1
|
Monsalve DM, Acosta-Ampudia Y, Acosta NG, Celis-Andrade M, Şahin A, Yilmaz AM, Shoenfeld Y, Ramírez-Santana C. NETosis: A key player in autoimmunity, COVID-19, and long COVID. J Transl Autoimmun 2025; 10:100280. [PMID: 40071133 PMCID: PMC11894324 DOI: 10.1016/j.jtauto.2025.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
NETosis, the process through which neutrophils release neutrophil extracellular traps (NETs), has emerged as a crucial mechanism in host defense and the pathogenesis of autoimmune responses. During the SARS-CoV-2 pandemic, this process received significant attention due to the central role of neutrophil recruitment and activation in infection control. However, elevated neutrophil levels and dysregulated NET formation have been linked to coagulopathy and endothelial damage, correlating with disease severity and poor prognosis in COVID-19. Moreover, it is known that SARS-CoV-2 can induce persistent low-grade systemic inflammation, known as long COVID, although the underlying causes remain unclear. It has been increasingly acknowledged that excessive NETosis and NET generation contribute to further pathophysiological abnormalities following SARS-CoV-2 infection. This review provides an updated overview of the role of NETosis in autoimmune diseases, but also the relationship between COVID-19 and long COVID with autoimmunity (e.g., latent and overt autoimmunity, molecular mimicry, epitope spreading) and NETosis (e.g., immune responses, NET markers). Finally, we discuss potential therapeutic strategies targeting dysregulated NETosis to mitigate the severe complications of COVID-19 and long COVID.
Collapse
Affiliation(s)
- Diana M. Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Guerrero Acosta
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mariana Celis-Andrade
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ali Şahin
- Selcuk University, Faculty of Medicine, Konya, Turkiye
| | - Ahsen Morva Yilmaz
- TUBITAK Marmara Research Center (TUBITAK-MAM), Life Sciences, Medical Biotechnology Unit, Kocaeli, Turkiye
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University, Herzelia, Israel
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
2
|
Wang N, Chen L, Ye W, Yu W, Chang X, Wang R. Investigation of Pyrrole Analogues Inhibition on Main Protease by Spectroscopic Analysis, Molecular Docking, and Enzyme Activity. Chem Biodivers 2025:e202403242. [PMID: 39873371 DOI: 10.1002/cbdv.202403242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
The main protease (Mpro) is a cysteine enzyme and represents a vital target for antiviral drug screening. In this work, 25 pyrrole derivatives were synthesized and screened by enzyme activity experiments. Results indicate that six pyrrole derivatives can bind to Mpro and have an inhibitory effect on Mpro. The binding mode involves a static quenching process. Among them, 1d exhibits the highest binding affinity. The interactions between pyrrole derivatives and Mpro are investigated by spectra and molecular docking. The interaction between 1d and Mpro is spontaneous and enthalpy-driven. Hydrogen bonding is identified as the primary binding force for 1d. Furthermore, nitro groups are important for the binding between pyrrole analogs and Mpro. This study elucidates the mechanism of interactions and provides direction and valuable insights for developing novel Mpro inhibitors.
Collapse
Affiliation(s)
- Nuoya Wang
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Leyao Chen
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Wenjun Ye
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Chang
- College of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Ruiyong Wang
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Yu J, Ge S, Li J, Zhang Y, Xu J, Wang Y, Liu S, Yu X, Wang Z. Interaction between coronaviruses and the autophagic response. Front Cell Infect Microbiol 2024; 14:1457617. [PMID: 39650836 PMCID: PMC11621220 DOI: 10.3389/fcimb.2024.1457617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
In recent years, the emergence and widespread dissemination of the coronavirus SARS-CoV-2 has posed a significant threat to global public health and social development. In order to safely and effectively prevent and control the spread of coronavirus diseases, a profound understanding of virus-host interactions is paramount. Cellular autophagy, a process that safeguards cells by maintaining cellular homeostasis under diverse stress conditions. Xenophagy, specifically, can selectively degrade intracellular pathogens, such as bacteria, fungi, viruses, and parasites, thus establishing a robust defense mechanism against such intruders. Coronaviruses have the ability to induce autophagy, and they manipulate this pathway to ensure their efficient replication. While progress has been made in elucidating the intricate relationship between coronaviruses and autophagy, a comprehensive summary of how autophagy either benefits or hinders viral replication remains elusive. In this review, we delve into the mechanisms that govern how different coronaviruses regulate autophagy. We also provide an in-depth analysis of virus-host interactions, particularly focusing on the latest data pertaining to SARS-CoV-2. Our aim is to lay a theoretical foundation for the development of novel coronavirus vaccines and the screening of potential drug targets.
Collapse
Affiliation(s)
- Jiarong Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Jinming Li
- China Animal Health and Epidemiology Center, Qingdao, China
| | | | - Jiao Xu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Yingli Wang
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Shan Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Xiaojing Yu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
O'Farrell A, Naughton P, Kavanagh P. Is COVID-19 finally just a bad flu? Follow-up study comparing disease severity among COVID-19 and seasonal influenza hospital in-patients across pandemic waves in Ireland. Public Health 2024; 236:15-20. [PMID: 39154585 DOI: 10.1016/j.puhe.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Coronavirus disease 2019 (COVID-19) was a more severe illness than seasonal influenza in hospitalised cohorts during the early phase of the pandemic. This study's aim was to determine if COVID-19 severity, relative to seasonal influenza, evolved across subsequent disease waves. STUDY DESIGN Retrospective population-based cohort study. METHODS COVID-19 hospital episodes and seasonal influenza hospital episodes were identified using relevant International Classification of Disease (ICD-10) codes from the Irish national hospitalisation dataset. Descriptive comparative analysis of each group was carried out using Pearson's Chi-squared tests. Length of stay (LOS), intensive care unit (ICU) admission and in-hospital mortality were measured and compared using logistic regression analysis. RESULTS Compared to influenza episodes, COVID-19 episodes for all ages and all waves combined, had a longer mean LOS (15.8 days, vs 11.4 days, P < 0.001); were more likely to receive ICU care (OR 1.24 95% CI 1.15-1.33, P < 0.001) and were more likely to die in hospital (OR 2.61, 95% CI 2.36-2-88). Despite the reduction in the proportion of patients with an intensive care unit (ICU) stay and dying in hospital in Wave 5 compared to the previous waves, the risk of having an ICU admission or dying in hospital remained higher in patients with COVID-19 in Wave 5 compared to those with influenza diagnosis. CONCLUSION While the severity of COVID-19 has reduced with successive pandemic waves, it remains a more severe disease than influenza. Despite changes in strain, population immunity, vaccination and treatment, policymakers and the public must continue to approach COVID-19 as more than 'just a bad flu'.
Collapse
Affiliation(s)
- A O'Farrell
- National Health Intelligence Unit, Health Service Executive, Health Intelligence, Strategic Planning and Transformation, 4th Floor, Jervis House, Jervis Street, Dublin 1, Dublin, D01 W596, Ireland.
| | - P Naughton
- National Health Intelligence Unit, Health Service Executive, Health Intelligence, Strategic Planning and Transformation, 4th Floor, Jervis House, Jervis Street, Dublin 1, Dublin, D01 W596, Ireland
| | - P Kavanagh
- National Health Intelligence Unit, Health Service Executive, Health Intelligence, Strategic Planning and Transformation, 4th Floor, Jervis House, Jervis Street, Dublin 1, Dublin, D01 W596, Ireland
| |
Collapse
|
5
|
Li W, Chang X, Zhou H, Yu W, Wang R, Chang J. Investigating the Inhibition of Diindolylmethane Derivatives on SARS-CoV-2 Main Protease. J Mol Recognit 2024; 37:e3101. [PMID: 39221493 DOI: 10.1002/jmr.3101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV-vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC50 values show that 1p (9.87 μM) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 × 105 Lmol-1), the quenching constant (5.41 × 105 Lmol-1), and thermodynamic parameters indicated that the quenching mode of 1p was static quenching, and the main driving forces between 1p and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by 1p, and provides clues for the design of potential inhibitors.
Collapse
Affiliation(s)
- Wenjin Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Chang
- College of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Hang Zhou
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Ruiyong Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Plastiras OE, Bouquet P, Raczkiewicz I, Belouzard S, Martin De Fourchambault E, Dhainaut J, Dacquin JP, Goffard A, Volkringer C. Virucidal activity of porphyrin-based metal-organic frameworks against highly pathogenic coronaviruses and hepatitis C virus. Mater Today Bio 2024; 28:101165. [PMID: 39221218 PMCID: PMC11364898 DOI: 10.1016/j.mtbio.2024.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/06/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
The antiviral effect of four porphyrin-based Metal-Organic Frameworks (PMOFs) with Al and Zr, namely Al-TCPP, PCN-222, PCN-223 and PCN-224 was assessed for the first time against HCoV-229E, two highly pathogenic coronaviruses (SARS-CoV-2 and MERS-CoV) and hepatitis C virus (HCV). Infection tests in vitro were done under dark or light exposure for different contact times, and it was found that 15 min of light exposure were enough to give antiviral properties to the materials, therefore inactivating HCoV-229E by 99.98 % and 99.96 % for Al-TCPP and PCN-222. Al-TCPP diminished the viral titer of SARS-CoV-2 greater than PCN-222 in the same duration of light exposure, having an effect of 99.95 % and 93.48 % respectively. Next, Al-TCPP was chosen as the best candidate possessing antiviral properties and was tested against MERS-CoV and HCV, showcasing a reduction of infectivity of 99.28 % and 98.15 % respectively for each virus. The mechanism of the antiviral activity of the four PMOFs was found to be the production of singlet oxygen 1O2 from the porphyrin ligand TCPP when exposed to visible light, by using sodium azide (NaN3) as a scavenger, that can later attack the phospholipids on the envelope of the viruses, thus preventing their entry into the cells.
Collapse
Affiliation(s)
- Orfeas-Evangelos Plastiras
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, F-59000, Lille, France
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Peggy Bouquet
- Clinical Microbiology Unit, Institut Pasteur de Lille, Lille, F-59000, France
| | - Imelda Raczkiewicz
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Sandrine Belouzard
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Esther Martin De Fourchambault
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Jeremy Dhainaut
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, F-59000, Lille, France
| | - Jean-Philippe Dacquin
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, F-59000, Lille, France
| | - Anne Goffard
- U1019, UMR 9017, CIIL - Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, CNRS, INSERM, CHU de Lille, 59000, Lille, France
| | - Christophe Volkringer
- Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, CNRS, Centrale Lille, Univ. Artois, F-59000, Lille, France
| |
Collapse
|
7
|
Chakraborty A, Ghosh R, Soumya Mohapatra S, Barik S, Biswas A, Chowdhuri S. Repurposing of antimycobacterium drugs for COVID-19 treatment by targeting SARS CoV-2 main protease: An in-silico perspective. Gene 2024; 922:148553. [PMID: 38734190 DOI: 10.1016/j.gene.2024.148553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The global mortality rate has been significantly impacted by the COVID-19 pandemic, caused by the SARS CoV-2 virus. Although the pursuit for a potent antiviral is still in progress, experimental therapies based on repurposing of existing drugs is being attempted. One important therapeutic target for COVID-19 is the main protease (Mpro) that cleaves the viral polyprotein in its replication process. Recently minocycline, an antimycobacterium drug, has been successfully implemented for the treatment of COVID-19 patients. But it's mode of action is still far from clear. Furthermore, it remains unresolved whether alternative antimycobacterium drugs can effectively regulate SARS CoV-2 by inhibiting the enzymatic activity of Mpro. To comprehend these facets, eight well-established antimycobacterium drugs were put through molecular docking experiments. Four of the antimycobacterium drugs (minocycline, rifampicin, clofazimine and ofloxacin) were selected by comparing their binding affinities towards Mpro. All of the four drugs interacted with both the catalytic residues of Mpro (His41 and Cys145). Additionally, molecular dynamics experiments demonstrated that the Mpro-minocyline complex has enhanced stability, experiences reduced conformational fluctuations and greater compactness than other three Mpro-antimycobacterium and Mpro-N3/lopinavir complexes. This research furnishes evidences for implementation of minocycline against SARS CoV-2. In addition, our findings also indicate other three antimycobacterium/antituberculosis drugs (rifampicin, clofazimine and ofloxacin) could potentially be evaluated for COVID-19 therapy.
