1
|
Gigante ED, Piekarz KM, Gurgis A, Cohen L, Razy-Krajka F, Popsuj S, Johnson CJ, Ali HS, Mohana Sundaram S, Stolfi A. Specification and survival of post-metamorphic branchiomeric neurons in a non-vertebrate chordate. Development 2024; 151:dev202719. [PMID: 38895900 PMCID: PMC11273300 DOI: 10.1242/dev.202719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are replaced by adult-specific ones. The regulatory mechanisms underlying this replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the 'neck', a cellular compartment set aside in the larva to give rise to cranial motor neuron-like neurons post-metamorphosis. Using bulk and single-cell RNA-sequencing analyses, we characterize the transcriptome of the neck downstream of Pax2/5/8. We present evidence that neck-derived adult ciliomotor neurons begin to differentiate in the larva and persist through metamorphosis, contrary to the assumption that the adult nervous system is formed after settlement and the death of larval neurons during metamorphosis. Finally, we show that FGF signaling during the larval phase alters the patterning of the neck and its derivatives. Suppression of FGF converts neck cells into larval neurons that fail to survive metamorphosis, whereas prolonged FGF signaling promotes an adult neural stem cell-like fate.
Collapse
Affiliation(s)
- Eduardo D. Gigante
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katarzyna M. Piekarz
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexandra Gurgis
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leslie Cohen
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Florian Razy-Krajka
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sydney Popsuj
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher J. Johnson
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hussan S. Ali
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shruthi Mohana Sundaram
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alberto Stolfi
- School of Biological Sciences, College of Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Pomaville MB, Sattler SM, Abitua PB. A new dawn for the study of cell type evolution. Development 2024; 151:dev200884. [PMID: 38722217 PMCID: PMC11128286 DOI: 10.1242/dev.200884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Animal evolution is influenced by the emergence of new cell types, yet our understanding of this process remains elusive. This prompts the need for a broader exploration across diverse research organisms, facilitated by recent breakthroughs, such as gene editing tools and single-cell genomics. Essential to our understanding of cell type evolution is the accurate identification of homologous cells. We delve into the significance of considering developmental ontogeny and potential pitfalls when drawing conclusions about cell type homology. Additionally, we highlight recent discoveries in the study of cell type evolution through the application of single-cell transcriptomics and pinpoint areas ripe for further exploration.
Collapse
Affiliation(s)
| | | | - Philip B. Abitua
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
3
|
Lanoizelet M, Elkhoury Youhanna C, Roure A, Darras S. Molecular control of cellulosic fin morphogenesis in ascidians. BMC Biol 2024; 22:74. [PMID: 38561802 PMCID: PMC10986139 DOI: 10.1186/s12915-024-01872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The tunicates form a group of filter-feeding marine animals closely related to vertebrates. They share with them a number of features such as a notochord and a dorsal neural tube in the tadpole larvae of ascidians, one of the three groups that make tunicates. However, a number of typical chordate characters have been lost in different branches of tunicates, a diverse and fast-evolving phylum. Consequently, the tunic, a sort of exoskeleton made of extracellular material including cellulose secreted by the epidermis, is the unifying character defining the tunicate phylum. In the larva of ascidians, the tunic differentiates in the tail into a median fin (with dorsal and ventral extended blades) and a caudal fin. RESULTS Here we have performed experiments in the ascidian Phallusia mammillata to address the molecular control of tunic 3D morphogenesis. We have demonstrated that the tail epidermis medio-lateral patterning essential for peripheral nervous system specification also controls tunic elongation into fins. More specifically, when tail epidermis midline identity was abolished by BMP signaling inhibition, or CRISPR/Cas9 inactivation of the transcription factor coding genes Msx or Klf1/2/4/17, median fin did not form. We postulated that this genetic program should regulate effectors of tunic secretion. We thus analyzed the expression and regulation in different ascidian species of two genes acquired by horizontal gene transfer (HGT) from bacteria, CesA coding for a cellulose synthase and Gh6 coding for a cellulase. We have uncovered an unexpected dynamic history of these genes in tunicates and high levels of variability in gene expression and regulation among ascidians. Although, in Phallusia, Gh6 has a regionalized expression in the epidermis compatible with an involvement in fin elongation, our functional studies indicate a minor function during caudal fin formation only. CONCLUSIONS Our study constitutes an important step in the study of the integration of HGT-acquired genes into developmental networks and a cellulose-based morphogenesis of extracellular material in animals.
Collapse
Affiliation(s)
- Maxence Lanoizelet
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France.
- Present address: Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Louvain, Belgium.
| | - Christel Elkhoury Youhanna
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France
- Present address: Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U1054, Montpellier, 34090, France
| | - Agnès Roure
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative Des Organismes Marins (BIOM), Banyuls/Mer, 66650, France.
| |
Collapse
|
4
|
Popsuj S, Di Gregorio A, Swalla BJ, Stolfi A. Loss of collagen gene expression in the notochord of the tailless tunicate Molgula occulta. Integr Comp Biol 2023; 63:990-998. [PMID: 37403333 PMCID: PMC10714901 DOI: 10.1093/icb/icad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023] Open
Abstract
In tunicates, several species in the Molgulidae family have convergently lost the tailed, swimming larval body plan, including the morphogenesis of the notochord, a major chordate-defining trait. Through the comparison of tailless M. occulta and a close relative, the tailed species M. oculata, we show that notochord-specific expression of the Collagen Type I/II Alpha (Col1/2a) gene appears to have been lost specifically in the tailless species. Using CRISPR/Cas9-mediated mutagenesis in the tailed laboratory model tunicate Ciona robusta, we demonstrate that Col1/2a plays a crucial role in the convergent extension of notochord cells during tail elongation. Our results suggest that the expression of Col1/2a in the notochord, although necessary for its morphogenesis in tailed species, is dispensable for tailless species. This loss is likely a result of the accumulation of cis-regulatory mutations in the absence of purifying selective pressure. More importantly, the gene itself is not lost, likely due to its roles in other developmental processes, including during the adult stage. Our study further confirms the Molgulidae as an interesting family in which to study the evolutionary loss of tissue-specific expression of indispensable genes.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Billie J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Ishita Y, Onodera A, Ekino T, Chihara T, Okumura M. Co-option of an Astacin Metalloprotease Is Associated with an Evolutionarily Novel Feeding Morphology in a Predatory Nematode. Mol Biol Evol 2023; 40:msad266. [PMID: 38105444 PMCID: PMC10753534 DOI: 10.1093/molbev/msad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Animals consume a wide variety of food sources to adapt to different environments. However, the genetic mechanisms underlying the acquisition of evolutionarily novel feeding morphology remain largely unknown. While the nematode Caenorhabditis elegans feeds on bacteria, the satellite species Pristionchus pacificus exhibits predatory feeding behavior toward other nematodes, which is an evolutionarily novel feeding habit. Here, we found that the astacin metalloprotease Ppa-NAS-6 is required for the predatory killing by P. pacificus. Ppa-nas-6 mutants were defective in predation-associated characteristics, specifically the tooth morphogenesis and tooth movement during predation. Comparison of expression patterns and rescue experiments of nas-6 in P. pacificus and C. elegans suggested that alteration of the spatial expression patterns of NAS-6 may be vital for acquiring predation-related traits. Reporter analysis of the Ppa-nas-6 promoter in C. elegans revealed that the alteration in expression patterns was caused by evolutionary changes in cis- and trans-regulatory elements. This study suggests that the co-option of a metalloprotease is involved in an evolutionarily novel feeding morphology.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ageha Onodera
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Ristoratore F. A journey with ascidians in the pigmentation world. Genesis 2023; 61:e23569. [PMID: 37937350 DOI: 10.1002/dvg.23569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023]
Affiliation(s)
- Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
7
|
Makabe KW, Jensen HI, Fodor ACA, Jeffery WR, Satoh N, Swalla BJ. Cymric, a Maternal and Zygotic HTK-16-Like SHARK Family Tyrosine Kinase Gene, Is Disrupted in Molgula occulta, a Tailless Ascidian. THE BIOLOGICAL BULLETIN 2023; 245:1-8. [PMID: 38820291 PMCID: PMC11147163 DOI: 10.1086/730536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
AbstractWe describe the cloning and expression of a nonreceptor tyrosine kinase, cymric (Uro-1), a HTK-16-like (HydraTyrosineKinase-16) gene, identified in a subtractive screen for maternal ascidian cDNAs in Molgula oculata, an ascidian species with a tadpole larva. The cymric gene encodes a 4-kb mRNA expressed in gonads, eggs, and embryos in the tailed M. oculata but is not detected in eggs or embryos of the closely related tailless species Molgula occulta. There is a large insertion in cymric in the M. occulta genome, as shown by transcriptome and genome analyses, resulting in it becoming a pseudogene. The cymric amino acid sequence encodes a nonreceptor tyrosine kinase with an N-terminal region containing two SH2 domains and five ankyrin repeats, similar to the HTK-16-like gene found in other ascidians. Thus, the ascidian cymric genes are members of the SHARK (Src-homology ankyrin-repeat containing tyrosine kinase) family of nonreceptor tyrosine kinases, which are found throughout invertebrates and missing from vertebrates. We show that cymric is lacking the tyrosine kinase domain in the tailless M. occulta, although the truncated mRNA is still expressed in transcriptome data. This maternal and zygotic HTK-16-like tyrosine kinase is another described pseudogene from M. occulta and appears not to be necessary for adult development.
