1
|
Laranjeiro MI, Simões T, Ramos JA, Santos ID, Pereira JM, Reyes-González JM, Lemos MFL, Paiva VH, Novais SC, Navarro J, Ceia FR. Foraging in contrasting oceanographic regions impacts the fatty acid profile of two closely related pelagic seabirds. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106888. [PMID: 39662380 DOI: 10.1016/j.marenvres.2024.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Coastal urbanisation negatively affects marine ecosystems through habitat degradation and pollution. Cory's (Calonectris borealis) and Scopoli's (C. diomedea) shearwaters are closely related species inhabiting the Northeast Atlantic Ocean and the Mediterranean Sea, respectively. This study assesses the fatty acid profile, with the trophic and foraging ecology, of Cory's and Scopoli's shearwaters breeding at Berlenga (Atlantic Ocean) and Chafarinas (Mediterranean Sea) Islands. The diet quality of Scopoli's shearwaters is expected to be generally lower, characterised by reduced levels of ω-3 fatty acids. Additionally, higher concentrations of specific fatty acid trophic markers are anticipated, reflecting the Mediterranean's semi-enclosed environment, low productivity, and pollution challenges. These markers include oleic acid, vaccenic acid, trans fatty acids (indicative of urban and industrial discharges), and odd-chain fatty acids (indicative of bacterial presence). This study supported these predictions, with Scopoli's shearwaters foraging in the Mediterranean having higher concentrations of oleic and vaccenic acids, odd-chain fatty acids, and trans-palmitoleic acid in their plasma. Yet, concentrations of ω-3 were also higher in Scopoli's shearwaters. This may result from diverse prey availability and selection, and different habitat exploitation, partially supported by differences in the trophic ecology and foraging patterns of both species; or from an enhanced immunological basal response of Scopoli's shearwaters to cope with higher anthropogenic pressure in the western Mediterranean Sea. Further studies including specific diet and contaminant analyses are crucial to understand differences in fatty acid profiles of seabirds inhabiting both oceanic basins and the implications of diet quality for seabird populations.
Collapse
Affiliation(s)
- Maria I Laranjeiro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal; Institut de Ciències del Mar (ICM), CSIC, Passeig Maritim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Tiago Simões
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ivo Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; UMR LIENSs, CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17 000, La Rochelle, France
| | - Jorge M Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - José M Reyes-González
- Institut de Ciències del Mar (ICM), CSIC, Passeig Maritim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Vítor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Joan Navarro
- Institut de Ciències del Mar (ICM), CSIC, Passeig Maritim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Filipe R Ceia
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
2
|
Stuart J, Smith KF, Miller M, Pearman JK, Robinson N, Rhodes L, Thompson L, Challenger S, Parnell N, Ryan KG. Light-dependent variations in fatty acid profiles and gene expression in Antarctic microalgal cultures. PLoS One 2025; 20:e0317044. [PMID: 39820819 PMCID: PMC11737666 DOI: 10.1371/journal.pone.0317044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf. biundulata and the dinoflagellate Polarella glacialis. FA profiling and transcriptomic analyses were used to compare the impact of three light levels: High (baseline culturing conditions 90 ± 1 μmol photons m-2 s-1), mid (10 ± 1 μmol photons m-2 s-1); and low (1.5 ± 1 μmol photons m-2 s-1) on each isolate. Both microalgal isolates had altered growth rates and shifts in FA composition under different light conditions. Nitzschia cf. biundulata exhibited significant changes in specific saturated and monounsaturated FAs, with a notable increase in energy storage-related FAs under conditions emulating thinner ice or reduced snow cover. Polarella glacialis significantly increased production of polyunsaturated FAs (PUFAs) in mid light conditions, particularly octadecapentaenoic acid (C18:5N-3), indicating enhanced membrane fluidity and synthesis of longer-chain PUFAs. Notably, C18:5N-3 has been identified as an ichthyotoxic molecule, with fish mortalities associated with other high producing marine taxa. High light levels caused down regulation of photosynthetic genes in N. cf. biundulata isolates and up-regulation in P. glacialis isolates. This and the FA composition changes show the variability of acclimation strategies for different taxonomic groups, providing insights into the responses of microalgae to light stress. This variability could impact polar food webs under climate change, particularly through changes in macronutrient availability to higher trophic levels due to species specific acclimation responses. Further research on the broader microalgal community is needed to clarify the extent of these effects.
Collapse
Affiliation(s)
- Jacqui Stuart
- Victoria University of Wellington, Wellington, New Zealand
- Cawthron Institute, Nelson, New Zealand
| | | | | | | | - Natalie Robinson
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | | | | | | | | | - Ken G. Ryan
- Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Han X, Sun B, Zhang Q, Teng L, Zhang F, Liu Z. Metabolic regulation reduces the oxidative damage of arid lizards in response to moderate heat events. Integr Zool 2024; 19:1034-1046. [PMID: 37897215 DOI: 10.1111/1749-4877.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Climate warming poses a significant threat to species worldwide, particularly those inhabiting arid and semi-arid regions where extreme temperatures are increasingly prevalent. However, empirical studies investigating how moderate heat events affect the physiological processes of arid and semi-arid animals are largely scarce. To address this knowledge gap, we used an arid and semi-arid lizard species (Phrynocephalus przewalskii) as a study system. We manipulated thermal environments to simulate moderate heat events (43.5 ± 0.3°C during the heating period) for lizards and examined physiological and biochemical traits related to survival, metabolism, locomotion, oxidative stress, and telomere length. We found that the body condition and survival of the lizards were not significantly affected by moderate heat events, despite an increase in body temperature and a decrease in locomotion at high test temperatures were detected. Mechanistically, we found that the lizards exhibited down-regulated metabolic rates and enhanced activities of antioxidative enzymes, resulting in reduced oxidative damage and stable telomere length under moderate heat events. Based on these findings, which indicated a beneficial regulation of fitness by physiological and biochemical processes, we inferred that moderate heat events did not have a detrimental effect on the toad-headed agama, P. przewalskii. Overall, our research contributes to understanding the impacts of moderate heat events on arid and semi-arid species and highlights the adaptive responses and resilience exhibited by the toad-headed agama in the face of climate warming.
Collapse
Affiliation(s)
- Xingzhi Han
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liwei Teng
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Fushun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Zhensheng Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| |
Collapse
|
4
|
Winkler G, Cabrol J, Tremblay R. Living at depth: ecophysiological condition of Boreomysis arctica in autumn and winter in the St. Lawrence estuary and gulf. JOURNAL OF PLANKTON RESEARCH 2024; 46:348-356. [PMID: 38826845 PMCID: PMC11142453 DOI: 10.1093/plankt/fbae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 06/04/2024]
Abstract
Mysids, besides krill, play a significant role in energy transfer and carbon sequestration. The ecology of coastal species is better understood than that of deep dwelling species such as Boreomysis arctica. The objectives of this study were to quantify spatiotemporal variations in body condition and the trophic level of B. arctica in autumn and winter, under sea-ice conditions in the St. Lawrence system, using a multimarker approach. We sampled along a 1000 km transect. Mean abundances in winter were higher in the estuary compared to the Gulf of St. Lawrence. Body condition, measured as total lipid content, was higher in winter than in autumn. Lipids of B. arctica were mainly composed of wax esters, thereby B. arctica is richer in energetic lipids compared to the three dominant krill species. We also observed seasonal differences in the trophic level of B. arctica, revealing carnivorous behavior in autumn compared to omnivory in winter. High intra-specific variability in both energetic strategy and feeding behavior was found that is potentially due to opportunistic feeding. Energy rich reserves suggest that B. arctica could act as a valuable prey for both benthic and pelagic consumers and thus playing a key role in bentho-pelagic energy transfer.
Collapse
Affiliation(s)
- Gesche Winkler
- Institut de Sciences de la Mer, Université du Québec à Rimouski, Québec-Océan, 310 Allée des Ursulines, G5L3A1, Rimouski, Quebec, Canada
| | - Jory Cabrol
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, 850 Rte de la Mer, G5H 3Z4, Mont-Joli, QC, Canada
| | - Réjean Tremblay
- Institut de Sciences de la Mer, Université du Québec à Rimouski, Québec-Océan, 310 Allée des Ursulines, G5L3A1, Rimouski, Quebec, Canada
| |
Collapse
|
5
|
Ngandjui YAT, Kereeditse TT, Kamika I, Madikizela LM, Msagati TAM. Nutraceutical and Medicinal Importance of Marine Molluscs. Mar Drugs 2024; 22:201. [PMID: 38786591 PMCID: PMC11123371 DOI: 10.3390/md22050201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction of bioactive compounds have been presented. We pointed out their nutraceutical importance such as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer, antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones and mussels contain unique compounds with potential medicinal applications, ranging from wound healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs highlights their significance in both pharmaceutical and dietary realms, paving the way for further research and utilization in human health.
Collapse
Affiliation(s)
- Yvan Anderson Tchangoue Ngandjui
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Johannesburg 1705, South Africa; (T.T.K.); (I.K.); (L.M.M.)
| | | | | | | | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Johannesburg 1705, South Africa; (T.T.K.); (I.K.); (L.M.M.)
| |
Collapse
|
6
|
Luna A, Escánez A, Marrero J, Íñiguez E, Pérez JA, Sánchez P. Early prey intake of a short-finned pilot whale ( Globicephala macrorhynchus Gray, 1846, Cetacea: Delphinidae) in the Canary Islands. Ecol Evol 2024; 14:e11139. [PMID: 38469049 PMCID: PMC10925522 DOI: 10.1002/ece3.11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
This study reveals early prey eating by a short-finned pilot whale (Globicephala macrorhynchus Gray, 1846, Cetacea: Delphinidae) in the Canary Islands. Stomach contents, trophic markers, skin isotopic ratios of nitrogen (δ15N:15N/14N) and carbon (δ13C:13C/12C), and fatty acid profiles of the blubber of a short-finned pilot whale of 213 cm size euthanized in free-ranging conditions were analyzed. A total of 15 species of oegopsid squids, mostly diel vertical mesopelagic migrant species of the families Enoploteuthidae, Ommastrephidae, and Histioteuthidae, as well as mother's milk, were identified in the stomach contents. Asperoteuthis acanthoderma (Lu, 1977, Cephalopoda: Chiroteuthidae) was found as first time in this area, suggesting the possibility of its presence on both sides of the subtropical Atlantic, extending its current known distribution. The δ15N value (11.55‰) was higher than expected based on the size range of squid ingested, but lower than that of adult pilot whales, suggesting that mother's milk intake has a significant effect on these values in calves. Similarly, the δ13C values (-17.99‰) were shifted to those of adult pilot whales rather than the ingested squids, also due to the ingestion of high-fat breast milk. The fatty acid (FA) composition of blubber showed a clear stratification. Long-chain polyunsaturated fatty acids (LC-PUFA) were mainly present in the inner layer, while most relevant ≤C20 monounsaturated fatty acids (MUFA) were more abundant in the outer layer.