Collapse
Affiliation(s)
- Ayon Chakraborty
- University Institute of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, India
| | - Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
8
|
Bashea C, Gize A, Lejisa T, Bikila D, Zerihun B, Challa F, Melese D, Gebreyohanns A, Gorems K, Ali S, Hundie GB, Tola HH, Tsegaye W. Detection and comparison of SARS-CoV-2 antibody produced in naturally infected patients and vaccinated individuals in Addis Ababa, Ethiopia: multicenter cross-sectional study. Virol J 2024; 21:192. [PMID: 39160532 PMCID: PMC11334514 DOI: 10.1186/s12985-024-02443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vaccination triggers antibody production against key viral antigens. However, there is limited evidence on the levels of antibodies produced in naturally infected individuals compared to those vaccinated in Ethiopia. Therefore, we aimed to detect and compare SARS-CoV-2 antibodies produced by naturally infected and vaccinated individuals. MATERIALS AND METHODS We conducted a multicenter cross-sectional study among a total of 355 naturally infected and 355 vaccinated individuals from November 2022 to April 2023 at 10 selected health facilities in Addis Ababa, Ethiopia. We enrolled the participants consecutively upon their arrival at health facilities until the required sample size was achieved. We used a structured questionnaire to collect data on the demographic and clinical characteristics of the participants. We also collected 3-5 ml of blood samples from all participants and tested for anti-Spike (anti-S) and anti-nucleocapsid (anti-N) antibodies using Cobas 6000. We utilized frequency, mean, or median to describe the data, the Mann-Whitney U test to compare groups, and a generalized linear regression model to assess factors associated with anti-S antibody concentration. We analyzed the data with SPSS version 26, and the level of significance was set at P-value < 0.05. RESULTS Of the naturally infected participants, 352 (99.5%) had anti-S antibodies and all (100%) had anti-N antibodies, whereas among vaccinated participants, all (100%) had anti-S antibodies, while 323 (91.6%) had anti-N antibodies. Anti-S antibodies produced by vaccinated individuals were significantly (P < 0.001) higher than those produced as a result of natural infection. Being young (P = 0.004), having hypertension (P < 0.001), and having diabetes (P < 0.001) were significantly associated with lower anti-S antibody levels, while being recently vaccinated and having a higher number of vaccine doses were significantly associated with higher anti-S antibody concentrations in vaccinated participants. Having diabetes (P < 0.001) were significantly associated with lower anti-S concentrations in participants who were naturally infected. CONCLUSION There is a high seropositivity rate in both naturally infected and vaccinated individuals. However, vaccinated individuals had higher levels of SARS-CoV-2 antibodies than those who were naturally infected, which highlights the significant contribution of vaccination in increasing the protection of COVID-19 in Ethiopia.
Collapse
Affiliation(s)
- Chala Bashea
- National Laboratory Capacity Building Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia.
| | - Addisu Gize
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Tadesse Lejisa
- National Laboratory Capacity Building Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Demiraw Bikila
- National Laboratory Capacity Building Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Betselot Zerihun
- National TB Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Feyissa Challa
- National Laboratory Capacity Building Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Daniel Melese
- National Laboratory Capacity Building Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Alganesh Gebreyohanns
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Kasahun Gorems
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Solomon Ali
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Gadissa Bedada Hundie
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Habteyes Hailu Tola
- Department of Public Health, College of Health Sciences, Salale University, Fitche, Ethiopia
| | - Wondewosen Tsegaye
- Department of Microbiology, Immunology and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Lee AR, Gonzalez A, Garcia JM, Martinez LS, Oren E. COVID-19 risk perceptions, self-efficacy, and prevention behaviors among California undergraduate students. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2024; 72:1707-1716. [PMID: 35816746 PMCID: PMC9837940 DOI: 10.1080/07448481.2022.2089843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE College students play a major role in the transmission of SARS-CoV-2, the viral agent responsible for COVID-19. We aim to understand risk perceptions, self-efficacy, and adoption of prevention behaviors in this population to inform prevention strategies. PARTICIPANTS Undergraduate students attending a large public university. METHODS A convenience sample of students were surveyed (April-June 2020). Participants self-reported risk perceptions, perceived risk of contracting COVID-19, self-efficacy, and prevention behavior engagement. RESULTS A total of 1,449 students were included in the analysis. The majority were women (71.2%) and aged 18-24 (86.6%). Freshmen had the lowest risk and threat perceptions, as did men; men also had lower self-efficacy. Women engaged significantly more in prevention behaviors compared to men. CONCLUSIONS Perceived risk of contracting COVID-19 was low, but overall adoption of prevention behaviors was high due to local mandates. Freshmen men were identified as having the greatest need for changing perceptions and behaviors.
Collapse
Affiliation(s)
- Adrienne R. Lee
- School of Public Health, Division of Epidemiology, San Diego State University, 5500 Campanile Dr, San Diego, CA, USA 92182
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, USA 92093
| | - Alex Gonzalez
- School of Public Health, Division of Epidemiology, San Diego State University, 5500 Campanile Dr, San Diego, CA, USA 92182
- College of Letters and Arts, Division of Latin American Studies, San Diego State University, 5500 Campanile Dr, San Diego, CA, USA 92182
| | - Jenna M. Garcia
- School of Public Health, Division of Epidemiology, San Diego State University, 5500 Campanile Dr, San Diego, CA, USA 92182
| | - Lourdes S. Martinez
- School of Communication, San Diego State University, 5500 Campanile Dr, San Diego, CA, USA 92182
| | - Eyal Oren
- School of Public Health, Division of Epidemiology, San Diego State University, 5500 Campanile Dr, San Diego, CA, USA 92182
| |
Collapse
|
10
|
Payen SH, Adhikari K, Petereit J, Uppal T, Rossetto CC, Verma SC. SARS-CoV-2 superinfection in CD14 + monocytes with latent human cytomegalovirus (HCMV) promotes inflammatory cascade. Virus Res 2024; 345:199375. [PMID: 38642618 PMCID: PMC11061749 DOI: 10.1016/j.virusres.2024.199375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), has posed significant challenges to global health. While much attention has been directed towards understanding the primary mechanisms of SARS-CoV-2 infection, emerging evidence suggests co-infections or superinfections with other viruses may contribute to increased morbidity and mortality, particularly in severe cases of COVID-19. Among viruses that have been reported in patients with SARS-CoV-2, seropositivity for Human cytomegalovirus (HCMV) is associated with increased COVID-19 risk and hospitalization. HCMV is a ubiquitous beta-herpesvirus with a seroprevalence of 60-90 % worldwide and one of the leading causes of mortality in immunocompromised individuals. The primary sites of latency for HCMV include CD14+ monocytes and CD34+ hematopoietic cells. In this study, we sought to investigate SARS-CoV-2 infection of CD14+ monocytes latently infected with HCMV. We demonstrate that CD14+ cells are susceptible and permissive to SARS-CoV-2 infection and detect subgenomic transcripts indicative of replication. To further investigate the molecular changes triggered by SARS-CoV-2 infection in HCMV-latent CD14+ monocytes, we conducted RNA sequencing coupled with bioinformatic differential gene analysis. The results revealed significant differences in cytokine-cytokine receptor interactions and inflammatory pathways in cells superinfected with replication-competent SARS-CoV-2 compared to the heat-inactivated and mock controls. Notably, there was a significant upregulation in transcripts associated with pro-inflammatory response factors and a decrease in anti-inflammatory factors. Taken together, these findings provide a basis for the heightened inflammatory response, offering potential avenues for targeted therapeutic interventions among HCMV-infected severe cases of COVID-19. SUMMARY: COVID-19 patients infected with secondary viruses have been associated with a higher prevalence of severe symptoms. Individuals seropositive for human cytomegalovirus (HCMV) infection are at an increased risk for severe COVID-19 disease and hospitalization. HCMV reactivation has been reported in severe COVID-19 cases with respiratory failure and could be the result of co-infection with SARS-CoV-2 and HCMV. In a cell culture model of superinfection, HCMV has previously been shown to increase infection of SARS-CoV-2 of epithelial cells by upregulating the human angiotensin-converting enzyme-2 (ACE2) receptor. In this study, we utilize CD14+ monocytes, a major cell type that harbors latent HCMV, to investigate co-infection of SARS-CoV-2 and HCMV. This study is a first step toward understanding the mechanism that may facilitate increased COVID-19 disease severity in patients infected with SARS-CoV-2 and HCMV.
Collapse
Affiliation(s)
- Shannon Harger Payen
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Kabita Adhikari
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Juli Petereit
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, United States
| | - Timsy Uppal
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Cyprian C Rossetto
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Subhash C Verma
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States.
| |
Collapse
|
11
|
Coombs KM, Glover KKM, Russell R, Kaspler P, Roufaiel M, Graves D, Pelka P, Kobasa D, DuMoulin-White R, Mandel A. Nanomolar concentrations of the photodynamic compound TLD-1433 effectively inactivate numerous human pathogenic viruses. Heliyon 2024; 10:e32140. [PMID: 38882312 PMCID: PMC11176859 DOI: 10.1016/j.heliyon.2024.e32140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
The anti-viral properties of a small (≈1 kDa), novel Ru(II) photo dynamic compound (PDC), referred to as TLD-1433 (Ruvidar™), are presented. TLD-1433 had previously been demonstrated to exert strong anti-bacterial and anti-cancer properties. We evaluated the capacity of TLD-1433 to inactivate several human pathogenic viruses. TLD-1433 that was not photo-activated was capable of effectively inactivating 50 % of influenza H1N1 virus (ID50) at a concentration of 117 nM. After photo-activation, the ID50 was reduced to <10 nM. The dose of photo-activated TLD-1433 needed to reduce H1N1 infectivity >99 % (ID99) was approximately 170 nM. Similarly, the ID99 of photo-activated TLD-1433 was determined to range from about 20 to 120 nM for other tested enveloped viruses; specifically, a human coronavirus, herpes simplex virus, the poxvirus Vaccinia virus, and Zika virus. TLD-1433 also inactivated two tested non-enveloped viruses; specifically, adenovirus type 5 and mammalian orthoreovirus, but at considerably higher concentrations. Analyses of TLD-1433-treated membranes suggested that lipid peroxidation was a major contributor to enveloped virus inactivation. TLD-1433-mediated virus inactivation was temperature-dependent, with approximately 10-fold more efficient virucidal activity when viruses were treated at 37 °C than when treated at room temperature (∼22 °C). The presence of fetal bovine serum and virus solution turbidity reduced TLD-1433-mediated virucidal efficiency. Immunoblots of TLD-1433-treated human coronavirus indicated the treated spike protein remained particle-associated.
Collapse
Affiliation(s)
- Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Kathleen K M Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Raquel Russell
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Pavel Kaspler
- Theralase® Technologies Inc., 41 Hollinger Road, Toronto, Ontario, M4B 3G4, Canada
| | - Mark Roufaiel
- Theralase® Technologies Inc., 41 Hollinger Road, Toronto, Ontario, M4B 3G4, Canada
| | - Drayson Graves
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Roger DuMoulin-White
- Theralase® Technologies Inc., 41 Hollinger Road, Toronto, Ontario, M4B 3G4, Canada
| | - Arkady Mandel
- Theralase® Technologies Inc., 41 Hollinger Road, Toronto, Ontario, M4B 3G4, Canada
| |
Collapse
|
12
|
Nicolescu MI, Lupu OI, Georgescu RȘ, Săndulescu M, Funieru C. Management of SARS-CoV-2 Prevention Methods in Dental Offices-A Cross-Sectional Study in Bucharest, Romania. Healthcare (Basel) 2024; 12:1169. [PMID: 38921284 PMCID: PMC11203912 DOI: 10.3390/healthcare12121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
We compared the managing of prevention methods for SARS-CoV-2 infections in dental offices before and immediately after the COVID-19 pandemic. The purpose of this study was to find out the varieties of infection prevention methods used by dentists before and during the pandemic and compare them. We designed a digital transversal questionnaire with 15 closed questions that was sent to 150 dentists in Bucharest, Romania. We received n = 112 valid answers during July-August 2021 from dentists of all age groups (25-60 years), with a sex ratio of 0.36, which agreed to anonymously participate in this study. The results showed an increase in types and amount of personal protection equipment (i.e., ocular/facial protection, supplemental gown, and upgrading the FFP1 masks to FFP2 or FFP3). Ocular protection showed statistical significance by gender but not by age group. Vaccination rate against SARS-CoV-2 was at 80% of the participant dentists at the time of the survey and had statistical significance. However, vaccination status of the patients did not alter dentists' protection protocol.
Collapse
Affiliation(s)
- Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Oana Irina Lupu
- Endodontics Residency Department, “Sf. Pantelimon” Clinical Emergency Hospital, 021659 Bucharest, Romania;
| | | | - Mihai Săndulescu
- Division of Implant Prosthetic Therapy, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| | - Cristian Funieru
- Division of Preventive Dentistry, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 050037 Bucharest, Romania;
| |
Collapse
|
13
|
Fan YW, Ao ZY, Zhang WJ, Chen JY, Lian X, Chen Pan Y, Chen LP, Wu JW, Yuan J. The sesquiterpenes with the COVID-19 M pro inhibitory activity from the Carpesium abrotanoides L. Nat Prod Res 2024; 38:1909-1917. [PMID: 37403616 DOI: 10.1080/14786419.2023.2230609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
The extract of the whole plant of Carpesium abrotanoides L. yielded four new sesquiterpenes including a novel skeleton (claroguaiane A, 1), two guaianolides (claroguaianes B-C, 2-3), and one eudesmanolide (claroeudesmane A, 4), together with three known sesquiterpenoids (5-7). The structures of the new compounds were elucidated by spectroscopic analysis especially 1D and 2D NMR spectroscopy and HRESIMS data. Additionally, all the isolated compounds were preliminarily evaluated for the inhibitive activity of COVID-19 Mpro. As a result, compound 5 showed moderate activity with an IC50 value of 36.81 μM and compound 6 exhibited a potent inhibitory effect with an IC50 value of 16.58 µM, while other compounds were devoid of noticeable activity (IC50 > 50 μM).
