1
|
Zorumski CF, Covey DF, Izumi Y, Evers AS, Maguire JL, Mennerick SJ. New directions in neurosteroid therapeutics in neuropsychiatry. Neurosci Biobehav Rev 2025; 172:106119. [PMID: 40127877 DOI: 10.1016/j.neubiorev.2025.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
In recent years three neuroactive steroids (NAS), brexanolone (allopregnanolone, AlloP), ganaxolone and zuranolone, have been approved for the treatment of neuropsychiatric illnesses including postpartum depression and seizures in a neurodevelopmental syndrome. The approved agents are pregnane steroids and strong positive allosteric modulators (PAMs) of gamma-aminobutyric acid type A receptors (GABAARs). Broad effects on GABAARs play important roles in therapeutic benefits. However, these NAS also have actions on non-GABAR targets that could be important for clinical outcomes. Thus, understanding the broader effects of NAS is potentially important for expanding the therapeutic landscape of these important modulators. The approved NAS as well as other structurally distinct NAS and oxysterols have effects on non-GABAAR receptors and ion channels, along with intracellular actions that could have therapeutic importance, including modulation of cellular stress mechanisms, neuroinflammation, mitochondrial function and autophagy, among others. In this review, we explore GABAergic and other cellular effects of pregnane steroids including novel molecules that have potential therapeutic importance. This work discusses the complex chemical nature of NAS and what is being learned at cellular, molecular, synaptic and brain network levels about key sites of action including GABAARs and other targets.
Collapse
Affiliation(s)
- Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| | - Douglas F Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex S Evers
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Steven J Mennerick
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Jacobs CF, Peters FS, Camerini E, Cretenet G, Rietveld J, Schomakers BV, van Weeghel M, Hahn N, Verberk SGS, Van den Bossche J, Langeveld M, Kleijwegt F, Eldering E, Zelcer N, Kater AP, Simon-Molas H. Cholesterol homeostasis and lipid raft dynamics at the basis of tumor-induced immune dysfunction in chronic lymphocytic leukemia. Cell Mol Immunol 2025; 22:485-500. [PMID: 40033083 DOI: 10.1038/s41423-025-01262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/17/2025] [Indexed: 03/05/2025] Open
Abstract
Autologous T-cell therapies show limited efficacy in chronic lymphocytic leukemia (CLL), where acquired immune dysfunction prevails. In CLL, disturbed mitochondrial metabolism has been linked to defective T-cell activation and proliferation. Recent research suggests that lipid metabolism regulates mitochondrial function and differentiation in T cells, yet its role in CLL remains unexplored. This comprehensive study compares T-cell lipid metabolism in CLL patients and healthy donors, revealing critical dependence on exogenous cholesterol for human T-cell expansion following TCR-mediated activation. Using multi-omics and functional assays, we found that T cells present in viably frozen samples of patients with CLL (CLL T cells) showed impaired adaptation to cholesterol deprivation and inadequate upregulation of key lipid metabolism transcription factors. CLL T cells exhibited altered lipid storage, with increased triacylglycerols and decreased cholesterol, and inefficient fatty acid oxidation (FAO). Functional consequences of reduced FAO in T cells were studied using samples from patients with inherent FAO disorders. Reduced FAO was associated with lower T-cell activation but did not affect proliferation. This implicates low cholesterol levels as a primary factor limiting T-cell proliferation in CLL. CLL T cells displayed fewer and less clustered lipid rafts, potentially explaining the impaired immune synapse formation observed in these patients. Our findings highlight significant disruptions in lipid metabolism as drivers of functional deficiencies in CLL T cells, underscoring the pivotal role of cholesterol in T-cell proliferation. This study suggests that modulating cholesterol metabolism could enhance T-cell function in CLL, presenting novel immunotherapeutic approaches to improve outcome in this challenging disease.
Collapse
Affiliation(s)
- Chaja F Jacobs
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Fleur S Peters
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Elena Camerini
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Gaspard Cretenet
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Joanne Rietveld
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Nico Hahn
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sanne G S Verberk
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Mirjam Langeveld
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - Noam Zelcer
- Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P Kater
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands.
| | - Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Hematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Immunology Program, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Szkalisity Á, Vanharanta L, Saito H, Vörös C, Li S, Isomäki A, Tomberg T, Strachan C, Belevich I, Jokitalo E, Ikonen E. Nuclear envelope-associated lipid droplets are enriched in cholesteryl esters and increase during inflammatory signaling. EMBO J 2025:10.1038/s44318-025-00423-2. [PMID: 40195500 DOI: 10.1038/s44318-025-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Cholesteryl esters (CEs) and triacylglycerols (TAGs) are stored in lipid droplets (LDs), but their compartmentalisation is not well understood. Here, we established a hyperspectral stimulated Raman scattering microscopy system to identify and quantitatively assess CEs and TAGs in individual LDs of human cells. We found that nuclear envelope-associated lipid droplets (NE-LDs) were enriched in cholesteryl esters compared to lipid droplets in the cytoplasm. Correlative light-volume-electron microscopy revealed that NE-LDs projected towards the cytoplasm and associated with type II nuclear envelope (NE) invaginations. The nuclear envelope localization of sterol O-acyltransferase 1 (SOAT1) contributed to NE-LD generation, as trapping of SOAT1 to the NE further increased their number. Upon stimulation by the pro-inflammatory cytokine TNFα, the number of NE-LDs moderately increased. Moreover, TNFα-induced NF-κB nuclear translocation was fine-tuned by SOAT1: increased SOAT1 activity and NE-LDs associated with faster NF-κB translocation, whereas reduced SOAT1 activity and NE-LDs associated with slower NF-κB translocation. Our findings suggest that the NE is enriched in CEs and that cholesterol esterification can modulate nuclear translocation.
Collapse
Affiliation(s)
- Ábel Szkalisity
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Hodaka Saito
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Csaba Vörös
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Hungarian Research Network (HUN-REN), 6726, Szeged, Hungary
| | - Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Antti Isomäki
- Biomedicum Imaging Unit, Department of Anatomy, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Teemu Tomberg
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Clare Strachan
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
4
|
Doktorova M, Symons JL, Zhang X, Wang HY, Schlegel J, Lorent JH, Heberle FA, Sezgin E, Lyman E, Levental KR, Levental I. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. Cell 2025:S0092-8674(25)00270-3. [PMID: 40179882 DOI: 10.1016/j.cell.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Membranes are molecular interfaces that compartmentalize cells to control the flow of nutrients and information. These functions are facilitated by diverse collections of lipids, nearly all of which are distributed asymmetrically between the two bilayer leaflets. Most models of biomembrane structure and function include the implicit assumption that these leaflets have similar abundances of phospholipids. Here, we show that this assumption is generally invalid and investigate the consequences of lipid abundance imbalances in mammalian plasma membranes (PMs). Using lipidomics, we report that cytoplasmic leaflets of human erythrocyte membranes have >50% overabundance of phospholipids compared with exoplasmic leaflets. This imbalance is enabled by an asymmetric interleaflet distribution of cholesterol, which regulates cellular cholesterol homeostasis. These features produce unique functional characteristics, including low PM permeability and resting tension in the cytoplasmic leaflet that regulates protein localization.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA; Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, 17165 Solna, Sweden.
