1
|
Furlanis E, Dai M, Leyva Garcia B, Tran T, Vergara J, Pereira A, Gorissen BL, Wills S, Vlachos A, Hairston A, Dwivedi D, Du S, McMahon J, Huang S, Morabito A, Vazquez A, Kim S, Lee AT, Chang EF, Razzaq T, Qazi A, Vargish G, Yuan X, Caccavano A, Hunt S, Chittajallu R, McLean N, Hewitt L, Paranzino E, Rice H, Cummins AC, Plotnikova A, Mohanty A, Tangen AC, Shin JH, Azadi R, Eldridge MAG, Alvarez VA, Averbeck BB, Alyahyay M, Vallejo TR, Soheib M, Vattino LG, MacGregor CP, Chatain CP, Banks E, Olah VJ, Naskar S, Hill S, Liebergall S, Badiani R, Hyde L, Hanley E, Xu Q, Allaway KC, Goldberg EM, Rowan MJM, Nowakowski TJ, Lee S, Favuzzi E, Kaeser PS, Sjulson L, Batista-Brito R, Takesian AE, Ibrahim LA, Iqbal A, Pelkey KA, McBain CJ, Dimidschstein J, Fishell G, Wang Y. An enhancer-AAV toolbox to target and manipulate distinct interneuron subtypes. Neuron 2025; 113:1525-1547.e15. [PMID: 40403705 DOI: 10.1016/j.neuron.2025.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/18/2025] [Accepted: 05/01/2025] [Indexed: 05/24/2025]
Abstract
In recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate specific neuronal subtypes are still limited. Here, we performed systematic analysis of single-cell genomic data to identify enhancer candidates for each of the telencephalic interneuron subtypes. We established a set of enhancer-AAV tools that are highly specific for distinct cortical interneuron populations and striatal cholinergic interneurons. These enhancers, when used in the context of different effectors, can target (fluorescent proteins), observe activity (GCaMP), and manipulate (opto-genetics) specific neuronal subtypes. We also validated our enhancer-AAV tools across species. Thus, we provide the field with a powerful set of tools to study neural circuits and functions and to develop precise and targeted therapy.
Collapse
Affiliation(s)
- Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thien Tran
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Josselyn Vergara
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana Pereira
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bram L Gorissen
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sara Wills
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ariel Hairston
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
| | - Deepanjali Dwivedi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Du
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Justin McMahon
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
| | - Annunziato Morabito
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
| | - Arenski Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Soyoun Kim
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anthony T Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Adam Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Emily Paranzino
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Haley Rice
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Anya Plotnikova
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Arya Mohanty
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Anne Claire Tangen
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Jung Hoon Shin
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Reza Azadi
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Mark A G Eldridge
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Veronica A Alvarez
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Bruno B Averbeck
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415, USA
| | - Mansour Alyahyay
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tania Reyes Vallejo
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohammed Soheib
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lucas G Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cathryn P MacGregor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Carolina Piletti Chatain
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Viktor Janos Olah
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shovan Naskar
- Unit of Functional Neural Circuit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Hill
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sophie Liebergall
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rohan Badiani
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lili Hyde
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ella Hanley
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Qing Xu
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Kathryn C Allaway
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ethan M Goldberg
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Soohyun Lee
- Unit of Functional Neural Circuit, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emilia Favuzzi
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Pascal S Kaeser
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Dominick P. Purpura Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Leena A Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Yating Wang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Dellal S, Zurita H, Kruglikov I, Valero M, Abad-Perez P, Geron E, Meng JH, Pronneke A, Hanson JL, Mir E, Ongaro M, Wang XJ, Buzsaki G, Machold RP, Rudy B. Inhibitory and disinhibitory VIP IN-mediated circuits in neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640383. [PMID: 40060562 PMCID: PMC11888407 DOI: 10.1101/2025.02.26.640383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Cortical GABAergic interneurons (INs) expressing the neuropeptide vasoactive-intestinal peptide (VIP) predominantly function by inhibiting dendritic-targeting somato-statin (SST) expressing INs, thereby disinhibiting pyramidal cells (PCs) and facilitating cortical circuit plasticity. VIP INs are a molecularly heterogeneous group, but the physiological significance of this diversity is unclear at present. Here, we have characterized the functional diversity of VIP INs in the primary somatosensory cortex (vS1) using intersectional genetic approaches. We found that VIP INs are comprised of four primary populations that exhibit different laminar distributions, axonal and dendritic arbors, intrinsic electrophysiological properties, and efferent connectivity. Furthermore, we observe that these populations are differentially activated by long-range inputs, and display distinct responses to neuromodulation by endocannabinoids, acetylcholine and noradrenaline. Stimulation of VIP IN subpopulations in vivo results in differential effects on the cortical network, thus providing evidence for specialized modes of VIP IN-mediated regulation of PC activity during cortical information processing.
Collapse
|
3
|
Sweeney CG, Thomas ME, Liu CJ, Vattino LG, Smith KE, Takesian AE. Reliable sensory processing of superficial cortical interneurons is modulated by behavioral state. Cell Rep 2025; 44:115678. [PMID: 40349343 DOI: 10.1016/j.celrep.2025.115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/14/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
GABAergic interneurons in cortical layer 1 (L1) integrate sensory and top-down inputs to modulate network activity and support learning-related plasticity. However, little is known about how sensory inputs drive L1 interneuron activity. We used two-photon calcium imaging to measure sound-evoked responses in two L1 interneuron populations expressing vasoactive intestinal peptide (VIP) or neuron-derived neurotrophic factor (NDNF) in mouse auditory cortex. We found that L1 interneurons respond to both simple and complex sounds, but their responses are highly variable across trials. Despite this variability, these interneurons respond reliably to a narrow range of stimuli, reflecting selectivity for specific spectrotemporal sound features. Response reliability was modulated by behavioral state and predicted by the activity of neighboring interneurons. These findings reveal that L1 interneurons exhibit sensory tuning and identify the modulation of response reliability as a potential mechanism by which L1 relays state-dependent cues to shape sensory representations.
Collapse
Affiliation(s)
- Carolyn G Sweeney
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Maryse E Thomas
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Christine Junhui Liu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA; Graduate Program in Speech and Hearing and Bioscience and Technologies, Harvard Medical School, Boston, MA, USA
| | - Lucas G Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Kasey E Smith
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA; Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Furlanis E, Dai M, Garcia BL, Tran T, Vergara J, Pereira A, Gorissen BL, Wills S, Vlachos A, Hairston A, Dwivedi D, Du S, McMahon J, Huang S, Morabito A, Vazquez A, Kim S, Lee AT, Chang EF, Razzaq T, Qazi A, Vargish G, Yuan X, Caccavano A, Hunt S, Chittajallu R, McLean N, Hewitt L, Paranzino E, Rice H, Cummins AC, Plotnikova A, Mohanty A, Tangen AC, Shin JH, Azadi R, Eldridge MAG, Alvarez VA, Averbeck BB, Alyahyay M, Vallejo TR, Soheib M, Vattino LG, MacGregor CP, Chatain CP, Banks E, Olah VJ, Naskar S, Hill S, Liebergall S, Badiani R, Hyde L, Hanley E, Xu Q, Allaway KC, Goldberg EM, Rowan MJM, Nowakowski TJ, Lee S, Favuzzi E, Kaeser PS, Sjulson L, Batista-Brito R, Takesian AE, Ibrahim LA, Iqbal A, Pelkey KA, McBain CJ, Dimidschstein J, Fishell G, Wang Y. An enhancer-AAV toolbox to target and manipulate distinct interneuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.17.603924. [PMID: 39091835 PMCID: PMC11291062 DOI: 10.1101/2024.07.17.603924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate specific neuronal subtypes are still limited. Here, we performed systematic analysis of single cell genomic data to identify enhancer candidates for each of the telencephalic interneuron subtypes. We established a set of enhancer-AAV tools that are highly specific for distinct cortical interneuron populations and striatal cholinergic interneurons. These enhancers, when used in the context of different effectors, can target (fluorescent proteins), observe activity (GCaMP) and manipulate (opto-genetics) specific neuronal subtypes. We also validated our enhancer-AAV tools across species. Thus, we provide the field with a powerful set of tools to study neural circuits and functions and to develop precise and targeted therapy.
Collapse
|
5
|
Vélez-Fort M, Cossell L, Porta L, Clopath C, Margrie TW. Motor and vestibular signals in the visual cortex permit the separation of self versus externally generated visual motion. Cell 2025; 188:2175-2189.e15. [PMID: 39978344 DOI: 10.1016/j.cell.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Knowing whether we are moving or something in the world is moving around us is possibly the most critical sensory discrimination we need to perform. How the brain and, in particular, the visual system solves this motion-source separation problem is not known. Here, we find that motor, vestibular, and visual motion signals are used by the mouse primary visual cortex (VISp) to differentially represent the same visual flow information according to whether the head is stationary or experiencing passive versus active translation. During locomotion, we find that running suppresses running-congruent translation input and that translation signals dominate VISp activity when running and translation speed become incongruent. This cross-modal interaction between the motor and vestibular systems was found throughout the cortex, indicating that running and translation signals provide a brain-wide egocentric reference frame for computing the internally generated and actual speed of self when moving through and sensing the external world.