Collapse
Affiliation(s)
- Amanda Luna
- BioCephaLabCentro de Investigación Mariña de la Universidade de Vigo, Edificio de Ciencias ExperimentaisVigoSpain
- Departamento de Ecoloxía e Bioloxía Animal, Edificio de Ciencias Experimentais, Campus As Lagoas‐MarcosendeUniversidade de VigoVigoSpain
| | - Alejandro Escánez
- Departamento de Ecoloxía e Bioloxía Animal, Edificio de Ciencias Experimentais, Campus As Lagoas‐MarcosendeUniversidade de VigoVigoSpain
- MARE‐Marine and Environmental Sciences CentreARDITI, Edifício Madeira Tecnopolo, Caminho da PenteadaFunchalMadeira IslandPortugal
| | - Jacobo Marrero
- Asociación ToninaSan Cristóbal de La LagunaTenerife (Islas Canarias)Spain
| | - Eva Íñiguez
- MARE‐Marine and Environmental Sciences CentreARDITI, Edifício Madeira Tecnopolo, Caminho da PenteadaFunchalMadeira IslandPortugal
- Asociación ToninaSan Cristóbal de La LagunaTenerife (Islas Canarias)Spain
- Faculty of Life SciencesUniversity of MadeiraFunchalMadeira IslandPortugal
| | - José A. Pérez
- Departamento de Biología Animal, Edafología y GeologíaUniversidad de La LagunaSan Cristóbal de La LagunaSpain
| | - Pilar Sánchez
- Department of Marine Renewable ResourcesInstitute of Marine Sciences‐CSICBarcelonaSpain
| |
Collapse
|
7
|
Ding Z, Wang X, Zou T, Hao X, Zhang Q, Sun B, Du W. Climate warming has divergent physiological impacts on sympatric lizards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168992. [PMID: 38052387 DOI: 10.1016/j.scitotenv.2023.168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Climate warming is expected to affect the vulnerability of sympatric species differentially due to their divergent traits, but the underlying physiological mechanisms of those impacts are poorly understood. We conducted field warming experiments (present climate vs. warm climate) using open-top chambers to determine the effects of climate warming on active body temperature, oxidative damage, immune competence, growth and survival in two sympatric desert-dwelling lizards, Eremias multiocellata and Eremias argus from May 2019 to September 2020. Our climate warming treatment did not affect survival of the two species, but it did increase active body temperatures and growth rate in E. multiocellata compared to E. argus. Climate warming also induced greater oxidative damage (higher malondialdehyde content and catalase activity) in E. multiocellata, but not in E. argus. Further, climate warming increased immune competence in E. multiocellata, but decreased immune competence in E. argus, with regards to white blood cell counts, bacteria killing ability and relative expression of immunoglobulin M. Our results suggest that climate warming enhances body temperature, and thereby oxidative stress, immune competence and growth in E. multiocellata, but decreases immune competence of E. argus, perhaps as a cost of thermoregulation to maintain body temperatures under climate warming. The divergent physiological effects of climate warming on sympatric species may have profound ecological consequences if it eventually leads to changes in reproductive activities, population dynamics and community structure. Our study highlights the importance of considering interspecific differences in physiological traits when we evaluate the impact of climate warming on organisms, even for those closely-related species coexisting within the same geographical area.
Collapse
Affiliation(s)
- Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Release of cell-free enzymes by marine pelagic fungal strains. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1209265. [PMID: 38025900 PMCID: PMC10658710 DOI: 10.3389/ffunb.2023.1209265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Fungi are ubiquitous organisms that secrete different enzymes to cleave large molecules into smaller ones so that can then be assimilated. Recent studies suggest that fungi are also present in the oceanic water column harboring the enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine prokaryotes, the cell-free fraction is an important contributor to the oceanic extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by marine fungi remains unknown. Here, to study the cell-free enzymatic activities of marine fungi and the potential influence of salinity on them, five strains of marine fungi that belong to the most abundant pelagic phyla (Ascomycota and Basidiomycota), were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). The biomass was separated from the medium by filtration (0.2 μm), and the filtrate was used to perform fluorogenic enzymatic assays with substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur moieties, and proteins. Kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were obtained. The species studied were able to release cell-free enzymes, and this represented up to 85.1% of the respective total EEA. However, this differed between species and enzymes, with some of the highest contributions being found in those with low total EEA, with some exceptions. This suggests that some of these contributions to the enzymatic pool might be minimal compared to those with higher total EEA. Generally, in the saline medium, the release of cell-free enzymes degrading carbohydrates was reduced compared to the non-saline medium, but those degrading lipids and sulfur moieties were increased. For the remaining substrates, there was not a clear influence of the salinity. Taken together, our results suggest that marine fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic pool. Our results also suggest that, under salinity changes, a potential effect of global warming, the hydrolysis of organic matter by marine fungal cell-free enzymes might be affected and hence, their potential contribution to the oceanic biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering Group, Wageningen University and Research, Wageningen, Netherlands
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Texel, Netherlands
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Xie J, Wu Q, Tao L, Wu F, Tu S, Chen D, Lin T, Li T. Essential and non-essential elements in tuna and billfish around the world: Distribution patterns and influencing factors. MARINE POLLUTION BULLETIN 2023; 196:115587. [PMID: 37797540 DOI: 10.1016/j.marpolbul.2023.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Tuna and billfish are widely distributed in oceans worldwide. Their survival is relied on a decent share of essential and non-essential elements. We conducted a comprehensive evaluation of essential and non-essential elements in livers of tuna and billfish collected from global oceans. The individual element consistently shown similar orders of magnitude in both tuna and billfish, with essential elements generally being 1-3 orders of magnitude higher than non-essential elements. Various physicochemical properties and behaviors contributed to four distinct clusters of these elements. Also, element distribution pattern indicated the presence of four sample groups based on regions and categories. Nine elements served as characteristic indicators. Among them, fish category was the most important influencing factor. Hg, Fe, Tl, Co, and Se were influenced by body size, trophic level, and feeding habits. Ni was influenced by sampling regions, while Mg, Mn and As were influenced by body size and local primary production.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Feng Wu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Duofu Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| |
Collapse
|
10
|
Garzke J, Forster I, Graham C, Costalago D, Hunt BPV. Future climate change-related decreases in food quality may affect juvenile Chinook salmon growth and survival. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106171. [PMID: 37716280 DOI: 10.1016/j.marenvres.2023.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Global climate change is projected to raise global temperatures by 3.3-5.7 °C by 2100, resulting in changes in species composition, abundance, and nutritional quality of organisms at the base of the marine food web. Predicted increases in prey availability and reductions in prey nutritional quality under climate warming in certain marine systems are expected to impact higher trophic levels, such as fish and humans. There is limited knowledge of the interplay between food quantity and quality under warming, specifically when food availability is high, but quality is low. Here, we conducted an experiment assessing the effects of food quality (fatty acid composition and ratios) on juvenile Chinook salmon's (Oncorhynchus tshawytscha) body and nutritional condition, specifically focusing on RNA:DNA ratio, Fulton's K, growth, mortality and their fatty acid composition. Experimental diets represented three different climate change scenarios with 1) a present-day diet (Euphausia pacifica), 2) a control diet (commercial aquaculture diet), and 3) a predicted Intergovernmental Panel on Climate Change (IPCC) worst-case scenario diet with low essential fatty acid concentrations (IPCC SSP5-8.5). We tested how growth rates, RNA:DNA ratio, Fulton's K index, fatty acid composition and mortality rates in juvenile Chinook salmon compared across diet treatments. Fatty acids were incorporated into the salmon muscle at varying rates but, on average, reflected dietary concentrations. High dietary concentrations of DHA, EPA and high DHA:EPA ratios, under the control and present-day diets, increased fish growth and condition. In contrast, low concentrations of DHA and EPA and low DHA:EPA ratios in the diets under climate change scenario were not compensated for by increased food quantity. This result highlights the importance of considering food quality when assessing fish response to changing ocean conditions.
Collapse
Affiliation(s)
- Jessica Garzke
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Ian Forster
- Pacific Science Enterprise Center, Fisheries and Oceans Canada, 4160 Marine Dr., West Vancouver, BC V7V 1N6, Canada
| | - Caroline Graham
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Costalago
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Hakai Institute, PO Box 309, Heriot Bay, BC, V0P 1H0, Canada
| |
Collapse
|
11
|
Santos SH, Martins BS, Ramos JA, Pereira JM, Almeida N, Gonçalves AMM, Matos DM, Norte AC, Rodrigues IF, Dos Santos I, Araújo PM, Paiva VH. Omega-3 enriched chick diet reduces the foraging areas of breeders in two closely related shearwaters from contrasting marine environments. J Exp Biol 2023; 226:jeb244690. [PMID: 37326253 DOI: 10.1242/jeb.244690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Seabirds have evolved several life-history characteristics to help buffer environmental stochasticity. However, particularly during the breeding season, seabirds may be affected by reductions in prey availability and localised oceanographic conditions caused by variations in the environment. The increase in sea surface temperature, triggered by accelerated global warming, is impairing phytoplankton production of omega-3 fatty acids (FAs). Here, we assessed the ecological role of omega-3 FAs on chick development and subsequently on breeder foraging behaviour in two closely related shearwater species foraging in contrasting marine environments. We supplemented chicks with omega-3 FA pills or with control placebo pills and monitored chick growth, chick health status and breeder at-sea foraging behaviour using global positioning system devices. We found that omega-3 chick supplementation reduced the 95% kernel utilization distribution of short trips of Cape Verde shearwaters, but overall, breeders kept a similar foraging pattern between treatments, potentially influenced by predictable prey patches off the West African coast. In contrast, for Cory's shearwaters, the parents of the omega-3 group greatly reduced the foraging effort. This suggests that the proximity to productive prey patches around the colony may help birds to adjust their effort and, therefore, energy expenditure, to changes in the development of their offspring, as driven by their nutritional status. Overall, our results suggest a link between a chick diet enriched in omega-3 FAs and parental foraging effort, providing insight into their ability to cope with a changing and increasingly stochastic marine environment.
Collapse
Affiliation(s)
- Sara H Santos
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Beatriz S Martins
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Jorge M Pereira
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Nathalie Almeida
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233-000, São Vicente, Cabo Verde
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana M Matos
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Ana C Norte
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Isabel F Rodrigues
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233-000, São Vicente, Cabo Verde
| | - Ivo Dos Santos
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Pedro M Araújo
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Vitor H Paiva
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
12
|
Fouzai C, Trabelsi W, Bejaoui S, Marengo M, Ghribi F, Chetoui I, Mili S, Soudani N. Dual oxidative stress and fatty acid profile impacts in Paracentrotus lividus exposed to lambda-cyhalothrin: biochemical and histopathological responses. Toxicol Res 2023; 39:429-441. [PMID: 37398571 PMCID: PMC10313587 DOI: 10.1007/s43188-023-00174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 07/04/2023] Open
Abstract
Lambda-cyhalothrin (λ-cyh) is a potential pyrethroid insecticide widely used in pest control. The presence of pyrethroids in the aquatic ecosystem may induce adverse effects on non-target organisms such as the sea urchin. This study was conducted to assess the toxic effects of λ-cyh on the fatty acid profiles, redox status, and histopathological aspects of Paracentrotus lividus gonads following exposure to three concentrations of λ-cyh (100, 250 and 500 µg/L) for 72 h. The results showed a significant decrease in saturated fatty acid (SFAs) with an increase in monounsaturated fatty acid (MUFAs) and polyunsaturated fatty acid (PUFAs) levels in λ-cyh treated sea urchins. The highest levels in PUFAs were recorded in the eicosapentaenoic acids (C20:5n-3), docosahexaenoic acids (C22:6n-3) and arachidonic acids (C20:4n-6) levels. The λ-cyh intoxication promoted oxidative stress with an increase in hydrogen peroxide (H2O2), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) levels. Furthermore, the enzymatic activities and non-enzymatic antioxidants levels were enhanced in all exposed sea urchins, while the vitamin C levels were decreased in 100 and 500 µg/L treated groups. Our biochemical results have been confirmed by the histopathological observations. Collectively, our findings offered valuable insights into the importance of assessing fatty acids' profiles as a relevant tool in aquatic ecotoxicological studies.