| | - Jessica L Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoxuan Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Joseph H Lorent
- Department of Cellular and Molecular Pharmacology, TFAR, LDRI, UCLouvain, Avenue Mounier 73, B1.73.05, 1200 Brussels, Belgium
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Edward Lyman
- Department of Physics and Astronomy, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
5
|
Peñalva DA, Munafó JP, Antollini SS. Cholesterol´s role in membrane organization and nicotinic acetylcholine receptor function: Implications for aging and Alzheimer's disease. Chem Phys Lipids 2025; 269:105484. [PMID: 40147619 DOI: 10.1016/j.chemphyslip.2025.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Biological membranes are complex entities composed of various molecules exhibiting lateral and transbilayer lipid asymmetries, along with a selective spatial distribution of different membrane proteins. This dynamic orchestration is crucial for proper physiological functions, undergoes changes with aging, and is disturbed in several neurological disorders. In this review, we analyze the impact of disruption in this equilibrium on physiological aging and the onset of pathological conditions. Alzheimer´s disease (AD) is a multifactorial neurodegenerative disorder in the elderly, characterized by the increased presence of the Aβ peptide, which supports the amyloid hypothesis of the disease. However, AD also involves a progressive loss of cholinergic innervation, leading to the cholinergic hypothesis of the disease. Nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, and Aβ peptides, their oligomeric and fibrillar species, which increase in hydrophobicity as they develop, interact with membranes. Therefore, a membrane hypothesis of the disease emerges as a bridge between the other two. Here, we discuss the impact of the membrane environment, through direct or indirect mechanisms, on cholinergic signaling and Aβ formation and subsequent incorporation into the membrane, with a special focus on the crucial role of cholesterol in these processes.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Benitez-Amaro A, Garcia E, LaChica Lhoëst MT, Polishchuk A, Zegri-Reiriz I, Vilades D, Guerra JM, Fernández-Del-Rio L, Mirabet S, Samouillan V, Shirihai O, Liesa M, Enrich C, Llorente-Cortés V. LRP1 immunotherapy enhances cardiomyocyte respiration by restricting cholesteryl ester accumulation in mitochondria. J Lipid Res 2025; 66:100783. [PMID: 40122209 DOI: 10.1016/j.jlr.2025.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
Antibodies (Abs) targeting the P3 sequence (Gly1127-Cys1140) of LDL receptor-related protein 1 (anti-P3 Abs) inhibit the interaction between ApoB100 in cholesteryl ester (CE)-enriched lipoproteins and the CR9 domain in LDL receptor-related protein 1, preventing intracellular CE accumulation induced by a high-fat high-cholesterol (HFHC) diet in cardiomyocytes. This study examines (i) whether HFHC induces cholesterol accumulation in mitochondria, and impacts cardiac bioenergetics, and (ii) the effectiveness of anti-P3 Abs in mitigating HFHC-induced mitochondrial alterations. Cardiac tissue was homogenized, and mitochondria were isolated through subcellular fractionation. Thin layer chromatography demonstrated that HFHC induced the accumulation of CE in cardiac mitochondria, and that this process was significantly reduced by anti-P3 Abs. In line, transmission electron microscopy studies revealed that morphological changes induced by HFHC in cardiomyocyte mitochondria were reversed, at least in part, by anti-P3 Abs. Additionally, anti-P3 Abs promoted more extensive interactions between mitochondria and lipid droplets (LDs), accompanied by an increase in LD diameter and electrodensity in cardiomyocytes. Cardiac mitochondrial respiratory capacity assessed by Seahorse analysis showed that HFHC reduced CI/CIV and CII/CIV activity ratios, while anti-P3 Abs restored complex II/IV activity. In conclusion, by blocking CE uptake from lipoproteins, anti-P3 Abs reduce CE accumulation in the cardiomyocyte mitochondria and LDs, enhance bioenergetically favorable mitochondria/LD interactions, and improve cardiomyocyte respiratory function in hypercholesterolemic rabbits. These findings highlight the therapeutic potential of anti-P3 Abs in metabolic diseases by limiting CE loading of mitochondria and LDs in the heart and restoring cardiac bioenergetics.
Collapse
Affiliation(s)
- A Benitez-Amaro
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - E Garcia
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M T LaChica Lhoëst
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; Departamento de Bioquímica y Biología Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Polishchuk
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - I Zegri-Reiriz
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D Vilades
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - J M Guerra
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - L Fernández-Del-Rio
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - S Mirabet
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR SANT PAU), Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - V Samouillan
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, Toulouse, France
| | - O Shirihai
- Department of Medicine, Endocrinology, and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA; Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - M Liesa
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain; CIBERDEM Institute of Health Carlos III, Madrid, Spain
| | - C Enrich
- Unitat de Biologia Cellular, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - V Llorente-Cortés
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institut of Barcelona, IIBB-CSIC, Barcelona, Spain; Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Gade A, Malvezzi M, Das LT, Matsui M, Ma CIJ, Mazdisnian K, Marx SO, Maxfield FR, Pitt GS. The Na V 1.5 auxiliary subunit FGF13 modulates channels by regulating membrane cholesterol independent of channel binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644183. [PMID: 40166257 PMCID: PMC11957044 DOI: 10.1101/2025.03.19.644183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Fibroblast growth factor homologous factors (FHFs) bind to the cytoplasmic carboxy terminus of voltage-gated sodium channels (VGSCs) and modulate channel function. Variants in FHFs or VGSCs perturbing that bimolecular interaction are associated with arrhythmias. Like some channel auxiliary subunits, FHFs exert additional cellular regulatory roles, but whether these alternative roles affect VGSC regulation is unknown. Using a separation-of-function strategy, we show that a structurally guided, binding incompetent mutant FGF13 (the major FHF in mouse heart), confers complete regulation of VGSC steady-state inactivation (SSI), the canonical effect of FHFs. In cardiomyocytes isolated from Fgf13 knockout mice, expression of the mutant FGF13 completely restores wild-type regulation of SSI. FGF13 regulation of SSI derives from effects on local accessible membrane cholesterol, which is unexpectedly polarized and concentrated in cardiomyocytes at the intercalated disc (ID) where most VGSCs localize. Fgf13 knockout eliminates the polarized cholesterol distribution and causes loss of VGSCs from the ID. Moreover, we show that the previously described FGF13-dependent stabilization of VGSC currents at elevated temperatures depends on the cholesterol mechanism. These results provide new insights into how FHFs affect VGSCs and alter the canonical model by which channel auxiliary exert influence.
Collapse
|
8
|
Ferrari A, Tontonoz P. Nonvesicular cholesterol transport in physiology. J Clin Invest 2025; 135:e188127. [PMID: 40091839 PMCID: PMC11910210 DOI: 10.1172/jci188127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
In mammalian cells cholesterol can be synthesized endogenously or obtained exogenously through lipoprotein uptake. Plasma membrane (PM) is the primary intracellular destination for both sources of cholesterol, and maintaining appropriate membrane cholesterol levels is critical for cellular viability. The endoplasmic reticulum (ER) acts as a cellular cholesterol sensor, regulating synthesis in response to cellular needs and determining the metabolic fates of cholesterol. Upon reaching the ER, cholesterol can be esterified to facilitate its incorporation into lipoproteins and lipid droplets or converted into other molecules such as bile acids and oxysterols. In recent years, it has become clear that the intracellular redistribution of lipids, including cholesterol, is critical for the regulation of various biological processes. This Review highlights physiology and mechanisms of nonvesicular (protein-mediated) intracellular cholesterol trafficking, with a focus on the role of Aster proteins in PM to ER cholesterol transport.
Collapse
|
9
|
Wang Y, Bendre SV, Krauklis SA, Steelman AJ, Nelson ER. Role of Protein Regulators of Cholesterol Homeostasis in Immune Modulation and Cancer Pathophysiology. Endocrinology 2025; 166:bqaf031. [PMID: 39951497 DOI: 10.1210/endocr/bqaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025]
Abstract
Cholesterol metabolism and homeostasis have emerged as important factors governing various aspects of cancer biology. Clinical associations between circulating cholesterol and poor prognosis or use of cholesterol-lowering medication and improved prognosis have been noted for several different solid tumors. Mechanistically, cholesterol has many different direct and indirect effects on cancer cells themselves but is also critically involved in shaping the function of other cells of the tumor microenvironment, especially immune cells. There are 2 major feedback loops regulating cholesterol homeostasis. Here we highlight the major proteins involved in the so-called oxysterol-bile acid feedback loop and discuss how each has been implicated in cancer biology. We focus on roles within the immune system with implications for cancer. Given that many of these proteins are enzymes or nuclear receptors, both of which are amenable to small molecule intervention, we posit that this axis may represent a promising area for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Shruti V Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Steven A Krauklis
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Torsilieri HM, Upchurch CM, Leitinger N, Casanova JE. Salmonella-induced cholesterol accumulation in infected macrophages suppresses autophagy via mTORC1 activation. Mol Biol Cell 2025; 36:ar3. [PMID: 39602284 PMCID: PMC11742112 DOI: 10.1091/mbc.e24-06-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative bacillus that infects the host intestinal epithelium and resident macrophages. Many intracellular pathogens induce an autophagic response in host cells but have evolved mechanisms to subvert that response. Autophagy is closely linked to cellular cholesterol levels; mTORC1 senses increased cholesterol in lysosomal membranes, leading to its hyperactivity and suppression of autophagy. Previous studies indicate that Salmonella infection induces dramatic accumulation of cholesterol in macrophages, a fraction of which localizes to Salmonella containing vacuoles (SCVs). We previously reported that the bacterial effector protein SseJ triggers cholesterol accumulation through a signaling cascade involving focal adhesion kinase (FAK) and Akt. Here we show that mTORC1 is recruited to SCVs and is hyperactivated in a cholesterol-dependent manner. If cholesterol accumulation is prevented pharmacologically or through mutation of sseJ, autophagy is induced and bacterial survival is attenuated. Notably, the host lipid transfer protein OSBP (oxysterol binding protein 1) is also recruited to SCVs and its activity is necessary for both cholesterol transfer to SCVs and mTORC1 activation during infection. Finally, lipidomic analysis of Salmonella-infected macrophages revealed new insights into how Salmonella may manipulate lipid homeostasis to benefit its survival. We propose that S. Typhimurium induces cholesterol accumulation through SseJ to activate mTORC1, preventing autophagic clearance of bacteria.
