1
|
Feldman J, Ramos ASF, Vu M, Maurer DP, Rosado VC, Lingwood D, Bajic G, Schmidt AG. Human naïve B cells recognize prepandemic influenza virus hemagglutinins. Sci Immunol 2025; 10:eado9572. [PMID: 39854479 PMCID: PMC12117473 DOI: 10.1126/sciimmunol.ado9572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025]
Abstract
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses. We found that the frequency of H5-specific human naïve B cells targeting the HA "head" domain was increased relative to cross-reactive B cells to a circulating seasonal H1N1 strain. We classified the isolated monoclonal antibodies (mAbs) by the HA epitopes engaged and found that selected mAbs neutralized H5N1 at germline. We determined a cryo-electron microscopic structure of one mAb in complex with H5 HA to define its epitope. Our study defines the naïve human B cell repertoire recognizing a potentially zoonotic HPAI.
Collapse
Affiliation(s)
- Jared Feldman
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | | | - Mya Vu
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Daniel P. Maurer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Victoria C. Rosado
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Daniel Lingwood
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aaron G. Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Chen ZS, Huang HC, Wang X, Schön K, Jia Y, Lebens M, Besavilla DF, Murti JR, Ji Y, Sarshad AA, Deng G, Zhu Q, Angeletti D. Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection. Nat Commun 2025; 16:432. [PMID: 39788944 PMCID: PMC11718266 DOI: 10.1038/s41467-024-55193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes. Here, we isolate and purify a hemagglutinin (HA)-specific nanobody that recognizes an H7 subtype of influenza A virus. The nanobody, named E10, exhibits broad-spectrum binding, cross-group neutralization and in vivo protection across various influenza A subtypes. Through phage display and in vitro characterization, we demonstrate that E10 specifically targets an epitope on HA head which is part of the conserved lateral patch and is highly immunodominant upon H7 infection. Importantly, immunization with a peptide including the E10 epitope elicits cross-reactive antibodies and mediates partial protection from lethal viral challenge. Our data highlights the potential of E10 and its associated epitope as a candidate for future influenza prevention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hsiang-Chi Huang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Xiangkun Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yane Jia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Danica F Besavilla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Janarthan R Murti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yanhong Ji
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Heilongjiang, China
| | - Qiyun Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
- SciLifeLab, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Li R, Gao J, Wang L, Gui M, Xiang Y. Multivalent interactions between fully glycosylated influenza virus hemagglutinins mediated by glycans at distinct N-glycosylation sites. NPJ VIRUSES 2024; 2:48. [PMID: 40295773 PMCID: PMC11721446 DOI: 10.1038/s44298-024-00059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 04/30/2025]
Abstract
The hemagglutinin (HA) glycoprotein of influenza virus binds host cell receptors and mediates viral entry. Here we present cryo-EM structures of fully glycosylated HAs from H5N1 and H5N8 influenza viruses. We find that the H5N1 HA can form filaments that comprise two head-to-head HA trimers. Multivalent interactions between the two HA trimers are mediated by glycans attached to N158. The distal Sia1-Gal2-NAG3 sugar moiety of N158 interacts with the receptor binding site on the opposing HA trimer. Additional interactions are observed between NAG3 and residues K222 and K193. The H5N8 HA lacks the N158 glycosylation site and does not form the filamentous structure. However, the H5N8 HA exhibits an auto-inhibition conformation, where the receptor binding site is occupied by the glycan chain attached to residue N169 from a neighboring protomer. These structures represent native HA-glycan interactions, which may closely mimic the receptor-HA interactions on the cell surface.
Collapse
Affiliation(s)
- Ruofan Li
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Jingjing Gao
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Lin Wang
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China
- Guangzhou National Laboratory, 510320, Guangzhou, China
| | - Miao Gui
- Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, 310016, Hangzhou, China.
| | - Ye Xiang
- Beijing Frontier Research Center for Biological Structure, Center for Infectious Disease Research, School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China.
| |
Collapse
|
4
|
Perofsky AC, Huddleston J, Hansen CL, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, Viboud C. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States. eLife 2024; 13:RP91849. [PMID: 39319780 PMCID: PMC11424097 DOI: 10.7554/elife.91849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here, we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection ynamics, presumably via heterosubtypic cross-immunity.
Collapse
MESH Headings
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- United States/epidemiology
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Influenza, Human/immunology
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Epidemics
- Antigenic Drift and Shift/genetics
- Child
- Adult
- Neuraminidase/genetics
- Neuraminidase/immunology
- Adolescent
- Child, Preschool
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Young Adult
- Evolution, Molecular
- Seasons
- Middle Aged
Collapse
Affiliation(s)
- Amanda C Perofsky
- Fogarty International Center, National Institutes of Health, Bethesda, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, United States
| | - Chelsea L Hansen
- Fogarty International Center, National Institutes of Health, Bethesda, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
| | - John R Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, United States
| | - Nicola Lewis
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Lynne Whittaker
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Ruth Harvey
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Monica Galiano
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Rodney Stuart Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Trevor Bedford
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, Seattle, United States
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, United States
| |
Collapse
|
5
|
Zia A, Orozco A, Fang ISY, Tang AM, Mendoza Viruega AS, Dong S, Leung LYT, Devraj VM, Oludada OE, Ehrhardt GRA. High throughput long-read sequencing of circulating lymphocytes of the evolutionarily distant sea lamprey reveals diversity and common elements of the variable lymphocyte receptor B (VLRB) repertoire. Front Immunol 2024; 15:1427075. [PMID: 39170622 PMCID: PMC11335541 DOI: 10.3389/fimmu.2024.1427075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The leucine-rich repeat-based variable lymphocyte receptor B (VLRB) antibody system of jawless vertebrates is capable of generating an antibody repertoire equal to or exceeding the diversity of antibody repertoires of jawed vertebrates. Unlike immunoglobulin-based immune repertoires, the VLRB repertoire diversity is characterized by variable lengths of VLRB encoding transcripts, rendering conventional immunoreceptor repertoire sequencing approaches unsuitable for VLRB repertoire sequencing. Here we demonstrate that long-read single-molecule real-time (SMRT) sequencing (PacBio) approaches permit the efficient large-scale assessment of the VLRB repertoire. We present a computational pipeline for sequence data processing and provide the first repertoire-based analysis of VLRB protein characteristics including properties of its subunits and regions of diversity within each structural leucine-rich repeat subunit. Our study provides a template to explore changes in the VLRB repertoire during immune responses and to establish large scale VLRB repertoire databases for computational approaches aimed at isolating monoclonal VLRB reagents for biomedical research and clinical applications.
Collapse
Affiliation(s)
| | - Ariel Orozco
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Irene S. Y. Fang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Aspen M. Tang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Vijaya M. Devraj
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
6
|
Bela-Ong DB, Kim J, Thompson KD, Jung TS. Leveraging the biotechnological promise of the hagfish variable lymphocyte receptors: tools for aquatic microbial diseases. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109565. [PMID: 38636740 DOI: 10.1016/j.fsi.2024.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The jawless vertebrates (agnathans/cyclostomes) are ancestral animals comprising lampreys and hagfishes as the only extant representatives. They possess an alternative adaptive immune system (AIS) that uses leucine-rich repeats (LRR)-based variable lymphocyte receptors (VLRs) instead of the immunoglobulin (Ig)-based antigen receptors of jawed vertebrates (gnathostomes). The different VLR types are expressed on agnathan lymphocytes and functionally resemble gnathostome antigen receptors. In particular, VLRB is functionally similar to the B cell receptor and is expressed and secreted by B-like lymphocytes as VLRB antibodies that bind antigens with high affinity and specificity. The potential repertoire scale of VLR-based antigen receptors is believed to be at least comparable to that of Ig-based systems. VLR proteins inherently possess characteristics that render them excellent candidates for biotechnological development, including tractability to recombinant approaches. In recent years, scientists have explored the biotechnological development and utility of VLRB proteins as alternatives to conventional mammalian antibodies. The VLRB antibody platform represents a non-traditional approach to generating a highly diverse repertoire of unique antibodies. In this review, we first describe some aspects of the biology of the AIS of the jawless vertebrates, which recognizes antigens by means of unique receptors. We then summarize reports on the development of VLRB-based antibodies and their applications, particularly those from the inshore hagfish (Eptatretus burgeri) and their potential uses to address microbial diseases in aquaculture. Hagfish VLRB antibodies (we call Ccombodies) are being developed and improved, while obstacles to the advancement of the VLRB platform are being addressed to utilize VLRBs effectively as tools in immunology. VLRB antibodies for novel antigen targets are expected to emerge to provide new opportunities to tackle various scientific questions. We anticipate a greater interest in the agnathan AIS in general and particularly in the hagfish AIS for greater elucidation of the evolution of adaptive immunity and its applications to address microbial pathogens in farmed aquatic animals and beyond.
Collapse
Affiliation(s)
- Dennis B Bela-Ong
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaesung Kim
- Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK, Scotland, United Kingdom
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea; Earwynbio Co., Ltd., 206 Sungjangjiwon-dong, 991 Worasan-ro, Munsan, Jinju, Gyeongnam, 52839, Republic of Korea.
| |
Collapse
|
7
|
Ferretti F, Kardar M. Universal characterization of epitope immunodominance from a multiscale model of clonal competition in germinal centers. Phys Rev E 2024; 109:064409. [PMID: 39020898 DOI: 10.1103/physreve.109.064409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/02/2024] [Indexed: 07/20/2024]
Abstract
We introduce a multiscale model for affinity maturation, which aims to capture the intraclonal, interclonal, and epitope-specific organization of the B-cell population in a germinal center. We describe the evolution of the B-cell population via a quasispecies dynamics, with species corresponding to unique B-cell receptors (BCRs), where the desired multiscale structure is reflected on the mutational connectivity of the accessible BCR space, and on the statistical properties of its fitness landscape. Within this mathematical framework, we study the competition among classes of BCRs targeting different antigen epitopes, and we construct an effective immunogenic space where epitope immunodominance relations can be universally characterized. We finally study how varying the relative composition of a mixture of antigens with variable and conserved domains allows for a parametric exploration of this space, and we identify general principles for the rational design of two-antigen cocktails.