Collapse
Affiliation(s)
- Kazuhiro W. Makabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hannah I. Jensen
- Biology Department and Friday Harbor Laboratories, University of Washington, Seattle, WA 98195
| | - Alexander C. A. Fodor
- Biology Department and Friday Harbor Laboratories, University of Washington, Seattle, WA 98195
| | - William R. Jeffery
- Station Biologique, Roscoff, France
- Biology Department, University of Maryland, College Park, MD, 20742
| | - Noriyuki Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Billie J. Swalla
- Biology Department and Friday Harbor Laboratories, University of Washington, Seattle, WA 98195
- Station Biologique, Roscoff, France
| |
Collapse
|
8
|
Broitman-Maduro G, Maduro MF. Evolutionary Change in Gut Specification in Caenorhabditis Centers on the GATA Factor ELT-3 in an Example of Developmental System Drift. J Dev Biol 2023; 11:32. [PMID: 37489333 PMCID: PMC10366740 DOI: 10.3390/jdb11030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode Caenorhabditis elegans has been the subject of study for more than two decades. In this network, the maternal factors SKN-1/Nrf and POP-1/TCF activate a zygotic GATA factor cascade consisting of the regulators MED-1,2 → END-1,3 → ELT-2,7, leading to the specification of the gut in early embryos. Paradoxically, the MED, END, and ELT-7 regulators are present only in species closely related to C. elegans, raising the question of how the gut can be specified without them. Recent work found that ELT-3, a GATA factor without an endodermal role in C. elegans, acts in a simpler ELT-3 → ELT-2 network to specify gut in more distant species. The simpler ELT-3 → ELT-2 network may thus represent an ancestral pathway. In this review, we describe the elucidation of the gut specification network in C. elegans and related species and propose a model by which the more complex network might have formed. Because the evolution of this network occurred without a change in phenotype, it is an example of the phenomenon of Developmental System Drift.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Morris F Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Ziermann JM. Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:57-80. [PMID: 37955771 DOI: 10.1007/978-3-031-38215-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.
Collapse
|
10
|
Parra-Rincón E, Velandia-Huerto CA, Gittenberger A, Fallmann J, Gatter T, Brown FD, Stadler PF, Bermúdez-Santana CI. The Genome of the "Sea Vomit" Didemnum vexillum. Life (Basel) 2021; 11:1377. [PMID: 34947908 PMCID: PMC8704543 DOI: 10.3390/life11121377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Tunicates are the sister group of vertebrates and thus occupy a key position for investigations into vertebrate innovations as well as into the consequences of the vertebrate-specific genome duplications. Nevertheless, tunicate genomes have not been studied extensively in the past, and comparative studies of tunicate genomes have remained scarce. The carpet sea squirt Didemnum vexillum, commonly known as "sea vomit", is a colonial tunicate considered an invasive species with substantial ecological and economical risk. We report the assembly of the D. vexillum genome using a hybrid approach that combines 28.5 Gb Illumina and 12.35 Gb of PacBio data. The new hybrid scaffolded assembly has a total size of 517.55 Mb that increases contig length about eightfold compared to previous, Illumina-only assembly. As a consequence of an unusually high genetic diversity of the colonies and the moderate length of the PacBio reads, presumably caused by the unusually acidic milieu of the tunic, the assembly is highly fragmented (L50 = 25,284, N50 = 6539). It is sufficient, however, for comprehensive annotations of both protein-coding genes and non-coding RNAs. Despite its shortcomings, the draft assembly of the "sea vomit" genome provides a valuable resource for comparative tunicate genomics and for the study of the specific properties of colonial ascidians.
Collapse
Affiliation(s)
- Ernesto Parra-Rincón
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
| | - Cristian A. Velandia-Huerto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Adriaan Gittenberger
- GiMaRIS, Rijksstraatweg 75, 2171 AK Sassenheim, The Netherlands;
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Thomas Gatter
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
| | - Federico D. Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Tr. 14 no. 101, São Paulo 05508-090, Brazil;
- Centro de Biologia Marinha, Universidade de São Paulo, Rod. Manuel Hypólito do Rego km. 131.5, São Sebastião 11612-109, Brazil
| | - Peter F. Stadler
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany; (J.F.); (T.G.)
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Santa Fe Institute, Santa Fe, NM 87506, USA
| | - Clara I. Bermúdez-Santana
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C 111321, Colombia; (E.P.-R.); (P.F.S.)
| |
Collapse
|
11
|
Darras S. En masse DNA Electroporation for in vivo Transcriptional Assay in Ascidian Embryos. Bio Protoc 2021; 11:e4160. [PMID: 34692910 DOI: 10.21769/bioprotoc.4160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/02/2022] Open
Abstract
Ascidian embryos are powerful models for functional genomics, in particular, due to the ease of generating a large number of transgenic embryos by electroporation. In addition, the small size of their genome makes them an attractive model for studying cis-regulatory elements that control gene expression during embryonic development. Here, I describe the adaptation of the seminal method developed 25 years ago in Ciona robusta for en masse DNA electroporation for in vivo transcription to additional species belonging to three genera. It is likely that similar optimizations would make electroporation successful in other ascidian species, where in vitro fertilization can be performed on a large number of eggs.
Collapse
Affiliation(s)
- Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
12
|
Fodor ACA, Powers MM, Andrykovich K, Liu J, Lowe EK, Brown CT, Di Gregorio A, Stolfi A, Swalla BJ. The Degenerate Tale of Ascidian Tails. Integr Comp Biol 2021; 61:358-369. [PMID: 33881514 PMCID: PMC10452958 DOI: 10.1093/icb/icab022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ascidians are invertebrate chordates, with swimming chordate tadpole larvae that have distinct heads and tails. The head contains the small brain, sensory organs, including the ocellus (light) and otolith (gravity) and the presumptive endoderm, while the tail has a notochord surrounded by muscle cells and a dorsal nerve cord. One of the chordate features is a post-anal tail. Ascidian tadpoles are nonfeeding, and their tails are critical for larval locomotion. After hatching the larvae swim up toward light and are carried by the tide and ocean currents. When competent to settle, ascidian tadpole larvae swim down, away from light, to settle and metamorphose into a sessile adult. Tunicates are classified as chordates because of their chordate tadpole larvae; in contrast, the sessile adult has a U-shaped gut and very derived body plan, looking nothing like a chordate. There is one group of ascidians, the Molgulidae, where many species are known to have tailless larvae. The Swalla Lab has been studying the evolution of tailless ascidian larvae in this clade for over 30 years and has shown that tailless larvae have evolved independently several times in this clade. Comparison of the genomes of two closely related species, the tailed Molgula oculata and tailless Molgula occulta reveals much synteny, but there have been multiple insertions and deletions that have disrupted larval genes in the tailless species. Genomics and transcriptomics have previously shown that there are pseudogenes expressed in the tailless embryos, suggesting that the partial rescue of tailed features in their hybrid larvae is due to the expression of intact genes from the tailed parent. Yet surprisingly, we find that the notochord gene regulatory network is mostly intact in the tailless M. occulta, although the notochord does not converge and extend and remains as an aggregate of cells we call the "notoball." We expect that eventually many of the larval gene networks will become evolutionarily lost in tailless ascidians and the larval body plan abandoned, with eggs developing directly into an adult. Here we review the current evolutionary and developmental evidence on how the molgulids lost their tails.
Collapse
Affiliation(s)
- Alexander C A Fodor
- Biology Department, University of Washington, Seattle, WA 98195, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Megan M Powers
- Biology Department, University of Washington, Seattle, WA 98195, USA
| | - Kristin Andrykovich
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Jiatai Liu
- Biology Department, University of Washington, Seattle, WA 98195, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Elijah K Lowe
- Biology Department, University of Washington, Seattle, WA 98195, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Station Biologique de Roscoff, 29680 Roscoff, France
| | - C Titus Brown
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Station Biologique de Roscoff, 29680 Roscoff, France
- Population Health and Reproduction, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, NYU College of Dentistry, New York, NY 10010, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Station Biologique de Roscoff, 29680 Roscoff, France
| | - Billie J Swalla
- Biology Department, University of Washington, Seattle, WA 98195, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Station Biologique de Roscoff, 29680 Roscoff, France
| |
Collapse
|
13
|
Mukaigasa K, Sakuma C, Yaginuma H. The developmental hourglass model is applicable to the spinal cord based on single-cell transcriptomes and non-conserved cis-regulatory elements. Dev Growth Differ 2021; 63:372-391. [PMID: 34473348 PMCID: PMC9293469 DOI: 10.1111/dgd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
The developmental hourglass model predicts that embryonic morphology is most conserved at the mid-embryonic stage and diverges at the early and late stages. To date, this model has been verified by examining the anatomical features or gene expression profiles at the whole embryonic level. Here, by data mining approach utilizing multiple genomic and transcriptomic datasets from different species in combination, and by experimental validation, we demonstrate that the hourglass model is also applicable to a reduced element, the spinal cord. In the middle of spinal cord development, dorsoventrally arrayed neuronal progenitor domains are established, which are conserved among vertebrates. By comparing the publicly available single-cell transcriptome datasets of mice and zebrafish, we found that ventral subpopulations of post-mitotic spinal neurons display divergent molecular profiles. We also detected the non-conservation of cis-regulatory elements located around the progenitor fate determinants, indicating that the cis-regulatory elements contributing to the progenitor specification are evolvable. These results demonstrate that, despite the conservation of the progenitor domains, the processes before and after the progenitor domain specification diverged. This study will be helpful to understand the molecular basis of the developmental hourglass model.
Collapse
Affiliation(s)
- Katsuki Mukaigasa
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Chie Sakuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| |
Collapse
|
14
|
Ballarin L, Karahan A, Salvetti A, Rossi L, Manni L, Rinkevich B, Rosner A, Voskoboynik A, Rosental B, Canesi L, Anselmi C, Pinsino A, Tohumcu BE, Jemec Kokalj A, Dolar A, Novak S, Sugni M, Corsi I, Drobne D. Stem Cells and Innate Immunity in Aquatic Invertebrates: Bridging Two Seemingly Disparate Disciplines for New Discoveries in Biology. Front Immunol 2021; 12:688106. [PMID: 34276677 PMCID: PMC8278520 DOI: 10.3389/fimmu.2021.688106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.