Collapse
Affiliation(s)
- Chaima Fouzai
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Wafa Trabelsi
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Michel Marengo
- Station de Recherche Sous-marines et Océanographiques (STARESO), Calvi, France
| | - Feriel Ghribi
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Imen Chetoui
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Sami Mili
- Higher institute of fishing and aquaculture of Bizerte, Menzel Jemil Bizerte, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
13
|
Brown-Vuillemin S, Tremblay R, Chabot D, Sirois P, Robert D. Feeding ecology of redfish (Sebastes sp.) inferred from the integrated use of fatty acid profiles as complementary dietary tracers to stomach content analysis. JOURNAL OF FISH BIOLOGY 2023; 102:1049-1066. [PMID: 36794305 DOI: 10.1111/jfb.15348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 05/13/2023]
Abstract
In the northern Gulf of St. Lawrence (nGSL), redfish (Sebastes mentella and Sebastes fasciatus combined) are at record levels of abundance following the strong recruitment of three consecutive cohorts in 2011-2013 and have become by far the most abundant demersal fish in the region. Understanding redfish trophic relationships is essential for the effective management and conservation of species in the nGSL ecosystem. To date, description and quantification of redfish diet in the region have been restricted to conventional stomach content analysis (SCA). Using analysis of fatty acid (FA) profiles as complementary dietary tracers, the authors conducted multivariate analyses on 350 livers of redfish which were collected in combination with stomach contents during a bottom-trawl scientific survey in August 2017. The predator FA profiles were compared to those of eight different redfish prey types identified as dietary important with SCA. Results suggested similitude between SCA and FA results, with zooplankton prey being more related to small (<20 cm) and medium (20-30 cm) redfish (16:1n7, 20:1n?, 22:1n9 and 20:5n3) than large (≥30 cm) ones, whereas shrimp prey seemed more related to large redfish size classes (18:2n6 and 22:6n3) relative to the small and medium ones. Although the SCA offers a glimpse in the diet only based on the most recently consumed prey, analysis of FA profiles provides a mid-term view indicating pelagic zooplankton consumption on calanoid copepod and confirming high predation pressure on shrimp. This study constitutes the first attempt of combining FA with SCA to assess the diet of redfish, highlights the benefits of FA as a qualitative tool and suggests improvements for future studies.
Collapse
Affiliation(s)
- Sarah Brown-Vuillemin
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Réjean Tremblay
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Denis Chabot
- Institut Maurice-Lamontagne, Pêches et Océans Canada, Mont-Joli, Quebec, Canada
| | - Pascal Sirois
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Dominique Robert
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| |
Collapse
|
14
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Foraging on anthropogenic food predicts problem-solving skills in a seabird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157732. [PMID: 35931163 DOI: 10.1016/j.scitotenv.2022.157732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Species and populations with greater cognitive performance are more successful at adapting to changing habitats. Accordingly, urban species and populations often outperform their rural counterparts on problem-solving tests. Paradoxically, urban foraging also might be detrimental to the development and integrity of animals' brains because anthropogenic foods often lack essential nutrients such as the long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are important for cognitive performance in mammals and possibly birds. We tested whether urbanization or consumption of EPA and DHA are associated with problem-solving abilities in ring-billed gulls, a seabird that historically exploited marine environments rich in omega-3 fatty acids but now also thrives in urban centres. Using incubating adults nesting across a range of rural to urban colonies with equal access to the ocean, we tested whether urban gulls preferentially consumed anthropogenic food while rural nesters relied on marine organisms. As we expected individual variation in foraging habits within nesting location, we characterized each captured gulls' diet using stable isotope and fatty acid analyses of their red blood cells. To test their problem-solving abilities, we presented the sampled birds with a horizontal rendition of the string-pull test, a foraging puzzle often used in animal cognitive studies. The isotopic and fatty acid profiles of urban nesters indicated a diet comprising primarily anthropogenic food, whereas the profiles of rural nesters indicated a high reliance on marine organisms. Despite the gulls' degree of access to urban foraging habitat not predicting solving success, birds with biochemical profiles reflecting anthropogenic food (less DHA and a higher carbon-13 ratio in their red blood cells) had a greater probability of solving the string-pull test. These results suggest that experience foraging on anthropogenic food is the main explanatory factor leading to successful problem-solving, while regular consumption of omega-3s during incubation appears inconsequential.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland and Labrador, St. John's, Canada.
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland and Labrador, St. John's, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, Canada
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's, Canada
| |
Collapse
|
15
|
Tao W, Ou J, Wu D, Zhang Q, Han X, Xie L, Li S, Zhang Y. Heat wave induces oxidative damage in the Chinese pond turtle (Mauremys reevesii) from low latitudes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1053260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
IntroductionGlobal warming has led to frequent heat waves, causing global organisms to face severe survival challenges. However, the way in which heat waves threaten the fitness and survival of animals remains largely unclear. Oxidative damage and immunity are widely considered the link between heat waves and threats to animals.MethodsTo evaluate the oxidative damage caused by heat waves and to reveal the physiological resistance to heat waves by the antioxidant defense of animals from different latitudes, we exposed both high-latitude (Zhejiang) and low-latitude (Hainan) populations of Chinese pond turtle (Mauremys reevesii) to simulate heat waves and a moderate thermal environment for 1 week, respectively. Next, we compared the oxidative damage by malondialdehyde (MDA) and antioxidant capacity by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC) in the liver tissues and evaluated the innate immunity by serum complement protein levels (C3, C4) and lysozyme activity in plasma of turtles.Results and discussionWe found that heat waves significantly increased the content of MDA and the activity of CAT, whereas it decreased the activity of SOD, T-AOC, and GSH/GSSG in turtles from low latitudes. Furthermore, heat waves increased CAT activity but decreased GSH/GSSG in turtles from high latitudes. Although the turtles from high latitudes had higher levels of innate immunity, the heat waves did not affect the innate immunity of C3, C4, or lysozyme in either population. These results indicate that the low-latitude population suffered higher oxidative damage with lower antioxidant capacities. Therefore, we predict that Chinese pond turtles from low latitudes may be more vulnerable to heat waves caused by climate warming. This study reveals the physiological and biochemical resistance to heat waves in Chinese pond turtles from different latitudes and highlights the importance of integrative determination of fitness-related responses in evaluating the vulnerability of ectotherms from different latitudes to climate warming.
Collapse
|
16
|
Profile of Molecular Species of Triacylglycerides from the Sea Cucumber Apostichopus japonicus. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Pinger C, Copeman L, Stowell M, Cormack B, Fugate C, Rogers M. Rapid measurement of total lipids in zooplankton using the sulfo-phospho-vanillin reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2665-2672. [PMID: 35748590 DOI: 10.1039/d2ay00665k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zooplankton provide a vital source of nutrition to a variety of fish and marine predators. Measuring the total lipid content of zooplankton provides important information about diet quality available to predators, revealing details about trophic dynamics and ecosystem status. We analyze the performance of a microplate assay, utilizing the sulfo-phospho-vanillin (SPV) reaction, to quantify the total lipid content of various large crustacean zooplankton in a rapid and high throughput manner. Pilot experiments were performed by measuring the total lipid content of purchased freeze-dried zooplankton (Calanus finmarchicus and Euphausia superba) by both SPV and gravimetric analysis (low throughput and requires large sample size). The results of the SPV assay were not statistically different from gravimetric analysis for either species (p > 0.05). Further, an inter-laboratory comparison study was performed to measure the total lipid content (% of wet mass) of field-collected Arctic and North Pacific zooplankton (copepods (n = 19) and euphausiids (n = 29)) of various species utilizing multiple analysis methods. Results from thin layer chromatography with flame ionization detection (TLC-FID) demonstrated that lipid classes in zooplankton samples varied in composition of steryl/wax esters (3-95%), triacylglycerols (1-52%), free-fatty acids (0.4-25%), sterols (0-4%) and polar lipids (1-42%). Despite this variation in lipid class composition among samples, the results of the SPV assay agreed well with gravimetric analysis. The mean absolute and relative differences between SPV and gravimetric analysis for all zooplankton lipids in this study were 1.0% and 11.6%, respectively. The SPV assay is rapid (<2 hours), high throughput (25 samples processed in parallel), low cost (supplies <$ 0.67 per sample), precise (inter assay CV = 6.9%, intra assay CV = 6.0%), sensitive (limit of detection < 1.7 micrograms of lipid per analysis), and accurate when calibrated with appropriate standards.
Collapse
Affiliation(s)
- Cody Pinger
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Pt. Lena Loop Road, Juneau, Alaska, USA, 99801.
| | - Louise Copeman
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Fisheries Behavioral Ecology Program, Hatfield Marine Science Center, Newport, Oregon, USA, 97365
- Cooperative Institute for Marine Ecosystem and Resources Studies (CIMERS), Oregon State University, Hatfield Marine Science Center, Newport, Oregon, USA, 97365
| | - Michelle Stowell
- Cooperative Institute for Marine Ecosystem and Resources Studies (CIMERS), Oregon State University, Hatfield Marine Science Center, Newport, Oregon, USA, 97365
| | - Bryan Cormack
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Pt. Lena Loop Road, Juneau, Alaska, USA, 99801.
| | - Corey Fugate
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Pt. Lena Loop Road, Juneau, Alaska, USA, 99801.
| | - Matthew Rogers
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Pt. Lena Loop Road, Juneau, Alaska, USA, 99801.
| |
Collapse
|
18
|
Fonseca VF, Duarte IA, Feijão E, Matos AR, Duarte B. Fatty acid-based index development in estuarine organisms to pinpoint environmental contamination. MARINE POLLUTION BULLETIN 2022; 180:113805. [PMID: 35665652 DOI: 10.1016/j.marpolbul.2022.113805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Estuaries have long been preferred areas of human settlement, where multiple anthropogenic activities take place, which have contributed to a significant decrease in environmental quality of these ecosystems. Accordingly, environmental monitoring and management have long relied on the development of tools that summarize and simplify complex information and provide direct interpretation of quality status. Here, the fatty acid profiles of three abundant estuarine species, namely Hediste diversicolor, Carcinus maenas and Pomatoschistus microps, were used to develop and validate a multimetric index, based on the Euclidean dissimilarities of profiles between sites, in response to contamination gradient in a large urban estuary. Spatial differences were generally related to unsaturated fatty acids (mono- and polyunsaturated, of the n-3 and n-6 series) in all species, albeit more pronounced in P. microps. Multivariate models returned high classification accuracies for the three sampled sites, varying from 73.3% in the invertebrate species to 100.0% in the fish species. Results show the applicability of the developed FA-based index, particularly due to the easy of communication, for managers and the public alike, but also highlight the need for prior validation on species suitability or sensitivity to depict environmental contamination.
