1
|
Horn CJ, Yuli S, Berry JA, Luong LT. A male-killing Spiroplasma endosymbiont has age-mediated impacts on Drosophila endurance and sleep. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104723. [PMID: 39551154 DOI: 10.1016/j.jinsphys.2024.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Endosymbiotic bacteria have a wide range of impacts on host physiology, behavior, metabolism, endurance, and mobility. Recent work found some endosymbionts also impact host sleep duration and quality. These effects may increase as flies age and endosymbiont titers increase. We tested the hypothesis that Spiroplasma poulsonni MSRO negatively impacts sleep in Drosophila melanogaster, and this in turn impairs fly endurance. In geotaxis climbing assays (a proxy for endurance), we found that MSRO impacted climbing endurance but in an age-dependent manner. Among younger flies, MSRO+ flies slept significantly less during dark periods (measured by a Drosophila Activity Monitoring System) compared to uninfected flies, but older MSRO+ flies did not show significant differences in amount of sleep compared to uninfected flies in the same cohort. While MSRO status impacted both sleep and endurance of hosts, endosymbiont-mediated sleep deprivation did not directly explain decreases in fly endurance. We discuss these results in the context of endosymbiont comparative biology.
Collapse
Affiliation(s)
- Collin J Horn
- Dalhousie University, Department of Psychology and Neuroscience, Canada; University of Alberta, Department of Biological Sciences, Canada.
| | - Sissi Yuli
- University of Alberta, Department of Biological Sciences, Canada
| | - Jacob A Berry
- University of Alberta, Department of Biological Sciences, Canada
| | - Lien T Luong
- University of Alberta, Department of Biological Sciences, Canada
| |
Collapse
|
2
|
Mortlock E, English H, Börger L, Matas D, Koren L, Capellini I, Jennings D. Drivers of individual differences in the sleep behaviour of fallow deer neonates. J Anim Ecol 2025; 94:449-461. [PMID: 39891496 PMCID: PMC11880652 DOI: 10.1111/1365-2656.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Inter-individual differences are necessary for selection to act, while plasticity (intra-individual variation) may buffer against selection. Sleep is a critical self-maintenance behaviour but, unlike most behaviours, the causes and consequences of its inter- and intra-individual variation in wild animals is poorly understood, particularly in neonates where sleep plays a key role in development. We have shown previously that free-ranging neonate fallow deer (Dama dama) differ in sleep during the first few weeks of life. Here, we test whether individual variability in sleep is organised systematically across the population, and whether these individual differences are associated with chronic stress measured using hair cortisol, or the timing of birth. Four dimensions of sleep behaviour (total sleep time, sleep fragmentation, sleep quality, and sleep distribution over 24-h) were quantified using state-of-the-art triaxial accelerometers. We then used a multivariate mixed-effects model in a Bayesian framework to evaluate covariation between multiple dimensions of sleep behaviour, and quantify the relative importance of chronic stress and the timing of birth, while accounting for the confounding effects of environmental conditions and age. We found that the timing of birth and chronic stress were not associated with changes in sleep between individuals. While both total sleep time and the number of bouts per day declined with age, their rate of development covaried, but no other sleep dimensions covaried. Our results represent an in-depth analysis of natural variation in sleep, and show that individual differences in four aspects of sleep architecture in free-living fallow deer fawns are strong but independent of one another and unrelated to chronic stress or the timing of birth. We suggest that covariation between sleep dimensions might emerge later in life and effects of cortisol and birth timing might be very short and transient.
Collapse
Affiliation(s)
- Euan Mortlock
- School of Biological SciencesQueen's University BelfastBelfastUK
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Holly English
- School of Biology and Environmental ScienceUniversity College DublinDublinIreland
| | - Luca Börger
- Department of BiosciencesSwansea UniversitySwanseaUK
| | - Devorah Matas
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | | | | |
Collapse
|
3
|
Li X, Wang X, Shang Z, Yang S, Tang Y, Xu W. Non-Immune Functions of Innate Immunity Acting on Physiological Processes: Insights from Drosophila. Int J Mol Sci 2025; 26:1087. [PMID: 39940855 PMCID: PMC11817114 DOI: 10.3390/ijms26031087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
As the first line of host immune defense, innate immunity plays a key role in warding off foreign pathogens and damage. Drosophila melanogaster, as a classical model animal for more than 100 years, is an important research model for studying innate immunity. In recent years, scientists have made remarkable progress in the recognition mechanisms of innate immunity, the mechanisms of effector molecules, and the modes of their response at the cellular and tissue levels. However, the interaction between innate immunity and other physiological functions remains relatively novel and has yet to be systematically explored. Here, we first briefly discuss the link between the innate immunity system and physiological regulation, from several representative perspectives such as sleep, insulin, and brain function. Then, using Drosophila as a model, we provide an overview of the physiological system and specifically summarize the research on the regulation of physiology by innate immunity, covering sleep, lipid metabolism, development, neurodegenerative diseases, memory, feeding, lifespan, movement, and antioxidation. This review provides valuable perspectives into how innate immunity influences other physiological processes, providing a deeper understanding of the complex roles underlying innate immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Matak AM, Mu Y, Mohati SM, Makdissi S, Di Cara F. Circadian rhythm and immunity: decoding chrono-immunology using the model organism Drosophila melanogaster. Genome 2025; 68:1-18. [PMID: 40168693 DOI: 10.1139/gen-2025-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Circadian rhythms are important cellular pathways first described for their essential role in helping organisms adjust to the 24 h day-night cycle and synchronize physiological and behavioral functions. Most organisms have evolved a circadian central clock to anticipate daily environmental changes in light, temperature, and mate availability. It is now understood that multiple clocks exist in organisms to regulate the functions of specific organs. Epidemiological studies in humans reported that disruption of the circadian rhythms caused by sleep deprivation is linked to the onset of immune-related conditions, suggesting the importance of circadian regulation of immunity. Mechanistic studies to define how circadian clocks and immune responses interact have profound implications for human health. However, elucidating the clocks and their tissue-specific functions has been challenging in mammals. Many studies using simple model organisms such as Drosophila melanogaster have been pioneering in discovering that the clock controls innate immune responses and immune challenges can impact circadian rhythms and/or their outcomes. In this review, we will report genetic studies using the humble fruit fly that identified the existence of reciprocal interactions between the circadian pathway and innate immune signaling, contributing to elucidate mechanisms in the growing field of chrono-immunology.