Collapse
Affiliation(s)
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Pisa, Italy
| | - Lucia Manni
- Department of Biology, University of Padua, Padua, Italy
| | - Baruch Rinkevich
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Amalia Rosner
- Department of Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
- Department of Biology, Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Laura Canesi
- Department of Earth Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Anselmi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA, United States
| | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Begüm Ece Tohumcu
- Middle East Technical University, Institute of Marine Sciences, Erdemli, Mersin, Turkey
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Dolar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Hudson C, Yasuo H. Neuromesodermal Lineage Contribution to CNS Development in Invertebrate and Vertebrate Chordates. Genes (Basel) 2021; 12:genes12040592. [PMID: 33920662 PMCID: PMC8073528 DOI: 10.3390/genes12040592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Ascidians are invertebrate chordates and the closest living relative to vertebrates. In ascidian embryos a large part of the central nervous system arises from cells associated with mesoderm rather than ectoderm lineages. This seems at odds with the traditional view of vertebrate nervous system development which was thought to be induced from ectoderm cells, initially with anterior character and later transformed by posteriorizing signals, to generate the entire anterior-posterior axis of the central nervous system. Recent advances in vertebrate developmental biology, however, show that much of the posterior central nervous system, or spinal cord, in fact arises from cells that share a common origin with mesoderm. This indicates a conserved role for bi-potential neuromesoderm precursors in chordate CNS formation. However, the boundary between neural tissue arising from these distinct neural lineages does not appear to be fixed, which leads to the notion that anterior-posterior patterning and neural fate formation can evolve independently.
Collapse
|
16
|
Lowe EK, Racioppi C, Peyriéras N, Ristoratore F, Christiaen L, Swalla BJ, Stolfi A. A cis-regulatory change underlying the motor neuron-specific loss of Ebf expression in immotile tunicate larvae. Evol Dev 2021; 23:72-85. [PMID: 33355999 PMCID: PMC7920938 DOI: 10.1111/ede.12364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 11/26/2022]
Abstract
Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) of Molgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory gene Ebf (Collier/Olf/EBF) was reduced in the developing MG of M. occulta when compared with molgulid species with swimming larvae. This was corroborated by measuring allele-specific expression of Ebf in hybrid embryos from crosses of M. occulta with the swimming species M. oculata. Heterologous reporter construct assays in the model tunicate species Ciona robusta revealed a specific cis-regulatory sequence change that reduces expression of Ebf in the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified in M. occulta larvae, but their differentiation might be impaired due to reduction of Ebf expression levels.
Collapse
Affiliation(s)
- Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| | - Claudia Racioppi
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Nadine Peyriéras
- Station Biologique de Roscoff, Roscoff, France
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France
- USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Lionel Christiaen
- Station Biologique de Roscoff, Roscoff, France
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Billie J. Swalla
- Station Biologique de Roscoff, Roscoff, France
- Department of Biology, University of Washington, Seattle, WA, USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
17
|
Fodor A, Liu J, Turner L, Swalla BJ. Transitional chordates and vertebrate origins: Tunicates. Curr Top Dev Biol 2021; 141:149-171. [DOI: 10.1016/bs.ctdb.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Coulcher JF, Roure A, Chowdhury R, Robert M, Lescat L, Bouin A, Carvajal Cadavid J, Nishida H, Darras S. Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos. eLife 2020; 9:e59157. [PMID: 33191918 PMCID: PMC7710358 DOI: 10.7554/elife.59157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.
Collapse
Affiliation(s)
- Joshua F Coulcher
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Agnès Roure
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Rafath Chowdhury
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Méryl Robert
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Laury Lescat
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Aurélie Bouin
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Juliana Carvajal Cadavid
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka UniversityToyonakaJapan
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM)Banyuls-sur-MerFrance
| |
Collapse
|
19
|
Hotta K, Dauga D, Manni L. The ontology of the anatomy and development of the solitary ascidian Ciona: the swimming larva and its metamorphosis. Sci Rep 2020; 10:17916. [PMID: 33087765 PMCID: PMC7578030 DOI: 10.1038/s41598-020-73544-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Ciona robusta (Ciona intestinalis type A), a model organism for biological studies, belongs to ascidians, the main class of tunicates, which are the closest relatives of vertebrates. In Ciona, a project on the ontology of both development and anatomy is ongoing for several years. Its goal is to standardize a resource relating each anatomical structure to developmental stages. Today, the ontology is codified until the hatching larva stage. Here, we present its extension throughout the swimming larva stages, the metamorphosis, until the juvenile stages. For standardizing the developmental ontology, we acquired different time-lapse movies, confocal microscope images and histological serial section images for each developmental event from the hatching larva stage (17.5 h post fertilization) to the juvenile stage (7 days post fertilization). Combining these data, we defined 12 new distinct developmental stages (from Stage 26 to Stage 37), in addition to the previously defined 26 stages, referred to embryonic development. The new stages were grouped into four Periods named: Adhesion, Tail Absorption, Body Axis Rotation, and Juvenile. To build the anatomical ontology, 203 anatomical entities were identified, defined according to the literature, and annotated, taking advantage from the high resolution and the complementary information obtained from confocal microscopy and histology. The ontology describes the anatomical entities in hierarchical levels, from the cell level (cell lineage) to the tissue/organ level. Comparing the number of entities during development, we found two rounds on entity increase: in addition to the one occurring after fertilization, there is a second one during the Body Axis Rotation Period, when juvenile structures appear. Vice versa, one-third of anatomical entities associated with the embryo/larval life were significantly reduced at the beginning of metamorphosis. Data was finally integrated within the web-based resource "TunicAnatO", which includes a number of anatomical images and a dictionary with synonyms. This ontology will allow the standardization of data underpinning an accurate annotation of gene expression and the comprehension of mechanisms of differentiation. It will help in understanding the emergence of elaborated structures during both embryogenesis and metamorphosis, shedding light on tissue degeneration and differentiation occurring at metamorphosis.
Collapse
Affiliation(s)
- Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kouhoku-ku, Yokohama, 223-8522, Japan.
| | - Delphine Dauga
- Bioself Communication, 28 rue de la bibliotheque, 13001, Marseille, France
| | - Lucia Manni
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35121, Padova, Italy.
| |
Collapse
|
20
|
Lanza AR, Seaver EC. Functional evidence that Activin/Nodal signaling is required for establishing the dorsal-ventral axis in the annelid Capitella teleta. Development 2020; 147:147/18/dev189373. [PMID: 32967906 PMCID: PMC7522025 DOI: 10.1242/dev.189373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
The TGF-β superfamily comprises two distinct branches: the Activin/Nodal and BMP pathways. During development, signaling by this superfamily regulates a variety of embryological processes, and it has a conserved role in patterning the dorsal-ventral body axis. Recent studies show that BMP signaling establishes the dorsal-ventral axis in some mollusks. However, previous pharmacological inhibition studies in the annelid Capitella teleta, a sister clade to the mollusks, suggests that the dorsal-ventral axis is patterned via Activin/Nodal signaling. Here, we determine the role of both the Activin/Nodal and BMP pathways as they function in Capitella axis patterning. Antisense morpholino oligonucleotides were targeted to Ct-Smad2/3 and Ct-Smad1/5/8, transcription factors specific to the Activin/Nodal and BMP pathways, respectively. Following microinjection of zygotes, resulting morphant larvae were scored for axial anomalies. We demonstrate that the Activin/Nodal pathway of the TGF-β superfamily, but not the BMP pathway, is the primary dorsal-ventral patterning signal in Capitella. These results demonstrate variation in the molecular control of axis patterning across spiralians, despite sharing a conserved cleavage program. We suggest that these findings represent an example of developmental system drift. Summary: Morpholino knockdown experiments in the annelid Capitella teleta demonstrate that the dorsal-ventral axis is primarily patterned by the Activin/Nodal pathway of the TGF-β superfamily, rather than by the BMP pathway.
Collapse
Affiliation(s)
- Alexis R Lanza
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080-8610, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, FL 32080-8610, USA
| |
Collapse
|
21
|
Wei J, Zhang J, Lu Q, Ren P, Guo X, Wang J, Li X, Chang Y, Duan S, Wang S, Yu H, Zhang X, Yang X, Gao H, Dong B. Genomic basis of environmental adaptation in the leathery sea squirt (Styela clava). Mol Ecol Resour 2020; 20:1414-1431. [PMID: 32531855 PMCID: PMC7540406 DOI: 10.1111/1755-0998.13209] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
Abstract
Tunicates occupy the evolutionary position at the boundary of invertebrates and vertebrates. It exhibits adaptation to broad environmental conditions and is distributed globally. Despite hundreds of years of embryogenesis studies, the genetic basis of the invasive habits of ascidians remains largely unknown. The leathery sea squirt, Styela clava, is an important invasive species. We used the chromosomal-level genome and transcriptome of S. clava to explore its genomic- and molecular-network-based mechanisms of adaptation to environments. Compared with Ciona intestinalis type A (C. robusta), the size of the S. clava genome was expanded by 2-fold, although the gene number was comparable. An increase in transposon number and variation in dominant types were identified as potential expansion mechanisms. In the S. clava genome, the number of genes encoding the heat-shock protein 70 family and members of the complement system was expanded significantly, and cold-shock protein genes were transferred horizontally into the S. clava genome from bacteria. The expanded gene families potentially play roles in the adaptation of S. clava to its environments. The loss of key genes in the galactan synthesis pathway might explain the distinct tunic structure and hardness compared with the ascidian Ciona species. We demonstrated further that the integrated thyroid hormone pathway participated in the regulation of larval metamorphosis that provides S. clava with two opportunities for adapting to their environment. Thus, our report of the chromosomal-level leathery sea squirt genome provides a comprehensive genomic basis for the understanding of environmental adaptation in tunicates.