Collapse
Affiliation(s)
- Vanessa F Fonseca
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Biosystems and Applied Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
19
|
Leal I, Tremblay R, Flores AAV. Allochthonous subsidies drive early recruitment of a subtropical foundation species. OIKOS 2022. [DOI: 10.1111/oik.08991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Inês Leal
- Inst. des Sciences de la mer, Univ. du Québec à Rimouski Rimouski QC Canada
| | - Réjean Tremblay
- Inst. des Sciences de la mer, Univ. du Québec à Rimouski Rimouski QC Canada
| | - Augusto A. V. Flores
- Univ. de São Paulo, Centro de Biologia Marinha, Rodovia Manoel Hypólito do Rego São Sebastião SP Brazil
| |
Collapse
|
20
|
Koutsouveli V, Balgoma D, Checa A, Hedeland M, Riesgo A, Cárdenas P. Oogenesis and lipid metabolism in the deep-sea sponge Phakellia ventilabrum (Linnaeus, 1767). Sci Rep 2022; 12:6317. [PMID: 35428825 PMCID: PMC9012834 DOI: 10.1038/s41598-022-10058-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Sponges contain an astounding diversity of lipids that serve in several biological functions, including yolk formation in their oocytes and embryos. The study of lipid metabolism during reproduction can provide information on food-web dynamics and energetic needs of the populations in their habitats, however, there are no studies focusing on the lipid metabolism of sponges during their seasonal reproduction. In this study, we used histology, lipidome profiling (UHPLC-MS), and transcriptomic analysis (RNA-seq) on the deep-sea sponge Phakellia ventilabrum (Demospongiae, Bubarida), a key species of North-Atlantic sponge grounds, with the goal to (i) assess the reproductive strategy and seasonality of this species, (ii) examine the relative changes in the lipidome signal and the gene expression patterns of the enzymes participating in lipid metabolism during oogenesis. Phakellia ventilabrum is an oviparous and most certainly gonochoristic species, reproducing in May and September in the different studied areas. Half of the specimens were reproducing, generating two to five oocytes per mm2. Oocytes accumulated lipid droplets and as oogenesis progressed, the signal of most of the unsaturated and monounsaturated triacylglycerides increased, as well as of a few other phospholipids. In parallel, we detected upregulation of genes in female tissues related to triacylglyceride biosynthesis and others related to fatty acid beta-oxidation. Triacylglycerides are likely the main type of lipid forming the yolk in P. ventilabrum since this lipid category has the most marked changes. In parallel, other lipid categories were engaged in fatty acid beta-oxidation to cover the energy requirements of female individuals during oogenesis. In this study, the reproductive activity of the sponge P. ventilabrum was studied for the first time uncovering their seasonality and revealing 759 lipids, including 155 triacylglycerides. Our study has ecological and evolutionary implications providing essential information for understanding the molecular basis of reproduction and the origins and formation of lipid yolk in early-branching metazoans.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK.
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Husargatan 3, 751 24, Uppsala, Sweden.
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC, Husargatan 3, 751 23, Uppsala, Sweden
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Mikael Hedeland
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Calle de José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Husargatan 3, 751 24, Uppsala, Sweden
| |
Collapse
|
21
|
Shalders TC, Champion C, Coleman MA, Benkendorff K. The nutritional and sensory quality of seafood in a changing climate. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105590. [PMID: 35255319 DOI: 10.1016/j.marenvres.2022.105590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Climate change is impacting living marine resources, whilst concomitantly, global reliance on seafood as a source of nutrition is increasing. Here we review an emerging research frontier, identifying significant impacts of climate-driven environmental change on the nutritional and sensory quality of seafood, and implications for human health. We highlight that changing ocean temperature, pH and salinity can lead to reductions in seafood macro and micronutrients, including essential nutrients such as protein and lipids. However, the nutritional quality of seafood appears to be more resilient in taxa that inhabit naturally variable environments such as estuaries and shallow near-coastal habitats. We develop criteria for assessing confidence in categorising the nutritional quality of seafood as vulnerable or resilient to climate change. The application of this criteria to a subset of seafood nutritional studies demonstrates confidence levels are generally low and could be improved by more realistic experimental designs and research collaboration. We highlight knowledge gaps to guide future research in this emerging field.
Collapse
Affiliation(s)
- Tanika C Shalders
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia.
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
22
|
Rontani JF. Use of Gas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules 2022; 27:1629. [PMID: 35268730 PMCID: PMC8911584 DOI: 10.3390/molecules27051629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 01/21/2023] Open
Abstract
This paper reviews applications of gas chromatography-mass spectrometry techniques for the characterization of photooxidation and autoxidation products of lipids of senescent phototrophic organisms. Particular attention is given to: (i) the selection of oxidation products that are sufficiently stable under environmental conditions and specific to each lipid class and degradation route; (ii) the description of electron ionization mass fragmentation of trimethylsilyl derivatives of these compounds; and (iii) the use of specific fragment ions for monitoring the oxidation of the main unsaturated lipid components of phototrophs. The techniques best geared for this task were gas chromatography-quadrupole-time of flight to monitor fragment ions with very high resolution and accuracy, and gas chromatography-tandem mass spectrometry to monitor very selective transitions in multiple reaction monitoring mode. The extent of the degradation processes can only be estimated if the oxidation products are unaffected by fast secondary oxidation reactions, as it is notably the case of ∆5-sterols, monounsaturated fatty acids, chlorophyll phytyl side-chain, and di- and triterpenoids. In contrast, the primary degradation products of highly branched isoprenoid alkenes possessing more than one trisubstituted double bond, alkenones, carotenoids and polyunsaturated fatty acids, appear to be too unstable with respect to secondary oxidation or other reactions to serve for quantification in environmental samples.
Collapse
Affiliation(s)
- Jean-François Rontani
- Mediterranean Institute of Oceanography (MIO), Aix Marseille University, Université de Toulon, CNRS, IRD, UM 110, 13288 Marseille, France
| |
Collapse
|
23
|
Loza A, García-Guevara F, Segovia L, Escobar-Zepeda A, Sanchez-Olmos MDC, Merino E, Sanchez-Flores A, Pardo-Lopez L, Juarez K, Gutierrez-Rios RM. Definition of the Metagenomic Profile of Ocean Water Samples From the Gulf of Mexico Based on Comparison With Reference Samples From Sites Worldwide. Front Microbiol 2022; 12:781497. [PMID: 35178038 PMCID: PMC8846951 DOI: 10.3389/fmicb.2021.781497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Computational and statistical analysis of shotgun metagenomes can predict gene abundance and is helpful for elucidating the functional and taxonomic compositions of environmental samples. Gene products are compared against physicochemical conditions or perturbations to shed light on the functions performed by the microbial community of an environmental sample; however, this information is not always available. The present study proposes a method for inferring the metabolic potential of metagenome samples by constructing a reference based on determining the probability distribution of the counts of each enzyme annotated. To test the methodology, we used marine water samples distributed worldwide as references. Then, the references were utilized to compare the annotated enzymes of two different water samples extracted from the Gulf of Mexico (GoM) to distinguish those enzymes with atypical behavior. The enzymes whose annotation counts presented frequencies significantly different from those of the reference were used to perform metabolic reconstruction, which naturally identified pathways. We found that several of the enzymes were involved in the biodegradation of petroleum, which is consistent with the impact of human hydrocarbon extraction activity and its ubiquitous presence in the GoM. The examination of other reconstructed pathways revealed significant enzymes indicating the presence of microbial communities characterizing each ocean depth and ocean cycle, providing a fingerprint of each sampled site.
Collapse
|
24
|
Rembeza E, Boverio A, Fraaije MW, Engqvist MKM. Discovery of Two Novel Oxidases Using a High-Throughput Activity Screen. Chembiochem 2022; 23:e202100510. [PMID: 34709726 PMCID: PMC9299179 DOI: 10.1002/cbic.202100510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Discovery of novel enzymes is a challenging task, yet a crucial one, due to their increasing relevance as chemical catalysts and biotechnological tools. In our work we present a high-throughput screening approach to discovering novel activities. A screen of 96 putative oxidases with 23 substrates led to the discovery of two new enzymes. The first enzyme, N-acetyl-D-hexosamine oxidase (EC 1.1.3.29) from Ralstonia solanacearum, is a vanillyl alcohol oxidase-like flavoprotein displaying the highest activity with N-acetylglucosamine and N-acetylgalactosamine. Before our discovery of the enzyme, its activity was an orphan one - experimentally characterized but lacking the link to amino acid sequence. The second enzyme, from an uncultured marine euryarchaeota, is a long-chain alcohol oxidase (LCAO, EC 1.1.3.20) active with a range of fatty alcohols, with 1-dodecanol being the preferred substrate. The enzyme displays no sequence similarity to previously characterised LCAOs, and thus is a completely novel representative of a protein with such activity.
Collapse
Affiliation(s)
- Elzbieta Rembeza
- Department of Biology and Biological EngineeringChalmers University of Technology412 96GothenburgSweden
| | - Alessandro Boverio
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Martin K. M. Engqvist
- Department of Biology and Biological EngineeringChalmers University of Technology412 96GothenburgSweden
| |
Collapse
|
25
|
Pigment and Fatty Acid Heterogeneity in the Sea Slug Elysia crispata Is Not Shaped by Habitat Depth. Animals (Basel) 2021; 11:ani11113157. [PMID: 34827889 PMCID: PMC8614334 DOI: 10.3390/ani11113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Some species of sacoglossan sea slugs are able to steal chloroplasts from the algae they feed on and maintain them functional for several months, a process termed “kleptoplasty”. One of these photosynthetic slugs is Elysia crispata, found in coral reefs of the Gulf of Mexico. This sacoglossan inhabits different depths (0–25 m), being exposed to different food sources and contrasting light conditions. In this work, we characterized the pigment and fatty acid (FA) profiles, and quantified the total lipid, glycolipid and phospholipid contents of E. crispata from shallow (0–4 m) and deeper (8–12 m) waters, after a month of starvation to determine the longest and more stable retention of chloroplasts and its relation to habitat depth. Biochemical analyses allowed the identification of 12 photosynthetic pigments and 27 FAs. Heterogeneity in the composition of pigments confirmed the long-term retention of functional chloroplasts ingested from different algae. However, the differences found in pigment profile, total lipid content, and FA composition on individuals of E. crispata were not related to habitat depth. High amounts of glycolipids, exclusive chloroplast lipids, suggest a good condition of these photosynthetic organelles in animal cells. These results contribute baseline physiological data that may help explain evolutionary associations such as endosymbiosis. Abstract Long-term retention of functional chloroplasts in animal cells occurs only in sacoglossan sea slugs. Analysis of molecules related to the maintenance of these organelles can provide valuable information on this trait (kleptoplasty). The goal of our research was to characterize the pigment and fatty acid (FA) composition of the sea slug Elysia crispata and their associated chloroplasts that are kept functional for a long time, and to quantify total lipid, glycolipid and phospholipid contents, identifying differences between habitats: shallow (0–4 m) and deeper (8–12 m) waters. Specimens were sampled and analyzed after a month of food deprivation, through HPLC, GC-MS and colorimetric methods, to ensure an assessment of long-term kleptoplasty in relation to depth. Pigment signatures indicate that individuals retain chloroplasts from different macroalgal sources. FA classes, phospholipid and glycolipid contents displayed dissimilarities between depths. However, heterogeneities in pigment and FA profiles, as well as total lipid, glycolipid and phospholipid amounts in E. crispata were not related to habitat depth. The high content of chloroplast origin molecules, such as Chl a and glycolipids after a month of starvation, confirms that E. crispata retains chloroplasts in good biochemical condition. This characterization fills a knowledge gap of an animal model commonly employed to study kleptoplasty.