Collapse
Affiliation(s)
- Federica Ferretti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Catani JPP, Smet A, Ysenbaert T, Vuylsteke M, Bottu G, Mathys J, Botzki A, Cortes-Garcia G, Strugnell T, Gomila R, Hamberger J, Catalan J, Ustyugova IV, Farrell T, Stegalkina S, Ray S, LaRue L, Saelens X, Vogel TU. The antigenic landscape of human influenza N2 neuraminidases from 2009 until 2017. eLife 2024; 12:RP90782. [PMID: 38805550 PMCID: PMC11132685 DOI: 10.7554/elife.90782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.
Collapse
Affiliation(s)
- João Paulo Portela Catani
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Anouk Smet
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | - Tine Ysenbaert
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | | | | | | | | | | | - Tod Strugnell
- Sanofi, Research North AmericaCambridgeUnited States
| | - Raul Gomila
- Sanofi, Research North AmericaCambridgeUnited States
| | | | - John Catalan
- Sanofi, Research North AmericaCambridgeUnited States
| | | | | | | | - Satyajit Ray
- Sanofi, Research North AmericaCambridgeUnited States
| | - Lauren LaRue
- Sanofi, Research North AmericaCambridgeUnited States
| | - Xavier Saelens
- VIB-UGent Center for Medical BiotechnologyGhentBelgium
- Department of Biochemistry and Microbiology, Ghent UniversityGhentBelgium
| | | |
Collapse
|
9
|
Perofsky AC, Huddleston J, Hansen C, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Lewis N, Whittaker L, Ermetal B, Harvey R, Galiano M, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Sullivan SG, Barr IG, Subbarao K, Krammer F, Bedford T, Viboud C. Antigenic drift and subtype interference shape A(H3N2) epidemic dynamics in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.02.23296453. [PMID: 37873362 PMCID: PMC10593063 DOI: 10.1101/2023.10.02.23296453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Influenza viruses continually evolve new antigenic variants, through mutations in epitopes of their major surface proteins, hemagglutinin (HA) and neuraminidase (NA). Antigenic drift potentiates the reinfection of previously infected individuals, but the contribution of this process to variability in annual epidemics is not well understood. Here we link influenza A(H3N2) virus evolution to regional epidemic dynamics in the United States during 1997-2019. We integrate phenotypic measures of HA antigenic drift and sequence-based measures of HA and NA fitness to infer antigenic and genetic distances between viruses circulating in successive seasons. We estimate the magnitude, severity, timing, transmission rate, age-specific patterns, and subtype dominance of each regional outbreak and find that genetic distance based on broad sets of epitope sites is the strongest evolutionary predictor of A(H3N2) virus epidemiology. Increased HA and NA epitope distance between seasons correlates with larger, more intense epidemics, higher transmission, greater A(H3N2) subtype dominance, and a greater proportion of cases in adults relative to children, consistent with increased population susceptibility. Based on random forest models, A(H1N1) incidence impacts A(H3N2) epidemics to a greater extent than viral evolution, suggesting that subtype interference is a major driver of influenza A virus infection dynamics, presumably via heterosubtypic cross-immunity.
Collapse
Affiliation(s)
- Amanda C Perofsky
- Fogarty International Center, National Institutes of Health, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, United States
| | - Chelsea Hansen
- Fogarty International Center, National Institutes of Health, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
| | - John R Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), United States
| | - Nicola Lewis
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Lynne Whittaker
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Burcu Ermetal
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Ruth Harvey
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Monica Galiano
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Rodney Stuart Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick Institute, United Kingdom
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Japan
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Australia
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, United States
| | - Trevor Bedford
- Brotman Baty Institute for Precision Medicine, University of Washington, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, United States
- Department of Genome Sciences, University of Washington, United States
- Howard Hughes Medical Institute, Seattle, United States
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, United States
| |
Collapse
|
10
|
Hinke DM, Anderson AM, Katta K, Laursen MF, Tesfaye DY, Werninghaus IC, Angeletti D, Grødeland G, Bogen B, Braathen R. Applying valency-based immuno-selection to generate broadly cross-reactive antibodies against influenza hemagglutinins. Nat Commun 2024; 15:850. [PMID: 38346952 PMCID: PMC10861589 DOI: 10.1038/s41467-024-44889-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Conserved epitopes shared between virus subtypes are often subdominant, making it difficult to induce broadly reactive antibodies by immunization. Here, we generate a plasmid DNA mix vaccine that encodes protein heterodimers with sixteen different influenza A virus hemagglutinins (HA) representing all HA subtypes except H1 (group 1) and H7 (group 2). Each single heterodimer expresses two different HA subtypes and is targeted to MHC class II on antigen presenting cells (APC). Female mice immunized with the plasmid mix produce antibodies not only against the 16 HA subtypes, but also against non-included H1 and H7. We demonstrate that individual antibody molecules cross-react between different HAs. Furthermore, the mix vaccine induces T cell responses to conserved HA epitopes. Immunized mice are partially protected against H1 viruses. The results show that application of valency-based immuno-selection to diversified antigens can be used to direct antibody responses towards conserved (subdominant) epitopes on viral antigens.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ane Marie Anderson
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirankumar Katta
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Demo Yemane Tesfaye
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
11
|
Dosey A, Ellis D, Boyoglu-Barnum S, Syeda H, Saunders M, Watson MJ, Kraft JC, Pham MN, Guttman M, Lee KK, Kanekiyo M, King NP. Combinatorial immune refocusing within the influenza hemagglutinin RBD improves cross-neutralizing antibody responses. Cell Rep 2023; 42:113553. [PMID: 38096052 PMCID: PMC10801708 DOI: 10.1016/j.celrep.2023.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
The receptor-binding domain (RBD) of influenza virus hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies. Here, we evaluate the ability of several immunofocusing techniques to enhance the functional breadth of vaccine-elicited immune responses against the HA RBD. We present a series of "trihead" nanoparticle immunogens that display native-like closed trimeric RBDs from the HAs of several H1N1 influenza viruses. The series includes hyperglycosylated and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the receptor-binding site periphery. Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicit higher hemagglutination inhibition (HAI) and neutralizing activity than the corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation. By contrast, mosaic nanoparticle display and antigen hypervariation do not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Our results yield important insights into antibody responses against the RBD and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.
Collapse
Affiliation(s)
- Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mason Saunders
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Evolutionary Dynamics of Avian Influenza Viruses Isolated from Wild Birds in Moscow. Int J Mol Sci 2023; 24:ijms24033020. [PMID: 36769336 PMCID: PMC9917497 DOI: 10.3390/ijms24033020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Forty-five strains of AIVs were isolated from wild aquatic birds during their autumn migration through Moscow (Russia). The aim of this work is to study the dynamics of AIV genomes in their natural habitat. Viruses were isolated from fecal sample in embryonated chicken eggs; their complete genomes were sequenced, and a phylogenetic analysis was performed. The gene segments of the same lineage persisted over the years in the absence of persistence of complete viral genomes. The genes for internal proteins of the same lineage were often maintained by the viruses over few years; however, they were typically associated with the genes of novel HA and NA subtypes. Although frequent reassortment events were observed for any pair of internal genes, there was no reassortment between HA and NA segments. The differences in the persistence of phylogenetic lineages of surface and internal proteins and the different evolutionary strategy for these two types of genes of AIVs in primary hosts are discussed.
Collapse
|
13
|
TLR agonists induce sustained IgG to hemagglutinin stem and modulate T cells following newborn vaccination. NPJ Vaccines 2022; 7:102. [PMID: 36038596 PMCID: PMC9424286 DOI: 10.1038/s41541-022-00523-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG. Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response. Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem response.
Collapse
|
14
|
Labombarde JG, Pillai MR, Wehenkel M, Lin CY, Keating R, Brown SA, Crawford JC, Brice DC, Castellaw AH, Mandarano AH, Guy CS, Mejia JR, Lewis CD, Chang TC, Oshansky CM, Wong SS, Webby RJ, Yan M, Li Q, Marion TN, Thomas PG, McGargill MA. Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Rep 2022; 38:110482. [PMID: 35263574 PMCID: PMC9036619 DOI: 10.1016/j.celrep.2022.110482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022] Open
Abstract
Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.
Collapse
Affiliation(s)
- Jocelyn G. Labombarde
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Meenu R. Pillai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Marie Wehenkel
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,These authors contributed equally
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rachael Keating
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Scott A. Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ashley H. Castellaw
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Juan R. Mejia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Carlessia D. Lewis
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christine M. Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Present address: Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, P.R. China,Present address: State Key Laboratory of Respiratory Diseases & National Clinical Research Center for Respiratory Disease, Guangzhou, P.R. China,Present address: School of Public Health, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan–Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA,Lead contact,Correspondence:
| |
Collapse
|
15
|
Bommakanti G. Lamprey Variable Lymphocyte Receptor Monoclonal Antibodies for Whole-Cell Surface Antigens. Methods Mol Biol 2022; 2421:115-125. [PMID: 34870815 DOI: 10.1007/978-1-0716-1944-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lamprey antibodies, the variable lymphocyte receptor B proteins (VLRB), have unique properties that make them promising alternatives to jawed vertebrate immunoglobulin domain antibodies. These leucine-rich repeat proteins exhibit a diversity on par with that of jawed vertebrate antibodies but are structurally completely distinct. VLRB antibodies have been successfully raised to a variety of antigens. A procedure for high-throughput screening of full-length lamprey VLRB libraries using whole cells is described here. Lamprey antibodies against cell surface antigens can be generated and screened quickly using this method.