Collapse
Affiliation(s)
- Mateo Vélez-Fort
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Lee Cossell
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Laura Porta
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Claudia Clopath
- Sainsbury Wellcome Centre, University College London, London, UK; Bioengineering Department, Imperial College London, London, UK
| | - Troy W Margrie
- Sainsbury Wellcome Centre, University College London, London, UK.
| |
Collapse
|
6
|
Blumenstock S, Arakelyan D, Del Grosso N, Schneider S, Shao Y, Gjoni E, Klein R, Dudanova I, Komiyama T. Optogenetic restoration of neuron subtype-specific cortical activity ameliorates motor deficits in Huntington's Disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637155. [PMID: 39974900 PMCID: PMC11839025 DOI: 10.1101/2025.02.07.637155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Huntington's disease (HD) is a devastating movement disorder without a current cure. Although the monogenic basis of HD is well-defined, the complex downstream effects that underlie behavioral symptoms are poorly understood. These effects include cortical dysfunctions, yet the role of specific cortical neuronal subtypes in HD symptoms remain largely unexplored. Here, we used longitudinal in vivo two-photon calcium imaging to examine the activity of two cortical inhibitory neuron (IN) subtypes and excitatory corticostriatal projection neurons (CSPNs) in the motor cortex of R6/2 HD mouse model throughout disease progression. We found that motor deficits in R6/2 mice were accompanied by neuron type-specific abnormalities in movement-related activity, including hypoactivity of vasoactive intestinal peptide (VIP)-INs and CSPNs. Optogenetic activation of VIP-INs in R6/2 mice restored healthy levels of activity in VIP-INs and their downstream CSPNs and ameliorated motor deficits in R6/2 mice. Our findings highlight cortical INs as a potential therapeutic target for HD and possibly other neurological diseases.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - David Arakelyan
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Del Grosso
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Sonja Schneider
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Yufeng Shao
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Enida Gjoni
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Rüdiger Klein
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Irina Dudanova
- Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Takaki Komiyama
- Department of Neurobiology, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Park E, Mosso MB, Barth AL. Neocortical somatostatin neuron diversity in cognition and learning. Trends Neurosci 2025; 48:140-155. [PMID: 39824710 DOI: 10.1016/j.tins.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function. Neocortical SST neurons are regulated by sleep and arousal, attention, and novelty detection, and show marked response plasticity during learning. Recent studies suggest that subtype-specific analysis of SST neurons may be critical for understanding their complex roles in cortical function. In this review, we discuss and synthesize recent advances in understanding the diversity, circuit integration, and functional properties of this important group of GABAergic neurons.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Matthew B Mosso
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Birch EE, Duffy KR. Leveraging neural plasticity for the treatment of amblyopia. Surv Ophthalmol 2024; 69:818-832. [PMID: 38763223 PMCID: PMC11380599 DOI: 10.1016/j.survophthal.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Amblyopia is a form of visual cortical impairment that arises from abnormal visual experience early in life. Most often, amblyopia is a unilateral visual impairment that can develop as a result of strabismus, anisometropia, or a combination of these conditions that result in discordant binocular experience. Characterized by reduced visual acuity and impaired binocular function, amblyopia places a substantial burden on the developing child. Although frontline treatment with glasses and patching can improve visual acuity, residual amblyopia remains for most children. Newer binocular-based therapies can elicit rapid recovery of visual acuity and may also improve stereoacuity in some children. Nevertheless, for both treatment modalities full recovery is elusive, recurrence of amblyopia is common, and improvements are negligible when treatment is administered at older ages. Insights derived from animal models about the factors that govern neural plasticity have been leveraged to develop innovative treatments for amblyopia. These novel therapies exhibit efficacy to promote recovery, and some are effective even at ages when conventional treatments fail to yield benefit. Approaches for enhancing visual system plasticity and promoting recovery from amblyopia include altering the balance between excitatory and inhibitory mechanisms, reversing the accumulation of proteins that inhibit plasticity, and harnessing the principles of metaplasticity. Although these therapies have exhibited promising results in animal models, their safety and ability to remediate amblyopia need to be evaluated in humans.
Collapse
Affiliation(s)
- Eileen E Birch
- Crystal Charity Ball Pediatric Vision Laboratory, Retina Foundation, Dallas, TX, USA; University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
McFarlan AR, Gomez I, Chou CYC, Alcolado A, Costa RP, Sjöström PJ. The short-term plasticity of VIP interneurons in motor cortex. Front Synaptic Neurosci 2024; 16:1433977. [PMID: 39267890 PMCID: PMC11390561 DOI: 10.3389/fnsyn.2024.1433977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Short-term plasticity is an important feature in the brain for shaping neural dynamics and for information processing. Short-term plasticity is known to depend on many factors including brain region, cortical layer, and cell type. Here we focus on vasoactive-intestinal peptide (VIP) interneurons (INs). VIP INs play a key disinhibitory role in cortical circuits by inhibiting other IN types, including Martinotti cells (MCs) and basket cells (BCs). Despite this prominent role, short-term plasticity at synapses to and from VIP INs is not well described. In this study, we therefore characterized the short-term plasticity at inputs and outputs of genetically targeted VIP INs in mouse motor cortex. To explore inhibitory to inhibitory (I → I) short-term plasticity at layer 2/3 (L2/3) VIP IN outputs onto L5 MCs and BCs, we relied on a combination of whole-cell recording, 2-photon microscopy, and optogenetics, which revealed that VIP IN→MC/BC synapses were consistently short-term depressing. To explore excitatory (E) → I short-term plasticity at inputs to VIP INs, we used extracellular stimulation. Surprisingly, unlike VIP IN outputs, E → VIP IN synapses exhibited heterogeneous short-term dynamics, which we attributed to the target VIP IN cell rather than the input. Computational modeling furthermore linked the diversity in short-term dynamics at VIP IN inputs to a wide variability in probability of release. Taken together, our findings highlight how short-term plasticity at VIP IN inputs and outputs is specific to synapse type. We propose that the broad diversity in short-term plasticity of VIP IN inputs forms a basis to code for a broad range of contrasting signal dynamics.
Collapse
Affiliation(s)
- Amanda R McFarlan
- Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Isabella Gomez
- Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Christina Y C Chou
- Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | | | - Rui Ponte Costa
- Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair, and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
10
|
Zhao R, Ren B, Xiao Y, Tian J, Zou Y, Wei J, Qi Y, Hu A, Xie X, Huang ZJ, Shu Y, He M, Lu J, Tai Y. Axo-axonic synaptic input drives homeostatic plasticity by tuning the axon initial segment structurally and functionally. SCIENCE ADVANCES 2024; 10:eadk4331. [PMID: 39093969 PMCID: PMC11296346 DOI: 10.1126/sciadv.adk4331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Homeostatic plasticity maintains the stability of functional brain networks. The axon initial segment (AIS), where action potentials start, undergoes dynamic adjustment to exert powerful control over neuronal firing properties in response to network activity changes. However, it is poorly understood whether this plasticity involves direct synaptic input to the AIS. Here, we show that changes of GABAergic synaptic input from chandelier cells (ChCs) drive homeostatic tuning of the AIS of principal neurons (PNs) in the prelimbic (PL) region, while those from parvalbumin-positive basket cells do not. This tuning is evident in AIS morphology, voltage-gated sodium channel expression, and PN excitability. Moreover, the impact of this homeostatic plasticity can be reflected in animal behavior. Social behavior, inversely linked to PL PN activity, shows time-dependent alterations tightly coupled to changes in AIS plasticity and PN excitability. Thus, AIS-originated homeostatic plasticity in PNs may counteract deficits elicited by imbalanced ChC presynaptic input at cellular and behavioral levels.
Collapse
Affiliation(s)
- Rui Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baihui Ren
- Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yujie Xiao
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Jifeng Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Zou
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiafan Wei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanqing Qi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoying Xie
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Z. Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC 27708, USA
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiangteng Lu
- Center for Brain Science of Shanghai Children’s Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Vattino LG, MacGregor CP, Liu CJ, Sweeney CG, Takesian AE. Primary auditory thalamus relays directly to cortical layer 1 interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603741. [PMID: 39071266 PMCID: PMC11275971 DOI: 10.1101/2024.07.16.603741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.
Collapse
Affiliation(s)
- Lucas G. Vattino
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Cathryn P. MacGregor
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- These authors contributed equally to this work
| | - Christine Junhui Liu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Graduate Program in Speech and Hearing and Bioscience and Technologies, Harvard Medical School, Boston, MA, USA
- These authors contributed equally to this work
| | - Carolyn G. Sweeney
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Anne E. Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Kaneko M, Hoseini MS, Waschek JA, Stryker MP. Stimulus-specific enhancement in mouse visual cortex requires GABA but not VIP-peptide release from VIP interneurons. J Neurophysiol 2024; 132:34-44. [PMID: 38774975 PMCID: PMC11383382 DOI: 10.1152/jn.00463.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
When adult mice are repeatedly exposed to a particular visual stimulus for as little as 1 h per day for several days while their visual cortex (V1) is in the high-gain state produced by locomotion, that specific stimulus elicits much stronger responses in V1 neurons for the following several weeks, even when measured in anesthetized animals. Such stimulus-specific enhancement (SSE) is not seen if locomotion is prevented. The effect of locomotion on cortical responses is mediated by vasoactive intestinal peptide (VIP) positive interneurons, which can release both the peptide and the inhibitory neurotransmitter GABA. Previous studies have examined the role of VIP-ergic interneurons, but none have distinguished the individual roles of peptide from GABA release. Here, we used genetic ablation to determine which of those molecules secreted by VIP-ergic neurons is responsible for SSE. SSE was not impaired by VIP deletion but was prevented by compromising release of GABA from VIP cells. This finding suggests that SSE may result from Hebbian mechanisms that remain present in adult V1.NEW & NOTEWORTHY Many neurons package and release a peptide along with a conventional neurotransmitter. The conventional view is that such peptides exert late, slow effects on plasticity. We studied a form of cortical plasticity that depends on the activity of neurons that express both vasoactive intestinal peptide (VIP) and the inhibitory neurotransmitter GABA. GABA release accounted for their action on plasticity, with no effect of deleting the peptide on this phenomenon.
