specific diagnosis of infections by these microorganisms and consequently the treatment.
Collapse
Affiliation(s)
- Rafael Bastos Gonçalves Pessoa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Elba Verônica Matoso Maciel de Carvalho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
50
|
Lou Z, Letsididi KS, Yu F, Pei Z, Wang H, Letsididi R. Inhibitive Effect of Eugenol and Its Nanoemulsion on Quorum Sensing-Mediated Virulence Factors and Biofilm Formation by Pseudomonas aeruginosa. J Food Prot 2019; 82:379-389. [PMID: 30785306 DOI: 10.4315/0362-028x.jfp-18-196] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to evaluate the quorum sensing (QS) inhibition potential of eugenol and eugenol nanoemulsion against QS-dependent virulence factor production and gene expression, as well as biofilm formation in Pseudomonas aeruginosa. In the current study, eugenol nanoemulsion at a sub-MIC of 0.2 mg/mL specifically inhibited about 50% of the QS-mediated violacein production in Chromobacterium violaceum, as well as the production of N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL) and C4-HSL N-acyl homoserine lactone signal molecules, pyocyanin, and swarming motility in P. aeruginosa. The inhibitive effect of eugenol and its nanoemulsion on the expression of the QS synthase genes was concentration dependent, displaying 65 and 52% expression level for lasI, respectively, and 61 and 45% expression level for rhlI, respectively, at a concentration of 0.2 mg/mL. In addition, the inhibitive effect of eugenol and its nanoemulsion on the expression of the rhlA gene responsible for the production of rhamnolipid was also concentration dependent, displaying 65 and 51% expression level for the rhlA gene, respectively, at a concentration of 0.2 mg/mL. Eugenol and its nanoemulsion also displayed 36 and 63% respective inhibition of biofilm formation by P. aeruginosa at the 0.2 mg/mL concentration. Therefore, the nanoemulsion could be used as a novel QS-based antibacterial and antibiofilm agent for the control of harmful bacteria.
Collapse
Affiliation(s)
- Zaixiang Lou
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Kekgabile S Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Fuhao Yu
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Zejun Pei
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China.,2 Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi 214100, Jiangsu, People's Republic of China
| | - Hongxin Wang
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Rebaone Letsididi
- 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|