Collapse
Affiliation(s)
- Holly M. Torsilieri
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Clint M. Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903
| | - James E. Casanova
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903
| |
Collapse
|
11
|
La Rosa P, Tiberi J, Palermo E, Stefanelli R, Tiano SML, Canterini S, Cortese M, Hiscott J, Fiorenza MT. The inactivation of the Niemann Pick C1 cholesterol transporter restricts SARS-CoV-2 entry into host cells by decreasing ACE2 abundance at the plasma membrane. Cell Biosci 2024; 14:148. [PMID: 39707537 DOI: 10.1186/s13578-024-01331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The Niemann Pick C1 (NPC1) protein is an intracellular cholesterol transporter located in the late endosome/lysosome (LE/Ly) that is involved in the mobilization of endocytosed cholesterol. Loss-of-function mutations in the NPC1 gene lead to the accumulation of cholesterol and sphingolipids in LE/Ly, resulting in severe fatal NPC1 disease. Cellular alterations associated with NPC1 inactivation affect both the integrity of lipid rafts and the endocytic pathway. Because the angiotensin-converting enzyme 2 (ACE2) and type 2 serine transmembrane protease (TMPRSS2), interactors of the SARS-CoV-2 Spike protein also localize to lipid rafts, we sought to investigate the hypothesis that NPC1 inactivation would generate an intrinsically unfavorable barrier to SARS-CoV-2 entry. RESULTS In this study, we show that inhibition of the cholesterol transporter activity of NPC1 in cells that express both ACE2 and TMPRSS2, considerably reduces SARS-CoV-2 infectivity, evaluated as early as 4 h post-infection. Mechanistically, treatment with NPC1 specific inhibitor U18666A relocalizes ACE2 from the plasma membrane to the autophagosomal/lysosomal compartment, thereby reducing SARS-CoV-2 entry into treated cells. Reduction of viral entry was observed for both fully infectious SARS-CoV-2 virus and with a pseudotyped VSV-Spike-GFP virus. For instance, U18666A-treated Caco-2 cells infected with the pseudotyped VSV-Spike-GFP showed a > threefold and > 40-fold reduction in virus titer when infectivity was measured at 4 h or 24 h post-infection, respectively. A similar effect was observed in CRISP/R-Cas9-edited Caco-2 cells, which were even more resistant to SARS-CoV-2 infection as indicated by a 97% reduction of viral titers. CONCLUSION Overall, this study provides compelling evidence that the inhibition of NPC1 cholesterol transporter activity generates a cellular environment that hinders SARS-CoV-2 entry. ACE2 depletion from the plasma membrane appears to play a major role as limiting factor for viral entry.
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Jessica Tiberi
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Enrico Palermo
- Istituto Pasteur Italia-Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161, Rome, Italy
| | - Roberta Stefanelli
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
| | - Sofia Maria Luigia Tiano
- Telethon Institute of Genetics and Medicine, TIGEM, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Sonia Canterini
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, TIGEM, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
- Universitá della Campania Luigi Vanvitelli, Via Vivaldi, 43, 81100, Caserta, Italy
| | - John Hiscott
- Istituto Pasteur Italia-Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161, Rome, Italy
| | - Maria Teresa Fiorenza
- Division of Neuroscience, Dept. of Psychology, University La Sapienza, Via dei Sardi 70, 00185, Rome, Italy.
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
12
|
Liu Q, Wu X, Duan W, Pan X, Wabitsch M, Lu M, Li J, Huang LH, Zhou Z, Zhu Y. ACAT1/SOAT1 maintains adipogenic ability in preadipocytes by regulating cholesterol homeostasis. J Lipid Res 2024; 65:100680. [PMID: 39481851 PMCID: PMC11638590 DOI: 10.1016/j.jlr.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Maintaining cholesterol homeostasis is critical for preserving adipocyte function during the progression of obesity. Despite this, the regulatory role of cholesterol esterification in governing adipocyte expandability has been understudied. Acyl-coenzyme A (CoA):cholesterol acyltransferase/Sterol O-acyltransferase 1 (ACAT1/SOAT1) is the dominant enzyme to synthesize cholesteryl ester in most tissues. Our previous study demonstrated that knockdown of either ACAT1 or ACAT2 impaired adipogenesis. However, the underlying mechanism of how ACAT1 mediates adipogenesis remains unclear. Here, we reported that ACAT1 is the dominant isoform in white adipose tissue of both humans and mice, and knocking out ACAT1 reduced fat mass in mice. Furthermore, ACAT1-deficiency inhibited the early stage of adipogenesis via attenuating PPARγ pathway. Mechanistically, ACAT1 deficiency inhibited SREBP2-mediated cholesterol uptake and thus reduced intracellular and plasma membrane cholesterol levels during adipogenesis. Replenishing cholesterol could rescue adipogenic master gene-Pparγ's-transcription in ACAT1-deficient cells during adipogenesis. Finally, overexpression of catalytically functional ACAT1, not the catalytic-dead ACAT1, rescued cholesterol levels and efficiently rescued the transcription of PPARγ as well as the adipogenesis in ACAT1-deficient preadipocytes. In summary, our study revealed the indispensable role of ACAT1 in adipogenesis via regulating intracellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Qing Liu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
| | - Xiaolin Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
| | - Wei Duan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohan Pan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Ming Lu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jing Li
- Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangsen Zhou
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yuyan Zhu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon, Hung Hom, Hong Kong; The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China.
| |
Collapse
|
13
|
Fedorov NS, Malomouzh AI, Petrov AM. Effects of membrane cholesterol-targeting chemicals on skeletal muscle contractions evoked by direct and indirect stimulation. J Muscle Res Cell Motil 2024; 45:221-231. [PMID: 38904733 DOI: 10.1007/s10974-024-09675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Cholesterol is one of the major components of plasma membrane, where its distribution is nonhomogeneous and it participates in lipid raft formation. In skeletal muscle cholesterol and lipid rafts seem to be important for excitation-contraction coupling and for neuromuscular transmission, involving cholesterol-rich synaptic vesicles. In the present study, nerve and muscle stimulation-evoked contractions were recorded to assess the role of cholesterol in contractile function of mouse diaphragm. Exposure to cholesterol oxidase (0.2 U/ml) and cholesterol-depleting agent methyl-β-cyclodextrin (1 mM) did not affect markedly contractile responses to both direct and indirect stimulation at low and high frequency. However, methyl-β-cyclodextrin at high concentration (10 mM) strongly decreased the force of both single and tetanus contractions induced by phrenic nerve stimulation. This decline in contractile function was more profoundly expressed when methyl-β-cyclodextrin application was combined with phrenic nerve activation. At the same time, 10 mM methyl-β-cyclodextrin had no effect on contractions upon direct muscle stimulation at low and high frequency. Thus, strong cholesterol depletion suppresses contractile function mainly due to disturbance of the neuromuscular communication, whereas muscle fiber contractility remains resistant to decline.
Collapse
Affiliation(s)
- Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia
- Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia.
- Kazan National Research Technical University named after A.N. Tupolev-KAI, 10, K. Marx St, Kazan, 420111, Russia.
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia
- Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
- Kazan State Medical University, 49 Butlerova St, Kazan, 420012, Russia
| |
Collapse
|
14
|
Lehmann M, Halder S, Reinholdt P, Bashawat M, Scheidt HA, Leopold J, Schiller J, di Prima D, Akkerman V, Szomek M, Lauritsen L, Kongsted J, Müller P, Wessig P, Wüstner D. Synthesis and Characterization of a Novel Intrinsically Fluorescent Analog of Cholesterol with Improved Photophysical Properties. Anal Chem 2024; 96:18596-18604. [PMID: 39537343 PMCID: PMC11603404 DOI: 10.1021/acs.analchem.3c05720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Live-cell imaging of cholesterol trafficking depends on suitable cholesterol analogs. However, existing fluorescent analogs of cholesterol either show very different physicochemical properties compared to cholesterol or demand excitation in the ultraviolet spectral region. We present a strategy to synthesize two novel intrinsically fluorescent sterol probes with a close resemblance of cholesterol. The analogs contain four conjugated double bonds in the ring system and either a keto group (probe 5) or a hydroxy group (probe 6) in the C3 position. The emission of 5 is in the visible range of the spectrum, i.e., red-shifted by 150 nm compared to the widely used dehydroergosterol. Together with its high multiphoton absorption, this allows for imaging of 5 on conventional microscopes, including multicolor 3D and time-lapse microscopy. Molecular dynamics simulations and nuclear magnetic resonance spectroscopy reveal that 5 can condense the fatty acyl chains of phospholipids in model membranes. In giant unilamellar vesicles, 5 partitions equally into the liquid-ordered and disordered phases. In contrast, 6 emits in the ultraviolet range and is unstable in solution, preventing its use in live-cell imaging applications. The good photophysical properties of 5 make it a suitable analogue for improved live-cell imaging of sterol transport.
Collapse
Affiliation(s)
- Max Lehmann
- Department
of Chemistry, University of Potsdam, Karl-Liebknecht Str. 24-25, Potsdam 14476, Germany
| | - Senjuti Halder
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| | - Peter Reinholdt
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense M DK-5230, Denmark
| | - Mohammad Bashawat
- Department
of Biology, Humboldt University Berlin, Invalidenstr. 42, Berlin 10115, Germany
| | - Holger A. Scheidt
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstr.
16-18, Leipzig 04107, Germany
| | - Jenny Leopold
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstr.
16-18, Leipzig 04107, Germany
| | - Jürgen Schiller
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstr.