Collapse
|
16
|
Sangesland M, Lingwood D. Public Immunity: Evolutionary Spandrels for Pathway-Amplifying Protective Antibodies. Front Immunol 2021; 12:708882. [PMID: 34956170 PMCID: PMC8696009 DOI: 10.3389/fimmu.2021.708882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Humoral immunity is seeded by affinity between the B cell receptor (BCR) and cognate antigen. While the BCR is a chimeric display of diverse antigen engagement solutions, we discuss its functional activity as an ‘innate-like’ immune receptor, wherein genetically hardwired antigen complementarity can serve as reproducible templates for pathway-amplifying otherwise immunologically recessive antibody responses. We propose that the capacity for germline reactivity to new antigen emerged as a set of evolutionary spandrels or coupled traits, which can now be exploited by rational vaccine design to focus humoral immunity upon conventionally immune-subdominant antibody targets. Accordingly, we suggest that evolutionary spandrels account for the necessary but unanticipated antigen reactivity of the germline antibody repertoire.
Collapse
Affiliation(s)
- Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, United States
| |
Collapse
|
17
|
Amitai A. Viral surface geometry shapes influenza and coronavirus spike evolution through antibody pressure. PLoS Comput Biol 2021; 17:e1009664. [PMID: 34898597 PMCID: PMC8699686 DOI: 10.1371/journal.pcbi.1009664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/23/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the viral spike. Because of the high density of spikes on the viral surface, not all antigenic sites are targeted equally by antibodies. We offer here a geometry-based approach to predict and rank the probability of surface residues of SARS spike (S protein) and influenza H1N1 spike (hemagglutinin) to acquire antibody-escaping mutations utilizing in-silico models of viral structure. We used coarse-grained MD simulations to estimate the on-rate (targeting) of an antibody model to surface residues of the spike protein. Analyzing publicly available sequences, we found that spike surface sequence diversity of the pre-pandemic seasonal influenza H1N1 and the sarbecovirus subgenus highly correlates with our model prediction of antibody targeting. In particular, we identified an antibody-targeting gradient, which matches a mutability gradient along the main axis of the spike. This identifies the role of viral surface geometry in shaping the evolution of circulating viruses. For the 2009 H1N1 and SARS-CoV-2 pandemics, a mutability gradient along the main axis of the spike was not observed. Our model further allowed us to identify key residues of the SARS-CoV-2 spike at which antibody escape mutations have now occurred. Therefore, it can inform of the likely functional role of observed mutations and predict at which residues antibody-escaping mutation might arise.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/virology
- Computational Biology
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Evolution, Molecular
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host Microbial Interactions/genetics
- Host Microbial Interactions/immunology
- Humans
- Immune Evasion/genetics
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Models, Immunological
- Molecular Dynamics Simulation
- Mutation
- Pandemics
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Assaf Amitai
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
18
|
Ward EM, Kizer ME, Imperiali B. Strategies and Tactics for the Development of Selective Glycan-Binding Proteins. ACS Chem Biol 2021; 16:1795-1813. [PMID: 33497192 PMCID: PMC9200409 DOI: 10.1021/acschembio.0c00880] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The influences of glycans impact all biological processes, disease states, and pathogenic interactions. Glycan-binding proteins (GBPs), such as lectins, are decisive tools for interrogating glycan structure and function because of their ease of use and ability to selectively bind defined carbohydrate epitopes and glycosidic linkages. GBP reagents are prominent tools for basic research, clinical diagnostics, therapeutics, and biotechnological applications. However, the study of glycans is hindered by the lack of specific and selective protein reagents to cover the massive diversity of carbohydrate structures that exist in nature. In addition, existing GBP reagents often suffer from low affinity or broad specificity, complicating data interpretation. There have been numerous efforts to expand the GBP toolkit beyond those identified from natural sources through protein engineering, to improve the properties of existing GBPs or to engineer novel specificities and potential applications. This review details the current scope of proteins that bind carbohydrates and the engineering methods that have been applied to enhance the affinity, selectivity, and specificity of binders.
Collapse
Affiliation(s)
- Elizabeth M. Ward
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Zost SJ, Dong J, Gilchuk IM, Gilchuk P, Thornburg NJ, Bangaru S, Kose N, Finn JA, Bombardi R, Soto C, Chen EC, Nargi RS, Sutton RE, Irving RP, Suryadevara N, Westover JB, Carnahan RH, Turner HL, Li S, Ward AB, Crowe JE. Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface. J Clin Invest 2021; 131:e146791. [PMID: 34156974 PMCID: PMC8321569 DOI: 10.1172/jci146791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Broadly reactive antibodies targeting the influenza A virus hemagglutinin (HA) head domain are thought to be rare and to require extensive somatic mutations or unusual structural features to achieve breadth against divergent HA subtypes. Here we describe common genetic and structural features of protective human antibodies from several individuals recognizing the trimer interface (TI) of the influenza A HA head, a recently identified site of vulnerability. We examined the sequence of TI-reactive antibodies, determined crystal structures for TI antibody-antigen complexes, and analyzed the contact residues of the antibodies on HA to discover common genetic and structural features of TI antibodies. Our data reveal that many TI antibodies are encoded by a light chain variable gene segment incorporating a shared somatic mutation. In addition, these antibodies have a shared acidic residue in the heavy chain despite originating from diverse heavy chain variable gene segments. These studies show that the TI region of influenza A HA is a major antigenic site with conserved structural features that are recognized by a common human B cell public clonotype. The canonical nature of this antibody-antigen interaction suggests that the TI epitope might serve as an important target for structure-based vaccine design.
Collapse
Affiliation(s)
- Seth J Zost
- The Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | - Sandhya Bangaru
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Jessica A Finn
- The Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Cinque Soto
- The Vanderbilt Vaccine Center and.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elaine C Chen
- The Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | - Jonna B Westover
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center and.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Sheng Li
- Department of Medicine and Biomedical Sciences, School of Medicine, University of California, San Diego, California, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Aartse A, Eggink D, Claireaux M, van Leeuwen S, Mooij P, Bogers WM, Sanders RW, Koopman G, van Gils MJ. Influenza A Virus Hemagglutinin Trimer, Head and Stem Proteins Identify and Quantify Different Hemagglutinin-Specific B Cell Subsets in Humans. Vaccines (Basel) 2021; 9:717. [PMID: 34358138 PMCID: PMC8310015 DOI: 10.3390/vaccines9070717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Antibody responses against the influenza A virus hemagglutinin (HA)-protein are studied intensively because they can protect against (re)infection. Previous studies have focused on antibodies targeting the head or stem domains, while other possible specificities are often not taken into account. To study such specificities, we developed a diverse set of HA-domain proteins based on an H1N1pdm2009-like influenza virus strain, including monomeric head and trimeric stem domain, as well as the full HA-trimer. These proteins were used to study the B cell and antibody responses in six healthy human donors. A large proportion of HA-trimer B cells bound exclusively to HA-trimer probe (54-77%), while only 8-18% and 9-23% were able to recognize the stem or head probe, respectively. Monoclonal antibodies (mAbs) were isolated and three of these mAbs, targeting the different domains, were characterized in-depth to confirm the binding profile observed in flow cytometry. The head-directed mAb, targeting an epitope distinct from known head-specific mAbs, showed relatively broad H1N1 neutralization and the stem-directed mAb was able to broadly neutralize diverse H1N1 viruses. Moreover, we identified a trimer-directed mAb that did not compete with known head or stem domain specific mAbs, suggesting that it targets an unknown epitope or conformation of influenza virus' HA. These observations indicate that the described method can characterize the diverse antibody response to HA and might be able to identify HA-specific B cells and antibodies with previously unknown specificities that could be relevant for vaccine design.
Collapse
Affiliation(s)
- Aafke Aartse
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.A.); (P.M.); (W.M.B.)
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| | - Mathieu Claireaux
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| | - Sarah van Leeuwen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.A.); (P.M.); (W.M.B.)
| | - Willy M. Bogers
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.A.); (P.M.); (W.M.B.)
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.A.); (P.M.); (W.M.B.)
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.E.); (M.C.); (S.v.L.); (R.W.S.)
| |
Collapse
|
21
|
Mathew NR, Jayanthan JK, Smirnov IV, Robinson JL, Axelsson H, Nakka SS, Emmanouilidi A, Czarnewski P, Yewdell WT, Schön K, Lebrero-Fernández C, Bernasconi V, Rodin W, Harandi AM, Lycke N, Borcherding N, Yewdell JW, Greiff V, Bemark M, Angeletti D. Single-cell BCR and transcriptome analysis after influenza infection reveals spatiotemporal dynamics of antigen-specific B cells. Cell Rep 2021; 35:109286. [PMID: 34161770 PMCID: PMC7612943 DOI: 10.1016/j.celrep.2021.109286] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
B cell responses are critical for antiviral immunity. However, a comprehensive picture of antigen-specific B cell differentiation, clonal proliferation, and dynamics in different organs after infection is lacking. Here, by combining single-cell RNA and B cell receptor (BCR) sequencing of antigen-specific cells in lymph nodes, spleen, and lungs after influenza infection in mice, we identify several germinal center (GC) B cell subpopulations and organ-specific differences that persist over the course of the response. We discover transcriptional differences between memory cells in lungs and lymphoid organs and organ-restricted clonal expansion. Remarkably, we find significant clonal overlap between GC-derived memory and plasma cells. By combining BCR-mutational analyses with monoclonal antibody (mAb) expression and affinity measurements, we find that memory B cells are highly diverse and can be selected from both low- and high-affinity precursors. By linking antigen recognition with transcriptional programming, clonal proliferation, and differentiation, these finding provide important advances in our understanding of antiviral immunity.