Collapse
Affiliation(s)
- Yu-Wen Fan
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuo-Yi Ao
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Jie Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Yan Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Lian
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong- Chen Pan
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Ping Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie-Wei Wu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Yuan
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Thomas J, Ghosh A, Ranjan S, Satija J. Cheminformatics approach to identify andrographolide derivatives as dual inhibitors of methyltransferases (nsp14 and nsp16) of SARS-CoV-2. Sci Rep 2024; 14:9801. [PMID: 38684706 PMCID: PMC11058777 DOI: 10.1038/s41598-024-58532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The Covid-19 pandemic outbreak has accelerated tremendous efforts to discover a therapeutic strategy that targets severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to control viral infection. Various viral proteins have been identified as potential drug targets, however, to date, no specific therapeutic cure is available against the SARS-CoV-2. To address this issue, the present work reports a systematic cheminformatic approach to identify the potent andrographolide derivatives that can target methyltransferases of SARS-CoV-2, i.e. nsp14 and nsp16 which are crucial for the replication of the virus and host immune evasion. A consensus of cheminformatics methodologies including virtual screening, molecular docking, ADMET profiling, molecular dynamics simulations, free-energy landscape analysis, molecular mechanics generalized born surface area (MM-GBSA), and density functional theory (DFT) was utilized. Our study reveals two new andrographolide derivatives (PubChem CID: 2734589 and 138968421) as natural bioactive molecules that can form stable complexes with both proteins via hydrophobic interactions, hydrogen bonds and electrostatic interactions. The toxicity analysis predicts class four toxicity for both compounds with LD50 value in the range of 500-700 mg/kg. MD simulation reveals the stable formation of the complex for both the compounds and their average trajectory values were found to be lower than the control inhibitor and protein alone. MMGBSA analysis corroborates the MD simulation result and showed the lowest energy for the compounds 2734589 and 138968421. The DFT and MEP analysis also predicts the better reactivity and stability of both the hit compounds. Overall, both andrographolide derivatives exhibit good potential as potent inhibitors for both nsp14 and nsp16 proteins, however, in-vitro and in vivo assessment would be required to prove their efficacy and safety in clinical settings. Moreover, the drug discovery strategy aiming at the dual target approach might serve as a useful model for inventing novel drug molecules for various other diseases.
Collapse
Affiliation(s)
- Jobin Thomas
- Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anupam Ghosh
- NanoBio Research Lab, School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721301, India
| | - Shivendu Ranjan
- NanoBio Research Lab, School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721301, India
| | - Jitendra Satija
- Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
15
|
Silva MJA, Santana DS, Lima MBM, Silva CS, de Oliveira LG, Monteiro EOL, Dias RDS, Pereira BDKB, Nery PADS, Ferreira MAS, Sarmento MADS, Ayin AAN, Mendes de Oliveira AC, Lima KVB, Lima LNGC. Assessment of the Risk Impact of SARS-CoV-2 Infection Prevalence between Cats and Dogs in America and Europe: A Systematic Review and Meta-Analysis. Pathogens 2024; 13:314. [PMID: 38668269 PMCID: PMC11053406 DOI: 10.3390/pathogens13040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
The COVID-19 pandemic represented a huge obstacle for public health and demonstrated weaknesses in surveillance and health promotion systems around the world. Its etiological agent, SARS-CoV-2, of zoonotic origin, has been the target of several studies related to the control and prevention of outbreaks and epidemics of COVID-19 not only for humans but also for animals. Domestic animals, such as dogs and cats, have extensive contact with humans and can acquire the infection both naturally and directly from humans. The objective of this article was to summarize the seroprevalence findings of SARS-CoV-2 in dogs and cats and correlate them with the strength of infection risk between each of them. This is a systematic review and meta-analysis following the recommendations of PRISMA 2020. The search and selection of papers was carried out using in vivo experimental works with animals using the descriptors (MeSH/DeCS) "Animal", "Public Health", "SARS-CoV-2" and "Pandemic" (together with AND) in English, Portuguese or Spanish for Science Direct, PUBMED, LILACS and SciELO databases. The ARRIVE checklist was used for methodological evaluation and the Comprehensive Meta-Analysis v2.2 software with the Difference Risk (RD) test to evaluate statistical inferences (with subgroups by continent). Cats showed greater susceptibility to SARS-CoV-2 compared to dogs both in a joint analysis of studies (RD = 0.017; 95% CI = 0.008-0.025; p < 0.0001) and in the American subgroup (RD = 0.053; 95% CI = 0.032-0.073; p < 0.0001), unlike the lack of significant difference on the European continent (RD = 0.009; 95% CI = -0.001-0.018; p = 0.066). Therefore, it was observed that cats have a greater interest in health surveillance due to the set of biological and ecological aspects of these animals, but also that there are a set of factors that can influence the spread and possible spillover events of the virus thanks to the anthropozoonotic context.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Center for Biological and Health Sciences (CCBS), University of the State of Pará (UEPA), Belém 66087-670, PA, Brazil;
| | - Davi Silva Santana
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | - Marceli Batista Martins Lima
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | - Caroliny Soares Silva
- Center for Biological and Health Sciences (CCBS), University of the State of Pará (UEPA), Belém 66087-670, PA, Brazil;
| | - Letícia Gomes de Oliveira
- Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil; (L.G.d.O.); (K.V.B.L.); (L.N.G.C.L.)
| | | | - Rafael dos Santos Dias
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | - Bruna de Kássia Barbosa Pereira
- Department of Veterinary Medicine, University of the Amazon (UNAMA), Belém 66120-901, PA, Brazil; (B.d.K.B.P.); (P.A.d.S.N.)
| | - Paula Andresa da Silva Nery
- Department of Veterinary Medicine, University of the Amazon (UNAMA), Belém 66120-901, PA, Brazil; (B.d.K.B.P.); (P.A.d.S.N.)
| | - Márcio André Silva Ferreira
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | | | - Andrea Alexandra Narro Ayin
- Faculty of Medicine, Centro Universitário do Estado do Pará (CESUPA), Belém 66613-903, PA, Brazil; (M.A.d.S.S.); (A.A.N.A.)
| | - Ana Cristina Mendes de Oliveira
- Institute of Health Sciences (ICS), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66077-830, PA, Brazil; (D.S.S.); (M.B.M.L.); (R.d.S.D.); (M.A.S.F.); (A.C.M.d.O.)
| | | | | |
Collapse
|
16
|
Kumar A, Vashisth H. Quantitative Assessment of Energetic Contributions of Residues in a SARS-CoV-2 Viral Enzyme/Nanobody Interface. J Chem Inf Model 2024; 64:2068-2076. [PMID: 38460144 PMCID: PMC10966652 DOI: 10.1021/acs.jcim.3c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
The highly conserved protease enzyme from SARS-CoV-2 (MPro) is crucial for viral replication and is an attractive target for the design of novel inhibitory compounds. MPro is known to be conformationally flexible and has been stabilized in an extended conformation in a complex with a novel nanobody (NB2B4), which inhibits the dimerization of the enzyme via binding to an allosteric site. However, the energetic contributions of the nanobody residues stabilizing the MPro/nanobody interface remain unresolved. We probed these residues using all-atom MD simulations in combination with alchemical free energy calculations by studying the physical residue-residue interactions and discovered the role of hydrophobic and electrostatic interactions in stabilizing the complex. Specifically, we found via mutational analysis that three interfacial nanobody residues (Y59, R106, and L109) contributed significantly, two residues (L107 and P110) contributed moderately, and two residues (H112 and T113) contributed minimally to the overall binding affinity of the nanobody. We also discovered that the nanobody affinity could be enhanced via a charge-reversal mutation (D62R) that alters the local interfacial electrostatic environment of this residue in the complex. These findings are potentially useful in designing novel synthetic nanobodies as allosteric inhibitors of MPro.
Collapse
Affiliation(s)
- Amit Kumar
- Department
of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, United States
| | - Harish Vashisth
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
17
|
Dhawale SA, Mahajan S, Pandit M, Gawale S, Ghodke M, Tapadiya G. Molecular docking and molecular dynamic simulation-based phytoconstituents against SARS-CoV-2 with dual inhibition of the primary protease targets. Nat Prod Res 2024:1-6. [PMID: 38517217 DOI: 10.1080/14786419.2024.2330526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
A novel coronavirus has caused major health problems and is spreading globally. The main protease enzyme plays a significant role in the number of copies of ss-RNA produced during the proteolytic cleavage of polypeptides. This work aims to find possible dual inhibitors of the 3-Chymotrypsin-like proteases PDB-6W63 and 6LU7 which increase efficiency and faster inhibition activity. By using an in-silico technique, polyphenols are molecularly docked against these targets to inhibit protease enzymes. Some polyphenols, such as pelargonidin and naringin, have significant dual inhibition characteristics with remarkable binding affinities with active scaffolds of both proteins, which have important ADMET parameters. These organic molecules are strongly bonded with amino acids of protein via mostly hydrogen bonding. These polyphenols also have outstanding docking scores and MMGBSA energies. The validity of the docking score was evaluated using a molecular dynamics simulation that assessed the stability of the complex. With the aid of computer-aided drug design, we hypothesise that the dual inhibition of compounds pelargonidin and naringin could effectively and potentially oppose SARS-CoV-2.
Collapse
Affiliation(s)
- Sachin A Dhawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, Maharashtra, India
| | - Sadhana Mahajan
- Department of Pharmaceutical Chemistry, K.B.H.S.S Trusts Institute of Pharmacy, Nashik, Maharashtra, India
| | - Madhuri Pandit
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, Maharashtra, India
| | - Sachin Gawale
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, Maharashtra, India
| | - Mangesh Ghodke
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, Maharashtra, India
| | - Ganesh Tapadiya
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, Maharashtra, India
| |
Collapse
|
18
|
Abuyousef S, Alnaimi S, Omar NE, Elajez R, Elmekaty E, Abdelfattah-Arafa E, Barazi R, Ghasoub R, Rahhal A, Hamou F, Al-Amri M, Karawia A, Ajaj F, Alkhawaja R, Kardousha A, Awaisu A, Abou-Ali A, Khatib M, Aboukamar M, Al-Hail M. Early predictors of intensive care unit admission among COVID-19 patients in Qatar. Front Public Health 2024; 12:1278046. [PMID: 38572008 PMCID: PMC10987715 DOI: 10.3389/fpubh.2024.1278046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Background COVID-19 is associated with significant morbidity and mortality. This study aimed to explore the early predictors of intensive care unit (ICU) admission among patients with COVID-19. Methods This was a case-control study of adult patients with confirmed COVID-19. Cases were defined as patients admitted to ICU during the period February 29-May 29, 2020. For each case enrolled, one control was matched by age and gender. Results A total of 1,560 patients with confirmed COVID-19 were included. Each group included 780 patients with a predominant male gender (89.7%) and a median age of 49 years (interquartile range = 18). Predictors independently associated with ICU admission were cardiovascular disease (adjusted odds ratio (aOR) = 1.64, 95% confidence interval (CI): 1.16-2.32, p = 0.005), diabetes (aOR = 1.52, 95% CI: 1.08-2.13, p = 0.016), obesity (aOR = 1.46, 95% CI: 1.03-2.08, p = 0.034), lymphopenia (aOR = 2.69, 95% CI: 1.80-4.02, p < 0.001), high AST (aOR = 2.59, 95% CI: 1.53-4.36, p < 0.001), high ferritin (aOR = 1.96, 95% CI: 1.40-2.74, p < 0.001), high CRP (aOR = 4.09, 95% CI: 2.81-5.96, p < 0.001), and dyspnea (aOR = 2.50, 95% CI: 1.77-3.54, p < 0.001). Conclusion Having cardiovascular disease, diabetes, obesity, lymphopenia, dyspnea, and increased AST, ferritin, and CRP were independent predictors for ICU admission in patients with COVID-19.
Collapse
Affiliation(s)
- Safae Abuyousef
- Department of Pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Shaikha Alnaimi
- Department of Pharmacy, Hamad Bin Khalifa Medical City, Hamad Medical Corporation, Doha, Qatar
| | - Nabil E. Omar
- Department of Pharmacy, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
- Health Sciences Program, Clinical and Population Health Research, College of Pharmacy, Qatar University, Doha, Qatar
| | - Reem Elajez
- Department of Pharmacy, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Eman Elmekaty
- Department of Pharmacy, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | | | - Raja Barazi
- Department of Pharmacy, Al Wakra Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Rola Ghasoub
- Department of Pharmacy, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Ala Rahhal
- Department of Pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Hamou
- Department of Pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Maha Al-Amri
- Department of Pharmacy, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Karawia
- Department of Pharmacy, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Ajaj
- Department of Pharmacy, Home Health Care, Hamad Medical Corporation, Doha, Qatar
| | - Raja Alkhawaja
- Department of Pharmacy, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Kardousha
- Department of Pharmacy, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Ahmed Awaisu
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Adel Abou-Ali
- Astellas Pharma Global Development, Inc., Northbrook, IL, United States
| | - Mohamad Khatib
- Department of Critical Care, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed Aboukamar
- Department of Infectious Disease, Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Moza Al-Hail
- Department of Pharmacy, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
19
|
Dhami LS, Dahal P, Thapa B, Gautam N, Pantha N, Adhikari R, Adhikari NP. Insights from in silico study of receptor energetics of SARS-CoV-2 variants. Phys Chem Chem Phys 2024; 26:8794-8806. [PMID: 38420855 DOI: 10.1039/d3cp04997c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The emergence of new variants of the novel coronavirus SARS-CoV-2 with increased infectivity, superior virulence, high transmissibility, and unmatched immune escape has demonstrated the adaptability and evolutionary fitness of the virus. The subject of relative order of the binding affinity of SARS-CoV-2 variants with the human ACE2 (hACE2) receptor is hotly debated and its resolution has implications for drug design and development. In this work, we have investigated the energetics of the binding of receptor binding domain (RBD) of SARS-CoV-2 variants of concern (VOCs): Beta (B.1.351), Delta (B.1.617.2), Omicron (B.1.1.529), variant of interest (VOI): Kappa (B.1.617.1), and Delta Plus (B.1.617.2.1) variant with the human ACE2 receptor by using the umbrella sampling (US) method. Our work indicates that Delta and Delta Plus variants have greater values of the US binding free energy than Wild-type (WT), whereas Beta, Kappa, and Omicron variants have lower values. Further analysis of hydrogen bonding, salt bridges, non-bonded interaction energy, and contact surface area at the RBD-hACE2 interface establish Delta as the variant with the highest binding affinity among these variants.