Collapse
Affiliation(s)
- Arash Mohammadi Matak
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Yizhu Mu
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Seyedeh Mahdiye Mohati
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3K 6R8, Canada
| |
Collapse
|
5
|
Lee S, Silverman N, Gao FB. Emerging roles of antimicrobial peptides in innate immunity, neuronal function, and neurodegeneration. Trends Neurosci 2024; 47:949-961. [PMID: 39389804 PMCID: PMC11563872 DOI: 10.1016/j.tins.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Antimicrobial peptides (AMPs), a collection of small proteins with important roles in classical innate immunity, have been extensively studied in multiple organisms, particularly in Drosophila melanogaster. Advances in CRISPR/Cas9 genome editing have allowed individual AMP functions to be dissected, revealing specific and selective roles in host defense. Recent findings have also revealed many unexpected contributions of endogenous AMPs to neuronal functions and neurodegenerative diseases, and have shed light on the intersections between innate immunity and neurobiology. We explore the intricate relationships between AMPs and sleep regulation, memory formation, as well as traumatic brain injury and several neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). Understanding the diverse functions of AMPs opens new avenues for neuroinflammation and neurodegenerative disease research and potential therapeutic development.
Collapse
Affiliation(s)
- Soojin Lee
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Hutton P, Lendvai ÁZ, Németh J, McGraw KJ. Urban house finches are more resistant to the effects of artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174525. [PMID: 38972420 DOI: 10.1016/j.scitotenv.2024.174525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Rapid urbanization of habitats alters the physical, chemical, auditory, and photic environments of human and wild animal inhabitants. One of the most widespread transformations is caused by artificial light at night (ALAN), but it is not clear the extent to which individuals acclimate to such rapid environmental change. Here, we tested the hypothesis that urban birds show increased resistance to harmful behavioral, parasitological, and physiological effects of ALAN. We captured house finches (Haemorhous mexicanus), a bird that commonly inhabits cities and their natural surroundings, from two urban and two rural sites in Phoenix, Arizona, USA, which differ by both degree of urbanization and by multiple orders of magnitude in ALAN intensity, and placed them in a common garden laboratory setting. We exposed half of the birds from each habitat type to ecologically relevant levels of night lighting during the subjective night and found that, while ALAN exposure reduced sleep in both urban and rural birds, ALAN-exposed urban birds were able to sleep longer than ALAN-exposed rural birds. We also found that ALAN exposure increased the proliferation rate of an intestinal coccidian parasite (Isospora spp.) in both urban and rural birds, but that the rate of proliferation was lower in urban relative to rural birds. We found that night lighting suppressed titers of feather corticosterone in rural but not urban birds, suggesting that light impairs HPA function through chronic stress or suppression of its circadian rhythmicity, and that urban birds were again resistant to this effect. Mediation analyses show that the effect of ALAN exposure in rural birds was significantly sleep-mediated for feather corticosterone but not coccidiosis, suggesting a diversity of mechanisms by which ALAN alters physiology. We contribute further evidence that animals from night-lit habitats can develop resistance to ALAN and its detrimental effects.
Collapse
Affiliation(s)
- Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jószef Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Iannacone MJ, Um P, Grubbs JI, van der Linden AM, Raizen DM. Quiescence Enhances Survival during Viral Infection in Caenorhabditis elegans. J Neurosci 2024; 44:e1700222024. [PMID: 39060176 PMCID: PMC11358607 DOI: 10.1523/jneurosci.1700-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Infection causes reduced activity, anorexia, and sleep, which are components of the phylogenetically conserved but poorly understood sickness behavior. We developed a Caenorhabditis elegans model to study quiescence during chronic infection, using infection with the Orsay virus. The Orsay virus infects intestinal cells yet strongly affects behavior, indicating gut-to-nervous system communication. Infection quiescence has the sleep properties of reduced responsiveness and rapid reversibility. Both the ALA and RIS neurons regulate virus-induced quiescence though ALA plays a more prominent role. Quiescence-defective animals have decreased survival when infected, indicating a benefit of quiescence during chronic infectious disease. The survival benefit of quiescence is not explained by a difference in viral load, indicating that it improves resilience rather than resistance to infection. Orsay infection is associated with a decrease in ATP levels, and this decrease is more severe in quiescence-defective animals. We propose that quiescence preserves energetic resources by reducing energy expenditures and/or by increasing extraction of energy from nutrients. This model presents an opportunity to explore the role of sleep and fatigue in chronic infectious illness.
Collapse
Affiliation(s)
- Michael J Iannacone
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul Um
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jeremy I Grubbs
- Department of Biology, University of Nevada, Reno, Nevada 89557
| | | | - David M Raizen
- Department of Neurology, and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
8
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
9
|
Infection increases activity via Toll dependent and independent mechanisms in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010826. [PMID: 36129961 PMCID: PMC9529128 DOI: 10.1371/journal.ppat.1010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/03/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Host behavioural changes are among the most apparent effects of infection. ‘Sickness behaviour’ can involve a variety of symptoms, including anorexia, depression, and changed activity levels. Here, using a real-time tracking and behavioural profiling platform, we show that in Drosophila melanogaster, several systemic bacterial infections cause significant increases in physical activity, and that the extent of this activity increase is a predictor of survival time in some lethal infections. Using multiple bacteria and D. melanogaster immune and activity mutants, we show that increased activity is driven by at least two different mechanisms. Increased activity after infection with Micrococcus luteus, a Gram-positive bacterium rapidly cleared by the immune response, strictly requires the Toll ligand spätzle. In contrast, increased activity after infection with Francisella novicida, a Gram-negative bacterium that cannot be cleared by the immune response, is entirely independent of both Toll and the parallel IMD pathway. The existence of multiple signalling mechanisms by which bacterial infections drive increases in physical activity implies that this effect may be an important aspect of the host response. Sickness behaviours are often observed during infection. Animals have been shown to change their feeding, mating, social and resting (sleeping) behaviours in response to infection. We show here that fruit-flies infected with bacteria respond by increasing their physical activity and decreasing the amount of time spent sleeping. This increase in activity is seen in some, but not all, bacterial infections, and appears to be driven by at least two different mechanisms: with some bacteria, activating the immune response is the only requirement to induce increased activity, while other bacteria induce increased activity independently of known immune detection pathways. The biological role of increased activity is unclear; flies in the wild may be driven to flee sites where infection risk or pathogen burden is high. Alternatively, increased activity could serve a less direct anti-microbial function. For example, active animals may be more likely to encounter potential mates or food resource.