Collapse
|
26
|
Curtis-Quick JA, Ulanov AV, Li Z, Bieber JF, Tucker-Retter EK, Suski CD. Why the Stall? Using metabolomics to define the lack of upstream movement of invasive bigheaded carp in the Illinois River. PLoS One 2021; 16:e0258150. [PMID: 34618833 PMCID: PMC8496817 DOI: 10.1371/journal.pone.0258150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Bigheaded Carp have spread throughout the Mississippi River basin since the 1970s. Little has stopped the spread as carp have the ability to pass through locks and dams, and they are currently approaching the Great Lakes. However, the location of the leading edge in the Illinois River has stalled for over a decade, even though there is no barrier preventing further advancement towards the Great Lakes. Defining why carp are not moving towards the Great Lakes is important for predicting why they might advance in the future. The aim of this study was to test the hypothesis that anthropogenic contaminants in the Illinois River may be playing a role in preventing further upstream movement of Bigheaded Carp. Ninety three livers were collected from carp at several locations between May and October of 2018. Liver samples were analyzed using gas chromatography-mass spectrometry in a targeted metabolite profiling approach. Livers from carp at the leading edge had differences in energy use and metabolism, and suppression of protective mechanisms relative to downstream fish; differences were consistent across time. This body of work provides evidence that water quality is linked to carp movement in the Illinois River. As water quality in this region continues to improve, consideration of this impact on carp spread is essential to protect the Great Lakes.
Collapse
Affiliation(s)
- Jocelyn A. Curtis-Quick
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Alexander V. Ulanov
- Metabolomics Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zhong Li
- Metabolomics Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - John F. Bieber
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Emily K. Tucker-Retter
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Cory D. Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
27
|
Peycheva K, Panayotova V, Stancheva R, Makedonski L, Merdzhanova A, Cicero N, Parrino V, Fazio F. Trace Elements and Omega-3 Fatty Acids of Wild and Farmed Mussels ( Mytilus galloprovincialis) Consumed in Bulgaria: Human Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10023. [PMID: 34639325 PMCID: PMC8507773 DOI: 10.3390/ijerph181910023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
The unique, closed ecosystem of the Black Sea is of significant global importance. The levels and health risk of some trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb and Zn) in wild and farmed mussels (Mytilus galloprovincialis) collected from the Bulgarian part of the Black Sea were determined and using different approaches such as Estimated Daily Intake (EDI), Target Hazard Quotient (THQ), Hazard Index (HI), Target risk (TR), human health risk levels were assessed. The mean maximum concentrations of the elements Cd, Cr, Cu, Fe, Ni, Pb and Zn in all mussel samples were below the maximum permissible limits (MPLs) except that which exceeded the limit of 2.00 mg/kg ww. Eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) were the major polyunsaturated fatty acids. The fatty acids profile studied mussels showed that the farmed mussels had higher PUFA/SFA ratios, DHA and EPA + DHA content and lower SFA, AI and TI values. The target risk (TR) values for Pb, Cr, Ni and As were calculated, evaluated and showed acceptable or negligible levels. Target hazard quotients (THQs) and hazard index (HI) from elemental intake were below 1 indicated no hazard from consumption. The benefit-risk ratio indicated that wild and cultured M. galloprovincialis are safe for human consumption.
Collapse
Affiliation(s)
- Katya Peycheva
- Department of Chemistry, Medical University of Varna, 9002 Varna, Bulgaria; (K.P.); (V.P.); (R.S.); (L.M.); (A.M.)
| | - Veselina Panayotova
- Department of Chemistry, Medical University of Varna, 9002 Varna, Bulgaria; (K.P.); (V.P.); (R.S.); (L.M.); (A.M.)
| | - Rositsa Stancheva
- Department of Chemistry, Medical University of Varna, 9002 Varna, Bulgaria; (K.P.); (V.P.); (R.S.); (L.M.); (A.M.)
| | - Lubomir Makedonski
- Department of Chemistry, Medical University of Varna, 9002 Varna, Bulgaria; (K.P.); (V.P.); (R.S.); (L.M.); (A.M.)
| | - Albena Merdzhanova
- Department of Chemistry, Medical University of Varna, 9002 Varna, Bulgaria; (K.P.); (V.P.); (R.S.); (L.M.); (A.M.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4Life, Spin off Company, University of Messina, 98168 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, 98166 Messina, Italy;
| |
Collapse
|
28
|
Parzanini C, Arts MT, Rohtla M, Koprivnikar J, Power M, Skiftesvik AB, Browman HI, Milotic D, Durif CMF. Feeding habitat and silvering stage affect lipid content and fatty acid composition of European eel Anguilla anguilla tissues. JOURNAL OF FISH BIOLOGY 2021; 99:1110-1124. [PMID: 34060093 DOI: 10.1111/jfb.14815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Lipids, particularly fatty acids (FAs), are major sources of energy and nutrients in aquatic ecosystems and play key roles during vertebrate development. The European eel Anguilla anguilla goes through major biochemical and physiological changes throughout its lifecycle as it inhabits sea- (SW), and/or brackish- (BW) and/or freshwater (FW) habitats. With the ultimate goal being to understand the reasons for eels adopting a certain life history strategy (FW or SW residency vs. 'habitat shifting'), we explored differences in lipid content and FA composition of muscle, liver and eyes from eels collected across Norwegian SW, BW and FW habitats, and at different lifecycle stages (yellow to silver). FW and SW eels had a higher lipid content overall compared to BW eels, reflecting differences in food availability and life history strategies. SW eels had higher proportions of certain monounsaturated FAs (MUFAs; 18:1n-9, 20:1n-9), and of the essential polyunsaturated FAs 20:5n-3 (eicosapentaenoic acid, EPA) and 22:6n-3 (docosahexaenoic acid) than FW eels, reflecting a marine-based diet. In contrast, the muscle of FW eels had higher proportions of 18:3n-3, 18:2n-6 and 20:4n-6 (arachidonic acid), as is typical of FW organisms. MUFA proportions increased in later stage eels, consistent with the hypothesis that the eels accumulate energy stores prior to migration. In addition, the decrease of EPA with advancing stage may be associated with the critical role that this FA plays in eel sexual development. Lipid and FA information provided further understanding of the habitat use and overall ecology of this critically endangered species.
Collapse
Affiliation(s)
- Camilla Parzanini
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Mehis Rohtla
- Ecosystem Acoustics Group, Austevoll Research Station, Institute of Marine Research, Storebø, Norway
- Estonian Marine Institute, University of Tartu, Tartu, Estonia
| | - Janet Koprivnikar
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Anne Berit Skiftesvik
- Ecosystem Acoustics Group, Austevoll Research Station, Institute of Marine Research, Storebø, Norway
| | - Howard I Browman
- Ecosystem Acoustics Group, Austevoll Research Station, Institute of Marine Research, Storebø, Norway
| | - Dino Milotic
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Caroline M F Durif
- Ecosystem Acoustics Group, Austevoll Research Station, Institute of Marine Research, Storebø, Norway
| |
Collapse
|
29
|
Madeira C, Madeira D, Ladd N, Schubert CJ, Diniz MS, Vinagre C, Leal MC. Conserved fatty acid profiles and lipid metabolic pathways in a tropical reef fish exposed to ocean warming - An adaptation mechanism of tolerant species? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146738. [PMID: 33836377 DOI: 10.1016/j.scitotenv.2021.146738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Climate warming is causing rapid spatial expansion of ocean warm pools from equatorial latitudes towards the subtropics. Sedentary coral reef inhabitants in affected areas will thus be trapped in high temperature regimes, which may become the "new normal". In this study, we used clownfish Amphiprion ocellaris as model organism to study reef fish mechanisms of thermal adaptation and determine how high temperature affects multiple lipid aspects that influence physiology and thermal tolerance. We exposed juvenile fish to two different experimental conditions, implemented over 28 days: average tropical water temperatures (26 °C, control) or average warm pool temperatures (30 °C). We then performed several analyses on fish muscle and liver tissues: i) total lipid content (%), ii) lipid peroxides, iii) fatty acid profiles, iv) lipid metabolic pathways, and v) weight as body condition metric. Results showed that lipid storage capacity in A. ocellaris was not affected by elevated temperature, even in the presence of lipid peroxides in both tissues assessed. Additionally, fatty acid profiles were unresponsive to elevated temperature, and lipid metabolic networks were consequently well conserved. Consistent with these results, we did not observe changes in fish weight at elevated temperature. There were, however, differences in fatty acid profiles between tissue types and over time. Liver showed enhanced α-linolenic and linoleic acid metabolism, which is an important pathway in stress response signaling and modulation on environmental changes. Temporal oscillations in fatty acid profiles are most likely related to intrinsic factors such as growth, which leads to the mobilization of energetic reserves between different tissues throughout time according to organism needs. Based on these results, we propose that the stability of fatty acid profiles and lipid metabolic pathways may be an important thermal adaptation feature of fish exposed to warming environments.
Collapse
Affiliation(s)
- Carolina Madeira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; MARE - Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Diana Madeira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Edifício ECOMARE, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Nemiah Ladd
- Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland; Ecosystem Physiology, University of Freiburg, 53/54 Georges-Köhler Allee, 79119 Freiburg, Germany
| | - Carsten J Schubert
- Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Mário S Diniz
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Miguel C Leal
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Edifício ECOMARE, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal; Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
30
|
Decreased lipid storage in juvenile Bering Sea crabs (Chionoecetes spp.) in a warm (2014) compared to a cold (2012) year on the southeastern Bering Sea. Polar Biol 2021. [DOI: 10.1007/s00300-021-02926-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Li S, Li J, Chen W, Xu Z, Xie L, Zhang Y. Effects of Simulated Heat Wave on Oxidative Physiology and Immunity in Asian Yellow Pond Turtle (Mauremys mutica). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Global warming has led to an increase in the frequency, duration, and intensity of heat waves in the summer, which can cause frequent and acute heat stress on ectotherms. Thus, determining how ectothermic animals respond to heat waves has been attracting growing interest among ecologists. However, the physiological and biochemical responses to heat waves in reptiles, especially aquatic reptiles, are still poorly understood. The current study investigated the oxidant physiology, immunity, and expression levels of heat shock proteins (HSP) mRNA after exposure to a simulated heat wave (1 week, 35 ± 4°C), followed by a recovery period (1 week, 28 ± 4°C) in juvenile Asian yellow pond turtle (Mauremys mutica), a widely farmed aquatic turtle in East Asia. The contents of malondialdehyde (MDA) in the liver and muscle were not significantly affected by the heat wave or recovery. Of all antioxidant enzymes, only the activity of glutathione peroxidase (GSH-Px) in muscles increased after heat wave, while the total superoxide dismutase (T-SOD), catalase activity (CAT), and total antioxidant capacity (T-AOC) did not change during the study. The organo-somatic index for the liver and spleen of M. mutica decreased after the heat wave but increased to the initial level after recovery. In contrast, plasma lysozyme activity and serum complement C4 levels increased after the heat wave, returning to the control level after recovery. In addition, heat waves did not alter the relative expression of HSP60, HSP70, and HSP90 mRNA in the liver. Eventually, heat wave slightly increased the IBR/n index. Therefore, our results suggested that heat waves did not lead to oxidative damage to lipids in M. mutica, but deleteriously affected the turtles’ immune organs. Meanwhile, the constitutive levels of most antioxidative enzyme activities, HSPs and enhanced blood immune functions might protect the turtles from the threat of heat waves under the current climate scenarios.