Collapse
Affiliation(s)
- Nimitha R Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jayalal K Jayanthan
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ilya V Smirnov
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Göteborg, Sweden
| | - Hannes Axelsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sravya S Nakka
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Aikaterini Emmanouilidi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - William Rodin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Abstract
We review the phenomenon of "original antigenic sin" (OAS) in antibody responses to influenza A virus (IAV) infection or vaccination. OAS refers to the preferential induction of antibodies with higher affinity to priming versus boosting immunogens. We emphasize its mechanistic basis and origins in the basic immunobiology of B-cell responses to myriad immunogens. We tabulate 23 studies in animals and humans to show that the magnitude of OAS depends on many variables. We discuss a number of misconceptions about OAS, examine the extent to which OAS is sinful, and argue that OAS is evolutionary selected and not a deleterious by-product of selection for other features of the immune response. We end by raising questions regarding the mechanistic basis of OAS whose answers could contribute to improving influenza virus vaccines on the road to the holy grail of a "universal" influenza vaccine.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jefferson J S Santos
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
23
|
Sangesland M, Lingwood D. Antibody Focusing to Conserved Sites of Vulnerability: The Immunological Pathways for 'Universal' Influenza Vaccines. Vaccines (Basel) 2021; 9:vaccines9020125. [PMID: 33562627 PMCID: PMC7914524 DOI: 10.3390/vaccines9020125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Influenza virus remains a serious public health burden due to ongoing viral evolution. Vaccination remains the best measure of prophylaxis, yet current seasonal vaccines elicit strain-specific neutralizing responses that favor the hypervariable epitopes on the virus. This necessitates yearly reformulations of seasonal vaccines, which can be limited in efficacy and also shortchange pandemic preparedness. Universal vaccine development aims to overcome these deficits by redirecting antibody responses to functionally conserved sites of viral vulnerability to enable broad coverage. However, this is challenging as such antibodies are largely immunologically silent, both following vaccination and infection. Defining and then overcoming the immunological basis for such subdominant or ‘immuno-recessive’ antibody targeting has thus become an important aspect of universal vaccine development. This, coupled with structure-guided immunogen design, has led to proof-of-concept that it is possible to rationally refocus humoral immunity upon normally ‘unseen’ broadly neutralizing antibody targets on influenza virus.
Collapse
|
24
|
Wilson IA, Stanfield RL. 50 Years of structural immunology. J Biol Chem 2021; 296:100745. [PMID: 33957119 PMCID: PMC8163984 DOI: 10.1016/j.jbc.2021.100745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Fifty years ago, the first landmark structures of antibodies heralded the dawn of structural immunology. Momentum then started to build toward understanding how antibodies could recognize the vast universe of potential antigens and how antibody-combining sites could be tailored to engage antigens with high specificity and affinity through recombination of germline genes (V, D, J) and somatic mutation. Equivalent groundbreaking structures in the cellular immune system appeared some 15 to 20 years later and illustrated how processed protein antigens in the form of peptides are presented by MHC molecules to T cell receptors. Structures of antigen receptors in the innate immune system then explained their inherent specificity for particular microbial antigens including lipids, carbohydrates, nucleic acids, small molecules, and specific proteins. These two sides of the immune system act immediately (innate) to particular microbial antigens or evolve (adaptive) to attain high specificity and affinity to a much wider range of antigens. We also include examples of other key receptors in the immune system (cytokine receptors) that regulate immunity and inflammation. Furthermore, these antigen receptors use a limited set of protein folds to accomplish their various immunological roles. The other main players are the antigens themselves. We focus on surface glycoproteins in enveloped viruses including SARS-CoV-2 that enable entry and egress into host cells and are targets for the antibody response. This review covers what we have learned over the past half century about the structural basis of the immune response to microbial pathogens and how that information can be utilized to design vaccines and therapeutics.
Collapse
MESH Headings
- Adaptive Immunity
- Allergy and Immunology/history
- Animals
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibody Specificity
- Antigen Presentation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- COVID-19/immunology
- COVID-19/virology
- Crystallography/history
- Crystallography/methods
- History, 20th Century
- History, 21st Century
- Humans
- Immunity, Innate
- Protein Folding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- V(D)J Recombination
Collapse
Affiliation(s)
- Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
25
|
Amitai A. Viral surface geometry shapes influenza and coronavirus spike evolution through antibody pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.20.347641. [PMID: 33106808 PMCID: PMC7587782 DOI: 10.1101/2020.10.20.347641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the glycoprotein (spike). However, not all antigenic sites are targeted equally by antibodies, leading to complex immunodominance patterns. We used 3D computational models to estimate antibody pressure on the seasonal influenza H1N1 and SARS spikes. Analyzing publically available sequences, we show that antibody pressure, through the geometrical organization of spikes on the viral surface, shaped their mutability. Studying the mutability patterns of SARS-CoV-2 and the 2009 H1N1 pandemic spikes, we find that they are not predominantly shaped by antibody pressure. However, for SARS-CoV-2, we find that over time, it acquired mutations at antibody-accessible positions, which could indicate possible escape as define by our model. We offer a geometry-based approach to predict and rank the probability of surface resides of SARS-CoV-2 spike to acquire antibody escaping mutations.
Collapse
Affiliation(s)
- Assaf Amitai
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
26
|
H1 Hemagglutinin Priming Provides Long-Lasting Heterosubtypic Immunity against H5N1 Challenge in the Mouse Model. mBio 2020; 11:mBio.02090-20. [PMID: 33323511 PMCID: PMC7773984 DOI: 10.1128/mbio.02090-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Current studies point out that an HA-mediated immunological imprint is established early in life during the first exposure to influenza viruses, which critically shapes and biases future immune responses. However, these findings have not been confirmed in animal models, and the precise mechanisms of this phenomenon are not clearly understood. Influenza virus infections leave a signature of immune memory that influences future responses to infections with antigenically related strains. It has been hypothesized that the first exposure in life to H1N1 influenza virus imprints the host immune system, potentially resulting in protection from severe infection with H5N1 later in life through hemagglutinin (HA) stalk-specific antibodies. To study the specific role of the HA on protection against infection without interference of cellular immunity or humoral antineuraminidase immunity, we primed mice with influenza B viruses that express an H1 HA (group 1; B-H1), H3 HA (group 2; B-H3), or wild-type influenza B virus and subsequently challenged them at different time points with an H5N1 virus. Weight loss and survival monitoring showed that the B-H1-primed mice exhibited better protection against H5N1 compared to the control mice. Analysis of H5-specific serum IgG, before and 21 days after H5N1 challenge, evidenced the presence of anti-stalk H5 cross-reactive antibodies in the BH-1 group that were boosted by H5N1 infection. The increased immune responses and protection induced by priming with the B-H1 viruses lasted at least up to 1 year. Hence, a single HA priming based on natural infection induces long-lasting protective immunity against heterosubtypic strains from the same phylogenetic HA group in mice. This study gives mechanistic support to the earlier finding in humans that imprinting by H1 HA protects against H5N1 infections and that highly conserved regions on the HA, like the stalk, are involved in this phenomenon.
Collapse
|
27
|
High-Resolution Mapping of Human Norovirus Antigens via Genomic Phage Display Library Selections and Deep Sequencing. J Virol 2020; 95:JVI.01495-20. [PMID: 33055250 DOI: 10.1128/jvi.01495-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
Norovirus (NoV) infections are a leading cause of gastroenteritis. The humoral immune response plays an important role in the control of NoV, and recent studies have identified neutralizing antibodies that bind the capsid protein VP1 to block viral infection. Here, we utilize a NoV GI.1 Jun-Fos-assisted phage display library constructed from randomly fragmented genomic DNA coupled with affinity selection for antibody binding and subsequent deep sequencing to map epitopes. The epitopes were identified by quantitating the phage clones before and after affinity selection and aligning the sequences of the most enriched peptides. The HJT-R3-A9 single-chain variable fragment (scFv) antibody epitope was mapped to a 12-amino-acid region of VP1 that is also the binding site for several previously identified monoclonal antibodies. We synthesized the 12-mer peptide and found that it binds the scFv antibody with a KD (equilibrium dissociation constant) of 46 nM. Further, alignment of enriched peptides after affinity selection on rabbit anti-NoV polyclonal antisera revealed five families of overlapping sequences that define distinct epitopes in VP1. One of these is identical to the HJT-R3-A9 scFv epitope, further suggesting that it is immunodominant. Similarly, other epitopes identified using the polyclonal antisera overlap binding sites for previously reported monoclonal antibodies, suggesting that they are also dominant epitopes. The results demonstrate that affinity selection and deep sequencing of the phage library provide sufficient resolution to map multiple epitopes simultaneously from complex samples such as polyclonal antisera. This approach can be extended to examine the antigenic landscape in patient sera to facilitate investigation of the immune response to NoV.IMPORTANCE NoV infections are a leading cause of gastroenteritis in the United States. Human NoVs exhibit extensive genetic and antigenic diversity, which makes it challenging to design a vaccine that provides broad protection against infection. Antibodies developed during the immune response play an important role in the control of NoV infections. Neutralizing antibodies that act by sterically blocking the site on the virus used to bind human cells have been identified. Identification of other antibody binding sites associated with virus neutralization is therefore of interest. Here, we use a high-resolution method to map multiple antibody binding sites simultaneously from complex serum samples. The results show that a relatively small number of sites on the virus bind a large number of independently generated antibodies, suggesting that immunodominance plays a role in the humoral immune response to NoV infections.