Collapse
|
10
|
Irwin MR. Sleep disruption induces activation of inflammation and heightens risk for infectious disease: Role of impairments in thermoregulation and elevated ambient temperature. Temperature (Austin) 2022; 10:198-234. [PMID: 37332305 PMCID: PMC10274531 DOI: 10.1080/23328940.2022.2109932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022] Open
Abstract
Thermoregulation and sleep are tightly coordinated, with evidence that impairments in thermoregulation as well as increases in ambient temperature increase the risk of sleep disturbance. As a period of rest and low demand for metabolic resources, sleep functions to support host responses to prior immunological challenges. In addition by priming the innate immune response, sleep prepares the body for injury or infection which might occur the following day. However when sleep is disrupted, this phasic organization between nocturnal sleep and the immune system becomes misaligned, cellular and genomic markers of inflammation are activated, and increases of proinflammatory cytokines shift from the nighttime to the day. Moreover, when sleep disturbance is perpetuated due to thermal factors such as elevated ambient temperature, the beneficial crosstalk between sleep and immune system becomes further imbalanced. Elevations in proinflammatory cytokines have reciprocal effects and induce sleep fragmentation with decreases in sleep efficiency, decreases in deep sleep, and increases in rapid eye movement sleep, further fomenting inflammation and inflammatory disease risk. Under these conditions, sleep disturbance has additional potent effects to decrease adaptive immune response, impair vaccine responses, and increase vulnerability to infectious disease. Behavioral interventions effectively treat insomnia and reverse systemic and cellular inflammation. Further, insomnia treatment redirects the misaligned inflammatory- and adaptive immune transcriptional profiles with the potential to mitigate risk of inflammation-related cardiovascular, neurodegenerative, and mental health diseases, as well as susceptibility to infectious disease.
Collapse
Affiliation(s)
- Michael R. Irwin
- University of California, Los Angeles – Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
11
|
Ajayi OM, Marlman JM, Gleitz LA, Smith ES, Piller BD, Krupa JA, Vinauger C, Benoit JB. Behavioral and postural analyses establish sleep-like states for mosquitoes that can impact host landing and blood feeding. J Exp Biol 2022; 225:jeb244032. [PMID: 35502753 PMCID: PMC9234499 DOI: 10.1242/jeb.244032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Sleep is an evolutionarily conserved process that has been described in different animal systems. For insects, sleep characterization has been primarily achieved using behavioral and electrophysiological correlates in a few systems. Sleep in mosquitoes, which are important vectors of disease-causing pathogens, has not been directly examined. This is surprising as circadian rhythms, which have been well studied in mosquitoes, influence sleep in other systems. In this study, we characterized sleep in mosquitoes using body posture analysis and behavioral correlates, and quantified the effect of sleep deprivation on sleep rebound, host landing and blood-feeding propensity. Body and appendage position metrics revealed a clear distinction between the posture of mosquitoes in their putative sleep and awake states for multiple species, which correlated with a reduction in responsiveness to host cues. Sleep assessment informed by these posture analyses indicated significantly more sleep during periods of low activity. Night-time and daytime sleep deprivation resulting from the delivery of vibration stimuli induced sleep rebound in the subsequent phase in day and night active mosquitoes, respectively. Lastly, sleep deprivation suppressed host landing in both laboratory and field settings, and impaired blood feeding of a human host when mosquitoes would normally be active. These results suggest that quantifiable sleep states occur in mosquitoes and highlight the potential epidemiological importance of mosquito sleep.
Collapse
Affiliation(s)
- Oluwaseun M. Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Justin M. Marlman
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Lucas A. Gleitz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Evan S. Smith
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Benjamin D. Piller
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Justyna A. Krupa
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
12
|
|
13
|
Stewart NH, Arora VM. Sleep in Hospitalized Patients. Respir Med 2022. [DOI: 10.1007/978-3-030-93739-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Jin X, Gu P, Han J. Protocol for Drosophila sleep deprivation using single-chip board. STAR Protoc 2021; 2:100827. [PMID: 34585161 PMCID: PMC8456114 DOI: 10.1016/j.xpro.2021.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sleep behavior is characterized by long-term quiescence and increased arousal threshold, and it is homeostatically regulated. The sleep rebound after deprivation is utilized to verify the abilities to maintain homeostasis. This protocol shows how to build a programmed mechanic oscillation system and detailed procedures to conduct sleep deprivation in Drosophila. This deprivation system is featured by its programming flexibility. The knowledge of electronic circuits and a certain level of programming are both required to fulfill this protocol. For complete details on the use and execution of this protocol, please refer to Jin et al. (2021). The retrofitted oscillator is controlled by a pseudo-random trigger signal A programmable single-chip board enables system flexibility The modular design simplifies debugging and maintenance
Collapse
Affiliation(s)
- Xi Jin
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Pengyu Gu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
15
|
Nature-Based Therapies for Sleep Disorders in People Living with Human Immunodeficiency Virus. Nurs Clin North Am 2021; 56:189-202. [PMID: 34023115 DOI: 10.1016/j.cnur.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Following diagnosis of human immunodeficiency virus (HIV), getting adequate sleep may be the farthest thing from the mind of patients or providers. Even further from mind are the potential benefits on both sleep and HIV from nature-based therapy. In developing and developed countries, access to high-quality natural spaces has the potential to support physical and mental health. This article provides a review of sleep disorders, conventional and nature-based therapies, and the potential of nature-based therapy to support the health of people living with HIV through increased restorative sleep and immune function.
Collapse
|
16
|
Dang X, Wang G. Spotlight on the Selected New Antimicrobial Innate Immune Peptides Discovered During 2015-2019. Curr Top Med Chem 2021; 20:2984-2998. [PMID: 33092508 DOI: 10.2174/1568026620666201022143625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Antibiotic resistance is a global issue and new anti-microbials are required. INTRODUCTION Anti-microbial peptides are important players of host innate immune systems that prevent infections. Due to their ability to eliminate drug-resistant pathogens, AMPs are promising candidates for developing the next generation of anti-microbials. METHODS The anti-microbial peptide database provides a useful tool for searching, predicting, and designing new AMPs. In the period from 2015-2019, ~500 new natural peptides have been registered. RESULTS This article highlights a selected set of new AMP members with interesting properties. Teixobactin is a cell wall inhibiting peptide antibiotic, while darobactin inhibits a chaperone and translocator for outer membrane proteins. Remarkably, cOB1, a sex pheromone from commensal enterococci, restricts the growth of multidrug-resistant Enterococcus faecalis in the gut at a picomolar concentration. A novel proline-rich AMP has been found in the plant Brassica napus. A shrimp peptide MjPen- II comprises three different sequence domains: serine-rich, proline-rich, and cysteine-rich regions. Surprisingly, an amphibian peptide urumin specifically inhibits H1 hemagglutinin-bearing influenza A virus. Defensins are abundant and typically consist of three pairs of intramolecular disulfide bonds. However, rat rattusin dimerizes via forming five pairs of intermolecular disulfide bonds. While human LL-37 can be induced by vitamin D, vitamin A induces the expression of resistin-like molecule alpha (RELMα) in mice. The isolation and characterization of an alternative human cathelicidin peptide, TLN-58, substantiates the concept of one gene multiple peptides. The involvement of a fly AMP nemuri in sleep induction may promote the research on the relationship between sleep and infection control. CONCLUSION The functional roles of AMPs continue to grow and the general term "innate immune peptides" becomes useful. These discoveries widen our view on the anti-microbial peptides and may open new opportunities for developing novel peptide therapeutics for different applications.