Collapse
Affiliation(s)
- Lokendra Singh Dhami
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal.
| | - Prabin Dahal
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal.
| | - Bidhya Thapa
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal.
- Padma Kanya Multiple Campus, Tribhuvan University, Bagbazar, Kathmandu 44613, Nepal
| | - Narayan Gautam
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal.
- Tri-chandra Multiple Campus, Tribhuvan University, Ghantaghar, Kathmandu 44613, Nepal
| | - Nurapati Pantha
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal.
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kirtipur, Kathmandu 44613, Nepal
| | | |
Collapse
|
20
|
Bunting A, Palmer C, Attavar R, Wythe H, Pattison N. Adaptations to research within the intellectual disability population during the COVID-19 pandemic: Lessons learned from the CAREVIS study. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2024; 28:285-291. [PMID: 37864555 DOI: 10.1177/17446295231210041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
The COVID-19 pandemic resulted in changes in all areas of clinical practice, including clinical research and within the intellectual disability population. While there have been some benefits from this rapid adoption of change, those involved in research have had to overcome a number of additional challenges. These adaptive changes, which have included the use of technology, closure of social spaces, working with specific groups who are more vulnerable to COVID-19, and mask use impairing communication, have had both positive and negative impacts on research. As the pandemic and related restrictions evolve, it is important to examine the changes that have occurred. In the future, the adoption of a hybrid model in research is likely to be a common approach, establishing a balance between technology and in-person interaction.
Collapse
Affiliation(s)
- Apphia Bunting
- Hertfordshire Partnership University NHS Foundation Trust, Aylesbury, UK
| | - Claire Palmer
- Hertfordshire Partnership University NHS Foundation Trust, Aylesbury, UK
| | - Rajnish Attavar
- Hertfordshire Partnership University NHS Foundation Trust, Aylesbury, UK
| | | | | |
Collapse
|
21
|
Ajami M, Sotoudeheian M, Houshiar-Rad A, Esmaili M, Naeini F, Mohammadi Nasrabadi F, Doaei S, Milani-Bonab A. Quercetin may reduce the risk of developing the symptoms of COVID-19. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:189-201. [PMID: 38966631 PMCID: PMC11221767 DOI: 10.22038/ajp.2023.22920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 07/06/2024]
Abstract
Objective Recent evidence reported that some dietary compounds like quercetin and apigenin as the most well-known flavonoids with anti-inflammatory effects may inhibit SARS-CoV-2 main protease. The hypothesis of the promising effects and possible mechanisms of action of quercetin against COVID-19 were assessed in this article. Materials and Methods Related papers on the inhibitory effects of quercetin against COVID-19 were collected using the following search strategy: "corona or coronavirus or COVID or COVID-19 or viral or virus" AND "nutrient or flavonoid or Quercetin". Results The findings indicated that quercetin can be considered an effective agent against COVID-19 because of its SARS-CoV-2 main protease and RNA-dependent RNA polymerase inhibitory effects. In addition, quercetin may attenuate angiotensin-converting enzyme-2 (ACE-2) receptors leading to a reduction of SARS-CoV-2 ability to enter host cells. Moreover, the antiviral, anti-inflammatory, and immunomodulatory activities of quercetin have been frequently reported. Conclusion Quercetin may be an effective agent for managing the complications of COVID-19. Further longitudinal human studies are warranted.
Collapse
Affiliation(s)
- Marjan Ajami
- Department of Food and Nutrition Policy and Planning Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Anahita Houshiar-Rad
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Esmaili
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran university of Medical Science, Tehran, Iran
| | - Fatemeh Mohammadi Nasrabadi
- Department of Food and Nutrition Policy and Planning Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saied Doaei
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Milani-Bonab
- Department of Food and Nutrition Policy and Planning Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Sousa BGD, Silva ÍC, Costa RFD, Rebouças ERN, Ramos TR, Almondes JGDS, Pereira EDB, Campos NG. Persistence of symptoms and lung function in mild cases of COVID-19 six months after infection: a cross-sectional study. J Bras Pneumol 2024; 50:e20230305. [PMID: 38422339 PMCID: PMC11095931 DOI: 10.36416/1806-3756/e20230305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVES To describe persistent symptoms and lung function in mild cases of COVID-19 six months after infection. METHODS Data collection was performed through a semi-structured questionnaire containing information on the participants' demographic and anthropometric data, the disease in the acute phase, and persistent symptoms six months after COVID-19 using spirometry and manovacuometry. RESULTS A total of 136 participants were evaluated, of whom 64% were male, with a mean age of 38.17 ± 14.08 years and a body mass index (BMI) of 29.71 ± 17.48 kg/m2. The main persistent symptoms reported were dyspnea on exertion (39.7%), memory loss (38.2%), and anxiety (48.5%). Considering lung function, the participants reached 88.87 ± 17.20% of the predicted forced vital capacity (FVC), 86.03 ± 22.01% of the forced expiratory volume in one second (FEV1), and 62.71 ± 25.04% of peak expiratory flow (PEF). Upon manovacuometry, 97.41 ± 34.67% of the predicted inspiratory force (Pimax) and 66.86 ± 22.97% of the predicted expiratory force (Pemax) were observed. CONCLUSIONS Six months after COVID-19 infection, a reduction in PEF and MEP was observed. Among the most commonly reported persistent symptoms were fatigue, tiredness with the slightest exertion, anxiety and depression, memory loss, and deficits in concentration.
Collapse
Affiliation(s)
- Barbara Galdino de Sousa
- . Programa de Pós-Graduação em Fisioterapia e Funcionalidade, Universidade Federal do Ceará, Fortaleza (CE), Brasil
- . Grupo de Pesquisa InspiraFisio, Universidade Federal do Ceará, Fortaleza (CE), Brasil
| | - Ítalo Caldas Silva
- . Programa de Pós-Graduação em Ciências Médicas, Departamento de Clínica Médica, Universidade Federal do Ceará, Fortaleza (CE), Brasil
- . Grupo de Pesquisa InspiraFisio, Universidade Federal do Ceará, Fortaleza (CE), Brasil
| | - Rayana Fialho da Costa
- . Programa de Pós-Graduação em Ciências Médicas, Departamento de Clínica Médica, Universidade Federal do Ceará, Fortaleza (CE), Brasil
- . Grupo de Pesquisa InspiraFisio, Universidade Federal do Ceará, Fortaleza (CE), Brasil
| | - Ellys Rhaiara Nunes Rebouças
- . Programa de Pós-Graduação em Fisioterapia e Funcionalidade, Universidade Federal do Ceará, Fortaleza (CE), Brasil
- . Grupo de Pesquisa InspiraFisio, Universidade Federal do Ceará, Fortaleza (CE), Brasil
| | - Taynara Rodrigues Ramos
- . Programa de Pós-Graduação em Fisioterapia e Funcionalidade, Universidade Federal do Ceará, Fortaleza (CE), Brasil
- . Grupo de Pesquisa InspiraFisio, Universidade Federal do Ceará, Fortaleza (CE), Brasil
| | | | - Eanes Delgado Barros Pereira
- . Programa de Pós-Graduação em Ciências Médicas, Departamento de Clínica Médica, Universidade Federal do Ceará, Fortaleza (CE), Brasil
| | - Nataly Gurgel Campos
- . Programa de Pós-Graduação em Fisioterapia e Funcionalidade, Universidade Federal do Ceará, Fortaleza (CE), Brasil
- . Programa de Pós-Graduação em Ciências Médicas, Departamento de Clínica Médica, Universidade Federal do Ceará, Fortaleza (CE), Brasil
- . Grupo de Pesquisa InspiraFisio, Universidade Federal do Ceará, Fortaleza (CE), Brasil
| |
Collapse
|
23
|
Sanito RC, Mujiyanti DR, You SJ, Wang YF. A review on medical waste treatment in COVID-19 pandemics: Technologies, managements and future strategies. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:72-99. [PMID: 37955449 DOI: 10.1080/10962247.2023.2282011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Since the outbreak of COVID-19 few years ago, the increasing of the number of medical waste has become a huge issue because of their harmful impact to environment. A major concern associated to the limitation of technologies for dealing with medical waste, especially conventional technologies, are overcapacities since pandemic occurs. Moreover, the outbreak of new viruses from post COVID-19 should become a serious attention to be prevented not only environmental issues but also the spreading of viruses to new pandemic near the future. The high possibility of an outbreak of new viruses and mutation near the future should be prevented based on the experience associated with the SARS-CoV-2 virus in the last 3 yr. This review presented information and strategies for handling medical waste during the outbreak of COVID-19 and post-COVID-19, and also information on the current issues related to technologies, such as incineration, pyrolysis/gasification, autoclaves and microwave treatment for the dealing with high numbers of medical waste in COVID-19 to prevent the transmission of SARS-CoV-2 virus, their advantages and disadvantages. Plasma technology can be considered to be implemented as an alternative technology to deal with medical waste since incinerator is usually over capacities during the pandemic situation. Proper treatment of specific medical waste in pandemics, namely face masks, vaccine vials, syringes, and dead bodies, are necessary because those medical wastes are mediums for transmission of the SARS-CoV-2 virus. Furthermore, emission controls from incinerator and plasma are necessary to be implemented to reduce the high concentration of CO2, NOx, and VOCs during the treatment. Finally, future strategies of medical waste treatment in the perspective of potential outbreak pandemic from new mutation viruses are discussed in this review paper.Implications: Journal of the air and waste management association may consider our review paper to be published. In this review, we give important information related to the technologies, managements and strategies for handling the medical waste and control the transmission of SARS-CoV-2 virus, starting from proper technology to control the high number of medical waste, their pollutants and many strategies for controlling the spreading of SARS-CoV-2 virus. Moreover, this review also describes some strategies associated with control the transmission not only the SARS-CoV-2 virus but also the outbreak of new viruses near the future.