Collapse
Affiliation(s)
- Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| | - Jin Zhang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Qiongxuan Lu
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Ping Ren
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xin Guo
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xiang Li
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yaoguang Chang
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
- Laboratory for Marine Drugs and BioproductsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Shuai Duan
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Haiyan Yu
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Xiuxia Yang
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Hongwei Gao
- Technical Center of Inspection and QuarantineShandong Entry‐Exit Inspection and Quarantine BureauQingdaoChina
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and BreedingCollege of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
| |
Collapse
|
22
|
Guignard L, Fiúza UM, Leggio B, Laussu J, Faure E, Michelin G, Biasuz K, Hufnagel L, Malandain G, Godin C, Lemaire P. Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis. Science 2020; 369:369/6500/eaar5663. [PMID: 32646972 DOI: 10.1126/science.aar5663] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022]
Abstract
Marine invertebrate ascidians display embryonic reproducibility: Their early embryonic cell lineages are considered invariant and are conserved between distantly related species, despite rapid genomic divergence. Here, we address the drivers of this reproducibility. We used light-sheet imaging and automated cell segmentation and tracking procedures to systematically quantify the behavior of individual cells every 2 minutes during Phallusia mammillata embryogenesis. Interindividual reproducibility was observed down to the area of individual cell contacts. We found tight links between the reproducibility of embryonic geometries and asymmetric cell divisions, controlled by differential sister cell inductions. We combined modeling and experimental manipulations to show that the area of contact between signaling and responding cells is a key determinant of cell communication. Our work establishes the geometric control of embryonic inductions as an alternative to classical morphogen gradients and suggests that the range of cell signaling sets the scale at which embryonic reproducibility is observed.
Collapse
Affiliation(s)
- Léo Guignard
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.,Virtual Plants, Université de Montpellier, CIRAD, INRA, Inria, 34095 Montpellier, France.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ulla-Maj Fiúza
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bruno Leggio
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.,Virtual Plants, Université de Montpellier, CIRAD, INRA, Inria, 34095 Montpellier, France.,Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Inria, 69342 Lyon, France
| | - Julien Laussu
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Emmanuel Faure
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.,Virtual Plants, Université de Montpellier, CIRAD, INRA, Inria, 34095 Montpellier, France.,Institut de Recherche en Informatique de Toulouse (IRIT), Universités Toulouse I et III, CNRS, INPT, ENSEEIHT, 31071 Toulouse, France
| | - Gaël Michelin
- Morpheme, Université Côte d'Azur, Inria, CNRS, I3S, France
| | - Kilian Biasuz
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | - Christophe Godin
- Virtual Plants, Université de Montpellier, CIRAD, INRA, Inria, 34095 Montpellier, France. .,Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Inria, 69342 Lyon, France
| | - Patrick Lemaire
- CRBM, Université de Montpellier, CNRS, 34293 Montpellier, France.
| |
Collapse
|
23
|
DeBiasse MB, Colgan WN, Harris L, Davidson B, Ryan JF. Inferring Tunicate Relationships and the Evolution of the Tunicate Hox Cluster with the Genome of Corella inflata. Genome Biol Evol 2020; 12:948-964. [PMID: 32211845 PMCID: PMC7337526 DOI: 10.1093/gbe/evaa060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
Tunicates, the closest living relatives of vertebrates, have served as a foundational model of early embryonic development for decades. Comparative studies of tunicate phylogeny and genome evolution provide a critical framework for analyzing chordate diversification and the emergence of vertebrates. Toward this goal, we sequenced the genome of Corella inflata (Ascidiacea, Phlebobranchia), so named for the capacity to brood self-fertilized embryos in a modified, "inflated" atrial chamber. Combining the new genome sequence for Co. inflata with publicly available tunicate data, we estimated a tunicate species phylogeny, reconstructed the ancestral Hox gene cluster at important nodes in the tunicate tree, and compared patterns of gene loss between Co. inflata and Ciona robusta, the prevailing tunicate model species. Our maximum-likelihood and Bayesian trees estimated from a concatenated 210-gene matrix were largely concordant and showed that Aplousobranchia was nested within a paraphyletic Phlebobranchia. We demonstrated that this relationship is not an artifact due to compositional heterogeneity, as had been suggested by previous studies. In addition, within Thaliacea, we recovered Doliolida as sister to the clade containing Salpida and Pyrosomatida. The Co. inflata genome provides increased resolution of the ancestral Hox clusters of key tunicate nodes, therefore expanding our understanding of the evolution of this cluster and its potential impact on tunicate morphological diversity. Our analyses of other gene families revealed that several cardiovascular associated genes (e.g., BMP10, SCL2A12, and PDE2a) absent from Ci. robusta, are present in Co. inflata. Taken together, our results help clarify tunicate relationships and the genomic content of key ancestral nodes within this phylogeny, providing critical insights into tunicate evolution.
Collapse
Affiliation(s)
- Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida
- Department of Biology, University of Florida, Gainesville
| | - William N Colgan
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Lincoln Harris
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida
- Department of Biology, University of Florida, Gainesville
| |
Collapse
|
24
|
Dardaillon J, Dauga D, Simion P, Faure E, Onuma TA, DeBiasse MB, Louis A, Nitta KR, Naville M, Besnardeau L, Reeves W, Wang K, Fagotto M, Guéroult-Bellone M, Fujiwara S, Dumollard R, Veeman M, Volff JN, Roest Crollius H, Douzery E, Ryan JF, Davidson B, Nishida H, Dantec C, Lemaire P. ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Res 2020; 48:D668-D675. [PMID: 31680137 PMCID: PMC7145539 DOI: 10.1093/nar/gkz955] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
ANISEED (https://www.aniseed.cnrs.fr) is the main model organism database for the worldwide community of scientists working on tunicates, the vertebrate sister-group. Information provided for each species includes functionally-annotated gene and transcript models with orthology relationships within tunicates, and with echinoderms, cephalochordates and vertebrates. Beyond genes the system describes other genetic elements, including repeated elements and cis-regulatory modules. Gene expression profiles for several thousand genes are formalized in both wild-type and experimentally-manipulated conditions, using formal anatomical ontologies. These data can be explored through three complementary types of browsers, each offering a different view-point. A developmental browser summarizes the information in a gene- or territory-centric manner. Advanced genomic browsers integrate the genetic features surrounding genes or gene sets within a species. A Genomicus synteny browser explores the conservation of local gene order across deuterostome. This new release covers an extended taxonomic range of 14 species, including for the first time a non-ascidian species, the appendicularian Oikopleura dioica. Functional annotations, provided for each species, were enhanced through a combination of manual curation of gene models and the development of an improved orthology detection pipeline. Finally, gene expression profiles and anatomical territories can be explored in 4D online through the newly developed Morphonet morphogenetic browser.
Collapse
Affiliation(s)
| | - Delphine Dauga
- Bioself Communication; 28 rue de la Bibliothèque, F-13001 Marseille, France
| | - Paul Simion
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emmanuel Faure
- Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier, CNRS, Montpellier, France
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | - Alexandra Louis
- DYOGEN, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | | | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS; 46 allée d’Italie, F-69364 Lyon, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS; Quai de la Darse, F-06234 Villefranche-sur-Mer Cedex, France
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kai Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | - Shigeki Fujiwara
- Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi-shi, Kochi, Japan
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS; Quai de la Darse, F-06234 Villefranche-sur-Mer Cedex, France
| | - Michael Veeman
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS; 46 allée d’Italie, F-69364 Lyon, France
| | - Hugues Roest Crollius
- DYOGEN, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Emmanuel Douzery
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
25
|
Abstract
Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern.
Collapse
|
26
|
Colgan W, Leanza A, Hwang A, DeBiasse MB, Llosa I, Rodrigues D, Adhikari H, Barreto Corona G, Bock S, Carillo-Perez A, Currie M, Darkoa-Larbi S, Dellal D, Gutow H, Hokama P, Kibby E, Linhart N, Moody S, Naganuma A, Nguyen D, Stanton R, Stark S, Tumey C, Velleca A, Ryan JF, Davidson B. Variable levels of drift in tunicate cardiopharyngeal gene regulatory elements. EvoDevo 2019; 10:24. [PMID: 31632631 PMCID: PMC6790052 DOI: 10.1186/s13227-019-0137-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mutations in gene regulatory networks often lead to genetic divergence without impacting gene expression or developmental patterning. The rules governing this process of developmental systems drift, including the variable impact of selective constraints on different nodes in a gene regulatory network, remain poorly delineated. RESULTS Here we examine developmental systems drift within the cardiopharyngeal gene regulatory networks of two tunicate species, Corella inflata and Ciona robusta. Cross-species analysis of regulatory elements suggests that trans-regulatory architecture is largely conserved between these highly divergent species. In contrast, cis-regulatory elements within this network exhibit distinct levels of conservation. In particular, while most of the regulatory elements we analyzed showed extensive rearrangements of functional binding sites, the enhancer for the cardiopharyngeal transcription factor FoxF is remarkably well-conserved. Even minor alterations in spacing between binding sites lead to loss of FoxF enhancer function, suggesting that bound trans-factors form position-dependent complexes. CONCLUSIONS Our findings reveal heterogeneous levels of divergence across cardiopharyngeal cis-regulatory elements. These distinct levels of divergence presumably reflect constraints that are not clearly associated with gene function or position within the regulatory network. Thus, levels of cis-regulatory divergence or drift appear to be governed by distinct structural constraints that will be difficult to predict based on network architecture.