Collapse
|
32
|
Stumpp M, Saborowski R, Jungblut S, Liu HC, Hagen W. Dietary preferences of brachyuran crabs from Taiwan for marine or terrestrial food sources: evidence based on fatty acid trophic markers. Front Zool 2021; 18:26. [PMID: 34011355 PMCID: PMC8132384 DOI: 10.1186/s12983-021-00405-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trophic interactions are key processes, which determine the ecological function and performance of organisms. Many decapod crustaceans feed on plant material as a source for essential nutrients, e.g. polyunsaturated fatty acids. Strictly herbivorous feeding appears only occasionally in marine decapods but is common in land crabs. To verify food preferences and to establish trophic markers, we studied the lipid and fatty acid composition of the midgut glands of two marine crab species (Grapsus albolineatus and Percnon affine), one semi-terrestrial species (Orisarma intermedium, formerly Sesarmops intermedius), and one terrestrial species (Geothelphusa albogilva) from Taiwan. RESULTS All species showed a wide span of total lipid levels ranging from 4 to 42% of the dry mass (%DM) in the marine P. affine and from 3 to 25%DM in the terrestrial G. albogilva. Triacylglycerols (TAG) were the major storage lipid compound. The fatty acids 16:0, 18:1(n-9), and 20:4(n-6) prevailed in all species. Essential fatty acids such as 20:4(n-6) originated from the diet. Terrestrial species also showed relatively high amounts of 18:2(n-6), which is a trophic marker for vascular plants. The fatty acid compositions of the four species allow to clearly distinguish between marine and terrestrial herbivorous feeding due to significantly different amounts of 16:0, 18:1(n-9), and 18:2(n-6). CONCLUSIONS Based on the fatty acid composition, marine/terrestrial herbivory indices were defined and compared with regard to their resolution and differentiating capacity. These indices can help to reveal trophic preferences of unexplored species, particularly in habitats of border regions like mangrove intertidal flats and estuaries.
Collapse
Affiliation(s)
- Meike Stumpp
- University of Bremen, BreMarE (Bremen Marine Ecology), Marine Zoology, PO Box 330 440, 28334, Bremen, Germany. .,Christian-Albrechts-University, Zoological Institute, Am Botanischen Garten 3-9, 24118, Kiel, Germany.
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27515, Bremerhaven, Germany
| | - Simon Jungblut
- University of Bremen, BreMarE (Bremen Marine Ecology), Marine Zoology, PO Box 330 440, 28334, Bremen, Germany.,Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27515, Bremerhaven, Germany.,Present address: University of Bremen, BreMarE (Bremen Marine Ecology), Marine Botany, PO Box 330 440, 28334, Bremen, Germany
| | - Hung-Chang Liu
- Land Crab Ecology Research Laboratory, 53 Chenggong 11th St., Jubei City, Hsinchu County, 302, Taiwan
| | - Wilhelm Hagen
- University of Bremen, BreMarE (Bremen Marine Ecology), Marine Zoology, PO Box 330 440, 28334, Bremen, Germany.,University of Bremen, MARUM Center of Environmental Sciences, PO Box 330 440, 28334, Bremen, Germany
| |
Collapse
|
33
|
Raes EJ, Karsh K, Sow SLS, Ostrowski M, Brown MV, van de Kamp J, Franco-Santos RM, Bodrossy L, Waite AM. Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nat Commun 2021; 12:2213. [PMID: 33850115 PMCID: PMC8044245 DOI: 10.1038/s41467-021-22409-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Global oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.
Collapse
Affiliation(s)
- Eric J Raes
- CSIRO Oceans and Atmosphere, Hobart, TAS, Australia.
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada.
| | | | - Swan L S Sow
- CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Den Burg, The Netherlands
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Rita M Franco-Santos
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | - Anya M Waite
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
34
|
Remize M, Planchon F, Loh AN, Le Grand F, Mathieu-Resuge M, Bideau A, Corvaisier R, Volety A, Soudant P. Fatty acid isotopic fractionation in the diatom Chaetoceros muelleri. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition. J Exp Biol 2021; 224:jeb.235929. [PMID: 33462136 PMCID: PMC7929930 DOI: 10.1242/jeb.235929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Consuming omega-3 fatty acids (n-3 LCPUFAs) during development improves cognition in mammals, but the effect remains untested in other taxa. In aquatic ecosystems, n-3 LCPUFAs are produced by phytoplankton and bioaccumulate in the food web. Alarmingly, the warming and acidification of aquatic systems caused by climate change impair n-3 LCPUFA production, with an anticipated decrease of 80% by the year 2100. We tested whether n-3 LCPUFA consumption affects the physiology, morphology, behaviour and cognition of the chicks of a top marine predator, the ring-billed gull. Using a colony with little access to n-3 LCPUFAs, we supplemented siblings from 22 fenced nests with contrasting treatments from hatching until fledging; one sibling received n-3 LCPUFA-rich fish oil and the other, a control sucrose solution without n-3 LCPUFAs. Halfway through the nestling period, half the chicks receiving fish oil were switched to the sucrose solution to test whether n-3 LCPUFA intake remains crucial past the main growth phase (chronic versus transient treatments). Upon fledging, n-3 LCPUFAs were elevated in the blood and brains of chicks receiving the chronic treatment, but were comparable to control levels among those receiving the transient treatment. Across the entire sample, chicks with elevated n-3 LCPUFAs in their tissues fledged earlier despite their morphology and activity levels being unrelated to fledging age. Fledging required chicks to escape fences encircling their nest. We therefore interpret fledging age as a possible indicator of cognition, with chicks with improved cognition fledging earlier. These results provide insight into whether declining dietary n-3 LCPUFAs will compromise top predators' problem-solving skills, and thus their ability to survive in a rapidly changing world.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada, A1N 4T3
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| |
Collapse
|
36
|
Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar Drugs 2021; 19:113. [PMID: 33670628 PMCID: PMC7922858 DOI: 10.3390/md19020113] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.
Collapse
Affiliation(s)
- Marine Remize
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Yves Brunel
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Joana L. Silva
- ALLMICROALGAE–Natural Products, Avenida 25 Abril, 2445-413 Pataias, Portugal;
| | | | - Edith Filaire
- GREENTECH, Biopôle Clermont-Limagne, 63360 SAINT BEAUZIRE, France;
- ECREIN Team, UMR 1019 INRA-UcA, UNH (Human Nutrition Unity), University Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
37
|
Duarte B, Feijão E, Cruz de Carvalho R, Duarte IA, Silva M, Matos AR, Cabrita MT, Novais SC, Lemos MFL, Marques JC, Caçador I, Reis-Santos P, Fonseca VF. Effects of Propranolol on Growth, Lipids and Energy Metabolism and Oxidative Stress Response of Phaeodactylum tricornutum. BIOLOGY 2020; 9:biology9120478. [PMID: 33353054 PMCID: PMC7766914 DOI: 10.3390/biology9120478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary In the past two decades, increasing attention has been directed to investigate the incidence and consequences of pharmaceuticals in the aquatic environment. Propranolol is a non-selective β-adrenoceptor blocker used in large quantities worldwide to treat cardiovascular conditions. Diatoms (model organism) exposed to this compound showed evident signs of oxidative stress, a significant reduction of the autotrophic O2 production and an increase in the heterotrophic mitochondrial respiration. Additionally, diatoms exposed to propranolol showed a consumption of its storage lipids. In ecological terms this will have cascading impacts in the marine trophic webs, where these organisms are key elements, through a reduction of the water column oxygenation and essential fatty acid availability to the heterotrophic organisms that depend on these primary producers. In ecotoxicological terms, diatoms photochemical and fatty acid traits showed to be potential good biomarkers for toxicity assessment of diatoms exposed to this widespread pharmaceutical compound. Abstract Present demographic trends suggest a rise in the contributions of human pharmaceuticals into coastal ecosystems, underpinning an increasing demand to evaluate the ecotoxicological effects and implications of drug residues in marine risk assessments. Propranolol, a non-selective β-adrenoceptor blocker, is used worldwide to treat high blood pressure conditions and other related cardiovascular conditions. Although diatoms lack β-adrenoceptors, this microalgal group presents receptor-like kinases and proteins with a functional analogy to the animal receptors and that can be targeted by propranolol. In the present work, the authors evaluated the effect of this non-selective β-adrenoceptor blocker in diatom cells using P. tricornutum as a model organism, to evaluate the potential effect of this compound in cell physiology (growth, lipids and energy metabolism and oxidative stress) and its potential relevance for marine ecosystems. Propranolol exposure leads to a significant reduction in diatom cell growth, more evident in the highest concentrations tested. This is likely due to the observed impairment of the main primary photochemistry processes and the enhancement of the mitochondrial respiratory activity. More specifically, propranolol decreased the energy transduction from photosystem II (PSII) to the electron transport chain, leading to an increase in oxidative stress levels. Cells exposed to propranolol also exhibited high-dissipated energy flux, indicating that this excessive energy is efficiently diverted, to some extent, from the photosystems, acting to prevent irreversible photoinhibition. As energy production is impaired at the PSII donor side, preventing energy production through the electron transport chain, diatoms appear to be consuming storage lipids as an energy backup system, to maintain essential cellular functions. This consumption will be attained by an increase in respiratory activity. Considering the primary oxygen production and consumption pathways, propranolol showed a significant reduction of the autotrophic O2 production and an increase in the heterotrophic mitochondrial respiration. Both mechanisms can have negative effects on marine trophic webs, due to a decrease in the energetic input from marine primary producers and a simultaneous oxygen production decrease for heterotrophic species. In ecotoxicological terms, bio-optical and fatty acid data appear as highly efficient tools for ecotoxicity assessment, with an overall high degree of classification when these traits are used to build a toxicological profile, instead of individually assessed.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Correspondence:
| | - Eduardo Feijão
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Ricardo Cruz de Carvalho
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Irina A. Duarte
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisbon, Portugal;
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (S.C.N.); (M.F.L.L.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (S.C.N.); (M.F.L.L.)