Collapse
|
28
|
Subdominance in Antibody Responses: Implications for Vaccine Development. Microbiol Mol Biol Rev 2020; 85:85/1/e00078-20. [PMID: 33239435 DOI: 10.1128/mmbr.00078-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vaccines work primarily by eliciting antibodies, even when recovery from natural infection depends on cellular immunity. Large efforts have therefore been made to identify microbial antigens that elicit protective antibodies, but these endeavors have encountered major difficulties, as witnessed by the lack of vaccines against many pathogens. This review summarizes accumulating evidence that subdominant protein regions, i.e., surface-exposed regions that elicit relatively weak antibody responses, are of particular interest for vaccine development. This concept may seem counterintuitive, but subdominance may represent an immune evasion mechanism, implying that the corresponding region potentially is a key target for protective immunity. Following a presentation of the concepts of immunodominance and subdominance, the review will present work on subdominant regions in several major human pathogens: the protozoan Plasmodium falciparum, two species of pathogenic streptococci, and the dengue and influenza viruses. Later sections are devoted to the molecular basis of subdominance, its potential role in immune evasion, and general implications for vaccine development. Special emphasis will be placed on the fact that a whole surface-exposed protein domain can be subdominant, as demonstrated for all of the pathogens described here. Overall, the available data indicate that subdominant protein regions are of much interest for vaccine development, not least in bacterial and protozoal systems, for which antibody subdominance remains largely unexplored.
Collapse
|
29
|
Amitai A, Sangesland M, Barnes RM, Rohrer D, Lonberg N, Lingwood D, Chakraborty AK. Defining and Manipulating B Cell Immunodominance Hierarchies to Elicit Broadly Neutralizing Antibody Responses against Influenza Virus. Cell Syst 2020; 11:573-588.e9. [PMID: 33031741 DOI: 10.1016/j.cels.2020.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
The antibody repertoire possesses near-limitless diversity, enabling the adaptive immune system to accommodate essentially any antigen. However, this diversity explores the antigenic space unequally, allowing some pathogens like influenza virus to impose complex immunodominance hierarchies that distract antibody responses away from key sites of virus vulnerability. We developed a computational model of affinity maturation to map the patterns of immunodominance that evolve upon immunization with natural and engineered displays of hemagglutinin (HA), the influenza vaccine antigen. Based on this knowledge, we designed immunization protocols that subvert immune distraction and focus serum antibody responses upon a functionally conserved, but immunologically recessive, target of human broadly neutralizing antibodies. We tested in silico predictions by vaccinating transgenic mice in which antibody diversity was humanized to mirror clinically relevant humoral output. Collectively, our results demonstrate that complex patterns in antibody immunogenicity can be rationally defined and then manipulated to elicit engineered immunity.
Collapse
Affiliation(s)
- Assaf Amitai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maya Sangesland
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Ralston M Barnes
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA 94063-2478, USA
| | - Daniel Rohrer
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA 94063-2478, USA
| | - Nils Lonberg
- Bristol-Myers Squibb, 700 Bay Rd, Redwood City, CA 94063-2478, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Wu NC, Wilson IA. Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038778. [PMID: 31871236 DOI: 10.1101/cshperspect.a038778] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemagglutinin (HA) is most abundant glycoprotein on the influenza virus surface. Influenza HA promotes viral entry by engaging the receptor and mediating virus-host membrane fusion. At the same time, HA is the major antigen of the influenza virus. HA antigenic shift can result in pandemics, whereas antigenic drift allows human circulating strains to escape herd immunity. Most antibody responses against HA are strain-specific. However, antibodies that have neutralizing activities against multiple strains or even subtypes have now been discovered and characterized. These broadly neutralizing antibodies (bnAbs) target conserved regions on HA, such as the receptor-binding site and the stem domain. Structural studies of such bnAbs have provided important insight into universal influenza vaccine and therapeutic design. This review discusses the HA functions as well as HA-antibody interactions from a structural perspective.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
31
|
Zost SJ, Wu NC, Hensley SE, Wilson IA. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J Infect Dis 2020; 219:S38-S45. [PMID: 30535315 DOI: 10.1093/infdis/jiy696] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza viruses routinely acquire mutations in their hemagglutinin (HA) and neuraminidase (NA) glycoproteins that abrogate binding of pre-existing antibodies in a process known as antigenic drift. Most human antibodies against HA and NA are directed against epitopes that are hypervariable and not against epitopes that are conserved among different influenza virus strains. Universal influenza vaccines are currently being developed to elicit protective responses against functionally conserved sites on influenza proteins where viral escape mutations can result in large fitness costs [1]. Universal vaccine targets include the highly conserved HA stem domain [2-12], the less conserved HA receptor-binding site (RBS) [13-16], as well as conserved sites on NA [17-19]. One central challenge of universal vaccine efforts is to steer human antibody responses away from immunodominant, variable epitopes and towards subdominant, functionally conserved sites. Overcoming this challenge will require further understanding of the structural basis of broadly neutralizing HA and NA antibody binding epitopes and factors that influence immunodominance hierarchies of human antibody responses.
Collapse
Affiliation(s)
- Seth J Zost
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
32
|
Demminger DE, Walz L, Dietert K, Hoffmann H, Planz O, Gruber AD, von Messling V, Wolff T. Adeno-associated virus-vectored influenza vaccine elicits neutralizing and Fcγ receptor-activating antibodies. EMBO Mol Med 2020; 12:e10938. [PMID: 32163240 PMCID: PMC7207162 DOI: 10.15252/emmm.201910938] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
The current seasonal inactivated influenza vaccine protects only against a narrow range of virus strains as it triggers a dominant antibody response toward the hypervariable hemagglutinin (HA) head region. The discovery of rare broadly protective antibodies against conserved regions in influenza virus proteins has propelled research on distinct antigens and delivery methods to efficiently induce broad immunity toward drifted or shifted virus strains. Here, we report that adeno‐associated virus (AAV) vectors expressing influenza virus HA or chimeric HA protected mice against homologous and heterologous virus challenges. Unexpectedly, immunization even with wild‐type HA induced antibodies recognizing the HA‐stalk and activating FcγR‐dependent responses indicating that AAV‐vectored expression balances HA head‐ and HA stalk‐specific humoral responses. Immunization with AAV‐HA partially protected also ferrets against a harsh virus challenge. Results from this study provide a rationale for further clinical development of AAV vectors as influenza vaccine platform, which could benefit from their approved use in human gene therapy.
Collapse
Affiliation(s)
- Daniel E Demminger
- Unit 17-Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| | - Lisa Walz
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany
| | - Kristina Dietert
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Berlin, Germany
| | - Helen Hoffmann
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Achim D Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Berlin, Germany
| | | | - Thorsten Wolff
- Unit 17-Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
33
|
Clemens E, Angeletti D, Holbrook BC, Kanekiyo M, Jorgensen MJ, Graham BS, Yewdell J, Alexander-Miller MA. Influenza-infected newborn and adult monkeys exhibit a strong primary antibody response to hemagglutinin stem. JCI Insight 2020; 5:135449. [PMID: 32078584 DOI: 10.1172/jci.insight.135449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023] Open
Abstract
The specificity of antibodies (Abs) generated against influenza A virus (IAV) infection can significantly alter protection and viral clearance. At present, the impact of age upon this process is relatively unexplored. Here, we evaluated the Ab response in newborn and adult African green monkeys following infection with IAV using a strain that enables us to determine the immunodominance (ID) hierarchy of the Ab response to hemagglutinin (HA), the principal target of protective Abs. This revealed altered ID patterns in the early IgM anti-HA response in newborns versus adults that converged over time. While the IgG ID profiles for HA in newborn and adult monkeys were similar, this was not the case for IgA. Importantly, HA stem-specific Abs were generated robustly and similarly in newborns and adults in terms of quality and quantity. Together, these results demonstrate that newborns and adults can differ in the Ab ID pattern established following infection and that the ID pattern can vary across isotypes. In addition, newborns have the ability to generate potent HA stem-specific Ab responses. Our findings further the understanding of the newborn response to IAV antigens and inform the development of improved vaccines for this at-risk population.
Collapse
Affiliation(s)
- Elene Clemens
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew J Jorgensen
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Jonathan Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
34
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
35
|
McKitrick TR, Goth CK, Rosenberg CS, Nakahara H, Heimburg-Molinaro J, McQuillan AM, Falco R, Rivers NJ, Herrin BR, Cooper MD, Cummings RD. Development of smart anti-glycan reagents using immunized lampreys. Commun Biol 2020; 3:91. [PMID: 32111965 PMCID: PMC7048801 DOI: 10.1038/s42003-020-0819-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Studies on the expression of cellular glycans are limited by a lack of sensitive tools that can discriminate specific structural features. Here we describe the development of a robust platform using immunized lampreys (Petromyzon marinus), which secrete variable lymphocyte receptors called VLRBs as antibodies, for generating libraries of anti-glycan reagents. We identified a wide variety of glycan-specific VLRBs detectable in lamprey plasma after immunization with whole fixed cells, tissue homogenates, and human milk. The cDNAs from lamprey lymphocytes were cloned into yeast surface display (YSD) libraries for enrichment by multiple methods. We generated VLRB-Ig chimeras, termed smart anti-glycan reagents (SAGRs), whose specificities were defined by microarray analysis and immunohistochemistry. 15 VLRB antibodies were discovered that discriminated between linkages, functional groups and unique presentations of the terminal glycan motif. The development of SAGRs will enhance future studies on glycan expression by providing sequenced, defined antibodies for a variety of research applications. Tanya McKitrick et al. develop a platform for generating libraries of anti-glycan reagents using immunized lampreys. They identify 15 glycan-specific lymphocyte receptor antibodies that can distinguish between different functional groups of the terminal glycan motif.