Collapse
Affiliation(s)
- Xiangli Dang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| |
Collapse
|
17
|
Zhang Y, Wu Y, Xu D, Xiao P, Xie B, Huang H, Shang Y, Yuan S, Zhang J. Very-Short-Term Sleep Deprivation Slows Early Recovery of Lymphocytes in Septic Patients. Front Med (Lausanne) 2021; 8:656615. [PMID: 34109195 PMCID: PMC8180857 DOI: 10.3389/fmed.2021.656615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Sleep plays an important role in immune function. However, the effects of very-short-term sleep deprivation on the early recovery of immune function after sepsis remain unclear. This study was conducted in the intensive care unit to investigate the effects of 2 consecutive days of sleep deprivation (SD) on lymphocyte recovery over the following few days in septic patients who were recovering from a critical illness. The patients' self-reports of sleep quality was assessed using the Richards–Campbell Sleep Questionnaire at 0 and 24 h after inclusion. The demographic, clinical, laboratory, treatment, and outcome data were collected and compared between the good sleep group and poor sleep group. We found that 2 consecutive days of SD decreased the absolute lymphocyte count (ALC) and ALC recovery at 3 days after SD. Furthermore, post-septic poor sleep decreased the plasma levels of atrial natriuretic peptide (ANP) immediately after 2 consecutive days of SD. The ANP levels at 24 h after inclusion were positively correlated with ALC recovery, the number of CD3+ T cells, or the number of CD3+ CD4+ cells in the peripheral blood on day 5 after inclusion. Our data suggested that very-short-term poor sleep quality could slow down lymphocyte recovery over the following few days in septic patients who were recovering from a critical illness. Our results underscore the significance of very-short-term SD on serious negative effects on the immune function. Therefore, it is suggested that continuous SD or several short-term SD with short intervals should be avoided in septic patients.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuming Wu
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Xu
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xiao
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Huang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Tongji Medical College, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Hague MTJ, Woods HA, Cooper BS. Pervasive effects of Wolbachia on host activity. Biol Lett 2021; 17:20210052. [PMID: 33947218 PMCID: PMC8097217 DOI: 10.1098/rsbl.2021.0052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Heritable symbionts have diverse effects on the physiology, reproduction and fitness of their hosts. Maternally transmitted Wolbachia are one of the most common endosymbionts in nature, infecting about half of all insect species. We test the hypothesis that Wolbachia alter host behaviour by assessing the effects of 14 different Wolbachia strains on the locomotor activity of nine Drosophila host species. We find that Wolbachia alter the activity of six different host genotypes, including all hosts in our assay infected with wRi-like Wolbachia strains (wRi, wSuz and wAur), which have rapidly spread among Drosophila species in about the last 14 000 years. While Wolbachia effects on host activity were common, the direction of these effects varied unpredictably and sometimes depended on host sex. We hypothesize that the prominent effects of wRi-like Wolbachia may be explained by patterns of Wolbachia titre and localization within host somatic tissues, particularly in the central nervous system. Our findings support the view that Wolbachia have wide-ranging effects on host behaviour. The fitness consequences of these behavioural modifications are important for understanding the evolution of host-symbiont interactions, including how Wolbachia spread within host populations.
Collapse
Affiliation(s)
- Michael T. J. Hague
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812
| |
Collapse
|
19
|
Zhang L, Li T, Chen L, Wu F, Xia W, Huang M, Guo Z, Song L, Yin H, Zhang Y, Yu Y, Cai S, Lu Z, Rong S, Bao W. Association of sleep quality before and after SARS-CoV-2 infection with clinical outcomes in hospitalized patients with COVID-19 in China. EXCLI JOURNAL 2021; 20:894-906. [PMID: 34121976 PMCID: PMC8192881 DOI: 10.17179/excli2021-3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
Sleep is believed to benefit the host defense against pathogens. We aimed to investigate the association of sleep quality with clinical outcomes among hospitalized patients with COVID-19. We conducted a prospective cohort study in 205 adult hospitalized patients with diagnosed moderate COVID-19, with follow-up until hospital discharge or death. Pittsburgh Sleep Quality Index (PSQI) assessed sleep quality before and after infection. The primary outcome was the incidence of severe or critical pneumonia, and the secondary outcomes were duration of hospital stay and laboratory measurements during the follow up. Among the 205 included hospitalized patients, 185 (90.2 %) experienced poorer sleep quality after infection than before according to the PSQI score, and 25 (12.2 %) developed severe or critical pneumonia during follow-up. In Cox regression models, the adjusted hazard ratio of developing severe or critical pneumonia associated with each 1 score increment in the PSQI score before and after infection was 1.23 (95% CI: 1.09, 1.39) and 1.35 (95 % CI: 1.08, 1.67), respectively. Poorer sleep quality was also significantly associated with a prolonged hospital stay and more serious dysregulations in immune system indicated by several laboratory markers. Poorer sleep quality, either in the daily time or after infection with SARS-CoV-2, was associated with worse clinical outcomes. These findings highlight the importance of good sleep in confronting the emerging pandemic of COVID-19.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Tingting Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Wu
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Wenguang Xia
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Min Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Zhenli Guo
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Lin Song
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Hongxiang Yin
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Yangpu Zhang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Yongfei Yu
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan 430015, China
| | - Sijie Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zijian Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Ajayi OM, Eilerts DF, Bailey ST, Vinauger C, Benoit JB. Do Mosquitoes Sleep? Trends Parasitol 2020; 36:888-897. [PMID: 32952061 PMCID: PMC8094063 DOI: 10.1016/j.pt.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Sleep is a phenomenon conserved across the animal kingdom, where studies on Drosophila melanogaster have revealed that sleep phenotypes and molecular underpinnings are similar to those in mammals. However, little is known about sleep in blood-feeding arthropods, which have a critical role in public health as disease vectors. Specifically, sleep studies in mosquitoes are lacking despite considerable focus on how circadian processes, which have a central role in regulating sleep/wake cycles, impact activity, feeding, and immunity. Here, we review observations which suggest that sleep-like states likely occur in mosquitoes and discuss the potential role of sleep in relation to mosquito biology and their ability to function as disease vectors.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA. @mail.uc.edu