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal;
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Patrick Reis-Santos
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Aldeide, SA 5005, Australia
| | - Vanessa F. Fonseca
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| |
Collapse
|
38
|
Carreón-Palau L, Özdemir NŞ, Parrish CC, Parzanini C. Sterol Composition of Sponges, Cnidarians, Arthropods, Mollusks, and Echinoderms from the Deep Northwest Atlantic: A Comparison with Shallow Coastal Gulf of Mexico. Mar Drugs 2020; 18:md18120598. [PMID: 33260983 PMCID: PMC7761341 DOI: 10.3390/md18120598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 01/31/2023] Open
Abstract
Triterpenoid biosynthesis is generally anaerobic in bacteria and aerobic in Eukarya. The major class of triterpenoids in bacteria, the hopanoids, is different to that in Eukarya, the lanostanoids, and their 4,4,14-demethylated derivatives, sterols. In the deep sea, the prokaryotic contribution to primary productivity has been suggested to be higher because local environmental conditions prevent classic photosynthetic processes from occurring. Sterols have been used as trophic biomarkers because primary producers have different compositions, and they are incorporated in primary consumer tissues. In the present study, we inferred food supply to deep sea, sponges, cnidarians, mollusks, crustaceans, and echinoderms from euphotic zone production which is driven by phytoplankton eukaryotic autotrophy. Sterol composition was obtained by gas chromatography and mass spectrometry. Moreover, we compared the sterol composition of three phyla (i.e., Porifera, Cnidaria, and Echinodermata) collected between a deep and cold-water region and a shallow tropical area. We hypothesized that the sterol composition of shallow tropical benthic organisms would better reflect their photoautotrophic sources independently of the taxonomy. Shallow tropical sponges and cnidarians from environments showed plant and zooxanthellae sterols in their tissues, while their deep-sea counterparts showed phytoplankton and zooplankton sterols. In contrast, echinoids, a class of echinoderms, the most complex phylum along with hemichordates and chordates (deuterostomes), did not show significant differences in their sterol profile, suggesting that cholesterol synthesis is present in deuterostomes other than chordates.
Collapse
Affiliation(s)
- Laura Carreón-Palau
- Department of Ocean Sciences, Memorial University of Newfoundland, Marine Lab Rd., St. John’s, NL A1C 5S7, Canada; (N.Ş.Ö.); (C.C.P.); (C.P.)
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), El Comitán, La Paz, Baja California Sur 23205, Mexico
- Correspondence:
| | - Nurgül Şen Özdemir
- Department of Ocean Sciences, Memorial University of Newfoundland, Marine Lab Rd., St. John’s, NL A1C 5S7, Canada; (N.Ş.Ö.); (C.C.P.); (C.P.)
- Department of Veterinary Medicine, Vocational School of Food, Agriculture and Livestock, Bingöl University, Bingöl 12000, Turkey
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, Marine Lab Rd., St. John’s, NL A1C 5S7, Canada; (N.Ş.Ö.); (C.C.P.); (C.P.)
| | - Camilla Parzanini
- Department of Ocean Sciences, Memorial University of Newfoundland, Marine Lab Rd., St. John’s, NL A1C 5S7, Canada; (N.Ş.Ö.); (C.C.P.); (C.P.)
- Department of Chemistry and Biolog, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
39
|
Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific. Sci Rep 2020; 10:19990. [PMID: 33203914 PMCID: PMC7672225 DOI: 10.1038/s41598-020-76792-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals.
Collapse
|
40
|
Feijão E, Franzitta M, Cabrita MT, Caçador I, Duarte B, Gameiro C, Matos AR. Marine heat waves alter gene expression of key enzymes of membrane and storage lipids metabolism in Phaeodactylum tricornutum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:357-368. [PMID: 33002714 DOI: 10.1016/j.plaphy.2020.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Across the globe, heat waves are getting more intense and frequent. Diatoms are a major group of microalgae at the base of the marine food webs and an important source of long chain polyunsaturated fatty acids that are transferred through the food web. The present study investigates the possible impacts of temperature increase on lipid classes and expression of genes encoding enzymes related to lipid metabolism in Phaeodactylum tricornutum. The heat wave exposure caused an increase in the relative amounts of plastidial lipids such as the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulphoquinovosyldiacylglycerol (SQDG) in parallel with a decrease in the neutral lipid fraction, which includes triacylglycerols. In agreement, gene expression analyses revealed an up-regulation of a gene encoding one MGDG synthase and down-regulation of a diacylglycerol acyltransferase (DGAT), a key enzyme in triacylglycerol synthesis. Our results show that heat waves not only negatively impact the abundance of unsaturated fatty acids such as eicosapentaenoic acid (20:5n-3, EPA) and hexadecatrienoic acid (16:3n-4) as observed by the decrease in their relative abundance in MGDG and neutral lipids, respectively, but also induce changes in the relative amounts of the diverse membrane lipids as well as the proportion of membrane/storage lipids. The expression study of key genes indicates that some of the aforementioned alterations are regulated at the transcription level whereas others appear to be post-transcriptional. The changes observed in plastidial lipids are related to negative impacts on the photosynthesis.
Collapse
Affiliation(s)
- Eduardo Feijão
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Marco Franzitta
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Carla Gameiro
- IPMA, Instituto Português do Mar e Atmosfera, Div-RP - Divisão de Modelação e Gestão de Recursos de Pesca, 1495-165, Algés, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
41
|
Feijão E, Cruz de Carvalho R, Duarte IA, Matos AR, Cabrita MT, Novais SC, Lemos MFL, Caçador I, Marques JC, Reis-Santos P, Fonseca VF, Duarte B. Fluoxetine Arrests Growth of the Model Diatom Phaeodactylum tricornutum by Increasing Oxidative Stress and Altering Energetic and Lipid Metabolism. Front Microbiol 2020; 11:1803. [PMID: 32849412 PMCID: PMC7411086 DOI: 10.3389/fmicb.2020.01803] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Pharmaceutical residues impose a new and emerging threat to aquatic environments and its biota. One of the most commonly prescribed pharmaceuticals is the antidepressant fluoxetine, a selective serotonin re-uptake inhibitor that has been frequently detected, in concentrations up to 40 μg L–1, in aquatic ecosystems. The present study aims to investigate the ecotoxicity of fluoxetine at environmentally relevant concentrations (0.3, 0.6, 20, 40, and 80 μg L–1) on cell energy and lipid metabolism, as well as oxidative stress biomarkers in the model diatom Phaeodactylum tricornutum. Exposure to higher concentrations of fluoxetine negatively affected cell density and photosynthesis through a decrease in the active PSII reaction centers. Stress response mechanisms, like β-carotene (β-car) production and antioxidant enzymes [superoxide dismutase (SOD) and ascorbate peroxidase (APX)] up-regulation were triggered, likely as a positive feedback mechanism toward formation of fluoxetine-induced reactive oxygen species. Lipid peroxidation products increased greatly at the highest fluoxetine concentration whereas no variation in the relative amounts of long chain polyunsaturated fatty acids (LC-PUFAs) was observed. However, monogalactosyldiacylglycerol-characteristic fatty acids such as C16:2 and C16:3 increased, suggesting an interaction between light harvesting pigments, lipid environment, and photosynthesis stabilization. Using a canonical multivariate analysis, it was possible to evaluate the efficiency of the application of bio-optical and biochemical techniques as potential fluoxetine exposure biomarkers in P. tricornutum. An overall classification efficiency to the different levels of fluoxetine exposure of 61.1 and 88.9% were obtained for bio-optical and fatty acids profiles, respectively, with different resolution degrees highlighting these parameters as potential efficient biomarkers. Additionally, the negative impact of this pharmaceutical molecule on the primary productivity is also evident alongside with an increase in respiratory oxygen consumption. From the ecological point of view, reduction in diatom biomass due to continued exposure to fluoxetine may severely impact estuarine and coastal trophic webs, by both a reduction in oxygen primary productivity and reduced availability of key fatty acids to the dependent heterotrophic upper levels.
Collapse
Affiliation(s)
- Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.,cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território, University of Lisbon, Lisbon, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Peniche, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Peniche, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - João Carlos Marques
- MARE - Marine and Environmental Sciences Centre, Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.,Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
42
|
Rey F, Melo T, Cartaxana P, Calado R, Domingues P, Cruz S, Domingues MRM. Coping with Starvation: Contrasting Lipidomic Dynamics in the Cells of Two Sacoglossan Sea Slugs Incorporating Stolen Plastids from the Same Macroalga. Integr Comp Biol 2020; 60:43-56. [PMID: 32294176 DOI: 10.1093/icb/icaa019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several species of sacoglossan sea slugs are able to sequester chloroplasts from algae and incorporate them into their cells. However, the ability to maintain functional "stolen" plastids (kleptoplasts) can vary significantly within the Sacoglossa, giving species different capacities to withstand periods of food shortage. The present study provides an insight on the comparative shifts experienced by the lipidome of two sacoglossan sea slug species, Elysia viridis (long-term retention of functional chloroplasts) and Placida dendritica (retention of non-functional chloroplasts). A hydrophilic interaction liquid chromatography-mass spectrometry approach was employed to screen the lipidome of specimens from both species feeding on the macroalga Codium tomentosum and after 1-week of starvation. The lipidome of E. viridis was generally unaffected by the absence of food, while that of P. dendritica varied significantly. The retention of functional chloroplasts by E. viridis cells allows this species to endure periods of food shortage, while in P. dendritica a significant reduction in the amount of main lipids was the consequence of the consumption of its own mass to endure starvation. The large proportion of ether phospholipids (plasmalogens) in both sea slug species suggests that these compounds may play a key role in chloroplast incorporation in sea slug cells and/or be involved in the reduction of the oxidative stress resulting from the presence of kleptoplasts.
Collapse
Affiliation(s)
- Felisa Rey
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Tânia Melo
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Paulo Cartaxana
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Ricardo Calado
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Sónia Cruz
- ECOMARE, CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - M Rosário M Domingues
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.,Mass Spectrometry Centre & QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
43
|
Ontogenetic patterns in lipid and fatty acid biomarkers of juvenile polar cod (Boreogadus saida) and saffron cod (Eleginus gracilis) from across the Alaska Arctic. Polar Biol 2020. [DOI: 10.1007/s00300-020-02648-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Laudicella VA, Beveridge C, Carboni S, Franco SC, Doherty MK, Long N, Mitchell E, Stanley MS, Whitfield PD, Hughes AD. Lipidomics analysis of juveniles' blue mussels (Mytilus edulis L. 1758), a key economic and ecological species. PLoS One 2020; 15:e0223031. [PMID: 32084137 PMCID: PMC7034892 DOI: 10.1371/journal.pone.0223031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Blue mussels (Mytilus edulis L. 1758) are important components of coastal ecosystems and in the economy of rural and coastal areas. The understanding of their physiological processes at key life stages is important both within food production systems and in the management of wild populations. Lipids are crucial molecules for bivalve growth, but their diversity and roles have not been fully characterised. In this study, traditional lipid profiling techniques, such as fatty acid (FA) and lipid class analysis, are combined to untargeted lipidomics to elucidate the lipid metabolism in newly settled spat fed on a range of diets. The evaluated diets included single strains treatments (Cylindrotheca fusiformis CCAP 1017/2 -CYL, Isochrysis galbana CCAP 927/1- ISO, Monodopsis subterranean CCAP 848/1 -MONO, Nannochloropsis oceanica CCAP 849/10- NANNO) and a commercial algae paste (SP). Spat growth was influenced by the diets, which, according to their efficacy were ranked as follows: ISO>NANNO/CYL>SP>MONO. A higher triacylglycerols (TG) content, ranging from 4.23±0.82 μg mgashfree Dry weight (DW)-1 at the beginning of the trial (T0) to 51±15.3 μg mgashfreeDW-1 in ISO, characterised significant growth in the spat, whereas, a reduction of TG (0.3±0.08 μg mgashfreeDW-1 in MONO), mono unsaturated FA-MUFA (from 8.52±1.02 μg mgFAashfreeDW-1 at T0 to 2.81±1.02 μg mgFAashfreeDW-1 in MONO) and polyunsaturated FA-PUFA (from 17.57±2.24 μg mgFAashfreeDW-1 at T0 to 6.19±2.49 μg mgFAashfreeDW-1 in MONO) content characterised poor performing groups. Untargeted lipidomics evidenced how the availability of dietary essential PUFA did not influence only neutral lipids but also the membrane lipids, with changes in lipid molecular species in relation to the essential PUFA provided via the diet. Such changes have the potential to affect spat production cycle and their ability to respond to the surrounding environment. This study evidenced the advantages of coupling different lipid analysis techniques, as each technique disclosed relevant information on nutritional requirements of M. edulis juveniles, expanding the existing knowledge on the physiology of this important species.