16-18, Leipzig 04107, Germany
| | - Duccio di Prima
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense M DK-5230, Denmark
| | - Vibeke Akkerman
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| | - Maria Szomek
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| | - Line Lauritsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense M DK-5230, Denmark
| | - Peter Müller
- Department
of Biology, Humboldt University Berlin, Invalidenstr. 42, Berlin 10115, Germany
| | - Pablo Wessig
- Department
of Chemistry, University of Potsdam, Karl-Liebknecht Str. 24-25, Potsdam 14476, Germany
| | - Daniel Wüstner
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| |
Collapse
|
15
|
Handlin LJ, Macchi NL, Dumaire NLA, Salih L, Lessie EN, McCommis KS, Moutal A, Dai G. Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons. Nat Commun 2024; 15:9898. [PMID: 39548079 PMCID: PMC11568329 DOI: 10.1038/s41467-024-54053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cell membranes consist of heterogeneous lipid nanodomains that influence key cellular processes. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we find that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated the opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels. This increased neuronal firing is partially due to an increased open probability and altered gating kinetics of HCN channels. The gating effect on HCN channels is likely due to a direct modulation of their voltage sensors by OMDs. In animal models of neuropathic pain, we observe reduced OMD size and a loss of HCN channel localization within OMDs. Additionally, cholesterol supplementation inhibited HCN channels and reduced neuronal hyperexcitability in pain models. These findings suggest that disturbances in lipid nanodomains play a critical role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.
Collapse
Affiliation(s)
- Lucas J Handlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Natalie L Macchi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Nicolas L A Dumaire
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Lyuba Salih
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Erin N Lessie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Kyle S McCommis
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, USA
| | - Gucan Dai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, USA.
| |
Collapse
|
16
|
Montesinos J, Kabra K, Uceda M, Larrea D, Agrawal R, Tamucci K, Pera M, Ferre A, Gomez-Lopez N, Yun T, Velasco K, Schon E, Area-Gomez E. The contribution of mitochondria-associated ER membranes to cholesterol homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622945. [PMID: 39605513 PMCID: PMC11601226 DOI: 10.1101/2024.11.11.622945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cellular demands for cholesterol are met by a balance between its biosynthesis in the endoplasmic reticulum (ER) and its uptake from lipoproteins. Cholesterol levels in intracellular membranes form a gradient maintained by a complex network of mechanisms including the control of the expression, compartmentalization and allosteric modulation of the enzymes that balance endogenous and exogenous sources of cholesterol. Low-density lipoproteins (LDLs) are internalized and delivered to lysosomal compartments to release their cholesterol content, which is then distributed within cellular membranes. High-density lipoproteins (HDLs), on the other hand, can transfer their cholesterol content directly into cellular membranes through the action of receptors such as the scavenger receptor B type 1 (SR-B1; gene SCARB1). We show here that SR-B1-mediated exogenous cholesterol internalization from HDL stimulates the formation of lipid-raft subdomains in the ER known as mitochondria-associated ER membranes (MAM), that, in turn, suppress de novo cholesterol biosynthesis machinery. We propose that MAM is a regulatory hub for cholesterol homeostasis that offers a novel dimension for understanding the intracellular regulation of this important lipid.
Collapse
Affiliation(s)
- J. Montesinos
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - K. Kabra
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - M. Uceda
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - D. Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - R.R. Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - K.A. Tamucci
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, USA
| | - M. Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - A.C. Ferre
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - N. Gomez-Lopez
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - T.D. Yun
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
| | - K.R. Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - E.A. Schon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - E. Area-Gomez
- Centro de Investigaciones Biológicas Margarita Salas. CSIC. Madrid, Spain. CIBERNED
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Lange Y, Steck TL. How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis. Prog Lipid Res 2024; 96:101304. [PMID: 39491591 DOI: 10.1016/j.plipres.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level of plasma membrane cholesterol. Cholesterol in excess of the stoichiometric equivalence point of these complexes has high chemical activity; we refer to it as active cholesterol. It equilibrates with the low affinity phospholipids in the intracellular membranes where it serves as a negative feedback signal to a manifold of regulatory proteins that rein in ongoing cholesterol accretion. We tested the model with a review of the literature regarding fourteen homeostatic proteins in enterocytes. It provided strong albeit indirect support for the following hypothesis. Active cholesterol inhibits cholesterol uptake and biosynthesis by suppressing both the expression and the activity of the gene products activated by SREBP-2; namely, HMGCR, LDLR and NPC1L1. It also reduces free cell cholesterol by serving as the substrate for its esterification by ACAT and for the synthesis of side-chain oxysterols, 27-hydroxycholesterol in particular. The oxysterols drive cholesterol depletion by promoting the destruction of HMGCR and stimulating sterol esterification as well as the activation of LXR. The latter fosters the expression of multiple homeostatic proteins, including four transporters for which active cholesterol is the likely substrate. By nulling active cholesterol, the manifold maintains the cellular sterol at its physiologic set point.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
18
|
Dang EV, Reboldi A. Cholesterol sensing and metabolic adaptation in tissue immunity. Trends Immunol 2024; 45:861-870. [PMID: 39424470 PMCID: PMC11560508 DOI: 10.1016/j.it.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Cholesterol metabolites, particularly oxidized forms known as oxysterols, play crucial roles in modulating immune and metabolic processes across various tissues. Concentrations of local cholesterol and its metabolites influence tissue-specific immune responses by shaping the metabolic and spatial organization of immune cells in barrier organs like the small intestine (SI) and lungs. We explore recent molecular and cellular evidence supporting the metabolic adaptation of innate and adaptive immune cells in the SI and lung, driven by cholesterol and cholesterol metabolites. Further research should unravel the detailed molecular mechanisms and spatiotemporal adaptations involving cholesterol metabolites in distinct mucosal tissues in homeostasis or infection. We posit that pharmacological interventions targeting the generation or sensing of cholesterol metabolites might be leveraged to enhance long-term immune protection in mucosal tissues or prevent autoinflammatory states.
Collapse
Affiliation(s)
- Eric V Dang
- Molecular Mycology and Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Andrea Reboldi
- Department of Pathology, Immunology, and Microbial Pathogenesis Program, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 PMCID: PMC12034107 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Kennelly JP, Xiao X, Gao Y, Kim S, Hong SG, Villanueva M, Ferrari A, Vanharanta L, Nguyen A, Nagari RT, Burton NR, Tol MJ, Becker AP, Lee MJ, Ikonen E, Backus KM, Mack JJ, Tontonoz P. Cholesterol binding to VCAM-1 promotes vascular inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613543. [PMID: 39345495 PMCID: PMC11429921 DOI: 10.1101/2024.09.17.613543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hypercholesterolemia has long been implicated in endothelial cell (EC) dysfunction, but the mechanisms by which excess cholesterol causes vascular pathology are incompletely understood. Here we used a cholesterol-mimetic probe to map cholesterol-protein interactions in primary human ECs and discovered that cholesterol binds to and stabilizes the adhesion molecule VCAM-1. We show that accessible plasma membrane (PM) cholesterol in ECs is acutely responsive to inflammatory stimuli and that the nonvesicular cholesterol transporter Aster-A regulates VCAM-1 stability in activated ECs by controlling the size of this pool. Deletion of Aster-A in ECs increases VCAM-1 protein, promotes immune cell recruitment to vessels, and impairs pulmonary immune homeostasis. Conversely, depleting cholesterol from the endothelium in vivo dampens VCAM-1 induction in response to inflammatory stimuli. These findings identify cholesterol binding to VCAM-1 as a key step during EC activation and provide a biochemical explanation for the ability of excess membrane cholesterol to promote immune cell recruitment to the endothelium.
Collapse
Affiliation(s)
- John P. Kennelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Sumin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soon-Gook Hong
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | | | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Alexander Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Rohith T. Nagari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Nikolas R. Burton
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marcus J. Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Andrew P. Becker
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Keriann M. Backus
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| | - Julia J. Mack
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Tajima M, Nakamura H, Ohsaki S, Watano S. Effect of cholesterol on nanoparticle translocation across a lipid bilayer. Phys Chem Chem Phys 2024; 26:21229-21239. [PMID: 39073356 DOI: 10.1039/d4cp00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nanoparticles (NPs) have attracted significant attention as carriers for the delivery of drugs, genes, and macromolecules for biomedical and therapeutic applications. These technologies require NPs to be delivered to the interior of the cell. However, this translocation is unlikely because of the presence of a cell membrane composed of phospholipids, cholesterol, proteins, and glycans. The cell membrane composition can influence its rigidity; thus, membrane composition is a crucial factor in determining the translocation of NPs across the cell membrane. Here, we focus on cholesterol, which is an essential component of biological cell membranes, and investigate NP translocation across membranes containing cholesterol under an applied electric field using a coarse-grained molecular dynamics simulation. We found that NPs could translocate directly across cholesterol-containing membranes without irreversible membrane disruption. This unique translocation was induced by two key phenomena. Before NP translocation, a phospholipid-rich/cholesterol-poor domain was formed at the NP-membrane contact interface. Second, a smaller transmembrane pore was formed in the cholesterol-containing membrane during membrane crossing of the NP. Our findings imply that the delivery of NPs to the cell interior across the cholesterol-containing membrane can be achieved by appropriately controlling the strength of the applied electric field, depending on the cholesterol content in the membrane.