Collapse
Affiliation(s)
- Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,University of Copenhagen Glycomics Program, Copenhagen, Denmark
| | - Charles S Rosenberg
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hirotomo Nakahara
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Rosalia Falco
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,Marine Science Center, Northeastern University, Boston, MA, 02115, USA
| | - Nicholas J Rivers
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.,University of Alabama Birmingham, Birmingham, AL, 35294, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Acceleron Pharma, Boston, MA, 02110, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
36
|
Bangaru S, Lang S, Schotsaert M, Vanderven HA, Zhu X, Kose N, Bombardi R, Finn JA, Kent SJ, Gilchuk P, Gilchuk I, Turner HL, García-Sastre A, Li S, Ward AB, Wilson IA, Crowe JE. A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. Cell 2020; 177:1136-1152.e18. [PMID: 31100268 DOI: 10.1016/j.cell.2019.04.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
Here, we describe the discovery of a naturally occurring human antibody (Ab), FluA-20, that recognizes a new site of vulnerability on the hemagglutinin (HA) head domain and reacts with most influenza A viruses. Structural characterization of FluA-20 with H1 and H3 head domains revealed a novel epitope in the HA trimer interface, suggesting previously unrecognized dynamic features of the trimeric HA protein. The critical HA residues recognized by FluA-20 remain conserved across most subtypes of influenza A viruses, which explains the Ab's extraordinary breadth. The Ab rapidly disrupted the integrity of HA protein trimers, inhibited cell-to-cell spread of virus in culture, and protected mice against challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes when used as prophylaxis or therapy. The FluA-20 Ab has uncovered an exceedingly conserved protective determinant in the influenza HA head domain trimer interface that is an unexpected new target for anti-influenza therapeutics and vaccines.
Collapse
Affiliation(s)
- Sandhya Bangaru
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shanshan Lang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica A Finn
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pavlo Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Iuliia Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sheng Li
- Department of Medicine and Biomedical Sciences, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Abolnik C, Strydom C, Rauff DL, Wandrag DBR, Petty D. Continuing evolution of H6N2 influenza a virus in South African chickens and the implications for diagnosis and control. BMC Vet Res 2019; 15:455. [PMID: 31852473 PMCID: PMC6921544 DOI: 10.1186/s12917-019-2210-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/09/2019] [Indexed: 01/29/2023] Open
Abstract
Background The threat of poultry-origin H6 avian influenza viruses to human health emphasizes the importance of monitoring their evolution. South Africa’s H6N2 epidemic in chickens began in 2001 and two co-circulating antigenic sub-lineages of H6N2 could be distinguished from the outset. The true incidence and prevalence of H6N2 in the country has been difficult to determine, partly due to the continued use of an inactivated whole virus H6N2 vaccine and the inability to distinguish vaccinated from non-vaccinated birds on serology tests. In the present study, the complete genomes of 12 H6N2 viruses isolated from various farming systems between September 2015 and February 2019 in three major chicken-producing regions were analysed and a serological experiment was used to demonstrate the effects of antigenic mismatch in diagnostic tests. Results Genetic drift in H6N2 continued and antigenic diversity in sub-lineage I is increasing; no sub-lineage II viruses were detected. Reassortment patterns indicated epidemiological connections between provinces as well as different farming systems, but there was no reassortment with wild bird or ostrich influenza viruses. The sequence mismatch between the official antigens used for routine hemagglutination inhibition (HI) testing and circulating field strains has increased steadily, and we demonstrated that H6N2 field infections are likely to be missed. More concerning, sub-lineage I H6N2 viruses acquired three of the nine HA mutations associated with human receptor-binding preference (A13S, V187D and A193N) since 2002. Most sub-lineage I viruses isolated since 2015 acquired the K702R mutation in PB2 associated with the ability to infect humans, whereas prior to 2015 most viruses in sub-lineages I and II contained the avian lysine marker. All strains had an unusual HA0 motif of PQVETRGIF or PQVGTRGIF. Conclusions The H6N2 viruses in South African chickens are mutating and reassorting amongst themselves but have remained a genetically pure lineage since they emerged more than 18 years ago. Greater efforts must be made by government and industry in the continuous isolation and characterization of field strains for use as HI antigens, new vaccine seed strains and to monitor the zoonotic threat of H6N2 viruses.
Collapse
Affiliation(s)
- Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Onderstepoort, 0110, South Africa.
| | - Christine Strydom
- Deltamune (Pty) Ltd, 248 Jean Avenue, Lyttleton, Centurion, 0140, South Africa
| | - Dionne Linda Rauff
- Deltamune (Pty) Ltd, 248 Jean Avenue, Lyttleton, Centurion, 0140, South Africa
| | - Daniel Barend Rudolph Wandrag
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Old Soutpan Road, Onderstepoort, 0110, South Africa
| | - Deryn Petty
- The Poultry Practice, PO Box 5615, Walmer, Port Elizabeth, 6065, South Africa
| |
Collapse
|
38
|
Chang D, Zaia J. Why Glycosylation Matters in Building a Better Flu Vaccine. Mol Cell Proteomics 2019; 18:2348-2358. [PMID: 31604803 PMCID: PMC6885707 DOI: 10.1074/mcp.r119.001491] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
Low vaccine efficacy against seasonal influenza A virus (IAV) stems from the ability of the virus to evade existing immunity while maintaining fitness. Although most potent neutralizing antibodies bind antigenic sites on the globular head domain of the IAV envelope glycoprotein hemagglutinin (HA), the error-prone IAV polymerase enables rapid evolution of key antigenic sites, resulting in immune escape. Significantly, the appearance of new N-glycosylation consensus sequences (sequons, NXT/NXS, rarely NXC) on the HA globular domain occurs among the more prevalent mutations as an IAV strain undergoes antigenic drift. The appearance of new glycosylation shields underlying amino acid residues from antibody contact, tunes receptor specificity, and balances receptor avidity with virion escape, all of which help maintain viral propagation through seasonal mutations. The World Health Organization selects seasonal vaccine strains based on information from surveillance, laboratory, and clinical observations. Although the genetic sequences are known, mature glycosylated structures of circulating strains are not defined. In this review, we summarize mass spectrometric methods for quantifying site-specific glycosylation in IAV strains and compare the evolution of IAV glycosylation to that of human immunodeficiency virus. We argue that the determination of site-specific glycosylation of IAV glycoproteins would enable development of vaccines that take advantage of glycosylation-dependent mechanisms whereby virus glycoproteins are processed by antigen presenting cells.
Collapse
Affiliation(s)
- Deborah Chang
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Joseph Zaia
- Dept. of Biochemistry, Boston University School of Medicine, Boston, MA 02118.
| |
Collapse
|
39
|
Jegaskanda S, Andrews SF, Wheatley AK, Yewdell JW, McDermott AB, Subbarao K. Hemagglutinin head-specific responses dominate over stem-specific responses following prime boost with mismatched vaccines. JCI Insight 2019; 4:129035. [PMID: 31723058 DOI: 10.1172/jci.insight.129035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/09/2019] [Indexed: 11/17/2022] Open
Abstract
Broadly neutralizing Abs targeting the HA stem can provide broad protection against different influenza subtypes, raising the question of how best to elicit such Abs. We have previously demonstrated that vaccination with pandemic live-attenuated influenza vaccine (pLAIV) establishes immune memory for HA head-specific Abs. Here, we determine the extent to which matched versus mismatched LAIV-inactivated subunit vaccine (IIV) prime-boost vaccination elicits stem-specific memory B cells and Abs. We vaccinated African green monkeys with H5N1 pLAIV-pIIV or H5N1 pLAIV followed by seasonal IIV (sIIV) or with H5N1 pLAIV alone and measured Abs and HA-specific B cell responses. While we observed an increase in stem-specific memory B cells, head-specific memory B cell responses were substantially higher than stem-specific responses and were dominant even following boost with mismatched IIV. Neutralizing Abs against heterologous influenza viruses were undetectable. Head-specific B cells from draining lymph nodes exhibited germinal center markers, while stem-specific B cells found in the spleen and peripheral blood did not. Thus, although mismatched prime-boost generated a pool of stem-specific memory B cells, head-specific B cells and serum Abs substantially dominated the immune response. These findings have implications for including full-length native HA in prime-boost strategies intended to induce stem-specific Abs for universal influenza vaccination.