Collapse
Affiliation(s)
- Megumi Kaneko
- Department of Physiology and Kavli Institute For Fundamental Neuroscience, University of California San Francisco, San Francisco, California, United States
| | - Mahmood S Hoseini
- Department of Physiology and Kavli Institute For Fundamental Neuroscience, University of California San Francisco, San Francisco, California, United States
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Michael P Stryker
- Department of Physiology and Kavli Institute For Fundamental Neuroscience, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|
13
|
Zhao R, Ren B, Xiao Y, Tian J, Zou Y, Wei J, Qi Y, Hu A, Xie X, Huang ZJ, Shu Y, He M, Lu J, Tai Y. Axo-axonic synaptic input drives homeostatic plasticity by tuning the axon initial segment structurally and functionally. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589005. [PMID: 38659885 PMCID: PMC11042219 DOI: 10.1101/2024.04.11.589005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The stability of functional brain network is maintained by homeostatic plasticity, which restores equilibrium following perturbation. As the initiation site of action potentials, the axon initial segment (AIS) of glutamatergic projection neurons (PyNs) undergoes dynamic adjustment that exerts powerful control over neuronal firing properties in response to changes in network states. Although AIS plasticity has been reported to be coupled with the changes of network activity, it is poorly understood whether it involves direct synaptic input to the AIS. Here we show that changes of GABAergic synaptic input to the AIS of cortical PyNs, specifically from chandelier cells (ChCs), are sufficient to drive homeostatic tuning of the AIS within 1-2 weeks, while those from parvalbumin-positive basket cells do not. This tuning is reflected in the morphology of the AIS, the expression level of voltage-gated sodium channels, and the intrinsic neuronal excitability of PyNs. Interestingly, the timing of AIS tuning in PyNs of the prefrontal cortex corresponds to the recovery of changes in social behavior caused by alterations of ChC synaptic transmission. Thus, homeostatic plasticity of the AIS at postsynaptic PyNs may counteract deficits elicited by imbalanced ChC presynaptic input. Teaser Axon initial segment dynamically responds to changes in local input from chandelier cells to prevent abnormal neuronal functions.
Collapse
|
14
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
15
|
de Brito Van Velze M, Dhanasobhon D, Martinez M, Morabito A, Berthaux E, Pinho CM, Zerlaut Y, Rebola N. Feedforward and disinhibitory circuits differentially control activity of cortical somatostatin interneurons during behavioral state transitions. Cell Rep 2024; 43:114197. [PMID: 38733587 DOI: 10.1016/j.celrep.2024.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.
Collapse
Affiliation(s)
- Marcel de Brito Van Velze
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Dhanasak Dhanasobhon
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Marie Martinez
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Annunziato Morabito
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Emmanuelle Berthaux
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Cibele Martins Pinho
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Yann Zerlaut
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| | - Nelson Rebola
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| |
Collapse
|
16
|
McFarlan AR, Guo C, Gomez I, Weinerman C, Liang TA, Sjöström PJ. The spike-timing-dependent plasticity of VIP interneurons in motor cortex. Front Cell Neurosci 2024; 18:1389094. [PMID: 38706517 PMCID: PMC11066220 DOI: 10.3389/fncel.2024.1389094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The plasticity of inhibitory interneurons (INs) plays an important role in the organization and maintenance of cortical microcircuits. Given the many different IN types, there is an even greater diversity in synapse-type-specific plasticity learning rules at excitatory to excitatory (E→I), I→E, and I→I synapses. I→I synapses play a key disinhibitory role in cortical circuits. Because they typically target other INs, vasoactive intestinal peptide (VIP) INs are often featured in I→I→E disinhibition, which upregulates activity in nearby excitatory neurons. VIP IN dysregulation may thus lead to neuropathologies such as epilepsy. In spite of the important activity regulatory role of VIP INs, their long-term plasticity has not been described. Therefore, we characterized the phenomenology of spike-timing-dependent plasticity (STDP) at inputs and outputs of genetically defined VIP INs. Using a combination of whole-cell recording, 2-photon microscopy, and optogenetics, we explored I→I STDP at layer 2/3 (L2/3) VIP IN outputs onto L5 Martinotti cells (MCs) and basket cells (BCs). We found that VIP IN→MC synapses underwent causal long-term depression (LTD) that was presynaptically expressed. VIP IN→BC connections, however, did not undergo any detectable plasticity. Conversely, using extracellular stimulation, we explored E→I STDP at inputs to VIP INs which revealed long-term potentiation (LTP) for both causal and acausal timings. Taken together, our results demonstrate that VIP INs possess synapse-type-specific learning rules at their inputs and outputs. This suggests the possibility of harnessing VIP IN long-term plasticity to control activity-related neuropathologies such as epilepsy.
Collapse
Affiliation(s)
- Amanda R. McFarlan
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Connie Guo
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Isabella Gomez
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Chaim Weinerman
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Tasha A. Liang
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
17
|
Kadhum A, Tan ETC, Fronius M, Baart SJ, Levi DM, Joosse MV, Simonsz HJ, Loudon SE. Supervised dichoptic gaming versus monitored occlusion therapy for childhood amblyopia: Effectiveness and efficiency. Acta Ophthalmol 2024; 102:38-48. [PMID: 37078540 DOI: 10.1111/aos.15674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE To compare the effectiveness and efficiency of supervised dichoptic action-videogame play to occlusion therapy in children with amblyopia. METHODS Newly diagnosed children with amblyopia aged 4-12 years were recruited, excluding strabismus >30PD. After 16 weeks of refractive adaptation children were randomized to gaming 1 h/week supervised by the researcher, or electronically monitored occlusion 2 h/day. The gaming group played a dichoptic action-videogame using virtual reality goggles, which included the task of catching a snowflake presented intermittently to the amblyopic eye. Contrast for the fellow eye was self-adjusted until 2 identical images were perceived. The primary outcome was visual acuity (VA) change from baseline to 24 weeks. RESULTS We recruited 96 children, 29 declined and 2 were excluded for language or legal issues. After refractive adaptation, 24 of the remaining 65 no longer met the inclusion criteria for amblyopia, and 8 dropped out. Of 16 children treated with gaming, 7 (6.7 years) completed treatment, whereas 9 younger children (5.3 years) did not. Of 17 treated with occlusion, 14 (5.1 years) completed treatment and 3 (4.5 years) did not. Of 5 children with small-angle strabismus, 3 treated with occlusion completed treatment and 2 treated with gaming did not. Median VA improved by 0.30 logMAR (IQR 0.20-0.40) after gaming, 0.20 logMAR (0.00-0.30) after occlusion (p = 0.823). Treatment efficiency was 1.25 logMAR/100 h (range 0.42-2.08) with gaming, 0.08 (-0.19-0.68) with occlusion (p < 0.001). CONCLUSION Dichoptic gaming seems a viable alternative for older children with refractive amblyopia after glasses adaptation. Treatment efficiency with gaming under continuous supervision was 15 times higher than with occlusion at home.
Collapse
Affiliation(s)
- Aveen Kadhum
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emily T C Tan
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maria Fronius
- Department of Ophthalmology, Child Vision Research Unit, Goethe University, Frankfurt am Main, Germany
| | - S J Baart
- Department of Clinical Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dennis M Levi
- Berkeley, Herbert Wertheim School of Optometry and Vision Science, and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Maurits V Joosse
- Department of Ophthalmology, Haaglanden Medical Center (HMC), Westeinde Hospital, The Hague, The Netherlands
| | - Huibert J Simonsz
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sjoukje E Loudon
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Marmor O, Pollak Y, Doron C, Helmchen F, Gilad A. History information emerges in the cortex during learning. eLife 2023; 12:e83702. [PMID: 37921842 PMCID: PMC10624423 DOI: 10.7554/elife.83702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
We learn from our experience but the underlying neuronal mechanisms incorporating past information to facilitate learning is relatively unknown. Specifically, which cortical areas encode history-related information and how is this information modulated across learning? To study the relationship between history and learning, we continuously imaged cortex-wide calcium dynamics as mice learn to use their whiskers to discriminate between two different textures. We mainly focused on comparing the same trial type with different trial history, that is, a different preceding trial. We found trial history information in barrel cortex (BC) during stimulus presentation. Importantly, trial history in BC emerged only as the mouse learned the task. Next, we also found learning-dependent trial history information in rostrolateral (RL) association cortex that emerges before stimulus presentation, preceding activity in BC. Trial history was also encoded in other cortical areas and was not related to differences in body movements. Interestingly, a binary classifier could discriminate trial history at the single trial level just as well as current information both in BC and RL. These findings suggest that past experience emerges in the cortex around the time of learning, starting from higher-order association area RL and propagating down (i.e., top-down projection) to lower-order BC where it can be integrated with incoming sensory information. This integration between the past and present may facilitate learning.