Collapse
Affiliation(s)
- Masaya Tajima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
22
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Morcillo P, Kabra K, Velasco K, Cordero H, Jennings S, Yun TD, Larrea D, Akman HO, Schon EA. Aberrant ER-mitochondria communication is a common pathomechanism in mitochondrial disease. Cell Death Dis 2024; 15:405. [PMID: 38858390 PMCID: PMC11164949 DOI: 10.1038/s41419-024-06781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Genetic mutations causing primary mitochondrial disease (i.e those compromising oxidative phosphorylation [OxPhos]) resulting in reduced bioenergetic output display great variability in their clinical features, but the reason for this is unknown. We hypothesized that disruption of the communication between endoplasmic reticulum (ER) and mitochondria at mitochondria-associated ER membranes (MAM) might play a role in this variability. To test this, we assayed MAM function and ER-mitochondrial communication in OxPhos-deficient cells, including cybrids from patients with selected pathogenic mtDNA mutations. Our results show that each of the various mutations studied indeed altered MAM functions, but notably, each disorder presented with a different MAM "signature". We also found that mitochondrial membrane potential is a key driver of ER-mitochondrial connectivity. Moreover, our findings demonstrate that disruption in ER-mitochondrial communication has consequences for cell survivability that go well beyond that of reduced ATP output. The findings of a "MAM-OxPhos" axis, the role of mitochondrial membrane potential in controlling this process, and the contribution of MAM dysfunction to cell death, reveal a new relationship between mitochondria and the rest of the cell, as well as providing new insights into the diagnosis and treatment of these devastating disorders.
Collapse
Affiliation(s)
- Patricia Morcillo
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Khushbu Kabra
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kevin Velasco
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Immunology Group, Department of Physiology, Faculty of Veterinary, University of Extremadura, Caceres, 10003, Spain
| | - Sarah Jennings
- Stony Brook University, Stony Brook, New York, NY, 11794, USA
| | - Taekyung D Yun
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Li X, Sallam T. A (cholesterol) crystal clear path to inflammasome activation in atherosclerosis. J Lipid Res 2024; 65:100554. [PMID: 38705278 PMCID: PMC11153915 DOI: 10.1016/j.jlr.2024.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Affiliation(s)
- Xiang Li
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, UCLA, Los Angeles, CA, USA; Department of Physiology, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Zhang S, Fang T, He Y, Feng W, Yu Z, Zheng Y, Zhang C, Hu S, Liu Z, Liu J, Yu J, Zhang H, He A, Gong Y, He Z, Yang K, Xi Z, Yu W, Zhou L, Yao L, Yue S. VHL mutation drives human clear cell renal cell carcinoma progression through PI3K/AKT-dependent cholesteryl ester accumulation. EBioMedicine 2024; 103:105070. [PMID: 38564827 PMCID: PMC10999658 DOI: 10.1016/j.ebiom.2024.105070] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Cholesteryl ester (CE) accumulation in intracellular lipid droplets (LDs) is an essential signature of clear cell renal cell carcinoma (ccRCC), but its molecular mechanism and pathological significance remain elusive. METHODS Enabled by the label-free Raman spectromicroscopy, which integrated stimulated Raman scattering microscopy with confocal Raman spectroscopy on the same platform, we quantitatively analyzed LD distribution and composition at the single cell level in intact ccRCC cell and tissue specimens in situ without any processing or exogenous labeling. Since we found that commonly used ccRCC cell lines actually did not show the CE-rich signature, primary cancer cells were isolated from human tissues to retain the lipid signature of ccRCC with CE level as high as the original tissue, which offers a preferable cell model for the study of cholesterol metabolism in ccRCC. Moreover, we established a patient-derived xenograft (PDX) mouse model that retained the CE-rich phenotype of human ccRCC. FINDINGS Surprisingly, our results revealed that CE accumulation was induced by tumor suppressor VHL mutation, the most common mutation of ccRCC. Moreover, VHL mutation was found to promote CE accumulation by upregulating HIFα and subsequent PI3K/AKT/mTOR/SREBPs pathway. Inspiringly, inhibition of cholesterol esterification remarkably suppressed ccRCC aggressiveness in vitro and in vivo with negligible toxicity, through the reduced membrane cholesterol-mediated downregulations of integrin and MAPK signaling pathways. INTERPRETATION Collectively, our study improves current understanding of the role of CE accumulation in ccRCC and opens up new opportunities for treatment. FUNDING This work was supported by National Natural Science Foundation of China (No. U23B2046 and No. 62027824), National Key R&D Program of China (No. 2023YFC2415500), Fundamental Research Funds for the Central Universities (No. YWF-22-L-547), PKU-Baidu Fund (No. 2020BD033), Peking University First Hospital Scientific and Technological Achievement Transformation Incubation Guidance Fund (No. 2022CX02), and Beijing Municipal Health Commission (No. 2020-2Z-40713).
Collapse
Affiliation(s)
- Shuo Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Tinghe Fang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yexuan He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Weichen Feng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhuoyang Yu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Yaoyao Zheng
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Chi Zhang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jian Yu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Han Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Anbang He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Kaiwei Yang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Zhijun Xi
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, 100034, China.
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
26
|
Tripathy A, Priyadarsinee S, Bag N. Evaluation of functional transbilayer coupling in live cells by controlled lipid exchange and imaging fluorescence correlation spectroscopy. Methods Enzymol 2024; 700:1-32. [PMID: 38971596 DOI: 10.1016/bs.mie.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Biophysical coupling between the inner and outer leaflets, known as inter-leaflet or transbilayer coupling, is a fundamental organizational principle in the plasma membranes of live mammalian cells. Lipid-based interactions between the two leaflets are proposed to be a primary mechanism underlying transbilayer coupling. However, there are only a few experimental evidence supporting the existence of such interactions in live cells. This is seemingly due to the lack of experimental strategies to perturb the lipid composition in one leaflet and quantitative techniques to evaluate the biophysical properties of the opposite leaflet. The existing strategies often dependent on immobilization and clustering a component in one of the leaflets and technically demanding biophysical tools to evaluate the effects on the opposing leaflet. In the recent years, the London group developed a simple but elegant method, namely methyl-alpha-cyclodextrin catalyzed lipid exchange (LEX), to efficiently exchange outer leaflet lipids with an exogenous lipid of choice. Here, we adopted this method to perturb outer leaflet lipid composition. The corresponding changes in the inner leaflet is evaluated by comparing the diffusion of lipid probes localized in this leaflet in unperturbed and perturbed conditions. We employed highly multiplexed imaging fluorescence correlation spectroscopy (ImFCS), realized in a commercially available or home-built total internal reflection fluorescence microsocope equipped with a fast and sensitive camera, to determine diffusion coefficient of the lipid probes. Using the combination of LEX and ImFCS, we directly demonstrate lipid-based transbilayer coupling that does not require immobilization of membrane components in live mast cells in resting conditions. Overall, we present a relatively straightforward experimental strategy to evaluate transbilayer coupling quantitively in live cells.
Collapse
Affiliation(s)
- Arpita Tripathy
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sudipti Priyadarsinee
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Nirmalya Bag
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India.
| |
Collapse
|
27
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
28
|
Kuwashima Y, Yanagawa M, Maekawa M, Abe M, Sako Y, Arita M. TRPV4-dependent Ca 2+ influx determines cholesterol dynamics at the plasma membrane. Biophys J 2024; 123:867-884. [PMID: 38433447 PMCID: PMC10995426 DOI: 10.1016/j.bpj.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
The activities of the transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable nonselective cation channel, are controlled by its surrounding membrane lipids (e.g., cholesterol, phosphoinositides). The transmembrane region of TRPV4 contains a cholesterol recognition amino acid consensus (CRAC) motif and its inverted (CARC) motif located in the plasmalemmal cytosolic leaflet. TRPV4 localizes in caveolae, a bulb-shaped cholesterol-rich domain at the plasma membrane. Here, we visualized the spatiotemporal interactions between TRPV4 and cholesterol at the plasma membrane in living cells by dual-color single-molecule imaging using total internal reflection fluorescence microscopy. To this aim, we labeled cholesterol at the cytosolic leaflets of the plasma membrane using a cholesterol biosensor, D4H. Our single-molecule tracking analysis showed that the TRPV4 molecules colocalize with D4H-accessible cholesterol molecules mainly in the low fluidity membrane domains in which both molecules are highly clustered. Colocalization of TRPV4 and D4H-accessible cholesterol was observed both inside and outside of caveolae. Agonist-evoked TRPV4 activation remarkably decreased colocalization probability and association rate between TRPV4 and D4H-accessible cholesterol molecules. Interestingly, upon TRPV4 activation, the particle density of D4H-accessible cholesterol molecules was decreased and the D4H-accessible cholesterol molecules in the fast-diffusing state were increased at the plasma membrane. The introduction of skeletal dysplasia-associated R616Q mutation into the CRAC/CARC motif of TRPV4, which reduced the interaction with cholesterol clusters, could not alter the D4H-accessible cholesterol dynamics. Mechanistically, TRPV4-mediated Ca2+ influx and the C-terminal calmodulin-binding site of TRPV4 are essential for modulating the plasmalemmal D4H-accessible cholesterol dynamics. We propose that TRPV4 remodels its surrounding plasmalemmal environment by manipulating cholesterol dynamics through Ca2+ influx.