| | - Diane F Eilerts
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA. @uc.edu
| |
Collapse
|
21
|
Bi J, Wang Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. INSECT SCIENCE 2020; 27:846-858. [PMID: 31631529 PMCID: PMC7496987 DOI: 10.1111/1744-7917.12731] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/25/2019] [Accepted: 09/10/2019] [Indexed: 05/10/2023]
Abstract
As one of the most successful intracellular symbiotic bacteria, Wolbachia can infect many arthropods and nematodes. Wolbachia infection usually affects the reproduction of their hosts to promote their own proliferation and transmission. Currently, most of the studies focus on the mechanisms of Wolbachia interactions with host reproduction. However, in addition to distribution in the reproductive tissues, Wolbachia also infect various somatic tissues of their hosts, including the brain. This raises the potential that Wolbachia may influence some somatic processes, such as behaviors in their hosts. So far, information about the effects of Wolbachia infection on host behavior is still very limited. The present review presents the current literature on different aspects of the influence of Wolbachia on various behaviors, including sleep, learning and memory, mating, feeding and aggression in their insect hosts. We then highlight ongoing scientific efforts in the field that need addressing to advance this field, which can have significant implications for further developing Wolbachia as environmentally friendly biocontrol agents to control insect-borne diseases and agricultural pests.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| | - Yu‐Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| |
Collapse
|
22
|
Abstract
The discovery of reciprocal connections between the central nervous system, sleep and the immune system has shown that sleep enhances immune defences and that afferent signals from immune cells promote sleep. One mechanism by which sleep is proposed to provide a survival advantage is in terms of supporting a neurally integrated immune system that might anticipate injury and infectious threats. However, in modern times, chronic social threats can drive the development of sleep disturbances in humans, which can contribute to the dysregulation of inflammatory and antiviral responses. In this Review, I describe our current understanding of the relationship between sleep dynamics and host defence mechanisms, with a focus on cytokine responses, the neuroendocrine and autonomic pathways that connect sleep with the immune system and the role of inflammatory peptides in the homeostatic regulation of sleep. Furthermore, I discuss the therapeutic potential of harnessing these reciprocal mechanisms of sleep-immune regulation to mitigate the risk of inflammatory and infectious diseases.
Collapse
|
23
|
Abstract
Sleep is a universal phenomenon occurring in all species studied thus far. Sleep loss results in adverse physiological effects at both the organismal and cellular levels suggesting an adaptive role for sleep in the maintenance of overall health. This review examines the bidirectional relationship between sleep and cellular stress. Cellular stress in this review refers to a shift in cellular homeostasis in response to an external stressor. Studies that illustrate the fact that sleep loss induces cellular stress and those that provide evidence that cellular stress in turn promotes sleep will be discussed.
Collapse
Affiliation(s)
- Julie A Williams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nirinjini Naidoo
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
24
|
Abstract
During sleep, animals do not eat, reproduce or forage. Sleeping animals are vulnerable to predation. Yet, the persistence of sleep despite evolutionary pressures, and the deleterious effects of sleep deprivation, indicate that sleep serves a function or functions that cannot easily be bypassed. Recent research demonstrates sleep to be phylogenetically far more pervasive than previously appreciated; it is possible that the very first animals slept. Here, we give an overview of sleep across various species, with the aim of determining its original purpose. Sleep exists in animals without cephalized nervous systems and can be influenced by non-neuronal signals, including those associated with metabolic rhythms. Together, these observations support the notion that sleep serves metabolic functions in neural and non-neural tissues.
Collapse
Affiliation(s)
- Ron C Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Raizen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Soto R, Goetting DL, Van Buskirk C. NPR-1 Modulates Plasticity in C. elegans Stress-Induced Sleep. iScience 2019; 19:1037-1047. [PMID: 31522115 PMCID: PMC6745490 DOI: 10.1016/j.isci.2019.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Sleep is beneficial yet antagonistic to critical functions such as foraging and escape, and we aim to understand how these competing drives are functionally integrated. C. elegans, which lives in reduced oxygen environments, engages in developmentally timed sleep (DTS) during larval stage transitions and engages in stress-induced sleep (SIS) during recovery from damaging conditions. Although DTS and SIS use distinct mechanisms to coordinate multiple sleep-associated behaviors, we show that movement quiescence in these sleep states is similarly integrated with the competing drive to avoid oxygen. Furthermore, by manipulating oxygen to deprive animals of SIS, we observe sleep rebound in a wild C. elegans isolate, indicating that sleep debt accrues during oxygen-induced SIS deprivation. Our work suggests that multiple sleep states adopt a common, highly plastic effector of movement quiescence that is suppressed by aversive stimuli and responsive to homeostatic sleep pressure, providing a limited window of opportunity for escape.
Collapse
Affiliation(s)
- Rony Soto
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - Desiree L Goetting
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA.
| |
Collapse
|
26
|
Toda H, Williams JA, Gulledge M, Sehgal A. A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science 2019; 363:509-515. [PMID: 30705188 PMCID: PMC6505470 DOI: 10.1126/science.aat1650] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/29/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Sleep remains a major mystery of biology. In particular, little is known about the mechanisms that account for the drive to sleep. In an unbiased screen of more than 12,000 Drosophila lines, we identified a single gene, nemuri, that induces sleep. The NEMURI protein is an antimicrobial peptide that can be secreted ectopically to drive prolonged sleep (with resistance to arousal) and to promote survival after infection. Loss of nemuri increased arousability during daily sleep and attenuated the acute increase in sleep induced by sleep deprivation or bacterial infection. Conditions that increase sleep drive induced expression of nemuri in a small number of fly brain neurons and targeted it to the sleep-promoting, dorsal fan-shaped body. We propose that NEMURI is a bona fide sleep homeostasis factor that is particularly important under conditions of high sleep need; because these conditions include sickness, our findings provide a link between sleep and immune function.