Collapse
Affiliation(s)
| | - Alexis Leanza
- Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, USA
| | - Ariel Hwang
- University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | | | | | | | | | | - Daniel Dellal
- Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Emily Kibby
- University of Colorado Boulder, Boulder, USA
| | | | | | | | | | | | - Sierra Stark
- University of California San Francisco, San Francisco, USA
| | | | | | - Joseph F. Ryan
- Whitney Laboratory for Marine Bioscience, St. Augustine, USA
| | | |
Collapse
|
27
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
28
|
Alié A, Hiebert LS, Simion P, Scelzo M, Prünster MM, Lotito S, Delsuc F, Douzery EJP, Dantec C, Lemaire P, Darras S, Kawamura K, Brown FD, Tiozzo S. Convergent Acquisition of Nonembryonic Development in Styelid Ascidians. Mol Biol Evol 2019; 35:1728-1743. [PMID: 29660002 PMCID: PMC5995219 DOI: 10.1093/molbev/msy068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Asexual propagation and whole body regeneration are forms of nonembryonic development (NED) widespread across animal phyla and central in life history and evolutionary diversification of metazoans. Whereas it is challenging to reconstruct the gains or losses of NED at large phylogenetic scale, comparative studies could benefit from being conducted at more restricted taxonomic scale, in groups for which phylogenetic relationships are well established. The ascidian family of Styelidae encompasses strictly sexually reproducing solitary forms as well as colonial species that combine sexual reproduction with different forms of NED. To date, the phylogenetic relationships between colonial and solitary styelids remain controversial and so is the pattern of NED evolution. In this study, we built an original pipeline to combine eight genomes with 18 de novo assembled transcriptomes and constructed data sets of unambiguously orthologous genes. Using a phylogenomic super-matrix of 4,908 genes from these 26 tunicates we provided a robust phylogeny of this family of chordates, which supports two convergent acquisitions of NED. This result prompted us to further describe the budding process in the species Polyandrocarpa zorritensis, leading to the discovery of a novel mechanism of asexual development. Whereas the pipeline and the data sets produced can be used for further phylogenetic reconstructions in tunicates, the phylogeny provided here sets an evolutionary framework for future experimental studies on the emergence and disappearance of complex characters such as asexual propagation and whole body regeneration.
Collapse
Affiliation(s)
- Alexandre Alié
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France
| | - Laurel Sky Hiebert
- Departamento de Zoologia - Instituto Biociências, Universidade de São Paulo, São Paulo, Brazil.,Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Paulo, Brazil
| | - Paul Simion
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marta Scelzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France
| | - Maria Mandela Prünster
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France
| | - Sonia Lotito
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France
| | - Frédéric Delsuc
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | | | | | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Int[1]egrative des Organismes Marins (BIOM),Observatoire Oc[1]eanologique, Banyuls/Mer, 06230 Paris, France
| | - Kazuo Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi, Japan
| | - Federico D Brown
- Departamento de Zoologia - Instituto Biociências, Universidade de São Paulo, São Paulo, Brazil.,Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Salvador, Brazil
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France
| |
Collapse
|
29
|
Inoue J, Nakashima K, Satoh N. ORTHOSCOPE Analysis Reveals the Presence of the Cellulose Synthase Gene in All Tunicate Genomes but Not in Other Animal Genomes. Genes (Basel) 2019; 10:genes10040294. [PMID: 30974905 PMCID: PMC6523144 DOI: 10.3390/genes10040294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Tunicates or urochordates—comprising ascidians, larvaceans, and salps—are the only metazoans that can synthesize cellulose, a biological function usually associated with bacteria and plants but not animals. Tunicate cellulose or tunicine is a major component of the outer acellular coverage (tunic) of the entire body of these organisms. Previous studies have suggested that the prokaryotic cellulose synthase gene (CesA) was horizontally transferred into the genome of a tunicate ancestor. However, no convenient tools have been devised to determine whether only tunicates harbor CesA. ORTHOSCOPE is a recently developed tool used to identify orthologous genes and to examine the phylogenic relationship of molecules within major metazoan taxa. The present analysis with this tool revealed the presence of CesA orthologs in all sequenced tunicate genomes but an absence in other metazoan genomes. This supports an evolutionary origin of animal cellulose and provides insights into the evolution of this animal taxon.
Collapse
Affiliation(s)
- Jun Inoue
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| |
Collapse
|
30
|
Functional conserved non-coding elements among tunicates and chordates. Dev Biol 2019; 448:101-110. [DOI: 10.1016/j.ydbio.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
|
31
|
Prünster MM, Ricci L, Brown FD, Tiozzo S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo 2019; 10:3. [PMID: 30867897 PMCID: PMC6399929 DOI: 10.1186/s13227-019-0116-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Background In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development. In colonial ascidians, besides embryogenesis and metamorphosis, an adult can propagate asexually via blastogenesis, skipping embryo and larval stages, and form anew the adult body, including the complete body musculature. Results To investigate the cellular origin and mechanisms that trigger non-embryonic myogenesis, we followed the expression of ascidian myogenic genes during Botryllus schlosseri blastogenesis and reconstructed the dynamics of muscle precursors. Based on the expression dynamics of Tbx1/10, Ebf, Mrf, Myh3 for body wall and of FoxF, Tbx1/10, Nk4, Myh2 for heart development, we show that the embryonic factors regulating myogenesis are only partially co-opted in blastogenesis, and that markers for muscle precursors are expressed in two separate domains: the dorsal tube and the ventral mesenchyma. Conclusions Regardless of the developmental pathway, non-embryonic myogenesis shares a similar molecular and anatomical setup as embryonic myogenesis, but implements a co-option and loss of molecular modules. We then propose that the cellular precursors contributing to heart and body muscles may have different origins and may be coordinated by different developmental pathways. Electronic supplementary material The online version of this article (10.1186/s13227-019-0116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Mandela Prünster
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Lorenzo Ricci
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France.,2Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138 USA
| | - Federico D Brown
- 3Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP CEP 05508-090 Brazil.,4Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, SP CEP 11612-109 Brazil
| | - Stefano Tiozzo
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| |
Collapse
|
32
|
Madgwick A, Magri MS, Dantec C, Gailly D, Fiuza UM, Guignard L, Hettinger S, Gomez-Skarmeta JL, Lemaire P. Evolution of embryonic cis-regulatory landscapes between divergent Phallusia and Ciona ascidians. Dev Biol 2019; 448:71-87. [PMID: 30661644 DOI: 10.1016/j.ydbio.2019.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 01/21/2023]
Abstract
Ascidian species of the Phallusia and Ciona genera are distantly related, their last common ancestor dating several hundred million years ago. Although their genome sequences have extensively diverged since this radiation, Phallusia and Ciona species share almost identical early morphogenesis and stereotyped cell lineages. Here, we explored the evolution of transcriptional control between P. mammillata and C. robusta. We combined genome-wide mapping of open chromatin regions in both species with a comparative analysis of the regulatory sequences of a test set of 10 pairs of orthologous early regulatory genes with conserved expression patterns. We find that ascidian chromatin accessibility landscapes obey similar rules as in other metazoa. Open-chromatin regions are short, highly conserved within each genus and cluster around regulatory genes. The dynamics of chromatin accessibility and closest-gene expression are strongly correlated during early embryogenesis. Open-chromatin regions are highly enriched in cis-regulatory elements: 73% of 49 open chromatin regions around our test genes behaved as either distal enhancers or proximal enhancer/promoters following electroporation in Phallusia eggs. Analysis of this datasets suggests a pervasive use in ascidians of "shadow" enhancers with partially overlapping activities. Cross-species electroporations point to a deep conservation of both the trans-regulatory logic between these distantly-related ascidians and the cis-regulatory activities of individual enhancers. Finally, we found that the relative order and approximate distance to the transcription start site of open chromatin regions can be conserved between Ciona and Phallusia species despite extensive sequence divergence, a property that can be used to identify orthologous enhancers, whose regulatory activity can partially diverge.
Collapse
Affiliation(s)
- Alicia Madgwick
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Marta Silvia Magri
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Sevilla, Spain
| | - Christelle Dantec
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Damien Gailly
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Ulla-Maj Fiuza
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Léo Guignard
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix drive, Ashburn, VA, USA
| | - Sabrina Hettinger
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Sevilla, Spain
| | - Patrick Lemaire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
33
|
Lowe EK, Stolfi A. Developmental system drift in motor ganglion patterning between distantly related tunicates. EvoDevo 2018; 9:18. [PMID: 30062003 PMCID: PMC6057086 DOI: 10.1186/s13227-018-0107-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The larval nervous system of the solitary tunicate Ciona is a simple model for the study of chordate neurodevelopment. The development and connectivity of the Ciona motor ganglion have been studied in fine detail, but how this important structure develops in other tunicates is not well known. METHODS AND RESULTS By comparing gene expression patterns in the developing MG of the distantly related tunicate Molgula occidentalis, we found that its patterning is highly conserved compared to the Ciona MG. MG neuronal subtypes in Molgula were specified in the exact same positions as in Ciona, though the timing of subtype-specific gene expression onset was slightly shifted to begin earlier, relative to mitotic exit and differentiation. In transgenic Molgula embryos electroporated with Dmbx reporter plasmids, we were also able to characterize the morphology of the lone pair of descending decussating neurons (ddNs) in Molgula, revealing the same unique contralateral projection seen in Ciona ddNs and their putative vertebrate homologs the Mauthner cells. Although Dmbx expression labels the ddNs in both species, cross-species transgenic assays revealed significant changes to the regulatory logic underlying Dmbx transcription. We found that Dmbx cis-regulatory DNAs from Ciona can drive highly specific reporter gene expression in Molgula ddNs, but Molgula sequences are not active in Ciona ddNs. CONCLUSIONS This acute divergence in the molecular mechanisms that underlie otherwise functionally conserved cis-regulatory DNAs supports the recently proposed idea that the extreme genetic plasticity observed in tunicates may be attributed to the extreme rigidity of the spatial organization of their embryonic cell lineages.