Collapse
Affiliation(s)
- Yutaro Kuwashima
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan; Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research (CPR), Saitama, Japan.
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan.
| |
Collapse
|
29
|
Yalcinkaya M, Liu W, Xiao T, Abramowicz S, Wang R, Wang N, Westerterp M, Tall AR. Cholesterol trafficking to the ER leads to the activation of CaMKII/JNK/NLRP3 and promotes atherosclerosis. J Lipid Res 2024; 65:100534. [PMID: 38522750 PMCID: PMC11031842 DOI: 10.1016/j.jlr.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
The deposition of cholesterol-rich lipoproteins in the arterial wall triggers macrophage inflammatory responses, which promote atherosclerosis. The NLRP3 inflammasome aggravates atherosclerosis; however, cellular mechanisms connecting macrophage cholesterol accumulation to inflammasome activation are poorly understood. We investigated the mechanisms of NLRP3 inflammasome activation in cholesterol-loaded macrophages and in atherosclerosis-prone Ldlr-/- mice with defects in macrophage cholesterol efflux. We found that accumulation of cholesterol in macrophages treated with modified LDL or cholesterol crystals, or in macrophages defective in the cholesterol efflux promoting transporters ABCA1 and ABCG1, leads to activation of NLRP3 inflammasomes as a result of increased cholesterol trafficking from the plasma membrane to the ER, via Aster-B. In turn, the accumulation of cholesterol in the ER activates the inositol triphosphate-3 receptor, CaMKII/JNK, and induces NLRP3 deubiquitylation by BRCC3. An NLRP3 deubiquitylation inhibitor or deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex, suppressed inflammasome activation, neutrophil extracellular trap formation (NETosis), and atherosclerosis in vivo. These results identify a link between the trafficking of cholesterol to the ER, NLRP3 deubiquitylation, inflammasome activation, and atherosclerosis.
Collapse
Affiliation(s)
- Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ranran Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
31
|
Fang XX, Wei P, Zhao K, Sheng ZC, Song BL, Yin L, Luo J. Fatty acid-binding proteins 3, 7, and 8 bind cholesterol and facilitate its egress from lysosomes. J Cell Biol 2024; 223:e202211062. [PMID: 38429999 PMCID: PMC10909654 DOI: 10.1083/jcb.202211062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/22/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024] Open
Abstract
Cholesterol from low-density lipoprotein (LDL) can be transported to many organelle membranes by non-vesicular mechanisms involving sterol transfer proteins (STPs). Fatty acid-binding protein (FABP) 7 was identified in our previous study searching for new regulators of intracellular cholesterol trafficking. Whether FABP7 is a bona fide STP remains unknown. Here, we found that FABP7 deficiency resulted in the accumulation of LDL-derived cholesterol in lysosomes and reduced cholesterol levels on the plasma membrane. A crystal structure of human FABP7 protein in complex with cholesterol was resolved at 2.7 Å resolution. In vitro, FABP7 efficiently transported the cholesterol analog dehydroergosterol between the liposomes. Further, the silencing of FABP3 and 8, which belong to the same family as FABP7, caused robust cholesterol accumulation in lysosomes. These two FABP proteins could transport dehydroergosterol in vitro as well. Collectively, our results suggest that FABP3, 7, and 8 are a new class of STPs mediating cholesterol egress from lysosomes.
Collapse
Affiliation(s)
- Xian-Xiu Fang
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Pengcheng Wei
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kai Zhao
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhao-Chen Sheng
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Yin
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Luo
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
33
|
Gao Y, Kennelly JP, Xiao X, Whang E, Ferrari A, Bedard AH, Mack JJ, Nguyen AH, Weston T, Uchiyama LF, Lee MS, Young SG, Bensinger SJ, Tontonoz P. T cell cholesterol transport is a metabolic checkpoint that links intestinal immune responses to dietary lipid absorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584164. [PMID: 38559079 PMCID: PMC10979874 DOI: 10.1101/2024.03.08.584164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intrinsic pathways that control membrane organization in immune cells and the impact of such pathways on cellular function are not well defined. Here we report that the non-vesicular cholesterol transporter Aster-A links plasma membrane (PM) cholesterol availability in T cells to immune signaling and systemic metabolism. Aster-A is recruited to the PM during T-cell receptor (TCR) activation, where it facilitates the removal of newly generated "accessible" membrane cholesterol. Loss of Aster-A leads to excess PM cholesterol accumulation, resulting in enhanced TCR nano-clustering and signaling, and Th17 cytokine production. Finally, we show that the mucosal Th17 response is restrained by PM cholesterol remodeling. Ablation of Aster-A in T cells leads to enhanced IL-22 production, reduced intestinal fatty acid absorption, and resistance to diet-induced obesity. These findings delineate a multi-tiered regulatory scheme linking immune cell lipid flux to nutrient absorption and systemic physiology.
Collapse
|
34
|
Rong S, Xia M, Vale G, Wang S, Kim CW, Li S, McDonald JG, Radhakrishnan A, Horton JD. DGAT2 inhibition blocks SREBP-1 cleavage and improves hepatic steatosis by increasing phosphatidylethanolamine in the ER. Cell Metab 2024; 36:617-629.e7. [PMID: 38340721 PMCID: PMC10939742 DOI: 10.1016/j.cmet.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step of triglyceride (TG) synthesis. DGAT2 deletion in mice lowers liver TGs, and DGAT2 inhibitors are under investigation for the treatment of fatty liver disease. Here, we show that DGAT2 inhibition also suppressed SREBP-1 cleavage, reduced fatty acid synthesis, and lowered TG accumulation and secretion from liver. DGAT2 inhibition increased phosphatidylethanolamine (PE) levels in the endoplasmic reticulum (ER) and inhibited SREBP-1 cleavage, while DGAT2 overexpression lowered ER PE concentrations and increased SREBP-1 cleavage in vivo. ER enrichment with PE blocked SREBP-1 cleavage independent of Insigs, which are ER proteins that normally retain SREBPs in the ER. Thus, inhibition of DGAT2 shunted diacylglycerol into phospholipid synthesis, increasing the PE content of the ER, resulting in reduced SREBP-1 cleavage and less hepatic steatosis. This study reveals a new mechanism that regulates SREBP-1 activation and lipogenesis that is independent of sterols and SREBP-2 in liver.
Collapse
Affiliation(s)
- Shunxing Rong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Mingfeng Xia
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Goncalo Vale
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Simeng Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Chai-Wan Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Shili Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
35
|
Xu S, Smothers JC, Rye D, Endapally S, Chen H, Li S, Liang G, Kinnebrew M, Rohatgi R, Posner BA, Radhakrishnan A. A cholesterol-binding bacterial toxin provides a strategy for identifying a specific Scap inhibitor that blocks lipid synthesis in animal cells. Proc Natl Acad Sci U S A 2024; 121:e2318024121. [PMID: 38330014 PMCID: PMC10873635 DOI: 10.1073/pnas.2318024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024] Open
Abstract
Lipid synthesis is regulated by the actions of Scap, a polytopic membrane protein that binds cholesterol in membranes of the endoplasmic reticulum (ER). When ER cholesterol levels are low, Scap activates SREBPs, transcription factors that upregulate genes for synthesis of cholesterol, fatty acids, and triglycerides. When ER cholesterol levels rise, the sterol binds to Scap, triggering conformational changes that prevent activation of SREBPs and halting synthesis of lipids. To achieve a molecular understanding of how cholesterol regulates the Scap/SREBP machine and to identify therapeutics for dysregulated lipid metabolism, cholesterol-mimetic compounds that specifically bind and inhibit Scap are needed. To accomplish this goal, we focused on Anthrolysin O (ALO), a pore-forming bacterial toxin that binds cholesterol with a specificity and sensitivity that is uncannily similar to Scap. We reasoned that a small molecule that would bind and inhibit ALO might also inhibit Scap. High-throughput screening of a ~300,000-compound library for ALO-binding unearthed one molecule, termed UT-59, which binds to Scap's cholesterol-binding site. Upon binding, UT-59 triggers the same conformation changes in Scap as those induced by cholesterol and blocks activation of SREBPs and lipogenesis in cultured cells. UT-59 also inhibits SREBP activation in the mouse liver. Unlike five previously reported inhibitors of SREBP activation, UT-59 is the only one that acts specifically by binding to Scap's cholesterol-binding site. Our approach to identify specific Scap inhibitors such as UT-59 holds great promise in developing therapeutic leads for human diseases stemming from elevated SREBP activation, such as fatty liver and certain cancers.