Collapse
Affiliation(s)
| | | | - Michael Gulledge
- Howard Hughes Medical Institute, Chronobiology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
27
|
Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev 2019; 99:1325-1380. [PMID: 30920354 PMCID: PMC6689741 DOI: 10.1152/physrev.00010.2018] [Citation(s) in RCA: 787] [Impact Index Per Article: 131.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Tanja Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Monika Haack
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
28
|
Lasselin J, Ingre M, Regenbogen C, Olsson MJ, Garke M, Brytting M, Edgar R, Lekander M, Axelsson J. Sleep during naturally occurring respiratory infections: A pilot study. Brain Behav Immun 2019; 79:236-243. [PMID: 30742884 PMCID: PMC7127143 DOI: 10.1016/j.bbi.2019.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
There is strong experimental support that infections increase the drive for sleep in animals, and it is widely believed that more sleep is part of an adaptive immune response. While respiratory infections (RI) are very prevalent in humans, there is a striking lack of systematic knowledge on how it affects sleep. We recruited 100 people, among whom 28 became sick with an RI during the study period (fulfilling criteria for influenza-like illness, ILI, or acute respiratory infection, ARI). We measured sick participants' sleep at home, both objectively (actigraphy) and subjectively (diary ratings), for one week as well as four weeks later when healthy. During the week with RI, people spent objectively longer time in bed and had a longer total sleep time compared to the healthy week. During the infection, participants also had more awakenings, but no significant differences in sleep latency or sleep efficiency. While sick, people also reported increased difficulties falling asleep, worse sleep quality, more restless sleep and more shallow sleep, while they did not report sleep to be less sufficient. Most problems occurred at the beginning of the sickness week, when symptoms were strong, and showed signs of recovery thereafter (as indicated by interactions between condition and day/night of data collection for all the 10 sleep outcomes). The degree of symptoms of RI was related to a worse sleep quality and more restless sleep, but not to any of the objective sleep outcomes or the other subjective sleep variables. Having a higher body temperature was not significantly related to any of the sleep variables. This study suggests that having a respiratory infection is associated with spending more time in bed and sleeping longer, but also with more disturbed sleep, both objectively and subjectively. This novel study should be seen as being of pilot character. There is a need for larger studies which classify pathogen type and include baseline predictors, or that manipulate sleep, in order to understand whether the sleep alterations seen during infections are adaptive and whether sleep interventions could be used to improve recovery from respiratory infections.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden,Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Ingre
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Regenbogen
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany,JARA – BRAIN Institute 1: Structure-Function Relationship: Decoding the Human Brain at Systemic Levels, Forschungszentrum Jülich, Jülich, Germany
| | - Mats J. Olsson
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Garke
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Mia Brytting
- Unit for Laboratory Surveillance of Viral Pathogens and Vaccine Preventable Diseases, The Public Health Agency of Sweden, Solna, Sweden
| | - Rachel Edgar
- Molecular Virology, Department of Medicine, Imperial College London, London, UK
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden,Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Hill VM, O’Connor RM, Sissoko GB, Irobunda IS, Leong S, Canman JC, Stavropoulos N, Shirasu-Hiza M. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol 2018; 16:e2005206. [PMID: 30001323 PMCID: PMC6042693 DOI: 10.1371/journal.pbio.2005206] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
Although sleep appears to be broadly conserved in animals, the physiological functions of sleep remain unclear. In this study, we sought to identify a physiological defect common to a diverse group of short-sleeping Drosophila mutants, which might provide insight into the function and regulation of sleep. We found that these short-sleeping mutants share a common phenotype of sensitivity to acute oxidative stress, exhibiting shorter survival times than controls. We further showed that increasing sleep in wild-type flies using genetic or pharmacological approaches increases survival after oxidative challenge. Moreover, reducing oxidative stress in the neurons of wild-type flies by overexpression of antioxidant genes reduces the amount of sleep. Together, these results support the hypothesis that a key function of sleep is to defend against oxidative stress and also point to a reciprocal role for reactive oxygen species (ROS) in neurons in the regulation of sleep.
Collapse
Affiliation(s)
- Vanessa M. Hill
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Reed M. O’Connor
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | | | | | - Stephen Leong
- Columbia University, New York, New York, United States of America
| | - Julie C. Canman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Nicholas Stavropoulos
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, United States of America
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
30
|
Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018; 87:67-86. [PMID: 29391183 PMCID: PMC5845852 DOI: 10.1016/j.neubiorev.2018.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Sleep is a biological enigma that has raised numerous questions about the inner workings of the brain. The fundamental question of why our nervous systems have evolved to require sleep remains a topic of ongoing scientific deliberation. This question is largely being addressed by research using animal models of sleep. Drosophila melanogaster, also known as the common fruit fly, exhibits a sleep state that shares common features with many other species. Drosophila sleep studies have unearthed an immense wealth of knowledge about the neuroscience of sleep. Given the breadth of findings published on Drosophila sleep, it is important to consider how all of this information might come together to generate a more holistic understanding of sleep. This review provides a comprehensive summary of the neurobiology of Drosophila sleep and explores the broader insights and implications of how sleep is regulated across species and why it is necessary for the brain.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| |
Collapse
|
31
|
Abstract
Hospitalization is a period of acute sleep deprivation for older adults owing to environmental, medical, and patient factors. Although hospitalized patients are in need of adequate rest and recovery during acute illness, older patients face unique risks owing to acute sleep loss during hospitalization. Sleep loss in the hospital is associated with worse health outcomes, including cardiometabolic derangements and an increased risk of delirium. Because older patients are at risk of polypharmacy and medication side effects, a variety of nonpharmacologic interventions are recommended first to improve sleep loss for hospitalized older adults.
Collapse
Affiliation(s)
- Nancy H Stewart
- Creighton University Medical Center, 7500 Mercy Road, Omaha, NE 68124, USA
| | - Vineet M Arora
- Department of Medicine, University of Chicago, 5841 South Maryland Avenue, MC 2007 AMB W216, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017; 9:a027730. [PMID: 28432135 PMCID: PMC5538413 DOI: 10.1101/cshperspect.a027730] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is homeostatically regulated with sleep pressure accumulating with the increasing duration of prior wakefulness. Yet, a clear understanding of the molecular components of the homeostat, as well as the molecular and cellular processes they sense and control to regulate sleep intensity and duration, remain a mystery. Here, we will discuss the cellular and molecular basis of sleep homeostasis, first focusing on the best homeostatic sleep marker in vertebrates, slow wave activity; second, moving to the molecular genetic analysis of sleep homeostasis in the fruit fly Drosophila; and, finally, discussing more systemic aspects of sleep homeostasis.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Ilinois 60208
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
33
|
Davis KC, Raizen DM. A mechanism for sickness sleep: lessons from invertebrates. J Physiol 2017; 595:5415-5424. [PMID: 28028818 DOI: 10.1113/jp273009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/16/2016] [Indexed: 11/08/2022] Open
Abstract
During health, animal sleep is regulated by an internal clock and by the duration of prior wakefulness. During sickness, sleep is regulated by cytokines released from either peripheral cells or from cells within the nervous system. These cytokines regulate central nervous system neurons to induce sleep. Recent research in the invertebrates Caenorhabditis elegans and Drosophila melanogaster has led to new insights into the mechanism of sleep during sickness. Sickness is triggered by exposure to environments such as infection, heat, or ultraviolet light irradiation, all of which cause cellular stress. Epidermal growth factor is released from stressed cells and signals to activate central neuroendocrine cell(s). These neuron(s) release neuropeptides including those containing an amidated arginine(R)-phenylalanine(F) motif at their C-termini (RFamide peptides). Importantly, mechanisms regulating sickness sleep are partially distinct from those regulating healthy sleep. We will here review key findings that have elucidated the central neuroendocrine mechanism of sleep during sickness. Adaptive mechanisms employed in the control of sickness sleep may play a role in correcting cellular homeostasis after various insults. We speculate that these mechanisms may play a maladaptive role in human pathological conditions such as in the fatigue and anorexia associated with autoimmune diseases, with major depression, and with unexplained chronic fatigue.