Collapse
Affiliation(s)
- Odeya Marmor
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of JerusalemJerusalemIsrael
| | - Yael Pollak
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of JerusalemJerusalemIsrael
| | - Chen Doron
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of JerusalemJerusalemIsrael
| | - Fritjof Helmchen
- Brain Research Institute, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichZurichSwitzerland
| | - Ariel Gilad
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
19
|
Thompson SM, Fabian CB, Ferranti AS, Joffe ME. Acute alcohol and chronic drinking bidirectionally regulate the excitability of prefrontal cortex vasoactive intestinal peptide interneurons. Neuropharmacology 2023; 238:109638. [PMID: 37482180 PMCID: PMC10529784 DOI: 10.1016/j.neuropharm.2023.109638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
The prefrontal cortex (PFC) regulates drinking behaviors and affective changes following chronic alcohol use. PFC activity is dynamically modulated by local inhibitory interneurons (INs), which can be divided into non-overlapping groups with distinct functional roles. Within deeper layers of neocortex, INs that express either parvalbumin or somatostatin directly inhibit pyramidal cells. By contrast, the plurality of all remaining INs express vasoactive intestinal peptide (VIP), reside within superficial layers, and preferentially target other types of INs. While recent studies have described adaptations to PFC parvalbumin-INs and somatostatin-INs in alcohol use models, whether ethanol or drinking affect the physiology of PFC VIP-INs has not been reported. To address this gap, we used genetically engineered female and male mice to target VIP-INs in layers 1-3 of prelimbic PFC for whole-cell patch-clamp electrophysiology. We found that ethanol (20 mM, ∼0.09 BEC/90 mg/dL) application to PFC brain slices enhances VIP-IN excitability. We next examined effects following chronic drinking by providing mice with 4 weeks of intermittent access (IA) ethanol two-bottle choice in the home cage. In these studies, VIP-INs from female and male IA ethanol mice displayed reduced excitability relative to cells from water-only controls. Finally, we assessed whether these effects continue into abstinence. After 7-13 days without ethanol, the hypo-excitability of VIP-INs from male IA ethanol mice persisted, whereas cells from female IA ethanol mice were not different from their controls. Together, these findings illustrate that acute ethanol enhances VIP-IN excitability and suggest these cells undergo pronounced homeostatic changes following long-term drinking.
Collapse
Affiliation(s)
- Shannon M Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carly B Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Latshaw JS, Mazade RE, Petersen M, Mustard JA, Sinakevitch I, Wissler L, Guo X, Cook C, Lei H, Gadau J, Smith B. Tyramine and its Amtyr1 receptor modulate attention in honey bees ( Apis mellifera). eLife 2023; 12:e83348. [PMID: 37814951 PMCID: PMC10564449 DOI: 10.7554/elife.83348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/14/2023] [Indexed: 10/11/2023] Open
Abstract
Animals must learn to ignore stimuli that are irrelevant to survival and attend to ones that enhance survival. When a stimulus regularly fails to be associated with an important consequence, subsequent excitatory learning about that stimulus can be delayed, which is a form of nonassociative conditioning called 'latent inhibition'. Honey bees show latent inhibition toward an odor they have experienced without association with food reinforcement. Moreover, individual honey bees from the same colony differ in the degree to which they show latent inhibition, and these individual differences have a genetic basis. To investigate the mechanisms that underly individual differences in latent inhibition, we selected two honey bee lines for high and low latent inhibition, respectively. We crossed those lines and mapped a Quantitative Trait Locus for latent inhibition to a region of the genome that contains the tyramine receptor gene Amtyr1 [We use Amtyr1 to denote the gene and AmTYR1 the receptor throughout the text.]. We then show that disruption of Amtyr1 signaling either pharmacologically or through RNAi qualitatively changes the expression of latent inhibition but has little or slight effects on appetitive conditioning, and these results suggest that AmTYR1 modulates inhibitory processing in the CNS. Electrophysiological recordings from the brain during pharmacological blockade are consistent with a model that AmTYR1 indirectly regulates at inhibitory synapses in the CNS. Our results therefore identify a distinct Amtyr1-based modulatory pathway for this type of nonassociative learning, and we propose a model for how Amtyr1 acts as a gain control to modulate hebbian plasticity at defined synapses in the CNS. We have shown elsewhere how this modulation also underlies potentially adaptive intracolonial learning differences among individuals that benefit colony survival. Finally, our neural model suggests a mechanism for the broad pleiotropy this gene has on several different behaviors.
Collapse
Affiliation(s)
- Joseph S Latshaw
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Reece E Mazade
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Mary Petersen
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Julie A Mustard
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | | | - Lothar Wissler
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Xiaojiao Guo
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Chelsea Cook
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Hong Lei
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Jürgen Gadau
- School of Life Sciences, Arizona State UniversityTempeUnited States
| | - Brian Smith
- School of Life Sciences, Arizona State UniversityTempeUnited States
| |
Collapse
|
21
|
Roethler O, Zohar E, Cohen-Kashi Malina K, Bitan L, Gabel HW, Spiegel I. Single genomic enhancers drive experience-dependent GABAergic plasticity to maintain sensory processing in the adult cortex. Neuron 2023; 111:2693-2708.e8. [PMID: 37354902 DOI: 10.1016/j.neuron.2023.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Experience-dependent plasticity of synapses modulates information processing in neural circuits and is essential for cognitive functions. The genome, via non-coding enhancers, was proposed to control information processing and circuit plasticity by regulating experience-induced transcription of genes that modulate specific sets of synapses. To test this idea, we analyze here the cellular and circuit functions of the genomic mechanisms that control the experience-induced transcription of Igf1 (insulin-like growth factor 1) in vasoactive intestinal peptide (VIP) interneurons (INs) in the visual cortex of adult mice. We find that two sensory-induced enhancers selectively and cooperatively drive the activity-induced transcription of Igf1 to thereby promote GABAergic inputs onto VIP INs and to homeostatically control the ratio between excitation and inhibition (E/I ratio)-in turn, this restricts neural activity in VIP INs and principal excitatory neurons and maintains spatial frequency tuning. Thus, enhancer-mediated activity-induced transcription maintains sensory processing in the adult cortex via homeostatic modulation of E/I ratio.
Collapse
Affiliation(s)
- Ori Roethler
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Zohar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Katayun Cohen-Kashi Malina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Lidor Bitan
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Harrison Wren Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Ivo Spiegel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Kumar M, Handy G, Kouvaros S, Zhao Y, Brinson LL, Wei E, Bizup B, Doiron B, Tzounopoulos T. Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage. Nat Commun 2023; 14:4170. [PMID: 37443148 PMCID: PMC10345144 DOI: 10.1038/s41467-023-39732-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Peripheral sensory organ damage leads to compensatory cortical plasticity that is associated with a remarkable recovery of cortical responses to sound. The precise mechanisms that explain how this plasticity is implemented and distributed over a diverse collection of excitatory and inhibitory cortical neurons remain unknown. After noise trauma and persistent peripheral deficits, we found recovered sound-evoked activity in mouse A1 excitatory principal neurons (PNs), parvalbumin- and vasoactive intestinal peptide-expressing neurons (PVs and VIPs), but reduced activity in somatostatin-expressing neurons (SOMs). This cell-type-specific recovery was also associated with cell-type-specific intrinsic plasticity. These findings, along with our computational modelling results, are consistent with the notion that PV plasticity contributes to PN stability, SOM plasticity allows for increased PN and PV activity, and VIP plasticity enables PN and PV recovery by inhibiting SOMs.
Collapse
Affiliation(s)
- Manoj Kumar
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Gregory Handy
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Stylianos Kouvaros
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yanjun Zhao
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lovisa Ljungqvist Brinson
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eric Wei
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Brandon Bizup
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
23
|
Goff KM, Liebergall SR, Jiang E, Somarowthu A, Goldberg EM. VIP interneuron impairment promotes in vivo circuit dysfunction and autism-related behaviors in Dravet syndrome. Cell Rep 2023; 42:112628. [PMID: 37310860 PMCID: PMC10592464 DOI: 10.1016/j.celrep.2023.112628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
Dravet syndrome (DS) is a severe neurodevelopmental disorder caused by loss-of-function variants in SCN1A, which encodes the voltage-gated sodium channel subunit Nav1.1. We recently showed that neocortical vasoactive intestinal peptide interneurons (VIP-INs) express Nav1.1 and are hypoexcitable in DS (Scn1a+/-) mice. Here, we investigate VIP-IN function at the circuit and behavioral level by performing in vivo 2-photon calcium imaging in awake wild-type (WT) and Scn1a+/- mice. VIP-IN and pyramidal neuron activation during behavioral transition from quiet wakefulness to active running is diminished in Scn1a+/- mice, and optogenetic activation of VIP-INs restores pyramidal neuron activity to WT levels during locomotion. VIP-IN selective Scn1a deletion reproduces core autism-spectrum-disorder-related behaviors in addition to cellular- and circuit-level deficits in VIP-IN function, but without epilepsy, sudden death, or avoidance behaviors seen in the global model. Hence, VIP-INs are impaired in vivo, which may underlie non-seizure cognitive and behavioral comorbidities in DS.