Collapse
Affiliation(s)
- Elijah K. Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
34
|
Benítez M, Hernández-Hernández V, Newman SA, Niklas KJ. Dynamical Patterning Modules, Biogeneric Materials, and the Evolution of Multicellular Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:871. [PMID: 30061903 PMCID: PMC6055014 DOI: 10.3389/fpls.2018.00871] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Comparative analyses of developmental processes across a broad spectrum of organisms are required to fully understand the mechanisms responsible for the major evolutionary transitions among eukaryotic photosynthetic lineages (defined here as the polyphyletic algae and the monophyletic land plants). The concepts of dynamical patterning modules (DPMs) and biogeneric materials provide a framework for studying developmental processes in the context of such comparative analyses. In the context of multicellularity, DPMs are defined as sets of conserved gene products and molecular networks, in conjunction with the physical morphogenetic and patterning processes they mobilize. A biogeneric material is defined as mesoscale matter with predictable morphogenetic capabilities that arise from complex cellular conglomerates. Using these concepts, we outline some of the main events and transitions in plant evolution, and describe the DPMs and biogeneric properties associated with and responsible for these transitions. We identify four primary DPMs that played critical roles in the evolution of multicellularity (i.e., the DPMs responsible for cell-to-cell adhesion, identifying the future cell wall, cell differentiation, and cell polarity). Three important conclusions emerge from a broad phyletic comparison: (1) DPMs have been achieved in different ways, even within the same clade (e.g., phycoplastic cell division in the Chlorophyta and phragmoplastic cell division in the Streptophyta), (2) DPMs had their origins in the co-option of molecular species present in the unicellular ancestors of multicellular plants, and (3) symplastic transport mediated by intercellular connections, particularly plasmodesmata, was critical for the evolution of complex multicellularity in plants.
Collapse
Affiliation(s)
- Mariana Benítez
- Centro de Ciencias de la Complejidad – Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Hernández-Hernández
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Karl J. Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
35
|
Melo Clavijo J, Donath A, Serôdio J, Christa G. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biol Rev Camb Philos Soc 2018; 93:2006-2020. [PMID: 29808579 DOI: 10.1111/brv.12430] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Mutualistic symbioses are common throughout the animal kingdom. Rather unusual is a form of symbiosis, photosymbiosis, where animals are symbiotic with photoautotrophic organisms. Photosymbiosis is found among sponges, cnidarians, flatworms, molluscs, ascidians and even some amphibians. Generally the animal host harbours a phototrophic partner, usually a cyanobacteria or a unicellular alga. An exception to this rule is found in some sea slugs, which only retain the chloroplasts of the algal food source and maintain them photosynthetically active in their own cytosol - a phenomenon called 'functional kleptoplasty'. Research has focused largely on the biodiversity of photosymbiotic species across a range of taxa. However, many questions with regard to the evolution of the ability to establish and maintain a photosymbiosis are still unanswered. To date, attempts to understand genome adaptations which could potentially lead to the evolution of photosymbioses have only been performed in cnidarians. This knowledge gap for other systems is mainly due to a lack of genetic information, both for non-symbiotic and symbiotic species. Considering non-photosymbiotic species is, however, important to understand the factors that make symbiotic species so unique. Herein we provide an overview of the diversity of photosymbioses across the animal kingdom and discuss potential scenarios for the evolution of this association in different lineages. We stress that the evolution of photosymbiosis is probably based on genome adaptations, which (i) lead to recognition of the symbiont to establish the symbiosis, and (ii) are needed to maintain the symbiosis. We hope to stimulate research involving sequencing the genomes of various key taxa to increase the genomic resources needed to understand the most fundamental question: how have animals evolved the ability to establish and maintain a photosymbiosis?
Collapse
Affiliation(s)
- Jenny Melo Clavijo
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - Alexander Donath
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
| | - João Serôdio
- Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| | - Gregor Christa
- Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany.,Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal
| |
Collapse
|
36
|
Lowe EK, Cuomo C, Arnone MI. Omics approaches to study gene regulatory networks for development in echinoderms. Brief Funct Genomics 2018; 16:299-308. [PMID: 28957458 DOI: 10.1093/bfgp/elx012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene regulatory networks (GRNs) describe the interactions for a developmental process at a given time and space. Historically, perturbation experiments represent one of the key methods for analyzing and reconstructing a GRN, and the GRN governing early development in the sea urchin embryo stands as one of the more deeply dissected so far. As technology progresses, so do the methods used to address different biological questions. Next-generation sequencing (NGS) has become a standard experimental technique for genome and transcriptome sequencing and studies of protein-DNA interactions and DNA accessibility. While several efforts have been made toward the integration of different omics approaches for the study of the regulatory genome in many animals, in a few cases, these are applied with the purpose of reconstructing and experimentally testing developmental GRNs. Here, we review emerging approaches integrating multiple NGS technologies for the prediction and validation of gene interactions within echinoderm GRNs. These approaches can be applied to both 'model' and 'non-model' organisms. Although a number of issues still need to be addressed, advances in NGS applications, such as assay for transposase-accessible chromatin sequencing, combined with the availability of embryos belonging to different species, all separated by various evolutionary distances and accessible to experimental regulatory biology, place echinoderms in an unprecedented position for the reconstruction and evolutionary comparison of developmental GRNs. We conclude that sequencing technologies and integrated omics approaches allow the examination of GRNs on a genome-wide scale only if biological perturbation and cis-regulatory analyses are experimentally accessible, as in the case of echinoderm embryos.
Collapse
|
37
|
Delsuc F, Philippe H, Tsagkogeorga G, Simion P, Tilak MK, Turon X, López-Legentil S, Piette J, Lemaire P, Douzery EJP. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol 2018; 16:39. [PMID: 29653534 PMCID: PMC5899321 DOI: 10.1186/s12915-018-0499-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/20/2018] [Indexed: 01/13/2023] Open
Abstract
Background Tunicates are the closest relatives of vertebrates and are widely used as models to study the evolutionary developmental biology of chordates. Their phylogeny, however, remains poorly understood, and to date, only the 18S rRNA nuclear gene and mitogenomes have been used to delineate the major groups of tunicates. To resolve their evolutionary relationships and provide a first estimate of their divergence times, we used a transcriptomic approach to build a phylogenomic dataset including all major tunicate lineages, consisting of 258 evolutionarily conserved orthologous genes from representative species. Results Phylogenetic analyses using site-heterogeneous CAT mixture models of amino acid sequence evolution resulted in a strongly supported tree topology resolving the relationships among four major tunicate clades: (1) Appendicularia, (2) Thaliacea + Phlebobranchia + Aplousobranchia, (3) Molgulidae, and (4) Styelidae + Pyuridae. Notably, the morphologically derived Thaliacea are confirmed as the sister group of the clade uniting Phlebobranchia + Aplousobranchia within which the precise position of the model ascidian genus Ciona remains uncertain. Relaxed molecular clock analyses accommodating the accelerated evolutionary rate of tunicates reveal ancient diversification (~ 450–350 million years ago) among the major groups and allow one to compare their evolutionary age with respect to the major vertebrate model lineages. Conclusions Our study represents the most comprehensive phylogenomic dataset for the main tunicate lineages. It offers a reference phylogenetic framework and first tentative timescale for tunicates, allowing a direct comparison with vertebrate model species in comparative genomics and evolutionary developmental biology studies. Electronic supplementary material The online version of this article (10.1186/s12915-018-0499-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frédéric Delsuc
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, UMR CNRS 5321, Station d'Ecologie Théorique et Expérimentale, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Canada
| | - Georgia Tsagkogeorga
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Paul Simion
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marie-Ka Tilak
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB, CSIC), Girona, Spain
| | - Susanna López-Legentil
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Jacques Piette
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université de Montpellier, Montpellier, France
| | - Patrick Lemaire
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
38
|
Blanchoud S, Rutherford K, Zondag L, Gemmell NJ, Wilson MJ. De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution. Sci Rep 2018; 8:5518. [PMID: 29615780 PMCID: PMC5882950 DOI: 10.1038/s41598-018-23749-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Tunicates are marine invertebrates that compose the closest phylogenetic group to the vertebrates. These chordates present a particularly diverse range of regenerative abilities and life-history strategies. Consequently, tunicates provide an extraordinary perspective into the emergence and diversity of these traits. Here we describe the genome sequencing, annotation and analysis of the Stolidobranchian Botrylloides leachii. We have produced a high-quality 159 Mb assembly, 82% of the predicted 194 Mb genome. Analysing genome size, gene number, repetitive elements, orthologs clustering and gene ontology terms show that B. leachii has a genomic architecture similar to that of most solitary tunicates, while other recently sequenced colonial ascidians have undergone genome expansion. In addition, ortholog clustering has identified groups of candidate genes for the study of colonialism and whole-body regeneration. By analysing the structure and composition of conserved gene linkages, we observed examples of cluster breaks and gene dispersions, suggesting that several lineage-specific genome rearrangements occurred during tunicate evolution. We also found lineage-specific gene gain and loss within conserved cell-signalling pathways. Such examples of genetic changes within conserved cell-signalling pathways commonly associated with regeneration and development that may underlie some of the diverse regenerative abilities observed in tunicates. Overall, these results provide a novel resource for the study of tunicates and of colonial ascidians.