Collapse
Affiliation(s)
- Shimeng Xu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jared C. Smothers
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Daphne Rye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Shreya Endapally
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hong Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Shili Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Maia Kinnebrew
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
36
|
Skeyni A, Pradignac A, Matz RL, Terrand J, Boucher P. Cholesterol trafficking, lysosomal function, and atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C473-C486. [PMID: 38145298 DOI: 10.1152/ajpcell.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Despite years of study and major research advances over the past 50 years, atherosclerotic diseases continue to rank as the leading global cause of death. Accumulation of cholesterol within the vascular wall remains the main problem and represents one of the early steps in the development of atherosclerotic lesions. There is a complex relationship between vesicular cholesterol transport and atherosclerosis, and abnormalities in cholesterol trafficking can contribute to the development and progression of the lesions. The dysregulation of vesicular cholesterol transport and lysosomal function fosters the buildup of cholesterol within various intracytoplasmic compartments, including lysosomes and lipid droplets. This, in turn, promotes the hallmark formation of foam cells, a defining feature of early atherosclerosis. Multiple cellular processes, encompassing endocytosis, exocytosis, intracellular trafficking, and autophagy, play crucial roles in influencing foam cell formation and atherosclerotic plaque stability. In this review, we highlight recent advances in the understanding of the intricate mechanisms of vesicular cholesterol transport and its relationship with atherosclerosis and discuss the importance of understanding these mechanisms in developing strategies to prevent or treat this prevalent cardiovascular disease.
Collapse
Affiliation(s)
- Alaa Skeyni
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Alain Pradignac
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Rachel L Matz
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Jérôme Terrand
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
37
|
Area-Gomez E, Schon EA. Towards a Unitary Hypothesis of Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2024; 98:1243-1275. [PMID: 38578892 PMCID: PMC11091651 DOI: 10.3233/jad-231318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 04/07/2024]
Abstract
The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-β protein precursor [AβPP] cleavage product amyloid-β [Aβ]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AβPP cleavage product C99, not Aβ, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY, USA
- Centro de Investigaciones Biológicas “Margarita Salas”, Spanish National Research Council, Madrid, Spain
| | - Eric A. Schon
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Genetics and Development>, Columbia University, New York, NY, USA
| |
Collapse
|
38
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
39
|
Kim Y, Mavodza G, Senkal CE, Burd CG. Cholesterol-dependent homeostatic regulation of very long chain sphingolipid synthesis. J Cell Biol 2023; 222:e202308055. [PMID: 37787764 PMCID: PMC10547602 DOI: 10.1083/jcb.202308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Sphingomyelin plays a key role in cellular cholesterol homeostasis by binding to and sequestering cholesterol in the plasma membrane. We discovered that synthesis of very long chain (VLC) sphingomyelins is inversely regulated by cellular cholesterol levels; acute cholesterol depletion elicited a rapid induction of VLC-sphingolipid synthesis, increased trafficking to the Golgi apparatus and plasma membrane, while cholesterol loading reduced VLC-sphingolipid synthesis. This sphingolipid-cholesterol metabolic axis is distinct from the sterol responsive element binding protein pathway as it requires ceramide synthase 2 (CerS2) activity, epidermal growth factor receptor signaling, and was unaffected by inhibition of protein translation. Depletion of VLC-ceramides reduced plasma membrane cholesterol content, reduced plasma membrane lipid packing, and unexpectedly resulted in the accumulation of cholesterol in the cytoplasmic leaflet of the lysosome membrane. This study establishes the existence of a cholesterol-sphingolipid regulatory axis that maintains plasma membrane lipid homeostasis via regulation of sphingomyelin synthesis and trafficking.
Collapse
Affiliation(s)
- Yeongho Kim
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Can E. Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | |
Collapse
|
40
|
Cesar-Silva D, Pereira-Dutra FS, Giannini ALM, Maya-Monteiro CM, de Almeida CJG. Lipid compartments and lipid metabolism as therapeutic targets against coronavirus. Front Immunol 2023; 14:1268854. [PMID: 38106410 PMCID: PMC10722172 DOI: 10.3389/fimmu.2023.1268854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratory of Endocrinology and Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Sviridov D, Bukrinsky M. Neuro-HIV-New insights into pathogenesis and emerging therapeutic targets. FASEB J 2023; 37:e23301. [PMID: 37942865 PMCID: PMC11032165 DOI: 10.1096/fj.202301239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term describing a complex set of cognitive impairments accompanying HIV infection. Successful antiretroviral therapy (ART) reduces the most severe forms of HAND, but milder forms affect over 50% of people living with HIV (PLWH). Pathogenesis of HAND in the ART era remains unknown. A variety of pathogenic factors, such as persistent HIV replication in the brain reservoir, HIV proteins released from infected brain cells, HIV-induced neuroinflammation, and some components of ART, have been implicated in driving HAND pathogenesis in ART-treated individuals. Here, we propose another factor-impairment of cholesterol homeostasis and lipid rafts by HIV-1 protein Nef-as a possible contributor to HAND pathogenesis. These effects of Nef on cholesterol may also underlie the effects of other pathogenic factors that constitute the multifactorial nature of HAND pathogenesis. The proposed Nef- and cholesterol-focused mechanism may provide a long-sought unified explanation of HAND pathogenesis that takes into account all contributing factors. Evidence for the impairment by Nef of cellular cholesterol balance, potential effects of this impairment on brain cells, and opportunities to therapeutically target this element of HAND pathogenesis are discussed.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
42
|
Schiffmann A, Ahlswede L, Gimpl G. Reversible translocation of acyl-CoA:cholesterol acyltransferase (ACAT) between the endoplasmic reticulum and vesicular structures. Front Mol Biosci 2023; 10:1258799. [PMID: 38028547 PMCID: PMC10667705 DOI: 10.3389/fmolb.2023.1258799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The enzyme acyl-CoA:cholesterol acyltransferase (ACAT) is normally localized in the endoplasmic reticulum (ER) where it can esterify cholesterol for storage in lipid droplets and/or the formation of lipoproteins. Here, we report that ACAT can translocate from the ER into vesicular structures in response to different ACAT inhibitors. The translocation was fast (within minutes), reversible and occurred in different cell types. Interestingly, oleic acid was able to fasten the re-translocation from vesicles back into the reticular ER network. The process of ACAT translocation could also be induced by cyclodextrins, cholesterol, lanosterol (but not 4-cholestene-3 one), 25-hydroxycholesterol, and by certain stress stimuli such as hyperosmolarity (sucrose treatment), temperature change, or high-density cultivation. In vitro esterification showed that ACAT remains fully active after it has been translocated to vesicles in response to hyperosmotic sucrose treatment of the cells. The translocation process was not accompanied by changes in the electrophoretic mobility of ACAT, even after chemical crosslinking. Interestingly, the protein synthesis inhibitor cycloheximide showed a stimulating effect on ACAT activity and prevented the translocation of ACAT from the ER into vesicles.
Collapse
Affiliation(s)
| | | | - Gerald Gimpl
- Department of Chemistry and Biochemistry, Biocenter II, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
43
|
Zakirjanova GF, Giniatullin AR, Gafurova CR, Malomouzh AI, Fedorov NS, Khaziev AN, Tsentsevitsky AN, Petrov AM. Effects of cholesterol oxidase on neurotransmission and acetylcholine levels at the mice neuromuscular junctions. Arch Biochem Biophys 2023; 749:109803. [PMID: 37955112 DOI: 10.1016/j.abb.2023.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Membrane cholesterol oxidation is a hallmark of redox and metabolic imbalance, and it may accompany neurodegenerative disorders. Using microelectrode recordings of postsynaptic responses as well as fluorescent dyes for monitoring synaptic vesicle cycling and membrane properties, the action of enzymatic cholesterol oxidation on neuromuscular transmission was studied in the mice diaphragms. Cholesterol oxidase (ChO) at low concentration disturbed lipid-ordering specifically in the synaptic membranes, but it did not change markedly spontaneous exocytosis and evoked release in response to single stimuli. At low external Ca2+ conditions, analysis of single exocytotic events revealed a decrease in minimal synaptic delay and the probability of exocytosis upon plasmalemmal cholesterol oxidation. At moderate- and high-frequency activity, ChO treatment enhanced both neurotransmitter and FM-dye release. Furthermore, it precluded a change in exocytotic mode from full-fusion to kiss-and-run during high-frequency stimulation. Accumulation of extracellular acetylcholine (without stimulation) dependent on vesamicol-sensitive transporters was suppressed by ChO. The effects of plasmalemmal cholesterol oxidation on both neurotransmitter/dye release at intense activity and external acetylcholine levels were reversed when synaptic vesicle membranes were also exposed to ChO (i.e., the enzyme treatment was combined with induction of exo-endocytotic cycling). Thus, we suggest that plasmalemmal cholesterol oxidation affects exocytotic machinery functioning, enhances synaptic vesicle recruitment to the exocytosis and decreases extracellular neurotransmitter levels at rest, whereas ChO acting on synaptic vesicle membranes suppresses the participation of the vesicles in the subsequent exocytosis and increases the neurotransmitter leakage. The mechanisms underlying ChO action can be related to the lipid raft disruption.