Collapse
Affiliation(s)
- Kevin M Goff
- Medical Scientist Training Program (MSTP), The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sophie R Liebergall
- Medical Scientist Training Program (MSTP), The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Evan Jiang
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ethan M Goldberg
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Andrade-Talavera Y, Pérez-Rodríguez M, Prius-Mengual J, Rodríguez-Moreno A. Neuronal and astrocyte determinants of critical periods of plasticity. Trends Neurosci 2023:S0166-2236(23)00105-4. [PMID: 37202300 DOI: 10.1016/j.tins.2023.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Windows of plasticity allow environmental experiences to produce intense activity-dependent changes during postnatal development. The reordering and refinement of neural connections occurs during these periods, significantly influencing the formation of brain circuits and physiological processes in adults. Recent advances have shed light on factors that determine the onset and duration of sensitive and critical periods of plasticity. Although GABAergic inhibition has classically been implicated in closing windows of plasticity, astrocytes and adenosinergic inhibition have also emerged more recently as key determinants of the duration of these periods of plasticity. Here, we review novel aspects of the involvement of GABAergic inhibition, the possible role of presynaptic NMDARs, and the emerging roles of astrocytes and adenosinergic inhibition in determining the duration of windows of plasticity in different brain regions.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Mikel Pérez-Rodríguez
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - José Prius-Mengual
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain.
| |
Collapse
|
25
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
26
|
Martinez JD, Donnelly MJ, Popke DS, Torres D, Wilson LG, Brancaleone WP, Sheskey S, Lin CM, Clawson BC, Jiang S, Aton SJ. Enriched binocular experience followed by sleep optimally restores binocular visual cortical responses in a mouse model of amblyopia. Commun Biol 2023; 6:408. [PMID: 37055505 PMCID: PMC10102075 DOI: 10.1038/s42003-023-04798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Studies of primary visual cortex have furthered our understanding of amblyopia, long-lasting visual impairment caused by imbalanced input from the two eyes during childhood, which is commonly treated by patching the dominant eye. However, the relative impacts of monocular vs. binocular visual experiences on recovery from amblyopia are unclear. Moreover, while sleep promotes visual cortex plasticity following loss of input from one eye, its role in recovering binocular visual function is unknown. Using monocular deprivation in juvenile male mice to model amblyopia, we compared recovery of cortical neurons' visual responses after identical-duration, identical-quality binocular or monocular visual experiences. We demonstrate that binocular experience is quantitatively superior in restoring binocular responses in visual cortex neurons. However, this recovery was seen only in freely-sleeping mice; post-experience sleep deprivation prevented functional recovery. Thus, both binocular visual experience and subsequent sleep help to optimally renormalize bV1 responses in a mouse model of amblyopia.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Marcus J Donnelly
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Donald S Popke
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Torres
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah Sheskey
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brittany C Clawson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Du X, Liu L, Dong X, Bao M. Effects of altered-reality training on interocular disinhibition in amblyopia. Ann N Y Acad Sci 2023; 1522:126-138. [PMID: 36811156 DOI: 10.1111/nyas.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Training of viewing an altered-reality environment dichoptically has been found to reactivate human adult ocular dominance plasticity, allowing improvement of vision for amblyopia. One suspected mechanism for this training effect is ocular dominance rebalancing through interocular disinhibition. Here, we investigated whether the training modulated the neural responses reflecting interocular inhibition. Thirteen patients with amblyopia and 11 healthy controls participated in this study. Before and after six daily altered-reality training sessions, participants watched flickering video stimuli with their steady-state visually evoked potential (SSVEP) signals recorded simultaneously. We assessed the amplitude of SSVEP response at intermodulation frequencies, which was a potential neural indicator of interocular suppression. The results showed that training weakened the intermodulation response only in the amblyopic group, which was in agreement with the hypothesis that the training reduced interocular suppression specific to amblyopia. Moreover, even one month after the training ended, we could still observe this neural training effect. These findings provide preliminary neural evidence in support of the disinhibition account for treating amblyopia. We also explain these results with the ocular opponency model, which, to our knowledge, is the first time for this binocular rivalry model to be used in explaining long-term ocular dominance plasticity.
Collapse
Affiliation(s)
- Xinxin Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Captital Medical University, Beijing, China
| | - Xue Dong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Beijing, China
| |
Collapse
|
28
|
Thompson SM, Ferranti AS, Joffe ME. Acute alcohol and chronic drinking bidirectionally regulate the excitability of prefrontal cortex vasoactive intestinal peptide interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531614. [PMID: 36945582 PMCID: PMC10028880 DOI: 10.1101/2023.03.07.531614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The prefrontal cortex (PFC) regulates drinking behaviors and affective changes following chronic alcohol use. PFC activity is dynamically modulated by local inhibitory interneurons (INs), which can be divided into non-overlapping groups with distinct functional roles. Within deeper layers of neocortex, INs that express either parvalbumin or somatostatin directly inhibit pyramidal cells. By contrast, the plurality of all remaining INs express vasoactive intestinal peptide (VIP), reside within superficial layers, and preferentially target other types of INs. While recent studies have described adaptations to PFC parvalbumin-INs and somatostatin-INs in alcohol use models, whether ethanol or drinking affect the physiology of PFC VIP-INs has not been reported. To address this gap, we used genetically engineered female and male mice to target VIP-INs in layers 1-3 of prelimbic PFC for whole-cell patch-clamp electrophysiology. We found that ethanol (20 mM, ∼0.09 BEC) application to PFC brain slices enhances VIP-IN excitability. We next examined effects following chronic drinking by providing mice with 4 weeks of intermittent access (IA) ethanol two-bottle choice in the home cage. In these studies, VIP-INs from female and male IA ethanol mice displayed reduced excitability relative to cells from water-only controls. Finally, we assessed whether these effects continue into abstinence. After 7-11 days without ethanol, the hypo-excitability of VIP-INs from male IA ethanol mice persisted, whereas cells from female IA ethanol mice were not different from their controls. Together, these findings illustrate that acute ethanol enhances VIP-IN excitability and suggest these cells undergo pronounced homeostatic changes following long-term drinking.
Collapse
|
29
|
Reggiani JDS, Jiang Q, Barbini M, Lutas A, Liang L, Fernando J, Deng F, Wan J, Li Y, Chen C, Andermann ML. Brainstem serotonin neurons selectively gate retinal information flow to thalamus. Neuron 2023; 111:711-726.e11. [PMID: 36584680 PMCID: PMC10131437 DOI: 10.1016/j.neuron.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/30/2022]
Abstract
Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.
Collapse
Affiliation(s)
- Jasmine D S Reggiani
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Qiufen Jiang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Barbini
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Lutas
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Liang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesseba Fernando
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
McFarlan AR, Chou CYC, Watanabe A, Cherepacha N, Haddad M, Owens H, Sjöström PJ. The plasticitome of cortical interneurons. Nat Rev Neurosci 2023; 24:80-97. [PMID: 36585520 DOI: 10.1038/s41583-022-00663-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
Hebb postulated that, to store information in the brain, assemblies of excitatory neurons coding for a percept are bound together via associative long-term synaptic plasticity. In this view, it is unclear what role, if any, is carried out by inhibitory interneurons. Indeed, some have argued that inhibitory interneurons are not plastic. Yet numerous recent studies have demonstrated that, similar to excitatory neurons, inhibitory interneurons also undergo long-term plasticity. Here, we discuss the many diverse forms of long-term plasticity that are found at inputs to and outputs from several types of cortical inhibitory interneuron, including their plasticity of intrinsic excitability and their homeostatic plasticity. We explain key plasticity terminology, highlight key interneuron plasticity mechanisms, extract overarching principles and point out implications for healthy brain functionality as well as for neuropathology. We introduce the concept of the plasticitome - the synaptic plasticity counterpart to the genome or the connectome - as well as nomenclature and definitions for dealing with this rich diversity of plasticity. We argue that the great diversity of interneuron plasticity rules is best understood at the circuit level, for example as a way of elucidating how the credit-assignment problem is solved in deep biological neural networks.
Collapse
Affiliation(s)
- Amanda R McFarlan
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Christina Y C Chou
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Nicole Cherepacha
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Maria Haddad
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
31
|
Desrosiers J, Basha D. Cortical Inhibition, Plasticity, and Sleep. J Neurosci 2023; 43:523-525. [PMID: 36697249 PMCID: PMC9888502 DOI: 10.1523/jneurosci.1631-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
- Jénifer Desrosiers
- Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
- CERVO Centre de recherche, Université Laval, Québec, Québec G1E 1T2, Canada
| | - Diellor Basha
- CERVO Centre de recherche, Université Laval, Québec, Québec G1E 1T2, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
32
|
Antioxidants Prevent the Effects of Physical Exercise on Visual Cortical Plasticity. Cells 2022; 12:cells12010048. [PMID: 36611842 PMCID: PMC9818657 DOI: 10.3390/cells12010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Physical activity has been recently shown to enhance adult visual cortical plasticity, both in human subjects and animal models. While physical activity activates mitochondrial oxidative metabolism leading to a transient production of reactive oxygen species, it remains unknown whether this process is involved in the plasticizing effects elicited at the visual cortical level. RESULTS Here, we investigated whether counteracting oxidative stress through a dietary intervention with antioxidants (vitamins E and C) interferes with the impact of physical exercise on visual cortex plasticity in adult rats. Antioxidant supplementation beyond the closure of the critical period blocked ocular dominance plasticity in response to eye deprivation induced by physical activity in adult rats. CONCLUSIONS Antioxidants exerted their action through a mithormetic effect that involved dampening of oxidative stress and insulin-like growth factor 1 (IGF-1) signaling in the brain.
Collapse
|
33
|
Szadai Z, Pi HJ, Chevy Q, Ócsai K, Albeanu DF, Chiovini B, Szalay G, Katona G, Kepecs A, Rózsa B. Cortex-wide response mode of VIP-expressing inhibitory neurons by reward and punishment. eLife 2022; 11:e78815. [PMID: 36416886 PMCID: PMC9683790 DOI: 10.7554/elife.78815] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
Neocortex is classically divided into distinct areas, each specializing in different function, but all could benefit from reinforcement feedback to inform and update local processing. Yet it remains elusive how global signals like reward and punishment are represented in local cortical computations. Previously, we identified a cortical neuron type, vasoactive intestinal polypeptide (VIP)-expressing interneurons, in auditory cortex that is recruited by behavioral reinforcers and mediates disinhibitory control by inhibiting other inhibitory neurons. As the same disinhibitory cortical circuit is present virtually throughout cortex, we wondered whether VIP neurons are likewise recruited by reinforcers throughout cortex. We monitored VIP neural activity in dozens of cortical regions using three-dimensional random access two-photon microscopy and fiber photometry while mice learned an auditory discrimination task. We found that reward and punishment during initial learning produce rapid, cortex-wide activation of most VIP interneurons. This global recruitment mode showed variations in temporal dynamics in individual neurons and across areas. Neither the weak sensory tuning of VIP interneurons in visual cortex nor their arousal state modulation was fully predictive of reinforcer responses. We suggest that the global response mode of cortical VIP interneurons supports a cell-type-specific circuit mechanism by which organism-level information about reinforcers regulates local circuit processing and plasticity.