Collapse
Affiliation(s)
- Simon Blanchoud
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kim Rutherford
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Lisa Zondag
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
39
|
Razy-Krajka F, Gravez B, Kaplan N, Racioppi C, Wang W, Christiaen L. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time. eLife 2018; 7:e29656. [PMID: 29431097 PMCID: PMC5809146 DOI: 10.7554/elife.29656] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate Ciona emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, Hand-related, Tbx1/10 and Ebf. Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Basile Gravez
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Nicole Kaplan
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Wei Wang
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of BiologyCollege of Arts and Science, New York UniversityNew YorkUnited States
| |
Collapse
|
40
|
Brozovic M, Dantec C, Dardaillon J, Dauga D, Faure E, Gineste M, Louis A, Naville M, Nitta KR, Piette J, Reeves W, Scornavacca C, Simion P, Vincentelli R, Bellec M, Aicha SB, Fagotto M, Guéroult-Bellone M, Haeussler M, Jacox E, Lowe EK, Mendez M, Roberge A, Stolfi A, Yokomori R, Brown C, Cambillau C, Christiaen L, Delsuc F, Douzery E, Dumollard R, Kusakabe T, Nakai K, Nishida H, Satou Y, Swalla B, Veeman M, Volff JN, Lemaire P. ANISEED 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. Nucleic Acids Res 2018; 46:D718-D725. [PMID: 29149270 PMCID: PMC5753386 DOI: 10.1093/nar/gkx1108] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/22/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
ANISEED (www.aniseed.cnrs.fr) is the main model organism database for tunicates, the sister-group of vertebrates. This release gives access to annotated genomes, gene expression patterns, and anatomical descriptions for nine ascidian species. It provides increased integration with external molecular and taxonomy databases, better support for epigenomics datasets, in particular RNA-seq, ChIP-seq and SELEX-seq, and features novel interactive interfaces for existing and novel datatypes. In particular, the cross-species navigation and comparison is enhanced through a novel taxonomy section describing each represented species and through the implementation of interactive phylogenetic gene trees for 60% of tunicate genes. The gene expression section displays the results of RNA-seq experiments for the three major model species of solitary ascidians. Gene expression is controlled by the binding of transcription factors to cis-regulatory sequences. A high-resolution description of the DNA-binding specificity for 131 Ciona robusta (formerly C. intestinalis type A) transcription factors by SELEX-seq is provided and used to map candidate binding sites across the Ciona robusta and Phallusia mammillata genomes. Finally, use of a WashU Epigenome browser enhances genome navigation, while a Genomicus server was set up to explore microsynteny relationships within tunicates and with vertebrates, Amphioxus, echinoderms and hemichordates.
Collapse
Affiliation(s)
| | | | | | - Delphine Dauga
- Bioself Communication; 28 rue de la Bibliothèque, F-13001 Marseille, France
| | - Emmanuel Faure
- Institut de Biologie Computationnelle, Université de Montpellier, Montpellier, France
- Team VORTEX, Institut de Recherche en Informatique de Toulouse, Universities Toulouse I and III, CNRS, INPT, ENSEEIHT; 2 rue Camichel, BP 7122, F-31071 Toulouse Cedex 7, France
| | | | - Alexandra Louis
- DYOGEN, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS; 46 allée d’Italie, F-69364 Lyon, France
| | - Kazuhiro R Nitta
- IBDM, Aix-Marseille Université, CNRS, Campus de Luminy, Case 907; 163 Avenue de Luminy, F-13288 Marseille Cedex 9, France
| | - Jacques Piette
- CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan, Kansas
| | | | - Paul Simion
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Renaud Vincentelli
- AFMB, Aix-Marseille Université, CNRS, Campus de Luminy, Case 932, 163 Avenue de Luminy, F-13288 Marseille Cedex 9, France
| | | | - Sameh Ben Aicha
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS; Quai de la Darse, F-06234 Villefranche-sur-Mer Cedex, France
| | | | | | - Maximilian Haeussler
- Santa Cruz Genomics Institute, MS CBSE, University of California, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Edwin Jacox
- CRBM, Université de Montpellier, CNRS, Montpellier, France
| | - Elijah K Lowe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI48824, USA
| | - Mickael Mendez
- IBDM, Aix-Marseille Université, CNRS, Campus de Luminy, Case 907; 163 Avenue de Luminy, F-13288 Marseille Cedex 9, France
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rui Yokomori
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato, Tokyo 108-8639, Japan
| | - C Titus Brown
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI48824, USA
- Population Health and Reproduction, UC Davis, Davis, CA 95616, USA
| | - Christian Cambillau
- AFMB, Aix-Marseille Université, CNRS, Campus de Luminy, Case 932, 163 Avenue de Luminy, F-13288 Marseille Cedex 9, France
| | - Lionel Christiaen
- New York University, Center for Developmental Genetics, Department of Biology, 1009 Silver Center, 100 Washington Square East, New York City, NY10003, USA
| | - Frédéric Delsuc
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emmanuel Douzery
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS; Quai de la Darse, F-06234 Villefranche-sur-Mer Cedex, France
| | - Takehiro Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Kenta Nakai
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato, Tokyo 108-8639, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Billie Swalla
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI48824, USA
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250-9299, USA
| | - Michael Veeman
- Division of Biology, Kansas State University, Manhattan, Kansas
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS; 46 allée d’Italie, F-69364 Lyon, France
| | - Patrick Lemaire
- CRBM, Université de Montpellier, CNRS, Montpellier, France
- Institut de Biologie Computationnelle, Université de Montpellier, Montpellier, France
| |
Collapse
|
41
|
Kumano G. Microinjection of Exogenous DNA into Eggs of Halocynthia roretzi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542078 DOI: 10.1007/978-981-10-7545-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Exogenous gene expression assays during development, including reporters under the control of 5' upstream enhancer regions of genes, constitute a powerful technique for understanding the mechanisms of tissue-specific gene expression regulation and determining the characteristics, behaviors, and functions of cells that express these genes. The simple marine chordate Halocynthia roretzi has been used for these transgenic analyses for a long time and is an excellent model system for such studies, especially in comparative analyses with other ascidians. In this study, I describe simple methods for microinjecting H. roretzi eggs with exogenous DNA, such as a promoter construct consisting of a 5' upstream region and a reporter gene, which are prerequisites for transgenic analyses. I also describe basic knowledge regarding this ascidian species, providing reasons why it is an ideal subject for developmental biology studies.
Collapse
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Asamushi, Aomori, Japan.
| |
Collapse
|
42
|
Zeller RW. Electroporation in Ascidians: History, Theory and Protocols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542079 DOI: 10.1007/978-981-10-7545-2_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Embryonic development depends on the orchestration of hundreds of regulatory and structural genes to initiate expression at the proper time, in the correct spatial domain(s), and in the amounts required for cells and tissues to become specified, determined, and ultimately to differentiate into a multicellular embryo. One of the key approaches to studying embryonic development is the generation of transgenic animals in which recombinant DNA molecules are transiently or stably introduced into embryos to alter gene expression, to manipulate gene function or to serve as reporters for specific cell types or subcellular compartments. In some model systems, such as the mouse, well-defined approaches for generating transgenic animals have been developed. In other systems, particularly non-model systems, a key challenge is to find a way of introducing molecules or other reagents into cells that produces large numbers of embryos with a minimal effect on normal development. A variety of methods have been developed, including the use of viral vectors, microinjection, and electroporation. Here, I describe how electroporation was adapted to generate transgenic embryos in the ascidian, a nontraditional invertebrate chordate model that is particularly well-suited for studying gene regulatory activity during development. I present a review of the electroporation process, describe how electroporation was first implemented in the ascidian, and provide a series of protocols describing the electroporation process, as implemented in our laboratory.
Collapse
Affiliation(s)
- Robert W Zeller
- Center for Applied and Experimental Genomics, Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
43
|
Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. An Evo-Devo Perspective on Multicellular Development of Myxobacteria. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:165-178. [PMID: 28217903 DOI: 10.1002/jez.b.22727] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 12/12/2016] [Accepted: 12/25/2016] [Indexed: 11/07/2022]
Abstract
The transition to multicellularity, recognized as one the major transitions in evolution, has occurred independently several times. While multicellular development has been extensively studied in zygotic organisms including plant and animal groups, just a few aggregative multicellular organisms have been employed as model organisms for the study of multicellularity. Studying different evolutionary origins and modes of multicellularity enables comparative analyses that can help identifying lineage-specific aspects of multicellular evolution and generic factors and mechanisms involved in the transition to multicellularity. Among aggregative multicellular organisms, myxobacteria are a valuable system to explore the particularities that aggregation confers to the evolution of multicellularity and mechanisms shared with clonal organisms. Moreover, myxobacteria species develop fruiting bodies displaying a range of morphological diversity. In this review, we aim to synthesize diverse lines of evidence regarding myxobacteria development and discuss them in the context of Evo-Devo concepts and approaches. First, we briefly describe the developmental processes in myxobacteria, present an updated comparative analysis of the genes involved in their developmental processes and discuss these and other lines of evidence in terms of co-option and developmental system drift, two concepts key to Evo-Devo studies. Next, as has been suggested from Evo-Devo approaches, we discuss how broad comparative studies and integration of diverse genetic, physicochemical, and environmental factors into experimental and theoretical models can further our understanding of myxobacterial development, phenotypic variation, and evolution.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana E Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - León Patricio Martínez-Castilla
- Departamento de Bioquímica, Facultad de Quiímica, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecologiía, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
44
|
Racioppi C, Valoroso MC, Coppola U, Lowe EK, Brown CT, Swalla BJ, Christiaen L, Stolfi A, Ristoratore F. Evolutionary loss of melanogenesis in the tunicate Molgula occulta. EvoDevo 2017; 8:11. [PMID: 28729899 PMCID: PMC5516394 DOI: 10.1186/s13227-017-0074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/08/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Analyzing close species with diverse developmental modes is instrumental for investigating the evolutionary significance of physiological, anatomical and behavioral features at a molecular level. Many examples of trait loss are known in metazoan populations living in dark environments. Tunicates are the closest living relatives of vertebrates and typically present a lifecycle with distinct motile larval and sessile adult stages. The nervous system of the motile larva contains melanized cells associated with geotactic and light-sensing organs. It has been suggested that these are homologous to vertebrate neural crest-derived melanocytes. Probably due to ecological adaptation to distinct habitats, several species of tunicates in the Molgulidae family have tailless (anural) larvae that fail to develop sensory organ-associated melanocytes. Here we studied the evolution of Tyrosinase family genes, indispensible for melanogenesis, in the anural, unpigmented Molgula occulta and in the tailed, pigmented Molgula oculata by using phylogenetic, developmental and molecular approaches. RESULTS We performed an evolutionary reconstruction of the tunicate Tyrosinase gene family: in particular, we found that M. oculata possesses genes predicted to encode one Tyrosinase (Tyr) and three Tyrosinase-related proteins (Tyrps) while M. occulta has only Tyr and Tyrp.a pseudogenes that are not likely to encode functional proteins. Analysis of Tyr sequences from various M. occulta individuals indicates that different alleles independently acquired frameshifting short indels and/or larger mobile genetic element insertions, resulting in pseudogenization of the Tyr locus. In M. oculata, Tyr is expressed in presumptive pigment cell precursors as in the model tunicate Ciona robusta. Furthermore, a M. oculata Tyr reporter gene construct was active in the pigment cell precursors of C. robusta embryos, hinting at conservation of the regulatory network underlying Tyr expression in tunicates. In contrast, we did not observe any expression of the Tyr pseudogene in M. occulta embryos. Similarly, M. occulta Tyr allele expression was not rescued in pigmented interspecific M. occulta × M. oculata hybrid embryos, suggesting deleterious mutations also to its cis-regulatory sequences. However, in situ hybridization for transcripts from the M. occulta Tyrp.a pseudogene revealed its expression in vestigial pigment cell precursors in this species. CONCLUSIONS We reveal a complex evolutionary history of the melanogenesis pathway in tunicates, characterized by distinct gene duplication and loss events. Our expression and molecular data support a tight correlation between pseudogenization of Tyrosinase family members and the absence of pigmentation in the immotile larvae of M. occulta. These results suggest that relaxation of purifying selection has resulted in the loss of sensory organ-associated melanocytes and core genes in the melanogenesis biosynthetic pathway in M. occulta.