Collapse
Affiliation(s)
- Sinthujan Jegaskanda
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Vaccine Research Center and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland, USA
| | | | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Henry C, Palm AKE, Utset HA, Huang M, Ho IY, Zheng NY, Fitzgerald T, Neu KE, Chen YQ, Krammer F, Treanor JJ, Sant AJ, Topham DJ, Wilson PC. Monoclonal Antibody Responses after Recombinant Hemagglutinin Vaccine versus Subunit Inactivated Influenza Virus Vaccine: a Comparative Study. J Virol 2019; 93:e01150-19. [PMID: 31434733 PMCID: PMC6803255 DOI: 10.1128/jvi.01150-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Vaccination is the best measure of protection against influenza virus infection. Vaccine-induced antibody responses target mainly the hemagglutinin (HA) surface glycoprotein, composed of the head and the stalk domains. Recently two novel vaccine platforms have been developed for seasonal influenza vaccination: a recombinant HA vaccine produced in insect cells (Flublok) and Flucelvax, prepared from virions produced in mammalian cells. In order to compare the fine specificity of the antibodies induced by these two novel vaccine platforms, we characterized 42 Flublok-induced monoclonal antibodies (MAbs) and 38 Flucelvax-induced MAbs for avidity, cross-reactivity, and any selectivity toward the head versus the stalk domain. These studies revealed that Flublok induced a greater proportion of MAbs targeting epitopes near the receptor-binding domain on HA head (hemagglutinin inhibition-positive MAbs) than Flucelvax, while the two vaccines induced similar low frequencies of stalk-reactive MAbs. Finally, mice immunized with Flublok and Flucelvax also induced similar frequencies of stalk-reactive antibody-secreting cells, showing that HA head immunodominance is independent of immune memory bias. Collectively, our results suggest that these vaccine formulations are similarly immunogenic but differ in the preferences of the elicited antibodies toward the receptor-binding domain on the HA head.IMPORTANCE There are ongoing efforts to increase the efficacy of influenza vaccines and to promote production strategies that can rapidly respond to newly emerging viruses. It is important to understand if current alternative seasonal vaccines, such as Flublok and Flucelvax, that use alternate production strategies can induce protective influenza-specific antibodies and to evaluate what type of epitopes are targeted by distinct vaccine formulations.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cohort Studies
- Female
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Male
- Mice, Inbred BALB C
- Middle Aged
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Sequence Homology
- Vaccination
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Young Adult
Collapse
Affiliation(s)
- Carole Henry
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| | - Anna-Karin E Palm
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| | - Henry A Utset
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| | - Irvin Y Ho
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| | - Theresa Fitzgerald
- Center for Vaccine Biology & Immunology, Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Karlynn E Neu
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| | - Yao-Qing Chen
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John J Treanor
- Division of Infectious Disease, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrea J Sant
- Center for Vaccine Biology & Immunology, Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - David J Topham
- Center for Vaccine Biology & Immunology, Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Sangesland M, Ronsard L, Kazer SW, Bals J, Boyoglu-Barnum S, Yousif AS, Barnes R, Feldman J, Quirindongo-Crespo M, McTamney PM, Rohrer D, Lonberg N, Chackerian B, Graham BS, Kanekiyo M, Shalek AK, Lingwood D. Germline-Encoded Affinity for Cognate Antigen Enables Vaccine Amplification of a Human Broadly Neutralizing Response against Influenza Virus. Immunity 2019; 51:735-749.e8. [PMID: 31563464 PMCID: PMC6801110 DOI: 10.1016/j.immuni.2019.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/27/2019] [Accepted: 08/30/2019] [Indexed: 12/27/2022]
Abstract
Antibody paratopes are formed by hypervariable complementarity-determining regions (CDRH3s) and variable gene-encoded CDRs. The latter show biased usage in human broadly neutralizing antibodies (bnAbs) against both HIV and influenza virus, suggesting the existence of gene-endowed targeting solutions that may be amenable to pathway amplification. To test this, we generated transgenic mice with human CDRH3 diversity but simultaneously constrained to individual user-defined human immunoglobulin variable heavy-chain (VH) genes, including IGHV1-69, which shows biased usage in human bnAbs targeting the hemagglutinin stalk of group 1 influenza A viruses. Sequential immunization with a stalk-only hemagglutinin nanoparticle elicited group 1 bnAbs, but only in IGHV1-69 mice. This VH-endowed response required minimal affinity maturation, was elicited alongside pre-existing influenza immunity, and when IGHV1-69 B cells were diluted to match the frequency measured in humans. These results indicate that the human repertoire could, in principle, support germline-encoded bnAb elicitation using a single recombinant hemagglutinin immunogen.
Collapse
Affiliation(s)
- Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Samuel W Kazer
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, 415 Main St, Cambridge, MA 02142, USA
| | - Julia Bals
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | - Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Ralston Barnes
- Bristol-Myers Squibb, 700 Bay Road, Redwood City, CA 94063-2478, USA
| | - Jared Feldman
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | | | | | - Daniel Rohrer
- Bristol-Myers Squibb, 700 Bay Road, Redwood City, CA 94063-2478, USA
| | - Nils Lonberg
- Bristol-Myers Squibb, 700 Bay Road, Redwood City, CA 94063-2478, USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 2425 Camino de Salud, Albuquerque, NM 87106, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | - Alex K Shalek
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, 415 Main St, Cambridge, MA 02142, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Sun W, Zheng A, Miller R, Krammer F, Palese P. An Inactivated Influenza Virus Vaccine Approach to Targeting the Conserved Hemagglutinin Stalk and M2e Domains. Vaccines (Basel) 2019; 7:vaccines7030117. [PMID: 31540436 PMCID: PMC6789539 DOI: 10.3390/vaccines7030117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Universal influenza virus vaccine candidates that focus on the conserved hemagglutinin (HA) stalk domain and the extracellular domain of the matrix protein 2 (M2e) have been developed to increase the breadth of protection against multiple strains. In this study, we report a novel inactivated influenza virus vaccine approach that combines these two strategies. We inserted a human consensus M2e epitope into the immunodominant antigenic site (Ca2 site) of three different chimeric HAs (cHAs). Sequential immunization with inactivated viruses containing these modified cHAs substantially enhanced M2e antibody responses while simultaneously boosting stalk antibody responses. The combination of additional M2e antibodies with HA stalk antibodies resulted in superior antibody-mediated protection in mice against challenge viruses expressing homologous or heterosubtypic hemagglutinin and neuraminidase compared to vaccination strategies that targeted the HA stalk or M2e epitopes in isolation.
Collapse
Affiliation(s)
- Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Allen Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Robert Miller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
43
|
Lee JM, Eguia R, Zost SJ, Choudhary S, Wilson PC, Bedford T, Stevens-Ayers T, Boeckh M, Hurt AC, Lakdawala SS, Hensley SE, Bloom JD. Mapping person-to-person variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin. eLife 2019; 8:e49324. [PMID: 31452511 PMCID: PMC6711711 DOI: 10.7554/elife.49324] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
A longstanding question is how influenza virus evolves to escape human immunity, which is polyclonal and can target many distinct epitopes. Here, we map how all amino-acid mutations to influenza's major surface protein affect viral neutralization by polyclonal human sera. The serum of some individuals is so focused that it selects single mutations that reduce viral neutralization by over an order of magnitude. However, different viral mutations escape the sera of different individuals. This individual-to-individual variation in viral escape mutations is not present among ferrets that have been infected just once with a defined viral strain. Our results show how different single mutations help influenza virus escape the immunity of different members of the human population, a phenomenon that could shape viral evolution and disease susceptibility.
Collapse
Affiliation(s)
- Juhye M Lee
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Rachel Eguia
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Seth J Zost
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Saket Choudhary
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesUnited States
| | - Patrick C Wilson
- Department of MedicineSection of Rheumatology, University of ChicagoChicagoUnited States
| | - Trevor Bedford
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Michael Boeckh
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Seema S Lakdawala
- Department of Microbiology and Molecular GeneticsSchool of Medicine, University of PittsburghPittsburghUnited States
| | - Scott E Hensley
- Department of MicrobiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jesse D Bloom
- Basic Sciences DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteSeattleUnited States
| |
Collapse
|
44
|
Kosik I, Yewdell JW. Influenza Hemagglutinin and Neuraminidase: Yin⁻Yang Proteins Coevolving to Thwart Immunity. Viruses 2019; 11:E346. [PMID: 31014029 PMCID: PMC6520700 DOI: 10.3390/v11040346] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza A virions possess two surface glycoproteins-the hemagglutinin (HA) and neuraminidase (NA)-which exert opposite functions. HA attaches virions to cells by binding to terminal sialic acid residues on glycoproteins/glycolipids to initiate the infectious cycle, while NA cleaves terminal sialic acids, releasing virions to complete the infectious cycle. Antibodies specific for HA or NA can protect experimental animals from IAV pathogenesis and drive antigenic variation in their target epitopes that impairs vaccine effectiveness in humans. Here, we review progress in understanding HA/NA co-evolution as each acquires epistatic mutations to restore viral fitness to mutants selected in the other protein by host innate or adaptive immune pressure. We also discuss recent exciting findings that antibodies to HA can function in vivo by blocking NA enzyme activity to prevent nascent virion release and enhance Fc receptor-based activation of innate immune cells.
Collapse
Affiliation(s)
- Ivan Kosik
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
45
|
Christensen SR, Toulmin SA, Griesman T, Lamerato LE, Petrie JG, Martin ET, Monto AS, Hensley SE. Assessing the Protective Potential of H1N1 Influenza Virus Hemagglutinin Head and Stalk Antibodies in Humans. J Virol 2019; 93:e02134-18. [PMID: 30700610 PMCID: PMC6450120 DOI: 10.1128/jvi.02134-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Seasonal influenza viruses are a major cause of human disease worldwide. Most neutralizing antibodies (Abs) elicited by influenza viruses target the head domain of the hemagglutinin (HA) protein. Anti-HA head Abs can be highly potent, but they have limited breadth since the HA head is variable. There is great interest in developing new universal immunization strategies that elicit broadly neutralizing Abs against conserved regions of HA, such as the stalk domain. Although HA stalk Abs can provide protection in animal models, it is unknown if they are present at sufficient levels in humans to provide protection against naturally acquired influenza virus infections. Here, we quantified H1N1 HA head- and stalk-specific Abs in 179 adults hospitalized during the 2015-2016 influenza virus season. We found that HA head Abs, as measured by hemagglutinin inhibition (HAI) assays, were associated with protection against naturally acquired H1N1 infection. HA stalk-specific serum total IgG titers were also associated with protection, but this association was attenuated and not statistically significant after adjustment for HA head-specific Ab titers. We found slightly higher titers of HA stalk-specific IgG1 and IgA Abs in sera from uninfected participants than in sera from infected participants; however, we found no difference in serum in vitro antibody-dependent cellular cytotoxicity activity. In passive transfer experiments, sera from participants with high HAI activity efficiently protected mice, while sera with low HAI activity protected mice to a lower extent. Our data suggest that HA head Abs are more efficient at protecting against H1N1 infection than HA stalk Abs.IMPORTANCE Abs targeting the HA head of influenza viruses are often associated with protection from influenza virus infections. These Abs typically have limited breadth, since mutations frequently arise in HA head epitopes. New vaccines targeting the more conserved HA stalk domain are being developed. Abs that target the HA stalk are protective in animal models, but it is unknown if these Abs exist at protective levels in humans. Here, we completed experiments to determine if Abs against the HA head and stalk were associated with protection from naturally acquired human influenza virus infections during the 2015-2016 influenza season.