Collapse
Affiliation(s)
- Guzalia F Zakirjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Arthur R Giniatullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan National Research Technical University, 10, K. Marx Street, Kazan, 420111, Russia
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Arthur N Khaziev
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia; Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.
| |
Collapse
|
44
|
Koh DHZ, Naito T, Na M, Yeap YJ, Rozario P, Zhong FL, Lim KL, Saheki Y. Visualization of accessible cholesterol using a GRAM domain-based biosensor. Nat Commun 2023; 14:6773. [PMID: 37880244 PMCID: PMC10600248 DOI: 10.1038/s41467-023-42498-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Cholesterol is important for membrane integrity and cell signaling, and dysregulation of the distribution of cellular cholesterol is associated with numerous diseases, including neurodegenerative disorders. While regulated transport of a specific pool of cholesterol, known as "accessible cholesterol", contributes to the maintenance of cellular cholesterol distribution and homeostasis, tools to monitor accessible cholesterol in live cells remain limited. Here, we engineer a highly sensitive accessible cholesterol biosensor by taking advantage of the cholesterol-sensing element (the GRAM domain) of an evolutionarily conserved lipid transfer protein, GRAMD1b. Using this cholesterol biosensor, which we call GRAM-W, we successfully visualize in real time the distribution of accessible cholesterol in many different cell types, including human keratinocytes and iPSC-derived neurons, and show differential dependencies on cholesterol biosynthesis and uptake for maintaining levels of accessible cholesterol. Furthermore, we combine GRAM-W with a dimerization-dependent fluorescent protein (ddFP) and establish a strategy for the ultrasensitive detection of accessible plasma membrane cholesterol. These tools will allow us to obtain important insights into the molecular mechanisms by which the distribution of cellular cholesterol is regulated.
Collapse
Affiliation(s)
- Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Minyoung Na
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Pritisha Rozario
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Skin Research Institute of Singapore (SRIS), Singapore, 308232, Singapore
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
45
|
Abstract
The sorting and trafficking of lipids between organelles gives rise to a dichotomy of bulk membrane properties between organelles of the secretory and endolysosome networks, giving rise to two "membrane territories" based on differences in lipid-packing density, net membrane charge, and bilayer leaflet asymmetries. The cellular organelle membrane dichotomy emerges from ER-to-PM anterograde membrane trafficking and the synthesis of sphingolipids and cholesterol flux at the trans-Golgi network, which constitutes the interface between the two membrane territories. Organelle homeostasis is maintained by vesicle-mediated retrieval of bulk membrane from the distal organelles of each territory to the endoplasmic reticulum or plasma membrane and by soluble lipid transfer proteins that traffic particular lipids. The concept of cellular membrane territories emphasizes the contrasting features of organelle membranes of the secretory and endolysosome networks and the essential roles of lipid-sorting pathways that maintain organelle function.
Collapse
Affiliation(s)
- Yeongho Kim
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
46
|
Naito T, Yang H, Koh DHZ, Mahajan D, Lu L, Saheki Y. Regulation of cellular cholesterol distribution via non-vesicular lipid transport at ER-Golgi contact sites. Nat Commun 2023; 14:5867. [PMID: 37735529 PMCID: PMC10514280 DOI: 10.1038/s41467-023-41213-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal distribution of cellular cholesterol is associated with numerous diseases, including cardiovascular and neurodegenerative diseases. Regulated transport of cholesterol is critical for maintaining its proper distribution in the cell, yet the underlying mechanisms remain unclear. Here, we show that lipid transfer proteins, namely ORP9, OSBP, and GRAMD1s/Asters (GRAMD1a/GRAMD1b/GRAMD1c), control non-vesicular cholesterol transport at points of contact between the ER and the trans-Golgi network (TGN), thereby maintaining cellular cholesterol distribution. ORP9 localizes to the TGN via interaction between its tandem α-helices and ORP10/ORP11. ORP9 extracts PI4P from the TGN to prevent its overaccumulation and suppresses OSBP-mediated PI4P-driven cholesterol transport to the Golgi. By contrast, GRAMD1s transport excess cholesterol from the Golgi to the ER, thereby preventing its build-up. Cells lacking ORP9 exhibit accumulation of cholesterol at the Golgi, which is further enhanced by additional depletion of GRAMD1s with major accumulation in the plasma membrane. This is accompanied by chronic activation of the SREBP-2 signalling pathway. Our findings reveal the importance of regulated lipid transport at ER-Golgi contacts for maintaining cellular cholesterol distribution and homeostasis.
Collapse
Affiliation(s)
- Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Haoning Yang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Divyanshu Mahajan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lei Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
47
|
Zhong G, He C, Wang S, Lin C, Li M. Research progress on the mechanism of cholesterol-25-hydroxylase in intestinal immunity. Front Immunol 2023; 14:1241262. [PMID: 37720208 PMCID: PMC10500599 DOI: 10.3389/fimmu.2023.1241262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Inflammatory bowel disease (IBD), a general term encompassing Crohn's disease (CD) and ulcerative colitis (UC), and other conditions, is a chronic and relapsing autoimmune disease that can occur in any part of the digestive tract. While the cause of IBD remains unclear, it is acknowledged that the disease has much to do with the dysregulation of intestinal immunity. In the intestinal immune regulatory system, Cholesterol-25-hydroxylase (CH25H) plays an important role in regulating the function of immune cells and lipid metabolism through catalyzing the oxidation of cholesterol into 25-hydroxycholesterol (25-HC). Specifically, CH25H focuses its mechanism of regulating the inflammatory response, signal transduction and cell migration on various types of immune cells by binding to relevant receptors, and the mechanism of regulating lipid metabolism and immune cell function via the transcription factor Sterol Regulator-Binding Protein. Based on this foundation, this article will review the function of CH25H in intestinal immunity, aiming to provide evidence for supporting the discovery of early diagnostic and treatment targets for IBD.
Collapse
Affiliation(s)
| | | | | | | | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Gutay-Tóth Z, Gellen G, Doan M, Eliason JF, Vincze J, Szente L, Fenyvesi F, Goda K, Vecsernyés M, Szabó G, Bacso Z. Cholesterol-Depletion-Induced Membrane Repair Carries a Raft Conformer of P-Glycoprotein to the Cell Surface, Indicating Enhanced Cholesterol Trafficking in MDR Cells, Which Makes Them Resistant to Cholesterol Modifications. Int J Mol Sci 2023; 24:12335. [PMID: 37569709 PMCID: PMC10419235 DOI: 10.3390/ijms241512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
Collapse
Affiliation(s)
- Zsuzsanna Gutay-Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gellen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Minh Doan
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - James F. Eliason
- Great Lakes Stem Cell Innovation Center, Detroit, MI 48202, USA;
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., 1097 Budapest, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| |
Collapse
|
49
|
Dong L, Xiao J, Liu S, Deng G, Liao Y, Chu B, Zhao X, Song BL, Luo J. Lysosomal cholesterol accumulation is commonly found in most peroxisomal disorders and reversed by 2-hydroxypropyl-β-cyclodextrin. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1786-1799. [PMID: 36971991 DOI: 10.1007/s11427-022-2260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/10/2022] [Indexed: 03/29/2023]
Abstract
Peroxisomal disorders (PDs) are a heterogenous group of diseases caused by defects in peroxisome biogenesis or functions. X-linked adrenoleukodystrophy is the most prevalent form of PDs and results from mutations in the ABCD1 gene, which encodes a transporter mediating the uptake of very long-chain fatty acids (VLCFAs). The curative approaches for PDs are very limited. Here, we investigated whether cholesterol accumulation in the lysosomes is a biochemical feature shared by a broad spectrum of PDs. We individually knocked down fifteen PD-associated genes in cultured cells and found ten induced cholesterol accumulation in the lysosome. 2-Hydroxypropyl-β-cyclodextrin (HPCD) effectively alleviated the cholesterol accumulation phenotype in PD-mimicking cells through reducing intracellular cholesterol content as well as promoting cholesterol redistribution to other cellular membranes. In ABCD1 knockdown cells, HPCD treatment lowered reactive oxygen species and VLCFA to normal levels. In Abcd1 knockout mice, HPCD injections reduced cholesterol and VLCFA sequestration in the brain and adrenal cortex. The plasma levels of adrenocortical hormones were increased and the behavioral abnormalities were greatly ameliorated upon HPCD administration. Together, our results suggest that defective cholesterol transport underlies most, if not all, PDs, and that HPCD can serve as a novel and effective strategy for the treatment of PDs.
Collapse
Affiliation(s)
- Lewei Dong
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jian Xiao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Shuai Liu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Gang Deng
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Yacheng Liao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaolu Zhao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Bao-Liang Song
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China
| | - Jie Luo
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
50
|
Kennewick KT, Bensinger SJ. Decoding the crosstalk between mevalonate metabolism and T cell function. Immunol Rev 2023; 317:71-94. [PMID: 36999733 DOI: 10.1111/imr.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Collapse
Affiliation(s)
- Kelly T Kennewick
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Steven J Bensinger
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|