Collapse
Affiliation(s)
| | - Christine Beveridge
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, Oban, United Kingdom
| | - Stefano Carboni
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Sofia C. Franco
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, Oban, United Kingdom
| | - Mary K. Doherty
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Sciences, Inverness, United Kingdom
| | - Nina Long
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, Oban, United Kingdom
| | - Elaine Mitchell
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, Oban, United Kingdom
| | - Michele S. Stanley
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, Oban, United Kingdom
| | - Phillip D. Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Sciences, Inverness, United Kingdom
| | - Adam D. Hughes
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, Oban, United Kingdom
| |
Collapse
|
45
|
Imbs AB, Grigorchuk VP. Lipidomic study of the influence of dietary fatty acids on structural lipids of cold-water nudibranch molluscs. Sci Rep 2019; 9:20013. [PMID: 31882931 PMCID: PMC6934475 DOI: 10.1038/s41598-019-56746-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022] Open
Abstract
Nudibranch molluscs occur in marine ecosystems worldwide and prey on numerous invertebrate species. During feeding, dietary fatty acids (FAs) unusual for nudibranchs are transferred to their lipids. Normal biomembrane functions require stable composition of structural polar lipids (PL), but the pathways of dietary FA utilization to PL in nudibranchs still remain unknown. A combination of chromatography and tandem high-resolution mass spectrometry was used to determine total lipid, PL, FA, and PL molecular species composition of two cold-water species of Dendronotus, which then were compared with those of Tritonia tetraquetra. The use of FA trophic markers showed that Dendronotus sp. and T. tetraquetra prey on different soft corals, while D. robustus may consumes hydrocorals and bryozoans. Nudibranch FA profiles were strongly modified by dietary FAs but their PL profilers were similar. Dietary FAs are not included in ceramide aminoethylphosphonate and inositol glycerophospholipids, but directed to ethanolamine, choline, and serine glycerophospholipids and, in some cases, form isobaric molecular species with different FA chain lengths. For such isobaric species, nudibranchs reduce the length of alkyl groups when very-long-chain FAs are obtained with diet. This molecular mechanism may explain the adaptation of nudibranch membrane structure to dietary input of unusual FAs.
Collapse
Affiliation(s)
- Andrey B Imbs
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo str., 690041, Vladivostok, Russian Federation.
| | - Valeria P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022, Vladivostok, Russian Federation
| |
Collapse
|
46
|
Johnson JJ, Olin JA, Polito MJ. A multi-biomarker approach supports the use of compound-specific stable isotope analysis of amino acids to quantify basal carbon source use in a salt marsh consumer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1781-1791. [PMID: 31344761 DOI: 10.1002/rcm.8538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Determining the flow of energy from primary producers to higher trophic levels in complex systems remains an important task for ecologists. Biomarkers can be used to trace carbon or energy sources contributing to an organism's tissues. However, different biomarkers vary in their ability to trace carbon sources based on how faithfully they transfer between trophic levels. Comparing emerging biomarker techniques with more commonly used techniques can demonstrate the relative efficacy of each in specific systems. METHODS Two common biomarker techniques, fatty acid analysis (FAA) and bulk stable isotope analysis (SIA), and one emerging biomarker technique, compound-specific stable isotope analysis of amino acids (CSIA-AA), were compared to assess their ability to characterize and quantify basal carbon sources supporting the seaside sparrow (Ammodramus maritimus), a common salt marsh species. Herbivorous insect and deposit-feeding fiddler crab biomarker values were analyzed as proxies of major terrestrial and aquatic basal carbon sources, respectively. RESULTS All three biomarker techniques indicated that both terrestrial and aquatic carbon sources were important to seaside sparrows. However, FAA could only be evaluated qualitatively, due to a currently limited understanding of trophic modification of fatty acids between primary producer and this consumer's tissues. Quantitative stable isotope (SIA or CSIA-AA) mixing models predicted nearly equal contributions of terrestrial and aquatic carbon sources supporting seaside sparrows, yet estimates based on CSIA-AA had greater precision. CONCLUSIONS These findings support the use of CSIA-AA as an emerging tool to quantify the relative importance of basal carbon sources in salt marsh consumers. Integrating multiple biomarker techniques, with their differing benefits and limitations, will help to constrain models of carbon and energy flow in future ecosystem studies.
Collapse
Affiliation(s)
- Jessica J Johnson
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jill A Olin
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Great Lakes Research Center, Michigan Technological University, Houghton, MI, 49931, USA
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
47
|
Ahmmed MK, Ahmmed F, Tian HS, Carne A, Bekhit AED. Marine omega-3 (n-3) phospholipids: A comprehensive review of their properties, sources, bioavailability, and relation to brain health. Compr Rev Food Sci Food Saf 2019; 19:64-123. [PMID: 33319514 DOI: 10.1111/1541-4337.12510] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
For several decades, there has been considerable interest in marine-derived long chain n-3 fatty acids (n-3 LCPUFAs) due to their outstanding health benefits. n-3 LCPUFAs can be found in nature either in triglycerides (TAGs) or in phospholipid (PL) form. From brain health point of view, PL n-3 is more bioavailable and potent compared to n-3 in TAG form, as only PL n-3 is able to cross the blood-brain barrier and can be involved in brain biochemical reactions. However, PL n-3 has been ignored in the fish oil industry and frequently removed as an impurity during degumming processes. As a result, PL products derived from marine sources are very limited compared to TAG products. Commercially, PLs are being used in pharmaceutical industries as drug carriers, in food manufacturing as emulsifiers and in cosmetic industries as skin care agents, but most of the PLs used in these applications are produced from vegetable sources that contain less (without EPA, DPA, and DHA) or sometimes no n-3 LCPUFAs. This review provides a comprehensive account of the properties, structures, and major sources of marine PLs, and provides focussed discussion of their relationship to brain health. Epidemiological, laboratory, and clinical studies on n-3 LCPUFAs enriched PLs using different model systems in relation to brain and mental health that have been published over the past few years are discussed in detail.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
48
|
Muret K, Désert C, Lagoutte L, Boutin M, Gondret F, Zerjal T, Lagarrigue S. Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species. BMC Genomics 2019; 20:882. [PMID: 31752679 PMCID: PMC6868825 DOI: 10.1186/s12864-019-6093-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lipids are important for the cell and organism life since they are major components of membranes, energy reserves and are also signal molecules. The main organs for the energy synthesis and storage are the liver and adipose tissue, both in humans and in more distant species such as chicken. Long noncoding RNAs (lncRNAs) are known to be involved in many biological processes including lipid metabolism. RESULTS In this context, this paper provides the most exhaustive list of lncRNAs involved in lipid metabolism with 60 genes identified after an in-depth analysis of the bibliography, while all "review" type articles list a total of 27 genes. These 60 lncRNAs are mainly described in human or mice and only a few of them have a precise described mode-of-action. Because these genes are still named in a non-standard way making such a study tedious, we propose a standard name for this list according to the rules dictated by the HUGO consortium. Moreover, we identified about 10% of lncRNAs which are conserved between mammals and chicken and 2% between mammals and fishes. Finally, we demonstrated that two lncRNA were wrongly considered as lncRNAs in the literature since they are 3' extensions of the closest coding gene. CONCLUSIONS Such a lncRNAs catalogue can participate to the understanding of the lipid metabolism regulators; it can be useful to better understand the genetic regulation of some human diseases (obesity, hepatic steatosis) or traits of economic interest in livestock species (meat quality, carcass composition). We have no doubt that this first set will be rapidly enriched in coming years.
Collapse
Affiliation(s)
- Kevin Muret
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | - Colette Désert
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | | | - Morgane Boutin
- PEGASE, INRA, AGROCAMPUS OUEST, 35590, Saint-Gilles, France
| | | | - Tatiana Zerjal
- GABI INRA, AgroParisTech, Université Paris-Saclay, Domaine de Vilvert, 78352, Jouy-en-Josas, France
| | | |
Collapse
|
49
|
Hicks CC, Cohen PJ, Graham NAJ, Nash KL, Allison EH, D’Lima C, Mills DJ, Roscher M, Thilsted SH, Thorne-Lyman AL, MacNeil MA. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 2019; 574:95-98. [DOI: 10.1038/s41586-019-1592-6] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/22/2019] [Indexed: 12/27/2022]
|
50
|
Mdaini Z, El Cafsi M, Tremblay R, Pharand P, Gagné JP. Spatio-temporal variability of biomarker responses and lipid composition of Marphysa sanguinea, Montagu (1813) in the anthropic impacted lagoon of Tunis. MARINE POLLUTION BULLETIN 2019; 144:275-286. [PMID: 31179997 DOI: 10.1016/j.marpolbul.2019.04.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
In this study the Polychaeta Marphysa sanguinea, was tested to investigate the impact of metal pollution on the environmental state of a coastal Mediterranean lagoon, Tunis Lagoon (Tunisia). A multi-biomarker approach comprising glutathione-stransferase, cyclooxygenase, lysozyme activity, and lipid class composition of the Polychaeta was employed on a seasonal basis in the present investigation. The multivariate statistical approach (principal component analysis and Pearson correlation) clearly demonstrated different spatial patterns in biomarker values and lipid class concentrations. The phospholipids were the dominant lipid class in M. sanguinea, with the highest value found at the control station. The impact of pollution was most clearly observed on the main storage lipid class, triacylglycerol, which was lowest in the most impacted sites. Our work suggests that M. sanguinea can be used in warmer Mediterranean costal habitats as a sentinel species of contaminated ecosystems.
Collapse
Affiliation(s)
- Zied Mdaini
- Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis, Université Tunis El Manar, Campus El Manar, 2092 Tunis, Tunisie; Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - M'hamed El Cafsi
- Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis, Université Tunis El Manar, Campus El Manar, 2092 Tunis, Tunisie
| | - Rejean Tremblay
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Pamela Pharand
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Jean-Pierre Gagné
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|