Collapse
Affiliation(s)
- Shannon R Christensen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sushila A Toulmin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trevor Griesman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lois E Lamerato
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Abstract
Frequent mutation of its major antibody target, the glycoprotein hemagglutinin, ensures that the influenza virus is perennially both a rapidly emerging virus and a major threat to public health. One type of mutation escapes immunity by adding a glycan onto an area of hemagglutinin that many antibodies recognize. This study revealed that these glycan changes follow a simple temporal pattern. Every 5 to 7 years, hemagglutinin adds a new glycan, up to a limit. After this limit is reached, no net additions of glycans occur. Instead, glycans are swapped or lost at longer intervals. Eventually, a pandemic replaces the terminally glycosylated hemagglutinin with a minimally glycosylated one from the animal reservoir, restarting the cycle. This pattern suggests the following: (i) some hemagglutinins are evolved for this decades-long process, which is both defined by and limited by successive glycan addition; and (ii) hemagglutinin's antibody dominance and its capacity for mutations are highly adapted features that allow influenza to outpace our antibody-based immunity. Human antibody-based immunity to influenza A virus is limited by antigenic drift resulting from amino acid substitutions in the hemagglutinin (HA) head domain. Glycan addition can cause large antigenic changes but is limited by fitness costs to viral replication. Here, we report that glycans are added to H1 and H3 HAs at discrete 5-to-7-year intervals, until they reach a functional glycan limit, after which glycans are swapped at approximately 2-fold-longer intervals. Consistent with this pattern, 2009 pandemic H1N1 added a glycan at residue N162 over the 2015–2016 season, an addition that required two epistatic HA head mutations for complete glycosylation. These strains rapidly replaced H1N1 strains globally, by 2017 dominating H3N2 and influenza B virus strains for the season. The pattern of glycan modulation that we outline should aid efforts for tracing the epidemic potential of evolving human IAV strains.
Collapse
|
47
|
Tan HX, Jegaskanda S, Juno JA, Esterbauer R, Wong J, Kelly HG, Liu Y, Tilmanis D, Hurt AC, Yewdell JW, Kent SJ, Wheatley AK. Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. J Clin Invest 2019; 129:850-862. [PMID: 30521496 PMCID: PMC6355240 DOI: 10.1172/jci123366] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Both natural influenza infection and current seasonal influenza vaccines primarily induce neutralizing antibody responses against highly diverse epitopes within the "head" of the viral hemagglutinin (HA) protein. There is increasing interest in redirecting immunity toward the more conserved HA stem or stalk as a means of broadening protective antibody responses. Here we examined HA stem-specific B cell and T follicular helper (Tfh) cell responses in the context of influenza infection and immunization in mouse and monkey models. We found that during infection, the stem domain was immunologically subdominant to the head in terms of serum antibody production and antigen-specific B and Tfh cell responses. Similarly, we found that HA stem immunogens were poorly immunogenic compared with the full-length HA with abolished sialic acid binding activity, with limiting Tfh cell elicitation a potential constraint to the induction or boosting of anti-stem immunity by vaccination. Finally, we confirm that currently licensed seasonal influenza vaccines can boost preexisting memory responses against the HA stem in humans. An increased understanding of the immune dynamics surrounding the HA stem is essential to inform the design of next-generation influenza vaccines for broad and durable protection.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Julius Wong
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yi Liu
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Danielle Tilmanis
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Aeron C Hurt
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Australian Research Council (ARC) Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Santos JJS, Abente EJ, Obadan AO, Thompson AJ, Ferreri L, Geiger G, Gonzalez-Reiche AS, Lewis NS, Burke DF, Rajão DS, Paulson JC, Vincent AL, Perez DR. Plasticity of Amino Acid Residue 145 Near the Receptor Binding Site of H3 Swine Influenza A Viruses and Its Impact on Receptor Binding and Antibody Recognition. J Virol 2019; 93:e01413-18. [PMID: 30355680 PMCID: PMC6321904 DOI: 10.1128/jvi.01413-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/13/2018] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin (HA), a glycoprotein on the surface of influenza A virus (IAV), initiates the virus life cycle by binding to terminal sialic acid (SA) residues on host cells. The HA gradually accumulates amino acid substitutions that allow IAV to escape immunity through a mechanism known as antigenic drift. We recently confirmed that a small set of amino acid residues are largely responsible for driving antigenic drift in swine-origin H3 IAV. All identified residues are located adjacent to the HA receptor binding site (RBS), suggesting that substitutions associated with antigenic drift may also influence receptor binding. Among those substitutions, residue 145 was shown to be a major determinant of antigenic evolution. To determine whether there are functional constraints to substitutions near the RBS and their impact on receptor binding and antigenic properties, we carried out site-directed mutagenesis experiments at the single-amino-acid level. We generated a panel of viruses carrying substitutions at residue 145 representing all 20 amino acids. Despite limited amino acid usage in nature, most substitutions at residue 145 were well tolerated without having a major impact on virus replication in vitro All substitution mutants retained receptor binding specificity, but the substitutions frequently led to decreased receptor binding. Glycan microarray analysis showed that substitutions at residue 145 modulate binding to a broad range of glycans. Furthermore, antigenic characterization identified specific substitutions at residue 145 that altered antibody recognition. This work provides a better understanding of the functional effects of amino acid substitutions near the RBS and the interplay between receptor binding and antigenic drift.IMPORTANCE The complex and continuous antigenic evolution of IAVs remains a major hurdle for vaccine selection and effective vaccination. On the hemagglutinin (HA) of the H3N2 IAVs, the amino acid substitution N 145 K causes significant antigenic changes. We show that amino acid 145 displays remarkable amino acid plasticity in vitro, tolerating multiple amino acid substitutions, many of which have not yet been observed in nature. Mutant viruses carrying substitutions at residue 145 showed no major impairment in virus replication in the presence of lower receptor binding avidity. However, their antigenic characterization confirmed the impact of the 145 K substitution in antibody immunodominance. We provide a better understanding of the functional effects of amino acid substitutions implicated in antigenic drift and its consequences for receptor binding and antigenicity. The mutation analyses presented in this report represent a significant data set to aid and test the ability of computational approaches to predict binding of glycans and in antigenic cartography analyses.
Collapse
Affiliation(s)
- Jefferson J S Santos
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Eugenio J Abente
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Adebimpe O Obadan
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Andrew J Thompson
- Department of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Lucas Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Ginger Geiger
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - Ana S Gonzalez-Reiche
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicola S Lewis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom
| | - David F Burke
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Daniela S Rajão
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| | - James C Paulson
- Department of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
49
|
Im SP, Kim J, Lee JS, Kim SW, Jung JW, Lazarte JMS, Kim JY, Kim YR, Lee JH, Chong RSM, Jung TS. Potential Use of Genetically Engineered Variable Lymphocyte Receptor B Specific to Avian Influenza Virus H9N2. THE JOURNAL OF IMMUNOLOGY 2018; 201:3119-3128. [PMID: 30333123 DOI: 10.4049/jimmunol.1800981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
The variable lymphocyte receptor (VLR) B of jawless vertebrates functions as a secreted Ab of jawed vertebrates and has emerged as an alternative Ab with a single polypeptide chain. After observing an upregulated VLRB response in hagfish immunized with avian influenza virus (AIV) subtype H9N2, we screened AIV H9N2-specific VLRB using a mammalian expression system. To improve the binding avidity of the Ag-specific VLRB to the Ag, we enabled multimerization of the VLRB by conjugating it with C-terminal domain of human C4b-binding protein. To dramatically enhance the expression and secretion of the Ag-specific VLRB, we introduced a glycine-serine linker and the murine Ig κ leader sequence. The practical use of the Ag-specific VLRB was also demonstrated through various immunoassays, detected by anti-VLRB Ab (11G5). Finally, we found that the Ag-specific VLRB decreased the infectivity of AIV H9N2. Together, our findings suggest that the generated Ag-specific VLRB could be used for various immunoapplications.
Collapse
Affiliation(s)
- Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
| | - Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
| | - Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
| | - Jassy Mary S Lazarte
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
| | - Jong Yong Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
| | - Jeong Ho Lee
- Inland Aquaculture Research Center, National Institute of Fisheries Science, Jinhae-gu, Changwon, Gyeongnam 645-806, South Korea; and
| | - Roger S M Chong
- Veterinary Aquatic Animal Health, Veterinary Surgeons Board of Queensland, Brisbane, Queensland 4000, Australia
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea;
| |
Collapse
|
50
|
Trombetta CM, Remarque EJ, Mortier D, Montomoli E. Comparison of hemagglutination inhibition, single radial hemolysis, virus neutralization assays, and ELISA to detect antibody levels against seasonal influenza viruses. Influenza Other Respir Viruses 2018; 12:675-686. [PMID: 30019448 PMCID: PMC6185893 DOI: 10.1111/irv.12591] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Background The immunological response to influenza vaccine and/or natural infection is evaluated by serological techniques, the most common being hemagglutination inhibition (HI), single radial hemolysis (SRH), and virus neutralization assays, which is commonly used in a micro‐neutralization (MN) format. ELISA is not officially required; however, this assay is able to measure different class‐specific antibodies. The four assays identify different sets or subsets of antibodies. Objectives The aim of this study was to establish the correlation among four serological assays using four seasonal influenza strains. Methods The HI, SRH, MN assays, and ELISA were performed on four seasonal influenza strains. Results A strong positive correlation was found between HI and MN and between SRH and MN assays for influenza A strains. The B strains also showed good correlations among the three assays. A positive correlation was also found between ELISA and the “classical” assays for all strains. Concerning the correlates of protection, as defined by HI ≥ 40 and SRH ≥ 25 mm2, good agreement was observed for the influenza A strains. By contrast, the agreement for the B strains was very low. Conclusions There is a positive strong correlation among the four serological assays for both A and B strains, especially for the HI and MN assays. There is good agreement on correlates of protection between HI and SRH assays for the A strains, but very low agreement for the B strains, suggesting higher sensitivity of SRH than HI assay in detecting antibodies against the influenza B viruses.
Collapse
Affiliation(s)
| | - Edmond J Remarque
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,VisMederi srl, Siena, Italy
| |
Collapse
|