Collapse
Affiliation(s)
- Raynard Christianson Sanito
- Surface Engineering Laboratory, Advanced Materials Research Center, Department of Mineral, Metallurgical and Materials Engineering, Laval University, Pavillon Adrien-Pouliot, Quebec City, Quebec, Canada
- CHU de Quebec, Hospital Saint-François d'Assise, Laval University, Quebec City, Quebec, Canada
| | - Dwi Rasy Mujiyanti
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Thomas J, Kumar S, Satija J. Integrated molecular and quantum mechanical approach to identify novel potent natural bioactive compound against 2'-O-methyltransferase (nsp16) of SARS-CoV-2. J Biomol Struct Dyn 2024; 42:1999-2012. [PMID: 37129206 DOI: 10.1080/07391102.2023.2206287] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
With the advent of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak, efforts are still in progress to find out a functional cure for the infection. Among the various protein targets, nsp16 capping protein is one of the vital targets for drug development as it protects the virus against the host cell nucleases and evading innate immunity. The nsp16 protein forms a heterodimer with a co-factor nsp10 and triggers 2'-O-methyltransferase activity which catalyzes the conversion of S-adenosyl methionine into S-adenosyl homocysteine. The free methyl group is transferred to the 2'-O position on ribose sugar at the 5' end of mRNA to form the cap-1 structure which is essential for replication of the virus and evading the innate immunity of the host. In this study, we identify a potential lead natural bioactive compound against nsp16 protein by systematic cheminformatic analysis of more than 144k natural compounds. Virtual screening, molecular docking interactions, ADMET profiling, molecular dynamics (MD) simulations, molecular mechanics-generalized born surface area (MM-GBSA), free energy analysis and density functional theory analysis were used to discover the potential lead compound. Our investigation revealed that ZINC8952607 (methyl-[(6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-yl)aminomethyl]BLAHone) has the greatest binding affinity and best pharmacokinetic parameters due to presence of carbazol and BLAHone (biaryl moiety). Further, time-dependent MD simulation analysis substantiates the stability and rigidness of nsp16 protein even after interaction with the lead compound. We believe that the compound ZINC8952607 might establish as a novel natural drug candidate against CoVID-19 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jobin Thomas
- Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sanjit Kumar
- Centre for Bio-Separation and Technology (CBST), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Jitendra Satija
- Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
25
|
Ray SK, Mukherjee S. Innovation and Patenting Activities During COVID-19 and Advancement of Biochemical and Molecular Diagnosis in the Post- COVID-19 Era. Recent Pat Biotechnol 2024; 18:210-226. [PMID: 37779409 DOI: 10.2174/0118722083262217230921042127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 10/03/2023]
Abstract
The COVID-19 pandemic is to escalate globally and acquire new mutations quickly, so accurate diagnostic technologies play a vital role in controlling and understanding the epidemiology of the disease. A plethora of technologies acquires diagnosis of individuals and informs clinical management of COVID. Some important biochemical parameters for COVID diagnosis are the elevation of liver enzymes, creatinine, and nonspecific inflammatory markers such as C-reactive protein (CRP) and Interleukin 6 (IL-6). The main progression predictors are lymphopenia, elevated D-dimer, and hyperferritinemia, although it is also necessary to consider LDH, CPK, and troponin in the marker panel of diagnosis. Owing to the greater sensitivity and accuracy, molecular technologies such as conventional polymerase chain reaction (PCR), reverse transcription (RT)-PCR, nested PCR, loop-mediated isothermal amplification (LAMP), and xMAP technology have been extensively used for COVID diagnosis for some time now. To make so many diagnostics accessible to general people, many techniques may be exploited, including point of care (POC), also called bedside testing, which is developing as a portable promising tool in pathogen identification. Some other lateral flow assay (LFA)-centered techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor limited uniform detection assay (FELUDA), etc. have shown auspicious results in the rapid detection of pathogens. More recently, low-cost sequencing and advancements in big data management have resulted in a slow but steady rise of next-generation sequencing (NGS)-based approaches for diagnosis that have potential relevance for clinical purposes and may pave the way toward a better future. Due to the COVID-19 pandemic, various institutions provided free, specialized websites and tools to promote research and access to critically needed advanced solutions by alleviating research and analysis of data within a substantial body of scientific and patent literature regarding biochemical and molecular diagnosis published since January 2020. This circumstance is unquestionably unique and difficult for anyone using patent information to find pertinent disclosures at a specific date in a trustworthy manner.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
26
|
Ahmad SS, Khalid M. Evaluations of FDA-approved Drugs Targeting 3CLP of SARS-CoV-2 Employing a Repurposing Strategy. Comb Chem High Throughput Screen 2024; 27:2805-2815. [PMID: 35975855 DOI: 10.2174/1386207325666220816125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The SARS-CoV-2 coronavirus (COVID-19) has raised innumerable global concerns, and few effective treatment strategies have yet been permitted by the FDA to lighten the disease burden. SARS-CoV-2 3C-like proteinase (3CLP) is a crucial protease and plays a key role in the viral life cycle, as it controls replication, and thus, it is viewed as a target for drug design. METHODS In this study, we performed structure-based virtual screening of FDA drugs approved during 2015-2019 (a total of 220 drugs) for interaction with the active site of 3CLP (PDB ID 6LU7) using AutoDock 4.2. We report the top ten drugs that outperform the reported drugs against 3CLP (Elbasvir and Nelfinavir), particularly Cefiderocol, having the highest affinity among the compounds tested, with a binding energy of -9.97 kcal/mol. H-bond (LYS102:HZ2-ligand: O49), hydrophobic (ligand-VAL104), and electrostatic (LYS102:NZ-ligand: O50) interactions were observed in the cefiderocol-3CLP complex. The docked complex was subjected to a 50 ns molecular dynamics study to check its stability, and stable RMSD and RMSF graphs were observed. RESULTS Accordingly, we suggest cefiderocol might be effective against SARS-CoV-2 and urge that experimental validation be performed to determine the antiviral efficacy of cefiderocol against SARS-CoV-2. DISCUSSION Along with these, cefiderocol is effective for treating respiratory tract pathogens and a wide range of gram-negative bacteria for whom there are limited therapeutic alternatives. CONCLUSION This article aimed to explore the FDA-approved drugs as a repurposing study against 3CLP for COVID-19 management.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mohammad Khalid
- College of Pharmacy, Department of Pharmacognosy, Prince Sattam Bin Abdul Aziz University, Alkharj 16278, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Wani AK, Chopra C, Dhanjal DS, Akhtar N, Singh H, Bhau P, Singh A, Sharma V, Pinheiro RSB, Américo-Pinheiro JHP, Singh R. Metagenomics in the fight against zoonotic viral infections: A focus on SARS-CoV-2 analogues. J Virol Methods 2024; 323:114837. [PMID: 37914040 DOI: 10.1016/j.jviromet.2023.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Zoonotic viral infections continue to pose significant threats to global public health, as highlighted by the COVID-19 pandemic caused by the SARS-CoV-2 virus. The emergence of SARS-CoV-2 served as a stark reminder of the potential for zoonotic transmission of viruses from animals to humans. Understanding the origins and dynamics of zoonotic viruses is critical for early detection, prevention, and effective management of future outbreaks. Metagenomics has emerged as a powerful tool for investigating the virome of diverse ecosystems, shedding light on the diversity of viral populations, their hosts, and potential zoonotic spillover events. We provide an in-depth examination of metagenomic approaches, including, NGS metagenomics, shotgun metagenomics, viral metagenomics, and single-virus metagenomics, highlighting their strengths and limitations in identifying and characterizing zoonotic viral pathogens. This review underscores the pivotal role of metagenomics in enhancing our ability to detect, monitor, and mitigate zoonotic viral infections, using SARS-CoV-2 analogues as a case study. We emphasize the need for continued interdisciplinary collaboration among virologists, ecologists, and bioinformaticians to harness the full potential of metagenomic approaches in safeguarding public health against emerging zoonotic threats.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Himanshu Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Poorvi Bhau
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Anjuvan Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Varun Sharma
- NMC Genetics India Pvt. Ltd, Gurugram, Harayana, India
| | - Rafael Silvio Bonilha Pinheiro
- School of Veterinary Medicine and Animal Science, Department of Animal Production, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP 08230-030, Brazil
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India.
| |
Collapse
|
28
|
Ajmera H, Lakhawat SS, Malik N, Kumar A, Bhatti JS, Kumar V, Gogoi H, Jaswal SK, Chandel S, Sharma PK. Global Emergence of SARS-CoV2 Infection and Scientific Interventions to Contain its Spread. Curr Protein Pept Sci 2024; 25:307-325. [PMID: 38265408 DOI: 10.2174/0113892037274719231212044235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024]
Abstract
The global pandemic caused by COVID-19 posed a significant challenge to public health, necessitating rapid scientific interventions to tackle the spread of infection. The review discusses the key areas of research on COVID-19 including viral genomics, epidemiology, pathogenesis, diagnostics, and therapeutics. The genome sequencing of the virus facilitated the tracking of its evolution, transmission dynamics, and identification of variants. Epidemiological studies have provided insights into disease spread, risk factors, and the impact of public health infrastructure and social distancing measures. Investigations of the viral pathogenesis have elucidated the mechanisms underlying immune responses and severe manifestations including the long-term effects of COVID-19. Overall, the article provides an updated overview of the diagnostic methods developed for SARS-CoV-2 and discusses their strengths, limitations, and appropriate utilization in different clinical and public health settings. Furthermore, therapeutic approaches including antiviral drugs, immunomodulatory therapies, and repurposed medications have been investigated to alleviate disease severity and improve patient outcomes. Through a comprehensive analysis of these scientific efforts, the review provides an overview of the advancements made in understanding and tackling SARS-CoV-2, while underscoring the need for continued research to address the evolving challenges posed by this global health crisis.
Collapse
Affiliation(s)
- Himanshu Ajmera
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | | | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster 3rd milestone Faridabad, Haryana, India
| | - Sunil Kumar Jaswal
- Department of Biotechnology, Himachal Pradesh University Summer Hill, Shimla, India
| | - Sanjeev Chandel
- Department of Nursing, GHG College of Nursing Rajkot Road, Ludhiana, Punjab, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, 303002, India
| |
Collapse
|
29
|
Chavda V, Yadav D, Parmar H, Brahmbhatt R, Patel B, Madhwani K, Jain M, Song M, Patel S. A Narrative Overview of Coronavirus Infection: Clinical Signs and Symptoms, Viral Entry and Replication, Treatment Modalities, and Management. Curr Top Med Chem 2024; 24:1883-1916. [PMID: 38859776 DOI: 10.2174/0115680266296095240529114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV- -2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified "syndrome" condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto94305, CA, USA
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, South Korea
| | - Harisinh Parmar
- Department of Neurosurgery, Krishna institute of medical sciences, Karad, Maharashtra, India
| | - Raxit Brahmbhatt
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Bipin Patel
- Department of Medicine, Multispeciality, Trauma and ICCU Center, Sardar Hospital, Ahmedabad, 382352, Gujarat, India
| | - Kajal Madhwani
- Department of Life Science, University of Westminster, London, W1B 2HW, United Kingdom
| | - Meenu Jain
- Gajra Raja Medical College, Gwalior, 474009, Madhya Pradesh, India
| | - Minseok Song
- Department of Life Science, Yeungnam University, South Korea
| | - Snehal Patel
- Department of Pharmacology, Nirma University, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
30
|
Khan SH, Alahmadi TJ, Alsahfi T, Alsadhan AA, Mazroa AA, Alkahtani HK, Albanyan A, Sakr HA. COVID-19 infection analysis framework using novel boosted CNNs and radiological images. Sci Rep 2023; 13:21837. [PMID: 38071373 PMCID: PMC10710448 DOI: 10.1038/s41598-023-49218-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
COVID-19, a novel pathogen that emerged in late 2019, has the potential to cause pneumonia with unique variants upon infection. Hence, the development of efficient diagnostic systems is crucial in accurately identifying infected patients and effectively mitigating the spread of the disease. However, the system poses several challenges because of the limited availability of labeled data, distortion, and complexity in image representation, as well as variations in contrast and texture. Therefore, a novel two-phase analysis framework has been developed to scrutinize the subtle irregularities associated with COVID-19 contamination. A new Convolutional Neural Network-based STM-BRNet is developed, which integrates the Split-Transform-Merge (STM) block and Feature map enrichment (FME) techniques in the first phase. The STM block captures boundary and regional-specific features essential for detecting COVID-19 infectious CT slices. Additionally, by incorporating the FME and Transfer Learning (TL) concept into the STM blocks, multiple enhanced channels are generated to effectively capture minute variations in illumination and texture specific to COVID-19-infected images. Additionally, residual multipath learning is used to improve the learning capacity of STM-BRNet and progressively increase the feature representation by boosting at a high level through TL. In the second phase of the analysis, the COVID-19 CT scans are processed using the newly developed SA-CB-BRSeg segmentation CNN to accurately delineate infection in the images. The SA-CB-BRSeg method utilizes a unique approach that combines smooth and heterogeneous processes in both the encoder and decoder. These operations are structured to effectively capture COVID-19 patterns, including region-homogenous, texture variation, and border. By incorporating these techniques, the SA-CB-BRSeg method demonstrates its ability to accurately analyze and segment COVID-19 related data. Furthermore, the SA-CB-BRSeg model incorporates the novel concept of CB in the decoder, where additional channels are combined using TL to enhance the learning of low contrast regions. The developed STM-BRNet and SA-CB-BRSeg models achieve impressive results, with an accuracy of 98.01%, recall of 98.12%, F-score of 98.11%, Dice Similarity of 96.396%, and IOU of 98.85%. The proposed framework will alleviate the workload and enhance the radiologist's decision-making capacity in identifying the infected region of COVID-19 and evaluating the severity stages of the disease.
Collapse
Affiliation(s)
- Saddam Hussain Khan
- Department of Computer Systems Engineering, University of Engineering and Applied Science, Swat, 19060, Pakistan
| | - Tahani Jaser Alahmadi
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
| | - Tariq Alsahfi
- Department of Information Systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Abeer Abdullah Alsadhan
- Computer Science Department, Applied College, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Alanoud Al Mazroa
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Hend Khalid Alkahtani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abdullah Albanyan
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hesham A Sakr
- Nile Higher Institute for Engineering and Technology, Mansoura, Egypt
| |
Collapse
|
31
|
Lopes-Luz L, Fogaça MBT, Bentivoglio-Silva BG, Saavedra DP, Alves LM, Franca LV, Crispim GJB, de Andrade IA, Ribeiro BM, Nagata T, Bührer-Sékula S. A novel highly specific biotinylated MAC-ELISA for detection of anti-SARS-CoV-2 nucleocapsid antigen IgM antibodies during the acute phase of COVID-19. Braz J Microbiol 2023; 54:2893-2901. [PMID: 37930615 PMCID: PMC10689632 DOI: 10.1007/s42770-023-01160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
The gold standard for diagnosing COVID-19 in the acute phase is RT-qPCR. However, this molecular technique can yield false-negative results when nasopharyngeal swab collection is not conducted during viremia. To mitigate this challenge, the enzyme-linked immunosorbent assay (ELISA) identifies anti-SARS-CoV-2 IgM antibodies in the initial weeks after symptom onset, facilitating early COVID-19 diagnosis. This study introduces a novel and highly specific IgM antibody capture ELISA (MAC-ELISA), which utilizes biotinylated recombinant SARS-CoV-2 nucleocapsid (N) antigen produced in plants. Our biotinylated approach streamlines the procedure by eliminating the requirement for an anti-N-conjugated antibody, circumventing the need for peroxidase-labeled antigens, and preventing cross-reactivity with IgM autoantibodies such as rheumatoid factor. Performance evaluation of the assay involved assessing sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy using 682 RT-qPCR-positive samples, categorized by weeks relative to symptoms onset. Negative controls included 205 pre-pandemic serum samples and 46 serum samples from patients diagnosed with other diseases. Based on a cut-off of 0.087 and ROC curve analysis, the highest sensitivity of 81.2% was observed in the 8-14 days post-symptom (dps) group (2nd week), followed by sensitivities of 73.8% and 68.37% for the 1-7 dps (1st week) and 15-21 dps groups (3rd week), respectively. Specificity was consistently 100% across all groups. This newly developed biotinylated N-MAC-ELISA offers a more streamlined and cost-effective alternative to molecular diagnostics. It enables simultaneous testing of multiple samples and effectively identifies individuals with false-negative results.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A Alliance, Goiânia, GO, 74605-050, Brazil
| | - Matheus Bernardes Torres Fogaça
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A Alliance, Goiânia, GO, 74605-050, Brazil
| | | | - Djairo Pastor Saavedra
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A Alliance, Goiânia, GO, 74605-050, Brazil
| | - Luana Michele Alves
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A Alliance, Goiânia, GO, 74605-050, Brazil
| | - Luísa Valério Franca
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | | | - Ikaro Alves de Andrade
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Samira Bührer-Sékula
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Centro Multiusuário de Pesquisa de Bioinsumos e Tecnologias em Saúde, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
- Innovation Hub in Point of Care Technologies, Universidade Federal de Goiás-Merck S/A Alliance, Goiânia, GO, 74605-050, Brazil.