Collapse
Affiliation(s)
- Kristen C Davis
- Department of Neurology, Centre for Sleep and Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Raizen
- Department of Neurology, Centre for Sleep and Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
34
|
Iannacone MJ, Beets I, Lopes LE, Churgin MA, Fang-Yen C, Nelson MD, Schoofs L, Raizen DM. The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans. eLife 2017; 6. [PMID: 28094002 PMCID: PMC5241116 DOI: 10.7554/elife.19837] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/16/2016] [Indexed: 11/22/2022] Open
Abstract
In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans, stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1, which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo, is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness. DOI:http://dx.doi.org/10.7554/eLife.19837.001 People often feel fatigued and sleepy when they are sick. Other animals also show signs of sleepiness when ill – they stop eating, move less, and are less responsive to changes in their environment. Sickness-induced sleep helps both people and other animals to recover, and many scientists believe that this type of sleep is different than nightly sleep. Studies of sickness-induced sleep have made use of a simple worm with a simple nervous system. In this worm, a single nerve cell releases chemicals that cause the worm to fall asleep in response to illness. Animals exposed to one of these chemicals, called FLP-13, fall asleep even when they are not sick. As such, scientists would like to know which cells in the nervous system FLP-13 interacts with, what receptor the cells use to recognize this chemical, and whether it turns on cells that induce sleep or turns off the cells that cause wakefulness. Now, Iannacone et al. show that FLP-13 likely causes sleep by turning down activity in the cells in the nervous system that promote wakefulness. The experiments sifted through genetic mutations to determine which ones cause the worms not to fall asleep when FLP-13 is released. This revealed that worms with a mutation that causes them to lack a receptor protein called DMSR-1 do not become sleepy in response to FLP-13. This suggests that DMSR-1 must be essential for FLP-13 to trigger sleep. About 10% of cells in the worm’s nervous system have the DMSR-1 receptor. Some of these neurons tell the worm to move forward or to forage around for food. The experiments also showed that FLP-13 is probably not the only chemical that interacts with the DMSR-1 receptor, but the identities of these other chemicals remain unknown. Additional experiments are now needed to determine if sickness-induced sleepiness in humans and other mammals is triggered by a similar mechanism. If it is, then drugs might be developed to treat people experiencing fatigue associated with sickness as well as other unexplained cases of fatigue. DOI:http://dx.doi.org/10.7554/eLife.19837.002
Collapse
Affiliation(s)
- Michael J Iannacone
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Isabel Beets
- Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lindsey E Lopes
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, United States
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, United States
| | - Liliane Schoofs
- Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
35
|
Nystrand M, Cassidy EJ, Dowling DK. Transgenerational plasticity following a dual pathogen and stress challenge in fruit flies. BMC Evol Biol 2016; 16:171. [PMID: 27567640 PMCID: PMC5002108 DOI: 10.1186/s12862-016-0737-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/08/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Phenotypic plasticity operates across generations, when the parental environment affects phenotypic expression in the offspring. Recent studies in invertebrates have reported transgenerational plasticity in phenotypic responses of offspring when the mothers had been previously exposed to either live or heat-killed pathogens. Understanding whether this plasticity is adaptive requires a factorial design in which both mothers and their offspring are subjected to either the pathogen challenge or a control, in experimentally matched and mismatched combinations. Most prior studies exploring the capacity for pathogen-mediated transgenerational plasticity have, however, failed to adopt such a design. Furthermore, it is currently poorly understood whether the magnitude or direction of pathogen-mediated transgenerational responses will be sensitive to environmental heterogeneity. Here, we explored the transgenerational consequences of a dual pathogen and stress challenge administered in the maternal generation in the fruit fly, Drosophila melanogaster. Prospective mothers were assigned to a non-infectious pathogen treatment consisting of an injection with heat-killed bacteria or a procedural control, and a stress treatment consisting of sleep deprivation or control. Their daughters and sons were similarly assigned to the same pathogen treatment, prior to measurement of their reproductive success. RESULTS We observed transgenerational interactions involving pathogen treatments of mothers and their offspring, on the reproductive success of daughters but not sons. These interactions were unaffected by sleep deprivation. CONCLUSIONS The direction of the transgenerational effects was not consistent with that predicted under a scenario of adaptive transgenerational plasticity. Instead, they were indicative of expectations based on terminal investment.
Collapse
Affiliation(s)
- M. Nystrand
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| | - E. J. Cassidy
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| | - D. K. Dowling
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
36
|
Sleep Homeostasis and General Anesthesia: Are Fruit Flies Well Rested after Emergence from Propofol? Anesthesiology 2016; 124:404-16. [PMID: 26556728 DOI: 10.1097/aln.0000000000000939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Shared neurophysiologic features between sleep and anesthetic-induced hypnosis indicate a potential overlap in neuronal circuitry underlying both states. Previous studies in rodents indicate that preexisting sleep debt discharges under propofol anesthesia. The authors explored the hypothesis that propofol anesthesia also dispels sleep pressure in the fruit fly. To the authors' knowledge, this constitutes the first time propofol has been tested in the genetically tractable model, Drosophila melanogaster. METHODS Daily sleep was measured in Drosophila by using a standard locomotor activity assay. Propofol was administered by transferring flies onto food containing various doses of propofol or equivalent concentrations of vehicle. High-performance liquid chromatography was used to measure the tissue concentrations of ingested propofol. To determine whether propofol anesthesia substitutes for natural sleep, the flies were subjected to 10-h sleep deprivation (SD), followed by 6-h propofol exposure, and monitored for subsequent sleep. RESULTS Oral propofol treatment causes anesthesia in flies as indicated by a dose-dependent reduction in locomotor activity (n = 11 to 41 flies from each group) and increased arousal threshold (n = 79 to 137). Recovery sleep in flies fed propofol after SD was delayed until after flies had emerged from anesthesia (n = 30 to 48). SD was also associated with a significant increase in mortality in propofol-fed flies (n = 44 to 46). CONCLUSIONS Together, these data indicate that fruit flies are effectively anesthetized by ingestion of propofol and suggest that homologous molecular and neuronal targets of propofol are conserved in Drosophila. However, behavioral measurements indicate that propofol anesthesia does not satisfy the homeostatic need for sleep and may compromise the restorative properties of sleep.