Collapse
Affiliation(s)
- Zoltán Szadai
- Laboratory of 3D functional network and dendritic imaging, Institute of Experimental MedicineBudapestHungary
- MTA-PPKE ITK-NAP B – 2p Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic UniversityBudapestHungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis UniversityBudapestHungary
- BrainVisionCenterBudapestHungary
| | - Hyun-Jae Pi
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Volen Center for Complex Systems, Biology Department, Brandeis UniversityWalthamUnited States
| | - Quentin Chevy
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Departments of Neuroscience and Psychiatry, Washington University School of MedicineSt. LouisUnited States
| | - Katalin Ócsai
- MTA-PPKE ITK-NAP B – 2p Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic UniversityBudapestHungary
- BrainVisionCenterBudapestHungary
- Computational Systems Neuroscience Lab, Wigner Research Centre for PhysicsBudapestHungary
- Department of Mathematical Geometry, Institute of Mathematics, Budapest University of Technology and EconomicsBudapestHungary
| | - Dinu F Albeanu
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Balázs Chiovini
- Laboratory of 3D functional network and dendritic imaging, Institute of Experimental MedicineBudapestHungary
| | - Gergely Szalay
- Laboratory of 3D functional network and dendritic imaging, Institute of Experimental MedicineBudapestHungary
| | - Gergely Katona
- MTA-PPKE ITK-NAP B – 2p Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic UniversityBudapestHungary
| | - Adam Kepecs
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Departments of Neuroscience and Psychiatry, Washington University School of MedicineSt. LouisUnited States
| | - Balázs Rózsa
- Laboratory of 3D functional network and dendritic imaging, Institute of Experimental MedicineBudapestHungary
- BrainVisionCenterBudapestHungary
| |
Collapse
|
34
|
Liu Y, Li S, Zhang X, Wang L, Li Z, Wu W, Qin X, Zhou J, Ma C, Meng W, Kuang X, Yin F, Xia Q, Jiang B, Yang Y. Corticotropin releasing factor neurons in the visual cortex mediate long-term changes in visual function induced by early adversity. Neurobiol Stress 2022; 21:100504. [DOI: 10.1016/j.ynstr.2022.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
|
35
|
Bar L, Shalom L, Lezmy J, Peretz A, Attali B. Excitatory and inhibitory hippocampal neurons differ in their homeostatic adaptation to chronic M-channel modulation. Front Mol Neurosci 2022; 15:972023. [PMID: 36311018 PMCID: PMC9614320 DOI: 10.3389/fnmol.2022.972023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
A large body of studies has investigated bidirectional homeostatic plasticity both in vitro and in vivo using numerous pharmacological manipulations of activity or behavioral paradigms. However, these experiments rarely explored in the same cellular system the bidirectionality of the plasticity and simultaneously on excitatory and inhibitory neurons. M-channels are voltage-gated potassium channels that play a crucial role in regulating neuronal excitability and plasticity. In cultured hippocampal excitatory neurons, we previously showed that chronic exposure to the M-channel blocker XE991 leads to adaptative compensations, thereby triggering at different timescales intrinsic and synaptic homeostatic plasticity. This plastic adaptation barely occurs in hippocampal inhibitory neurons. In this study, we examined whether this homeostatic plasticity induced by M-channel inhibition was bidirectional by investigating the acute and chronic effects of the M-channel opener retigabine on hippocampal neuronal excitability. Acute retigabine exposure decreased excitability in both excitatory and inhibitory neurons. Chronic retigabine treatment triggered in excitatory neurons homeostatic adaptation of the threshold current and spontaneous firing rate at a time scale of 4–24 h. These plastic changes were accompanied by a substantial decrease in the M-current density and by a small, though significant, proximal relocation of Kv7.3-FGF14 segment along the axon initial segment. Thus, bidirectional homeostatic changes were observed in excitatory neurons though not symmetric in kinetics and mechanisms. Contrastingly, in inhibitory neurons, the compensatory changes in intrinsic excitability barely occurred after 48 h, while no homeostatic normalization of the spontaneous firing rate was observed. Our results indicate that excitatory and inhibitory hippocampal neurons differ in their adaptation to chronic alterations in neuronal excitability induced by M-channel bidirectional modulation.
Collapse
|
36
|
Tonelli A, Lunghi C, Gori M. Moderate physical activity alters the estimation of time, but not space. Front Psychol 2022; 13:1004504. [PMID: 36275247 PMCID: PMC9580464 DOI: 10.3389/fpsyg.2022.1004504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Moderate physical activity can influence cognitive functions and visual cortical activity. However, little is known about the effects of exercise on fundamental perceptual domains, such as spatial and temporal representation. Here we tackled this issue by testing the impact of physical activity on a temporal estimation task in a group of adult volunteers in three different conditions: (1) in a resting condition (baseline), (2) during moderate physical activity (cycling in place – PA), and (3) approximately 15 to 20 min following the physical activity phase, in which participants were seated and returned to a regular heart rate (POST). We show that physical activity specifically impacts time perception, inducing a consistent overestimation for durations in the range of milliseconds. Notably, the effect persisted in the POST session, ruling out the main contribution of either heart rate or cycling rhythmicity. In a control experiment, we found that spatial perception (distance estimation) was unaffected by physical activity, ruling out a major contribution of arousal and fatigue to the observed temporal distortion. We speculate that physical exercise might alter temporal estimation either by up-regulating the dopaminergic system or modulating GABAergic inhibition.
Collapse
Affiliation(s)
- Alessia Tonelli
- UVIP – Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
- *Correspondence: Alessia Tonelli,
| | - Claudia Lunghi
- Laboratoire des Systèmes Perceptifs, Département d’Études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France
| | - Monica Gori
- UVIP – Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
37
|
Abuleil D, Thompson B, Dalton K. Aerobic Exercise and Human Visual Cortex Neuroplasticity: A Narrative Review. Neural Plast 2022; 2022:6771999. [PMID: 35915651 PMCID: PMC9338869 DOI: 10.1155/2022/6771999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/07/2022] [Indexed: 12/02/2022] Open
Abstract
There is compelling evidence from animal models that physical exercise can enhance visual cortex neuroplasticity. In this narrative review, we explored whether exercise has the same effect in humans. We found that while some studies report evidence consistent with exercise-induced enhancement of human visual cortex neuroplasticity, others report no effect or even reduced neuroplasticity following exercise. Differences in study methodology may partially explain these varying results. Because the prospect of exercise increasing human visual cortex neuroplasticity has important implications for vision rehabilitation, additional research is required to resolve this discrepancy in the literature.
Collapse
Affiliation(s)
- Dania Abuleil
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| | - Kristine Dalton
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
- Center for Eye and Vision Research, Hong Kong, Hong Kong
| |
Collapse
|
38
|
Ren C, Peng K, Yang R, Liu W, Liu C, Komiyama T. Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning. Neuron 2022; 110:2334-2350.e8. [PMID: 35584693 PMCID: PMC9308684 DOI: 10.1016/j.neuron.2022.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/12/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022]
Abstract
Inhibitory neurons (INs) consist of distinct subtypes with unique functions. Previous studies on INs mainly focused on single brain regions, and thus it remains unclear whether the modulation of IN subtypes occurs globally across multiple regions. Here, we monitored the activity of different cortical IN subtypes at both macroscale and microscale in mice learning a lever-press task. Learning evoked a global modulation of IN subtypes throughout the cortex. The initial learning phase involved strong activation of vasoactive intestinal peptide-expressing INs (VIP-INs) and weak activation of somatostatin-expressing INs (SOM-INs). Inactivating VIP-INs increased SOM-IN activity and impaired initial learning. Concurrently, cortical cholinergic inputs from the basal forebrain were initially more active but became less engaged over learning. Manipulation of the cholinergic system impaired motor learning and differentially altered activity of IN subtypes. These results reveal that motor learning involves a global and subtype-specific modulation on cortical INs regulated by the cholinergic system.
Collapse
Affiliation(s)
- Chi Ren
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Kailong Peng
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Ruize Yang
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Weikang Liu
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Chang Liu
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Georgiou C, Kehayas V, Lee KS, Brandalise F, Sahlender DA, Blanc J, Knott G, Holtmaat A. A subpopulation of cortical VIP-expressing interneurons with highly dynamic spines. Commun Biol 2022; 5:352. [PMID: 35418660 PMCID: PMC9008030 DOI: 10.1038/s42003-022-03278-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Structural synaptic plasticity may underlie experience and learning-dependent changes in cortical circuits. In contrast to excitatory pyramidal neurons, insight into the structural plasticity of inhibitory neurons remains limited. Interneurons are divided into various subclasses, each with specialized functions in cortical circuits. Further knowledge of subclass-specific structural plasticity of interneurons is crucial to gaining a complete mechanistic understanding of their contribution to cortical plasticity overall. Here, we describe a subpopulation of superficial cortical multipolar interneurons expressing vasoactive intestinal peptide (VIP) with high spine densities on their dendrites located in layer (L) 1, and with the electrophysiological characteristics of bursting cells. Using longitudinal imaging in vivo, we found that the majority of the spines are highly dynamic, displaying lifetimes considerably shorter than that of spines on pyramidal neurons. Using correlative light and electron microscopy, we confirmed that these VIP spines are sites of excitatory synaptic contacts, and are morphologically distinct from other spines in L1.