| |
Collapse
|
32
|
Mokhber Dezfuli M, Abbasi Dezfuli A, Ghorbani F, Razaghi M, Soleimani S, Daneshmand M, Sheikhy A, Sheikhy K. Surgical Interventions in Coronavirus Disease 2019 Pleural and Pulmonary Complications: A Case Series of the Tertiary Thoracic Surgery Center Experience. Surg Infect (Larchmt) 2023; 24:936-941. [PMID: 37906105 DOI: 10.1089/sur.2023.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Background: In most cases of pulmonary or pleural post-coronavirus disease 2019 (COVID-19) complications, surgical interventions are performed to treat these complications, but the method of the surgery and its outcome in these patients is not clearly defined. We present 40 patients with pulmonary and pleural complications after COVID-19 who required surgical intervention. Patients and Methods: In this case series, patients' data were prospectively collected from April to August 2022 at Masih Daneshvari Hospital. Inclusion criteria were patients with COVID-19 who were referred to the thoracic surgery department because of pleural effusion, pneumothorax, empyema, infected or non-infected pneumatocele, and lung cavity with suspected fungal infections. The required intervention for each patient was assessed. Results: Patients' mean age was 49.21 ± 11.5 (30-69 years). Nine patients (22.5%) were female. Pure pleural effusion was reported in five (12.5 %), pneumothorax in eight (20%), empyema in 29 (72.5%), and infected pneumatocele in two patients (5%). Twelve patients had bronchial fistulas that were clarified at the time of surgery that needed repair after resection. In 13 patients (32.5%) because of pleural effusion or pneumothorax, a chest tube was inserted and after two weeks lungs were fully expanded. All patients with pneumothorax were managed by chest tube initially but in the presence of continuous air leakage and non-expanding lungs surgical thoracotomy or video-assisted thoracoscopic surgery (VATS) were considered for correction. In 10 patients who required thoracotomy, the chest tube was necessary for more than one month. In most of the patients, there were small cystic lesions or peripheral bronchopleural fistula. In 17 (42.5%) cases of empyema, necrotic pneumonia was documented and eight patients (20%) had aspergillus infection in the pathology report and two patients had a pulmonary abscess. Conclusions: Pleural COVID-19 complications can be treated with conventional surgical methods such as chest tube insertion, and debridement of infected tissue with no mortality and further complications.
Collapse
Affiliation(s)
- Mojtaba Mokhber Dezfuli
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azizollah Abbasi Dezfuli
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Ghorbani
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshad Razaghi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Soleimani
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Daneshmand
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Sheikhy
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Sheikhy
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Arienzo A, Gallo V, Tomassetti F, Pitaro N, Pitaro M, Antonini G. A narrative review of alternative transmission routes of COVID 19: what we know so far. Pathog Glob Health 2023; 117:681-695. [PMID: 37350182 PMCID: PMC10614718 DOI: 10.1080/20477724.2023.2228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
The Coronavirus disease 19 (COVID-19) pandemics, caused by severe acute respiratory syndrome coronaviruses, SARS-CoV-2, represent an unprecedented public health challenge. Beside person-to-person contagion via airborne droplets and aerosol, which is the main SARS-CoV-2's route of transmission, alternative modes, including transmission via fomites, food and food packaging, have been investigated for their potential impact on SARS-CoV-2 diffusion. In this context, several studies have demonstrated the persistence of SARS-CoV-2 RNA and, in some cases, of infectious particles on exposed fomites, food and water samples, confirming their possible role as sources of contamination and transmission. Indeed, fomite-to-human transmission has been demonstrated in a few cases where person-to-person transmission had been excluded. In addition, recent studies supported the possibility of acquiring COVID-19 through the fecal-oro route; the occurrence of COVID-19 gastrointestinal infections, in the absence of respiratory symptoms, also opens the intriguing possibility that these cases could be directly related to the ingestion of contaminated food and water. Overall, most of the studies considered these alternative routes of transmission of low epidemiological relevance; however, it should be considered that they could play an important role, or even be prevalent, in settings characterized by different environmental and socio-economic conditions. In this review, we discuss the most recent findings regarding SARS-CoV-2 alternative transmission routes, with the aim to disclose what is known about their impact on COVID-19 spread and to stimulate research in this field, which could potentially have a great impact, especially in low-resource contexts.
Collapse
Affiliation(s)
| | | | | | | | - Michele Pitaro
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Giovanni Antonini
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
34
|
Vizcardo DA, R. Araníbar J, Munayco Escate CV. High altitudes, population density, and poverty: Unraveling the complexities of COVID-19 in Peru during the years 2020-2022. Prev Med Rep 2023; 36:102423. [PMID: 37753378 PMCID: PMC10518345 DOI: 10.1016/j.pmedr.2023.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Background Several factors related to hospitalizations, morbidity, and mortality from COVID-19 have been identified. However, limited exploration has been done on geographic and socioeconomic factors that could significantly impact these outcomes. Objectives This study aimed to determine whether altitude, population density, and percentage of population in total poverty are associated with COVID-19 incidence per 1000 inhabitants and COVID-19 case-fatality rate in Peru, from 2020 to 2022. Methods This study utilized a multiple group ecological design and relied on secondary databases containing daily records of COVID-19 positive cases and deaths due to COVID-19. An epidemiological analysis was performed, subsequently processed using a random effects model. Results As of August 2022, Peru had recorded a total of 3,838,028 COVID-19 positive cases and 215,023 deaths due to COVID-19. Our analysis revealed a statistically significant negative association between altitude and COVID-19 incidence (aBETA: -0.004; Standard Error: 0.001; p < 0.05). Moreover, we observed a positive association between population density and incidence (aBETA: 0.006; Standard Error: 0.001; p < 0.05). However, we found no significant association between the percentage of population in total poverty and COVID-19 incidence. Conclusion Our study found that an increase in altitude was associated with a decrease in COVID-19 incidence, while an increase in population density was associated with an increase in COVID-19 incidence. High altitude, population density and percentage of population in total poverty does not change case-fatality rate due to COVID-19.
Collapse
|
35
|
Treeza M M, Augustine S, Mathew AA, Kanthlal S, Panonummal R. Targeting Viral ORF3a Protein: A New Approach to Mitigate COVID-19 Induced Immune Cell Apoptosis and Associated Respiratory Complications. Adv Pharm Bull 2023; 13:678-687. [PMID: 38022818 PMCID: PMC10676557 DOI: 10.34172/apb.2023.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
Infection with SARS-CoV-2 is a growing concern to the global well-being of the public at present. Different amino acid mutations alter the biological and epidemiological characteristics, as well as immune resistance of SARS-CoV-2. The virus-induced pulmonary impairment and inflammatory cytokine storm are directly related to its clinical manifestations. But, the fundamental mechanisms of inflammatory responses are found to be the reason for the death of immune cells which render the host immune system failure. Apoptosis of immune cells is one of the most common forms of programmed cell death induced by the virus for its survival and virulence property. ORF3a, a SARS-CoV-2 accessory viral protein, induces apoptosis in host cells and suppress the defense mechanism. This suggests, inhibiting SARS-CoV-2 ORF3a protein is a good therapeutic strategy for the treatment in COVID-19 infection by promoting the host immune defense mechanism.
Collapse
Affiliation(s)
- Minu Treeza M
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | - Sanu Augustine
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | | | - S.K. Kanthlal
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | - Rajitha Panonummal
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| |
Collapse
|
36
|
Khan SH, Iqbal J, Hassnain SA, Owais M, Mostafa SM, Hadjouni M, Mahmoud A. COVID-19 detection and analysis from lung CT images using novel channel boosted CNNs. EXPERT SYSTEMS WITH APPLICATIONS 2023; 229:120477. [PMID: 37220492 PMCID: PMC10186852 DOI: 10.1016/j.eswa.2023.120477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
In December 2019, the global pandemic COVID-19 in Wuhan, China, affected human life and the worldwide economy. Therefore, an efficient diagnostic system is required to control its spread. However, the automatic diagnostic system poses challenges with a limited amount of labeled data, minor contrast variation, and high structural similarity between infection and background. In this regard, a new two-phase deep convolutional neural network (CNN) based diagnostic system is proposed to detect minute irregularities and analyze COVID-19 infection. In the first phase, a novel SB-STM-BRNet CNN is developed, incorporating a new channel Squeezed and Boosted (SB) and dilated convolutional-based Split-Transform-Merge (STM) block to detect COVID-19 infected lung CT images. The new STM blocks performed multi-path region-smoothing and boundary operations, which helped to learn minor contrast variation and global COVID-19 specific patterns. Furthermore, the diverse boosted channels are achieved using the SB and Transfer Learning concepts in STM blocks to learn texture variation between COVID-19-specific and healthy images. In the second phase, COVID-19 infected images are provided to the novel COVID-CB-RESeg segmentation CNN to identify and analyze COVID-19 infectious regions. The proposed COVID-CB-RESeg methodically employed region-homogeneity and heterogeneity operations in each encoder-decoder block and boosted-decoder using auxiliary channels to simultaneously learn the low illumination and boundaries of the COVID-19 infected region. The proposed diagnostic system yields good performance in terms of accuracy: 98.21 %, F-score: 98.24%, Dice Similarity: 96.40 %, and IOU: 98.85 % for the COVID-19 infected region. The proposed diagnostic system would reduce the burden and strengthen the radiologist's decision for a fast and accurate COVID-19 diagnosis.
Collapse
Affiliation(s)
- Saddam Hussain Khan
- Department of Computer Systems Engineering, University of Engineering and Applied Science, Swat 19060, Pakistan
| | - Javed Iqbal
- Department of Computer Systems Engineering, University of Engineering and Applied Science, Swat 19060, Pakistan
| | - Syed Agha Hassnain
- Ocean College, Zhejiang University, Zheda Road 1, Zhoushan, Zhejiang 316021, China
| | - Muhammad Owais
- KUCARS and C2PS, Department of Electrical Engineering and Computer Science, Khalifa University, UAE
| | - Samih M Mostafa
- Computer Science Department, Faculty of Computers and Information, South Valley University, Qena 83523, Egypt
- Faculty of Industry and Energy Technology, New Assiut Technological University (N.A.T.U.), New Assiut City, Egypt
| | - Myriam Hadjouni
- Department of Computer Sciences, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amena Mahmoud
- Faculty of Computers and Information, Department of Computer Science, KafrElSkeikh University, Egypt
| |
Collapse
|
37
|
Al-Johani MS, Khalil R, Al-Mohaimeed YA, Al-Mundarij OM, Al-Samani AS, Al-saqry OS, Al-saawi AA, Al-dhali IK, Al-Essa WA. Post-COVID-19 fatigue and health-related quality of life in Saudi Arabia: a population-based study. Front Public Health 2023; 11:1254723. [PMID: 37869192 PMCID: PMC10585179 DOI: 10.3389/fpubh.2023.1254723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Background Despite substantial literature on symptoms and long-term health implications associated with COVID-19; prevalence and determinants of post-acute COVID-19 fatigue (PCF) remain largely elusive and understudied, with scant research documenting health-related quality of life (HRQoL). Hence, prevalence of PCF and its associated factors, and HRQoL among those who have survived Covid-19 within the general population of Saudi Arabia (KSA) is the subject under examination in this research. Methods This cross-sectional study was conducted on 2063 individuals, selected from the KSA's general population, using a non-probability sampling approach. An online survey was used to employ a self-administered questionnaire to the participants, which included socio-demographic information, the patient's COVID-19 infection history, 12-item Short Form Health Survey (SF-12) to assess quality of life, and Chalder Fatigue Scale (CFS) (CFQ 11) to evaluate the extent and severity of fatigue. Data were analyzed using SPSS version 26. A p < 0.05 was considered to be strong evidence against the null hypothesis. Results The median age of participants was 34 (IQR = 22) years, with females comprising the majority (66.2%). According to the SF-12 questionnaire, 91.2% of patients experienced physical conditions, and 77% experienced depression. The prevalence of PCF was 52% on CFQ 11 scale. Female gender, higher levels of education, a pre-existing history of chronic disease, as well as the manifestations of shortness of breath and confusion during acute COVID-19 infection, were identified as independent predictors of fatigue. Conclusion To facilitate timely and effective intervention for post-acute COVID-19 fatigue, it is essential to continuously monitor the individuals who have recovered from acute COVID-19 infection. Also, it is critical to raise health-education among these patients to improve their quality of life. Future research is required to determine whether COVID-19 survivors would experience fatigue for an extended duration and the impact of existing interventions on its prevalence and severity.