Collapse
|
37
|
Lenz O, Xiong J, Nelson MD, Raizen DM, Williams JA. FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain Behav Immun 2015; 47:141-8. [PMID: 25668617 PMCID: PMC4467992 DOI: 10.1016/j.bbi.2014.12.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/16/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022] Open
Abstract
Enhanced sleep in response to cellular stress is a conserved adaptive behavior across multiple species, but the mechanism of this process is poorly understood. Drosophila melanogaster increases sleep following exposure to septic or aseptic injury, and Caenorhabditis elegans displays sleep-like quiescence following exposure to high temperatures that stress cells. We show here that, similar to C. elegans, Drosophila responds to heat stress with an increase in sleep. In contrast to Drosophila infection-induced sleep, heat-induced sleep is not sensitive to the time-of-day of the heat pulse. Moreover, the sleep response to heat stress does not require Relish, the NFκB transcription factor that is necessary for infection-induced sleep, indicating that sleep is induced by multiple mechanisms from different stress modalities. We identify a sleep-regulating role for a signaling pathway involving FMRFamide neuropeptides and their receptor FR. Animals mutant for either FMRFamide or for the FMRFamide receptor (FR) have a reduced recovery sleep in response to heat stress. FR mutants, in addition, show reduced sleep responses following infection with Serratia marcescens, and succumb to infection at a faster rate than wild-type controls. Together, these findings support the hypothesis that FMRFamide and its receptor promote an adaptive increase in sleep following stress. Because an FMRFamide-like neuropeptide plays a similar role in C. elegans, we propose that FRMFamide neuropeptide signaling is an ancient regulator of recovery sleep which occurs in response to cellular stress.
Collapse
Affiliation(s)
- Olivia Lenz
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104
| | - Jianmei Xiong
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104
| | - Matthew D. Nelson
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104,Department of Biology, Saint Joseph’s University, Philadelphia PA 19131
| | - David M. Raizen
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104
| | - Julie A. Williams
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104,To whom correspondence should be addressed: Center for Sleep and Circadian Neurobiology, Translational Research Laboratories, Suite 2100, University of Pennsylvania Perelman School of Medicine, Philadelphia PA 19104, Tel: 215-573-1900,
| |
Collapse
|
38
|
Zheng J, Almendros I, Wang Y, Zhang SX, Carreras A, Qiao Z, Gozal D. Reduced NADPH oxidase type 2 activity mediates sleep fragmentation-induced effects on TC1 tumors in mice. Oncoimmunology 2015; 4:e976057. [PMID: 25949873 DOI: 10.4161/2162402x.2014.976057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms underlying how sleep fragmentation (SF) influences cancer growth and progression remain largely elusive. Here, we present evidence that SF reduced ROS production by downregulating gp91phox expression and activity in TC1 cell tumor associated macrophages (TAMs), while genetic ablation of phagocytic Nox2 activity increased tumor cell proliferation, motility, invasion, and extravasation in vitro. Importantly, the in vivo studies using immunocompetent syngeneic murine tumor models suggested that Nox2 deficiency mimics SF-induced TAMs infiltration and subsequent tumor growth and invasion. Taken together, these studies reveal that perturbed sleep could adversely affect innate immunity within the tumor by altering Nox2 expression and activity, and indicate that selective potentiation of Nox2 activity may present a novel therapeutic strategy in the treatment of cancer.
Collapse
Key Words
- ANOVA, Analysis of variance
- FBS, fetal bovine serum
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- MFI, median fluorescence intensities
- NADPH oxidase
- Nox2, NADPH Oxidase Type 2
- PMA, phorbol 12-myristate 13-acetate
- ROS, reactive oxygen species
- SE, standard error
- SF, sleep fragmentation
- TAMs, tumor associated macrophages
- TLR-4, toll like receptor 4
- WT, wild type
- cancer
- reactive oxygen species
- rpm, revolutions per minute
- sleep apnea
- tumor associated macrophage
Collapse
Affiliation(s)
- Jiamao Zheng
- Section of Pediatric Sleep Medicine; Department of Pediatrics; Pritzker School of Medicine; Biological Sciences Division; The University of Chicago ; Chicago, Illinois, USA
| | - Isaac Almendros
- Section of Pediatric Sleep Medicine; Department of Pediatrics; Pritzker School of Medicine; Biological Sciences Division; The University of Chicago ; Chicago, Illinois, USA
| | - Yang Wang
- Section of Pediatric Sleep Medicine; Department of Pediatrics; Pritzker School of Medicine; Biological Sciences Division; The University of Chicago ; Chicago, Illinois, USA
| | - Shelley X Zhang
- Section of Pediatric Sleep Medicine; Department of Pediatrics; Pritzker School of Medicine; Biological Sciences Division; The University of Chicago ; Chicago, Illinois, USA
| | - Alba Carreras
- Section of Pediatric Sleep Medicine; Department of Pediatrics; Pritzker School of Medicine; Biological Sciences Division; The University of Chicago ; Chicago, Illinois, USA
| | - Zhuanhong Qiao
- Section of Pediatric Sleep Medicine; Department of Pediatrics; Pritzker School of Medicine; Biological Sciences Division; The University of Chicago ; Chicago, Illinois, USA
| | - David Gozal
- Section of Pediatric Sleep Medicine; Department of Pediatrics; Pritzker School of Medicine; Biological Sciences Division; The University of Chicago ; Chicago, Illinois, USA
| |
Collapse
|
39
|
Hill AJ, Mansfield R, Lopez JMNG, Raizen DM, Van Buskirk C. Cellular stress induces a protective sleep-like state in C. elegans. Curr Biol 2014; 24:2399-405. [PMID: 25264259 DOI: 10.1016/j.cub.2014.08.040] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/22/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023]
Abstract
Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis.
Collapse
Affiliation(s)
- Andrew J Hill
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA
| | - Richard Mansfield
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA
| | - Jessie M N G Lopez
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cheryl Van Buskirk
- Department of Biology, California State University, Northridge, Northridge, CA 91330, USA.
| |
Collapse
|
40
|
Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. Sleep 2014; 37:859-69. [PMID: 24790264 DOI: 10.5665/sleep.3648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
STUDY OBJECTIVES Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. SETTING Laboratory. PARTICIPANTS Drosophila melanogaster. METHODS AND RESULTS Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. CONCLUSIONS Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection.
Collapse
Affiliation(s)
- Tzu-Hsing Kuo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Julie A Williams
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|