Collapse
Affiliation(s)
- Christina Georgiou
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,The Lemanic Neuroscience Graduate School, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Vassilis Kehayas
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete, Greece
| | - Kok Sin Lee
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,The Lemanic Neuroscience Graduate School, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Federico Brandalise
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Bioscience, University of Milan, Milan, Italy
| | | | - Jerome Blanc
- Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland
| | - Graham Knott
- Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
40
|
Ferrer C, De Marco García NV. The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices. Front Neural Circuits 2022; 16:866999. [PMID: 35463203 PMCID: PMC9021723 DOI: 10.3389/fncir.2022.866999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory information is transduced into electrical signals in the periphery by specialized sensory organs, which relay this information to the thalamus and subsequently to cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected pyramidal cells and inhibitory interneurons, distributed throughout the cortical column, form the basic processing units of sensory information underlying sensation. In the mouse, these circuits mature shortly after birth. In the first postnatal week cortical activity is characterized by highly synchronized spontaneous activity. While by the second postnatal week, spontaneous activity desynchronizes and sensory influx increases drastically upon eye opening, as well as with the onset of hearing and active whisking. This influx of sensory stimuli is fundamental for the maturation of functional properties and connectivity in neurons allocated to sensory cortices. In the subsequent developmental period, spanning the first five postnatal weeks, sensory circuits are malleable in response to sensory stimulation in the so-called critical periods. During these critical periods, which vary in timing and duration across sensory areas, perturbations in sensory experience can alter cortical connectivity, leading to long-lasting modifications in sensory processing. The recent advent of intersectional genetics, in vivo calcium imaging and single cell transcriptomics has aided the identification of circuit components in emergent networks. Multiple studies in recent years have sought a better understanding of how genetically-defined neuronal subtypes regulate circuit plasticity and maturation during development. In this review, we discuss the current literature focused on postnatal development and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1) cortices. We compare the developmental trajectory among the three sensory areas with a particular emphasis on interneuron function and the role of inhibitory circuits in cortical development and function.
Collapse
|
41
|
Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022; 12:biom12020312. [PMID: 35204812 PMCID: PMC8869243 DOI: 10.3390/biom12020312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the obvious differences in the pathophysiology of distinct neuropsychiatric diseases or neurodegenerative disorders, some of them share some general but pivotal mechanisms, one of which is the disruption of excitation/inhibition balance. Such an imbalance can be generated by changes in the inhibitory system, very often mediated by somatostatin-containing interneurons (SOM-INs). In physiology, this group of inhibitory interneurons, as well as somatostatin itself, profoundly shapes the brain activity, thus influencing the behavior and plasticity; however, the changes in the number, density and activity of SOM-INs or levels of somatostatin are found throughout many neuropsychiatric and neurological conditions, both in patients and animal models. Here, we (1) briefly describe the brain somatostatinergic system, characterizing the neuropeptide somatostatin itself, its receptors and functions, as well the physiology and circuitry of SOM-INs; and (2) summarize the effects of the activity of somatostatin and SOM-INs in both physiological brain processes and pathological brain conditions, focusing primarily on learning-induced plasticity and encompassing selected neuropsychological and neurodegenerative disorders, respectively. The presented data indicate the somatostatinergic-system-mediated inhibition as a substantial factor in the mechanisms of neuroplasticity, often disrupted in a plethora of brain pathologies.
Collapse
|
42
|
Rais M, Lovelace JW, Shuai XS, Woodard W, Bishay S, Estrada L, Sharma AR, Nguy A, Kulinich A, Pirbhoy PS, Palacios AR, Nelson DL, Razak KA, Ethell IM. Functional consequences of postnatal interventions in a mouse model of Fragile X syndrome. Neurobiol Dis 2022; 162:105577. [PMID: 34871737 DOI: 10.1016/j.nbd.2021.105577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a leading genetic cause of autism and intellectual disability with cortical hyperexcitability and sensory hypersensitivity attributed to loss and hypofunction of inhibitory parvalbumin-expressing (PV) cells. Our studies provide novel insights into the role of excitatory neurons in abnormal development of PV cells during a postnatal period of inhibitory circuit refinement. METHODS To achieve Fragile X mental retardation gene (Fmr1) deletion and re-expression in excitatory neurons during the postnatal day (P)14-P21 period, we generated CreCaMKIIa/Fmr1Flox/y (cOFF) and CreCaMKIIa/Fmr1FloxNeo/y (cON) mice, respectively. Cortical phenotypes were evaluated in adult mice using biochemical, cellular, clinically relevant electroencephalogram (EEG) and behavioral tests. RESULTS We found that similar to global Fmr1 KO mice, the density of PV-expressing cells, their activation, and sound-evoked gamma synchronization were impaired in cOFF mice, but the phenotypes were improved in cON mice. cOFF mice also showed enhanced cortical gelatinase activity and baseline EEG gamma power, which were reduced in cON mice. In addition, TrkB phosphorylation and PV levels were lower in cOFF mice, which also showed increased locomotor activity and anxiety-like behaviors. Remarkably, when FMRP levels were restored in only excitatory neurons during the P14-P21 period, TrkB phosphorylation and mouse behaviors were also improved. CONCLUSIONS These results indicate that postnatal deletion or re-expression of FMRP in excitatory neurons is sufficient to elicit or ameliorate structural and functional cortical deficits, and abnormal behaviors in mice, informing future studies about appropriate treatment windows and providing fundamental insights into the cellular mechanisms of cortical circuit dysfunction in FXS.
Collapse
Affiliation(s)
- Maham Rais
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Xinghao S Shuai
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Walker Woodard
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Steven Bishay
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Leo Estrada
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Ashwin R Sharma
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Austin Nguy
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Anna Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Patricia S Pirbhoy
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Arnold R Palacios
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | | | - Khaleel A Razak
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
43
|
Landeck L, Kaiser ME, Hefter D, Draguhn A, Both M. Enriched Environment Modulates Sharp Wave-Ripple (SPW-R) Activity in Hippocampal Slices. Front Neural Circuits 2021; 15:758939. [PMID: 34924964 PMCID: PMC8678456 DOI: 10.3389/fncir.2021.758939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Behavioral flexibility depends on neuronal plasticity which forms and adapts the central nervous system in an experience-dependent manner. Thus, plasticity depends on interactions between the organism and its environment. A key experimental paradigm for studying this concept is the exposure of rodents to an enriched environment (EE), followed by studying differences to control animals kept under standard conditions (SC). While multiple changes induced by EE have been found at the cellular-molecular and cognitive-behavioral levels, little is known about EE-dependent alterations at the intermediate level of network activity. We, therefore, studied spontaneous network activity in hippocampal slices from mice which had previously experienced EE for 10–15 days. Compared to control animals from standard conditions (SC) and mice with enhanced motor activity (MC) we found several differences in sharp wave-ripple complexes (SPW-R), a memory-related activity pattern. Sharp wave amplitude, unit firing during sharp waves, and the number of superimposed ripple cycles were increased in tissue from the EE group. On the other hand, spiking precision with respect to the ripple oscillations was reduced. Recordings from single pyramidal cells revealed a reduction in synaptic inhibition during SPW-R together with a reduced inhibition-excitation ratio. The number of inhibitory neurons, including parvalbumin-positive interneurons, was unchanged. Altered activation or efficacy of synaptic inhibition may thus underlie changes in memory-related network activity patterns which, in turn, may be important for the cognitive-behavioral effects of EE exposure.
Collapse
Affiliation(s)
- Lucie Landeck
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin E Kaiser
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
44
|
Melzer S, Newmark ER, Mizuno GO, Hyun M, Philson AC, Quiroli E, Righetti B, Gregory MR, Huang KW, Levasseur J, Tian L, Sabatini BL. Bombesin-like peptide recruits disinhibitory cortical circuits and enhances fear memories. Cell 2021; 184:5622-5634.e25. [PMID: 34610277 PMCID: PMC8556345 DOI: 10.1016/j.cell.2021.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023]
Abstract
Disinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells. Using a genetically encoded GRP sensor, optogenetic anterograde stimulation, and trans-synaptic tracing, we reveal that GRP regulates VIP cells most likely via extrasynaptic diffusion from several local and long-range sources. In vivo photometry and CRISPR-Cas9-mediated knockout of the GRP receptor (GRPR) in auditory cortex indicate that VIP cells are strongly recruited by novel sounds and aversive shocks, and GRP-GRPR signaling enhances auditory fear memories. Our data establish peptidergic recruitment of selective disinhibitory cortical microcircuits as a mechanism to regulate fear memories.
Collapse
Affiliation(s)
- Sarah Melzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Elena R Newmark
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Grace Or Mizuno
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Minsuk Hyun
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Adrienne C Philson
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Eleonora Quiroli
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Beatrice Righetti
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Malika R Gregory
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kee Wui Huang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - James Levasseur
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Longitudinal functional imaging of VIP interneurons reveals sup-population specific effects of stroke that are rescued with chemogenetic therapy. Nat Commun 2021; 12:6112. [PMID: 34671051 PMCID: PMC8528851 DOI: 10.1038/s41467-021-26405-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023] Open
Abstract
Stroke profoundly disrupts cortical excitability which impedes recovery, but how it affects the function of specific inhibitory interneurons, or subpopulations therein, is poorly understood. Interneurons expressing vasoactive intestinal peptide (VIP) represent an intriguing stroke target because they can regulate cortical excitability through disinhibition. Here we chemogenetically augmented VIP interneuron excitability in a murine model of photothrombotic stroke and show that it enhances somatosensory responses and improves recovery of paw function. Using longitudinal calcium imaging, we discovered that stroke primarily disrupts the fidelity (fraction of responsive trials) and predictability of sensory responses within a subset of highly active VIP neurons. Partial recovery of responses occurred largely within these active neurons and was not accompanied by the recruitment of minimally active neurons. Importantly, chemogenetic stimulation preserved sensory response fidelity and predictability in highly active neurons. These findings provide a new depth of understanding into how stroke and prospective therapies (chemogenetics), can influence subpopulations of inhibitory interneurons.