Collapse
Affiliation(s)
- Moath S. Al-Johani
- Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Rehana Khalil
- Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Yazeed A. Al-Mohaimeed
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Omar M. Al-Mundarij
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Abdulmajeed S. Al-Samani
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Osama S. Al-saqry
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Alwaleed A. Al-saawi
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Ibrahim K. Al-dhali
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Waleed A. Al-Essa
- Research Unit, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
38
|
Viskupicova J, Rezbarikova P, Kovacikova L, Kandarova H, Majekova M. Inhibitors of SARS-CoV-2 main protease: Biological efficacy and toxicity aspects. Toxicol In Vitro 2023; 92:105640. [PMID: 37419426 DOI: 10.1016/j.tiv.2023.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
The emergence of the highly contagious respiratory disease, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a significant global public health concern. To combat this virus, researchers have focused on developing antiviral strategies that target specific viral components, such as the main protease (Mpro), which plays a crucial role in SARS-CoV-2 replication. While many compounds have been identified as potent inhibitors of Mpro, only a few have been translated into clinical use due to the potential risk-benefit trade-offs. Development of systemic inflammatory response and bacterial co-infection in patients belong to severe, frequent complications of COVID-19. In this context, we analysed available data on the anti-inflammatory and antibacterial activities of the SARS-CoV-2 Mpro inhibitors for possible implementation in the treatment of complicated and long COVID-19 cases. Synthetic feasibility and ADME properties were calculated and included for better characterisation of the compounds' predicted toxicity. Analysis of the collected data resulted in several clusters pointing to the most prospective compounds for further study and design. The complete tables with collected data are attached in Supplementary material for use by other researchers.
Collapse
Affiliation(s)
- Jana Viskupicova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Lucia Kovacikova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Magdalena Majekova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
39
|
Das S, Roy A, Das R. New autopsy technique in COVID-19 positive dead bodies: opening the thoracic cavity with an outlook to reduce aerosol spread. J Clin Pathol 2023; 76:664-670. [PMID: 35701143 PMCID: PMC9240445 DOI: 10.1136/jclinpath-2022-208173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022]
Abstract
AIMS After the advent of the COVID-19 pandemic, most countries have modified some of their health-related regulations. However, this has not been in the case of the postmortem of deceased because it has a legal aspect. Thus, the healthcare providers knowingly or unknowingly faced the threat of COVID-19 exposure from those dead bodies. To introduce an autopsy technique that reduces the droplet spreads, especially in those mortuaries where the biosafety mechanism is not highly equipped. METHODS The validity of the new incision was achieved through the calculation of the Scale Content Validity Index (SCVI) taking inputs from 17 forensic specialists. The subjects for the new technique were selected from the patients who were RTPCR positive for COVID-19 or clinically or radiologically showing features of COVID-19. RESULTS The dissection procedure was finalised by achieving the SCVI at 0.92. The chest cavity was approached through the abdominal cavity by opening the diaphragm and dissecting out the contents of the chest using a long blade knife. CONCLUSIONS The advantage of this approach is that the autopsy surgeon and pathologists do not have to open the chest cavity by dissecting the Sternum, and hence the chance of droplet infection becomes almost nil. This technique is complete, simple, less time-consuming and conducive for sample collection, and even reduces the possibility of body fluid seepage following a postmortem examination.
Collapse
Affiliation(s)
- Somnath Das
- Forensic Medicine and Toxicology, RG Kar Medical College, Kolkata, West Bengal, India
| | - Anshuman Roy
- Anatomy, Raiganj Government Medical College, Raiganj, West Bengal, India
| | - Rina Das
- Forensic Medicine and Toxicology, NRS Medical College, Kolkata, West Bengal, India
| |
Collapse
|
40
|
Fan YW, Zhang WJ, Ao ZY, Chen JY, Lian X, Pan YC, Chen LP, Jiang DX, Wu JW. Four new eudesmane-type and one new eremophilane-type sesquiterpenes from the whole plant of Carpesium abrotanoides L. Fitoterapia 2023; 169:105548. [PMID: 37236512 DOI: 10.1016/j.fitote.2023.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
The extract of the whole plant of Carpesium abrotanoides L. yielded five new sesquiterpenes including four eudesmanes (1-4) and one eremophilane (5). The new compounds were characterized by spectroscopic analysis especially 1D and 2D NMR spectroscopy and HRESIMS data. Structurally, both compounds 1 and 2 were sesquiterpene epoxides and 2 owned an epoxy group at C-4/C-15 position to form a spiro skeleton. Compounds 4 and 5 were two sesquiterpenes without lactones and 5 possessed a carboxy group in the molecule. Additionally, all the isolated compounds were preliminarily evaluated for the inhibitory activity against SARS-CoV-2 main protease. As a result, compound 2 showed moderate activity with an IC50 value of 18.79 μM, while other compounds were devoid of noticeable activity (IC50 > 50 μM).
Collapse
Affiliation(s)
- Yu-Wen Fan
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wei-Jie Zhang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhuo-Yi Ao
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jia-Yan Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xin Lian
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong-Chen Pan
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li-Ping Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dong-Xu Jiang
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jie-Wei Wu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
41
|
Ahmed NZ, John Davis GD, Khan AA, Prabhakar L, Ram Paratap M, Afnaan Z, Devi Sri M, Anwar N. Arq Ajīb - a wonder Unani formulation for inhibiting SARS-CoV-2 spike glycoprotein and main protease - an in silico approach. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:637-649. [PMID: 34679263 DOI: 10.1515/jcim-2021-0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The current pandemic caused by Severe Acute Respiratory Syndrome Corona-Virus 2 (SARS-CoV-2) has become a global health menace with significant morbidity and mortality besides huge socioeconomic implications. Despite the approval of few vaccines for the prevention of the disease, the discovery of safe and effective countermeasures especially from natural sources is of paramount importance, as the number of cases continues escalating. Arq Ajīb has long been used for various diseases and its ingredients have been reported for antiviral, antimicrobial, antipyretic, anti-inflammatory, antioxidant activities. The present study investigates the inhibitory effect of phytocompound of Arq Ajīb on potential drug targets of SARS-CoV-2. METHODS The structures of phytocompounds present in Arq Ajīb were retrieved from PubChem database and some were illustrated using Marvin Sketch. SARS-CoV-2 S glycoprotein (PDB ID: 6LZG) and 3CLpro (PDB ID: 7BQY) were selected as the target protein. Dock Prep module in UCSF Chimera software was used for receptor structure processing. AutoDock Vina was used to calculate the binding affinities between the protein and ligands and to predict most promising compounds with best scores. RESULTS Molecular docking results predicted that the phytocompounds of Arq Ajīb had good binding affinity and interaction with S glycoprotein and 3CLpro. Quercetin and Isorhoifolin from Mentha arvensis were identified as promising candidates with the potential to interact with 3CLpro and spike glycoprotein and inhibit the viral replication and its entry into the host. CONCLUSIONS Arq Ajīb may prove valuable for developing novel therapeutic candidate for COVID-19; however, it has to be substantiated further with in-vitro and in-vivo studies.
Collapse
Affiliation(s)
- N Zaheer Ahmed
- Regional Research Institute of Unani Medicine, Chennai, India
| | - G Dicky John Davis
- Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine, M/o AYUSH, Govt of India, New Delhi, India
| | - Lavanya Prabhakar
- Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Meena Ram Paratap
- Central Council for Research in Unani Medicine, M/o AYUSH, Govt of India, New Delhi, India
| | - Zeba Afnaan
- Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Meera Devi Sri
- Regional Research Institute of Unani Medicine, Chennai, India
| | - Noman Anwar
- Regional Research Institute of Unani Medicine, Chennai, India
| |
Collapse
|
42
|
Dickson A, Geerling E, Stone ET, Hassert M, Steffen TL, Makkena T, Smither M, Schwetye KE, Zhang J, Georges B, Roberts MS, Suschak JJ, Pinto AK, Brien JD. The role of vaccination route with an adenovirus-vectored vaccine in protection, viral control, and transmission in the SARS-CoV-2/K18-hACE2 mouse infection model. Front Immunol 2023; 14:1188392. [PMID: 37662899 PMCID: PMC10469340 DOI: 10.3389/fimmu.2023.1188392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Vaccination is the most effective mechanism to prevent severe COVID-19. However, breakthrough infections and subsequent transmission of SARS-CoV-2 remain a significant problem. Intranasal vaccination has the potential to be more effective in preventing disease and limiting transmission between individuals as it induces potent responses at mucosal sites. Methods Utilizing a replication-deficient adenovirus serotype 5-vectored vaccine expressing the SARS-CoV-2 RBD (AdCOVID) in homozygous and heterozygous transgenic K18-hACE2, we investigated the impact of the route of administration on vaccine immunogenicity, SARS-CoV-2 transmission, and survival. Results Mice vaccinated with AdCOVID via the intramuscular or intranasal route and subsequently challenged with SARS-CoV-2 showed that animals vaccinated intranasally had improved cellular and mucosal antibody responses. Additionally, intranasally vaccinated animals had significantly better viremic control, and protection from lethal infection compared to intramuscularly vaccinated animals. Notably, in a novel transmission model, intranasal vaccination reduced viral transmission to naïve co-housed mice compared to intramuscular vaccination. Discussion Our data provide convincing evidence for the use of intranasal vaccination in protecting against SARS-CoV-2 infection and transmission.
Collapse
Affiliation(s)
- Alexandria Dickson
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Tara L. Steffen
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Taneesh Makkena
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Madeleine Smither
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Katherine E. Schwetye
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | | | | | | | | | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| |
Collapse
|
43
|
Mabuka T, Ncube N, Ross M, Silaji A, Macharia W, Ndemera T, Lemeke T. The impact of non-pharmaceutical interventions on the first COVID-19 epidemic wave in South Africa. BMC Public Health 2023; 23:1492. [PMID: 37542267 PMCID: PMC10403893 DOI: 10.1186/s12889-023-16162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/20/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE In this study, we investigated the impact of COVID-19 NPIs in South Africa to understand their effectiveness in the reduction of transmission of COVID-19 in the South African population. This study also investigated the COVID-19 testing, reporting, hospitalised cases, excess deaths and COVID-19 modelling in the first wave of the COVID-19 epidemic in South Africa. METHODS A semi-reactive stochastic COVID-19 model, the ARI COVID-19 SEIR model, was used to investigate the impact of NPIs in South Africa to understand their effectiveness in the reduction of COVID-19 transmission in the South African population. COVID-19 testing, reporting, hospitalised cases and excess deaths in the first COVID-19 epidemic wave in South Africa were investigated using regressional analysis and descriptive statistics. FINDINGS The general trend in population movement in South African locations shows that the COVID-19 NPIs (National Lockdown Alert Levels 5,4,3,2) were approximately 30% more effective in reducing population movement concerning each increase by 1 Alert Level. The translated reduction in the effective SARS-CoV-2 daily contact number (β) was 6.12% to 36.1% concerning increasing Alert Levels. Due to the implemented NPIs, the effective SARS-CoV-2 daily contact number in the first COVID-19 epidemic wave in South Africa was reduced by 58.1-71.1% while the peak was delayed by 84 days. The estimated COVID-19 reproductive number was between 1.98 to 0.40. During South Africa's first COVID-19 epidemic wave, the mean COVID-19 admission status in South African hospitals was 58.5%, 95% CI [58.1-59.0] in the general ward, 13.4%, 95% CI [13.1-13.7] in the intensive care unit, 13.3%, 95% CI [12.6-14.0] on oxygen, 6.37%, 95% CI [6.23-6.51] in high care, 6.29%, 95% CI [6.02-6.55] on ventilator and 2.13%, 95% CI [1.87-2.43] in isolation ward respectively. The estimated mean South African COVID-19 patient discharge rate was 11.9 days per patient. While the estimated mean of the South African COVID-19 patient case fatality rate (CFR) in hospital and outside the hospital was 2.06%, 95% CI [1.86-2.25] (deaths per admitted patients) and 2.30%, 95% CI [1.12-3.83](deaths per severe and critical cases) respectively. The relatively high coefficient of variance in COVID-19 model outputs observed in this study shows the uncertainty in the accuracy of the reviewed COVID-19 models in predicting the severity of COVID-19. However, the reviewed COVID-19 models were accurate in predicting the progression of the first COVID-19 epidemic wave in South Africa. CONCLUSION The results from this study show that the COVID-19 NPI policies implemented by the Government of South Africa played a significant role in the reduction of COVID-19 active, hospitalised cases and deaths in South Africa's first COVID-19 epidemic wave. The results also show the use of COVID-19 modelling to understand the COVID-19 pandemic and the impact of regressor variables in an epidemic.