Collapse
Affiliation(s)
- Claudia Racioppi
- Biology and Evolution of Marine organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY USA
- Station Biologique de Roscoff, Roscoff, France
| | - Maria Carmen Valoroso
- Biology and Evolution of Marine organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ugo Coppola
- Biology and Evolution of Marine organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Elijah K. Lowe
- Biology and Evolution of Marine organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Station Biologique de Roscoff, Roscoff, France
- Department of Biology, University of Washington, Seattle, WA USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA USA
| | - C. Titus Brown
- Station Biologique de Roscoff, Roscoff, France
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA USA
- Population Health and Reproduction, UC Davis School of Veterinary Medicine, Davis, CA USA
| | - Billie J. Swalla
- Station Biologique de Roscoff, Roscoff, France
- Department of Biology, University of Washington, Seattle, WA USA
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY USA
- Station Biologique de Roscoff, Roscoff, France
| | - Alberto Stolfi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY USA
- Station Biologique de Roscoff, Roscoff, France
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Filomena Ristoratore
- Biology and Evolution of Marine organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
45
|
Wang K, Dantec C, Lemaire P, Onuma TA, Nishida H. Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. BMC Genomics 2017; 18:314. [PMID: 28427349 PMCID: PMC5399378 DOI: 10.1186/s12864-017-3707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND miRNAs play essential roles in the modulation of cellular functions via degradation and/or translation attenuation of target mRNAs. They have been surveyed in a single ascidian genus, Ciona. Recently, an annotated draft genome sequence for a distantly related ascidian, Halocynthia roretzi, has become available, but miRNAs in H. roretzi have not been previously studied. RESULTS We report the prediction of 319 candidate H. roretzi miRNAs, obtained through three complementary methods. Experimental validation suggests that more than half of these candidate miRNAs are expressed during embryogenesis. The majority of predicted H. roretzi miRNAs appear specific to ascidians or tunicates, and only 32 candidates, belonging to 25 families, are widely conserved across metazoans. CONCLUSION Our study presents a comprehensive identification of candidate H. roretzi miRNAs. This resource will facilitate the study of the mechanisms for miRNA-controlled gene regulatory networks during ascidian development. Further, our analysis suggests that the majority of Halocynthia miRNAs are specific to ascidian or tunicates, with only a small number of widely conserved miRNAs. This result is consistent with the general notion that animal miRNAs are less conserved between taxa than plant ones.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan. .,Present address: Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Science, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, People's Republic of China.
| | - Christelle Dantec
- Centre de Recherches de Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090, Montpellier, France
| | - Patrick Lemaire
- Centre de Recherches de Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Université de Montpellier, 1919 route de Mende, F-34090, Montpellier, France
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
46
|
Dumollard R, Minc N, Salez G, Aicha SB, Bekkouche F, Hebras C, Besnardeau L, McDougall A. The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions. eLife 2017; 6. [PMID: 28121291 PMCID: PMC5319837 DOI: 10.7554/elife.19290] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022] Open
Abstract
The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula. DOI:http://dx.doi.org/10.7554/eLife.19290.001 The position of cells within an embryo early in development determines what type of cells they will become in the fully formed embryo. The embryos of ascidians, commonly known as sea squirts, are ideal for studying what influences cell positioning. These embryos consist of a small number of cells that divide according to an “invariant cleavage pattern”, which means that the positioning and timing of the cell divisions is identical between different individuals of the same species. The pattern of cell division is also largely the same across different ascidian species, which raises questions about how it is controlled. When a cell divides, a structure called the spindle forms inside it to distribute copies of the cell’s genetic material between the new cells. The orientation of the spindle determines the direction in which the cell will divide. Now, by combining 3D imaging of living ascidian embryos with computational modeling, Dumollard et al. show that the spindles in every equally dividing cell tend to all align in the long length of the cell’s “apical” surface. Such alignment allows the cells to be on the outside of the embryo and implements the ascidian invariant cleavage pattern. The cells in the embryo do not all divide at the same time. Indeed, the shape of the cells (and especially their apical surface) depends on two layers of cells in the embryo not dividing at the same time; instead, periods of cell division alternate between the layers. A network of genes in the embryo regulates the timing of these cell divisions and makes it possible for the cells to divide according to an invariant cleavage pattern. However, this network of genes is not the only control mechanism that shapes the early embryo. A structure found in egg cells (and hence produced by the embryo’s mother) causes cells at the rear of the embryo to divide unequally, and this influences the shape of all the cells in the embryo. Thus it appears that maternal mechanisms work alongside the embryo’s gene network to shape the early embryo. The next step will be to determine how physical forces – for example, from the cells pressing against each other – influence the position of the embryo’s cells. How do gene networks relay the biomechanical properties of the embryo to help it take shape? DOI:http://dx.doi.org/10.7554/eLife.19290.002
Collapse
Affiliation(s)
- Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, Paris, France
| | - Gregory Salez
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Sameh Ben Aicha
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Faisal Bekkouche
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| |
Collapse
|
47
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
48
|
Velandia-Huerto CA, Gittenberger AA, Brown FD, Stadler PF, Bermúdez-Santana CI. Automated detection of ncRNAs in the draft genome sequence of a colonial tunicate: the carpet sea squirt Didemnum vexillum. BMC Genomics 2016; 17:691. [PMID: 27576499 PMCID: PMC5006418 DOI: 10.1186/s12864-016-2934-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The colonial ascidian Didemnum vexillum, sea carpet squirt, is not only a key marine organism to study morphological ancestral patterns of chordates evolution but it is also of great ecological importance due to its status as a major invasive species. Non-coding RNAs, in particular microRNAs (miRNAs), are important regulatory genes that impact development and environmental adaptation. Beyond miRNAs, not much in known about tunicate ncRNAs. RESULTS We provide here a comprehensive homology-based annotation of non-coding RNAs in the recently sequenced genome of D. vexillum. To this end we employed a combination of several computational approaches, including blast searches with a wide range of parameters, and secondary structured centered survey with infernal. The resulting candidate set was curated extensively to produce a high-quality ncRNA annotation of the first draft of the D. vexillum genome. It comprises 57 miRNA families, 4 families of ribosomal RNAs, 22 isoacceptor classes of tRNAs (of which more than 72 % of loci are pseudogenes), 13 snRNAs, 12 snoRNAs, and 1 other RNA family. Additionally, 21 families of mitochondrial tRNAs and 2 of mitochondrial ribosomal RNAs and 1 long non-coding RNA. CONCLUSIONS The comprehensive annotation of the D. vexillum non-coding RNAs provides a starting point towards a better understanding of the restructuring of the small RNA system in ascidians. Furthermore it provides a valuable research for efforts to establish detailed non-coding RNA annotations for other recently published and recently sequences in tunicate genomes.
Collapse
Affiliation(s)
- Cristian A. Velandia-Huerto
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C, Colombia
| | - Adriaan A. Gittenberger
- Institute of Biology, Leiden University, Leiden, P.O. Box 9505, 2300 RA Netherlands
- GiMaRIS, BioScience Park Leiden, J.H. Oortweg 21, 2333 CH, Leiden, Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
| | - Federico D. Brown
- Laboratorio de Biología del Desarrollo Evolutiva, Departamento de Ciencias Biológicas, Universidad de los Andes, Cra 1 No. 18A-12, Bogotá, Colombia
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Tr. 14 no. 101, São Paulo SP, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, Rod. Manuel Hypólito do Rego km. 131.5, Praia do Cabelo Gordo, São Sebastião, Brazil
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstraße 16–18, Leipzig, D-04107 Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, Leipzig, D-04103 Germany
- Fraunhofer Institut for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, D-04103 Germany
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna, A-1090 Austria
- Center for non-coding RNA in Technology and Health, Grønegårdsvej 3, Frederiksberg C, DK-1870 Denmark
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM87501 USA
| | - Clara I. Bermúdez-Santana
- Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85, Edif. Uriel Gutiérrez, Bogotá D.C, Colombia
| |
Collapse
|
49
|
Abstract
Cardiac cell specification and the genetic determinants that govern this process are highly conserved among Chordates. Recent studies have established the importance of evolutionarily-conserved mechanisms in the study of congenital heart defects and disease, as well as cardiac regeneration. As a basal Chordate, the Ciona model system presents a simple scaffold that recapitulates the basic blueprint of cardiac development in Chordates. Here we will focus on the development and cellular structure of the heart of the ascidian Ciona as compared to other Chordates, principally vertebrates. Comparison of the Ciona model system to heart development in other Chordates presents great potential for dissecting the genetic mechanisms that underlie congenital heart defects and disease at the cellular level and might provide additional insight into potential pathways for therapeutic cardiac regeneration.
Collapse
|
50
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|