Collapse
|
46
|
Marrero K, Aruljothi K, Zareian B, Gao C, Zhang Z, Zagha E. Global, Low-Amplitude Cortical State Predicts Response Outcomes in a Selective Detection Task in Mice. Cereb Cortex 2021; 32:2037-2053. [PMID: 34564725 DOI: 10.1093/cercor/bhab339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Spontaneous neuronal activity strongly impacts stimulus encoding and behavioral responses. We sought to determine the effects of neocortical prestimulus activity on stimulus detection. We trained mice in a selective whisker detection task, in which they learned to respond (lick) to target stimuli in one whisker field and ignore distractor stimuli in the contralateral whisker field. During expert task performance, we used widefield Ca2+ imaging to assess prestimulus and post-stimulus neuronal activity broadly across frontal and parietal cortices. We found that lower prestimulus activity correlated with enhanced stimulus detection: lower prestimulus activity predicted response versus no response outcomes and faster reaction times. The activity predictive of trial outcome was distributed through dorsal neocortex, rather than being restricted to whisker or licking regions. Using principal component analysis, we demonstrate that response trials are associated with a distinct and less variable prestimulus neuronal subspace. For single units, prestimulus choice probability was weak yet distributed broadly, with lower than chance choice probability correlating with stronger sensory and motor encoding. These findings support low amplitude and low variability as an optimal prestimulus cortical state for stimulus detection that presents globally and predicts response outcomes for both target and distractor stimuli.
Collapse
Affiliation(s)
- Krista Marrero
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Krithiga Aruljothi
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Behzad Zareian
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Chengchun Gao
- Department of Bioengineering, University of California Riverside, Riverside, CA 92521, USA
| | - Zhaoran Zhang
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA.,Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
47
|
Nakajima M. Neuronal identity and cognitive control dynamics in the PFC. Semin Cell Dev Biol 2021; 129:14-21. [PMID: 34535385 DOI: 10.1016/j.semcdb.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Adaptive behavior is supported by context-dependent cognitive control that enables stable and flexible sensorimotor transformations. Impairments in this type of control are often attributed to dysfunction in the prefrontal cortex (PFC). However, the underlying circuit principles of PFC function that support cognitive control have remained elusive. While the complex, diverse responses of PFC neurons to cognitive variables have been studied both from the perspective of individual cell activity and overall population dynamics, these two levels have often been investigated separately. This review discusses two specific cell groups, context/brain state responsive interneuron subtypes and output decoder neurons, that might bridge conceptual frameworks derived from these two research approaches. I highlight the unique properties and functions of these cell groups and discuss how future studies leveraging their features are likely to provide a new understanding of PFC dynamics combining single-neuron and network perspectives.
Collapse
Affiliation(s)
- Miho Nakajima
- Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
48
|
Bhumika S, Nakamura M, Valerio P, Solyga M, Lindén H, Barkat TR. A Late Critical Period for Frequency Modulated Sweeps in the Mouse Auditory System. Cereb Cortex 2021; 30:2586-2599. [PMID: 31800018 PMCID: PMC7174992 DOI: 10.1093/cercor/bhz262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 01/24/2023] Open
Abstract
Neuronal circuits are shaped by experience during time windows of increased plasticity in postnatal development. In the auditory system, the critical period for the simplest sounds-pure frequency tones-is well defined. Critical periods for more complex sounds remain to be elucidated. We used in vivo electrophysiological recordings in the mouse auditory cortex to demonstrate that passive exposure to frequency modulated sweeps (FMS) from postnatal day 31 to 38 leads to long-term changes in the temporal representation of sweep directions. Immunohistochemical analysis revealed a decreased percentage of layer 4 parvalbumin-positive (PV+) cells during this critical period, paralleled with a transient increase in responses to FMS, but not to pure tones. Preventing the PV+ cell decrease with continuous white noise exposure delayed the critical period onset, suggesting a reduction in inhibition as a mechanism for this plasticity. Our findings shed new light on the dependence of plastic windows on stimulus complexity that persistently sculpt the functional organization of the auditory cortex.
Collapse
Affiliation(s)
| | - Mari Nakamura
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Patricia Valerio
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Magdalena Solyga
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| | - Henrik Lindén
- Department of Neuroscience, Copenhagen University, 2200 Copenhagen, Denmark
| | - Tania R Barkat
- Department of Biomedicine, Basel University, 4056 Basel, Switzerland
| |
Collapse
|
49
|
Lovelace JW, Rais M, Palacios AR, Shuai XS, Bishay S, Popa O, Pirbhoy PS, Binder DK, Nelson DL, Ethell IM, Razak KA. Deletion of Fmr1 from Forebrain Excitatory Neurons Triggers Abnormal Cellular, EEG, and Behavioral Phenotypes in the Auditory Cortex of a Mouse Model of Fragile X Syndrome. Cereb Cortex 2021; 30:969-988. [PMID: 31364704 DOI: 10.1093/cercor/bhz141] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Fragile X syndrome (FXS) is a leading genetic cause of autism with symptoms that include sensory processing deficits. In both humans with FXS and a mouse model [Fmr1 knockout (KO) mouse], electroencephalographic (EEG) recordings show enhanced resting state gamma power and reduced sound-evoked gamma synchrony. We previously showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to these phenotypes by affecting perineuronal nets (PNNs) around parvalbumin (PV) interneurons in the auditory cortex of Fmr1 KO mice. However, how different cell types within local cortical circuits contribute to these deficits is not known. Here, we examined whether Fmr1 deletion in forebrain excitatory neurons affects neural oscillations, MMP-9 activity, and PV/PNN expression in the auditory cortex. We found that cortical MMP-9 gelatinase activity, mTOR/Akt phosphorylation, and resting EEG gamma power were enhanced in CreNex1/Fmr1Flox/y conditional KO (cKO) mice, whereas the density of PV/PNN cells was reduced. The CreNex1/Fmr1Flox/y cKO mice also show increased locomotor activity, but not the anxiety-like behaviors. These results indicate that fragile X mental retardation protein changes in excitatory neurons in the cortex are sufficient to elicit cellular, electrophysiological, and behavioral phenotypes in Fmr1 KO mice. More broadly, these results indicate that local cortical circuit abnormalities contribute to sensory processing deficits in autism spectrum disorders.
Collapse
Affiliation(s)
| | - Maham Rais
- Division of Biomedical Sciences, School of Medicine
| | | | | | | | - Otilia Popa
- Division of Biomedical Sciences, School of Medicine
| | | | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| | - David L Nelson
- Molecular and Human Genetics, Baylor College of Medicine , Houston, TX 77030, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| | - Khaleel A Razak
- Department of Psychology.,Graduate Neuroscience Program, University of California Riverside, Riverside, CA 92521,USA
| |
Collapse
|
50
|
Hoseini MS, Higashikubo B, Cho FS, Chang AH, Clemente-Perez A, Lew I, Ciesielska A, Stryker MP, Paz JT. Gamma rhythms and visual information in mouse V1 specifically modulated by somatostatin + neurons in reticular thalamus. eLife 2021; 10:e61437. [PMID: 33843585 PMCID: PMC8064751 DOI: 10.7554/elife.61437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/11/2021] [Indexed: 01/15/2023] Open
Abstract
Visual perception in natural environments depends on the ability to focus on salient stimuli while ignoring distractions. This kind of selective visual attention is associated with gamma activity in the visual cortex. While the nucleus reticularis thalami (nRT) has been implicated in selective attention, its role in modulating gamma activity in the visual cortex remains unknown. Here, we show that somatostatin- (SST) but not parvalbumin-expressing (PV) neurons in the visual sector of the nRT preferentially project to the dorsal lateral geniculate nucleus (dLGN), and modulate visual information transmission and gamma activity in primary visual cortex (V1). These findings pinpoint the SST neurons in nRT as powerful modulators of the visual information encoding accuracy in V1 and represent a novel circuit through which the nRT can influence representation of visual information.
Collapse
Affiliation(s)
- Mahmood S Hoseini
- University of California, San Francisco, Department of PhysiologySan FranciscoUnited States
| | - Bryan Higashikubo
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
| | - Frances S Cho
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- University of California, San Francisco, Neurosciences Graduate ProgramSan FranciscoUnited States
- University of California, San Francisco, Department of NeurologySan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Andrew H Chang
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- University of California, San Francisco, Department of NeurologySan FranciscoUnited States
| | - Alexandra Clemente-Perez
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- University of California, San Francisco, Neurosciences Graduate ProgramSan FranciscoUnited States
- University of California, San Francisco, Department of NeurologySan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Irene Lew
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- University of California, San Francisco, Department of NeurologySan FranciscoUnited States
| | - Agnieszka Ciesielska
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- University of California, San Francisco, Department of NeurologySan FranciscoUnited States
| | - Michael P Stryker
- University of California, San Francisco, Department of PhysiologySan FranciscoUnited States
- University of California, San Francisco, Neurosciences Graduate ProgramSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Jeanne T Paz
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- University of California, San Francisco, Neurosciences Graduate ProgramSan FranciscoUnited States
- University of California, San Francisco, Department of NeurologySan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|