Collapse
Affiliation(s)
- Thabo Mabuka
- African COVID-19 Modelling Research Group (ACMRG), The Afrikan Research Initiative (ARI), Cape Town, South Africa.
| | - Nesisa Ncube
- African COVID-19 Modelling Research Group (ACMRG), The Afrikan Research Initiative (ARI), Cape Town, South Africa
| | - Michael Ross
- African COVID-19 Modelling Research Group (ACMRG), The Afrikan Research Initiative (ARI), Cape Town, South Africa
| | - Andrea Silaji
- African COVID-19 Modelling Research Group (ACMRG), The Afrikan Research Initiative (ARI), Cape Town, South Africa
| | - Willie Macharia
- African COVID-19 Modelling Research Group (ACMRG), The Afrikan Research Initiative (ARI), Cape Town, South Africa
| | - Tinashe Ndemera
- African COVID-19 Modelling Research Group (ACMRG), The Afrikan Research Initiative (ARI), Cape Town, South Africa
| | - Tlaleng Lemeke
- African COVID-19 Modelling Research Group (ACMRG), The Afrikan Research Initiative (ARI), Cape Town, South Africa
| |
Collapse
|
44
|
Chen M, Venturi V, Munier CML. Dissecting the Protective Effect of CD8 + T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8 + T Cells. BIOLOGY 2023; 12:1035. [PMID: 37508464 PMCID: PMC10376827 DOI: 10.3390/biology12071035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
SARS-CoV-2 vaccines have played a crucial role in effectively reducing COVID-19 disease severity, with a new generation of vaccines that use messenger RNA (mRNA) technology being administered globally. Neutralizing antibodies have featured as the heroes of vaccine-induced immunity. However, vaccine-elicited CD8+ T cells may have a significant impact on the early protective effects of the mRNA vaccine, which are evident 12 days after initial vaccination. Vaccine-induced CD8+ T cells have been shown to respond to multiple epitopes of SARS-CoV-2 and exhibit polyfunctionality in the periphery at the early stage, even when neutralizing antibodies are scarce. Furthermore, SARS-CoV-2 mRNA vaccines induce diverse subsets of memory CD8+ T cells that persist for more than six months following vaccination. However, the protective role of CD8+ T cells in response to the SARS-CoV-2 mRNA vaccines remains a topic of debate. In addition, our understanding of CD8+ T cells in response to vaccination in the lymph nodes, where they first encounter antigen, is still limited. This review delves into the current knowledge regarding the protective role of polyfunctional CD8+ T cells in controlling the virus, the response to SARS-CoV-2 mRNA vaccines, and the contribution to supporting B cell activity and promoting immune protection in the lymph nodes.
Collapse
Affiliation(s)
- Mengfei Chen
- The Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
45
|
Rafique A, Muhammad S, Iqbal J, Al-Sehemi AG, Alshahrani MY, Ayub K, Gilani MA. Exploring the inhibitory potential of novel piperidine-derivatives against main protease (M pro) of SARS-CoV-2: A hybrid approach consisting of molecular docking, MD simulations and MMPBSA analysis. J Mol Liq 2023; 382:121904. [PMID: 37151376 PMCID: PMC10131809 DOI: 10.1016/j.molliq.2023.121904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
In the current study, a hybrid computational approach consisting of different computational methods to explore the molecular electronic structures, bioactivity and therapeutic potential of piperidine compounds against SARS-CoV-2. The quantum chemical methods are used to study electronic structures of designed derivatives, molecular docking methods are used to see the most potential docking interactions for main protease (MPro) of SARS-CoV-2 while molecular dynamic and MMPBSA analyses are performed in bulk water solvation process to mimic real protein like aqueous environment and effectiveness of docked complexes. We designed and optimized piperidine derivatives from experimentally known precursor using quantum chemical methods. The UV-Visible, IR, molecular orbitals, molecular electrostatic plots, and global chemical reactivity descriptors are carried out which illustrate that the designed compounds are kinetically stable and reactive. The results of MD simulations and binding free energy revealed that all the complex systems possess adequate dynamic stability, and flexibility based on their RMSD, RMSF, radius of gyration, and hydrogen bond analysis. The computed net binding free energy ( Δ G b i n d ) as calculated by MMPBSA method for the complexes showed the values of -4.29 kcal.mol-1 for P1, -5.52 kcal.mol-1 for P2, -6.12 kcal.mol-1 for P3, -6.35 kcal.mol-1 for P4, -5.19 kcal.mol-1 for P5, 3.09 kcal.mol-1 for P6, -6.78 kcal.mol-1 for P7, and -6.29 kcal.mol-1 for P8.The ADMET analysis further confirmed that none of among the designed ligands violates the Lipinski rule of five (RO5). The current comprehensive investigation predicts that all our designed compounds are recommended as prospective therapeutic drugs against Mpro of SARS-CoV-2 and it provokes the scientific community to further perform their in-vitro analysis.
Collapse
Affiliation(s)
- Amina Rafique
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
46
|
Tripathi P. Medical viruses: diagnostic techniques. Virol J 2023; 20:143. [PMID: 37434239 DOI: 10.1186/s12985-023-02108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
The recent epidemics and pandemics caused by different viruses such as SARS-CoV-2, monkey pox, H1N1, ebola virus etc. have been a cause of mass destruction in the human race, the biggest decline slope in the global economy and mental trauma. A number of viruses have been discovered that may cause serious problems and to overcome this problem, early diagnosis of the viruses and understanding their infection pattern is a must. Early detection of viruses inside the host provides timely management in a strategic manner. Scientists have developed some effective and efficient methods to detect the viruses. In this review, we have explained a few types of diagnostic techniques: Biosensor based, immunological-based, and molecular-based diagnostic techniques that are prominent methodologies to identify and detect the course of infection related to the medical viruses. In biosensor-based diagnostic technique, an analytical device consisting of biological elements and physicochemical component gives a signal upon detection of viral antigen. In immunological-based diagnostic techniques, enzyme-linked antibodies are utilized to find the particular antiviral antibody or viral antigen in human specimens, and nucleic acid-based diagnostic techniques are based on the principle of amplification of the viral genome.
Collapse
Affiliation(s)
- Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
47
|
Bajaj T, Wehri E, Suryawanshi RK, King E, Pardeshi KS, Behrouzi K, Khodabakhshi Z, Schulze-Gahmen U, Kumar GR, Mofrad MRK, Nomura DK, Ott M, Schaletzky J, Murthy N. Mercapto-pyrimidines are reversible covalent inhibitors of the papain-like protease (PLpro) and inhibit SARS-CoV-2 (SCoV-2) replication. RSC Adv 2023; 13:17667-17677. [PMID: 37312993 PMCID: PMC10259201 DOI: 10.1039/d3ra01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
The papain-like protease (PLpro) plays a critical role in SARS-CoV-2 (SCoV-2) pathogenesis and is essential for viral replication and for allowing the virus to evade the host immune response. Inhibitors of PLpro have great therapeutic potential, however, developing them has been challenging due to PLpro's restricted substrate binding pocket. In this report, we screened a 115 000-compound library for PLpro inhibitors and identified a new pharmacophore, based on a mercapto-pyrimidine fragment that is a reversible covalent inhibitor (RCI) of PLpro and inhibits viral replication in cells. Compound 5 had an IC50 of 5.1 μM for PLpro inhibition and hit optimization yielded a derivative with increased potency (IC50 0.85 μM, 6-fold higher). Activity based profiling of compound 5 demonstrated that it reacts with PLpro cysteines. We show here that compound 5 represents a new class of RCIs, which undergo an addition elimination reaction with cysteines in their target proteins. We further show that their reversibility is catalyzed by exogenous thiols and is dependent on the size of the incoming thiol. In contrast, traditional RCIs are all based upon the Michael addition reaction mechanism and their reversibility is base-catalyzed. We identify a new class of RCIs that introduces a more reactive warhead with a pronounced selectivity profile based on thiol ligand size. This could allow the expansion of RCI modality use towards a larger group of proteins important for human disease.
Collapse
Affiliation(s)
- Teena Bajaj
- Graduate Program of Comparative Biochemistry, University of California Berkeley CA USA
| | - Eddie Wehri
- The Henry Wheeler Center of Emerging and Neglected Diseases 344 Li Ka Shing Berkeley CA USA
| | | | - Elizabeth King
- Chemical Biology Graduate Program, University of California Berkeley CA USA
| | | | - Kamyar Behrouzi
- Department of Mechanical Engineering, University of California Berkeley CA USA
| | | | | | - G Renuka Kumar
- Gladstone Institute of Virology Gladstone Institutes San Francisco CA USA
| | | | - Daniel K Nomura
- Department of Chemistry, University of California Berkeley CA USA
| | - Melanie Ott
- Gladstone Institute of Virology Gladstone Institutes San Francisco CA USA
- Department of Medicine, University of California San Francisco CA USA
- Chan Zuckerberg Biohub San Francisco CA USA
| | - Julia Schaletzky
- The Henry Wheeler Center of Emerging and Neglected Diseases 344 Li Ka Shing Berkeley CA USA
| | - Niren Murthy
- Department of Bioengineering, University of California Berkeley CA USA
| |
Collapse
|
48
|
Gau BC, Dawdy AW, Wang HL, Bare B, Castaneda CH, Friese OV, Thompson MS, Lerch TF, Cirelli DJ, Rouse JC. Oligonucleotide mapping via mass spectrometry to enable comprehensive primary structure characterization of an mRNA vaccine against SARS-CoV-2. Sci Rep 2023; 13:9038. [PMID: 37270636 DOI: 10.1038/s41598-023-36193-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Oligonucleotide mapping via liquid chromatography with UV detection coupled to tandem mass spectrometry (LC-UV-MS/MS) was recently developed to support development of Comirnaty, the world's first commercial mRNA vaccine which immunizes against the SARS-CoV-2 virus. Analogous to peptide mapping of therapeutic protein modalities, oligonucleotide mapping described here provides direct primary structure characterization of mRNA, through enzymatic digestion, accurate mass determinations, and optimized collisionally-induced fragmentation. Sample preparation for oligonucleotide mapping is a rapid, one-pot, one-enzyme digestion. The digest is analyzed via LC-MS/MS with an extended gradient and resulting data analysis employs semi-automated software. In a single method, oligonucleotide mapping readouts include a highly reproducible and completely annotated UV chromatogram with 100% maximum sequence coverage, and a microheterogeneity assessment of 5' terminus capping and 3' terminus poly(A)-tail length. Oligonucleotide mapping was pivotal to ensure the quality, safety, and efficacy of mRNA vaccines by providing: confirmation of construct identity and primary structure and assessment of product comparability following manufacturing process changes. More broadly, this technique may be used to directly interrogate the primary structure of RNA molecules in general.
Collapse
Affiliation(s)
- Brian C Gau
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA.
| | - Andrew W Dawdy
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA.
| | - Hanliu Leah Wang
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Bradley Bare
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Carlos H Castaneda
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - Olga V Friese
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | | | - Thomas F Lerch
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Chesterfield, MO, USA
| | - David J Cirelli
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, USA
| | - Jason C Rouse
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, Andover, MA, USA
| |
Collapse
|
49
|
Padroni G, Bikaki M, Novakovic M, Wolter AC, Rüdisser S, Gossert AD, Leitner A, Allain FHT. A hybrid structure determination approach to investigate the druggability of the nucleocapsid protein of SARS-CoV-2. Nucleic Acids Res 2023; 51:4555-4571. [PMID: 36928389 PMCID: PMC10201421 DOI: 10.1093/nar/gkad195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 has called for concerted efforts to generate new insights into the biology of betacoronaviruses to inform drug screening and development. Here, we establish a workflow to determine the RNA recognition and druggability of the nucleocapsid N-protein of SARS-CoV-2, a highly abundant protein crucial for the viral life cycle. We use a synergistic method that combines NMR spectroscopy and protein-RNA cross-linking coupled to mass spectrometry to quickly determine the RNA binding of two RNA recognition domains of the N-protein. Finally, we explore the druggability of these domains by performing an NMR fragment screening. This workflow identified small molecule chemotypes that bind to RNA binding interfaces and that have promising properties for further fragment expansion and drug development.
Collapse
Affiliation(s)
- Giacomo Padroni
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Mihajlo Novakovic
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Antje C Wolter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Simon H Rüdisser
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alvar D Gossert
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Frederic H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zurich, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
50
|
Mariano A, Bigioni I, Marchetti M, Scotto d'Abusco A, Superti F. Repositioned Natural Compounds and Nanoformulations: A Promising Combination to Counteract Cell Damage and Inflammation in Respiratory Viral Infections. Molecules 2023; 28:molecules28104045. [PMID: 37241786 DOI: 10.3390/molecules28104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Respiratory viral diseases are among the most important causes of disability, morbidity, and death worldwide. Due to the limited efficacy or side effects of many current therapies and the increase in antiviral-resistant viral strains, the need to find new compounds to counteract these infections is growing. Since the development of new drugs is a time-consuming and expensive process, numerous studies have focused on the reuse of commercially available compounds, such as natural molecules with therapeutic properties. This phenomenon is generally called drug repurposing or repositioning and represents a valid emerging strategy in the drug discovery field. Unfortunately, the use of natural compounds in therapy has some limitations, due to their poor kinetic performance and consequently reduced therapeutic effect. The advent of nanotechnology in biomedicine has allowed this limitation to be overcome, showing that natural compounds in nanoform may represent a promising strategy against respiratory viral infections. In this narrative review, the beneficial effects of some promising natural molecules, curcumin, resveratrol, quercetin, and vitamin C, which have been already studied both in native form and in nanoform, against respiratory viral infections are presented and discussed. The review focuses on the ability of these natural compounds, analyzed in in vitro and in vivo studies, to counteract inflammation and cellular damage induced by viral infection and provide scientific evidence of the benefits of nanoformulations in increasing the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Magda Marchetti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|