1
|
Özdemir BH, Baştürk B, Sayın CB, Haberal M. Programmed Death-Ligand 1 in Renal Allografts With Antibody-Mediated Rejection. EXP CLIN TRANSPLANT 2025; 23:192-201. [PMID: 40223384 DOI: 10.6002/ect.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
OBJECTIVES Despite its known role in promoting tolerance, the function of programmed cell death protein 1/programmed death ligand 1 in antibody-mediated rejection is less clear. We aimed to clarify this role by examining expression of programmed cell death protein 1/programmed death ligand 1 in renal allografts diagnosed with antibody-mediated rejection. MATERIALS AND METHODS We examined 110 patients: 68 with pure antibody-mediated rejection (group 1) and 42 with both antibody-mediated rejection and T-cell mediated rejection (group 2). Renal immune cell infiltration, cytokine expression, and programmed cell death protein 1/programmed death ligand 1 expres-sion were examined immunohistochemically. RESULTS Expression of programmed cell death protein 1/programmed death ligand 1 in endothelial and inflammatory cells was higher in group 2 versus in group 1 (P < .001). Expression of programmed cell death protein 1/programmed death ligand 1 increased with immune cell infiltration. An inverse relationship existed between peritubular capillary DR expression and programmed cell death protein 1/programmed death ligand 1 interaction, with a positive correlation with tubular HLA-DR. Development of interstitial fibrosis was shown in 52.3% of patients with endothelial programmed cell death protein 1/programmed death ligand 1 interaction compared with 12.1% without this interaction (P < .001). Ten-year survival rate was 27.3% in patients with versus 66.7% in patients without endothelial programmed cell death protein 1/programmed death ligand 1 (P < .001) and 31.3% in patients with and 66.1% in patients without inflammatory cell programmed cell death protein 1/programmed death ligand 1 expression (P < .001). CONCLUSIONS Heightened immunological nature in antibody-mediated rejection may influence the unexpected functions of programmed death ligand 1. Inhibitory functions of the programmed cell death protein 1/programmed death ligand 1 pathway may be less effective under strong T-cell activation with high immunological costimulation in antibody-mediated rejection.
Collapse
Affiliation(s)
- Binnaz Handan Özdemir
- From the Pathology Department, Başkent University Faculty of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
2
|
Lee SW, Jeong S, Kim YJ, Noh JE, Rho KN, Kim HO, Cho HJ, Yang DH, Hwang EC, Kyun Bae W, Yun SJ, Yun JS, Park CK, Oh IJ, Cho JH. Enhanced thrombopoiesis supplies PD-L1 to circulating immune cells via the generation of PD-L1-expressing platelets in patients with lung cancer. J Immunother Cancer 2025; 13:e010193. [PMID: 40010769 PMCID: PMC11865743 DOI: 10.1136/jitc-2024-010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The increased expression of programmed cell death ligand 1 (PD-L1) on a subset of immune cells in the peripheral blood has been frequently observed in patients with cancer, suggesting a relationship with PD-L1 expression in tumor tissues. In this study, we investigated the mechanisms underlying PD-L1 expression on various types of immune cells in the peripheral blood of patients with cancer. METHODS PD-L1 expression on various immune cell populations was analyzed in peripheral blood mononuclear cells of 112 patients with non-small cell lung cancer (NSCLC) using flow cytometry. A mouse model of X-ray-induced acute thrombocytopenia was used to investigate the relationship between thrombopoiesis and PD-L1-expressing platelet generation. The clinical significance of PD-L1-expressing platelets was analyzed in a cohort of patients with stage IV NSCLC who received a combination of anti-programmed cell death 1 (PD-1) therapy and chemotherapy. RESULTS All immune cell populations, including monocytes, T cells, B cells, and NK cells, showed higher PD-L1 expression in patients with cancer than in healthy controls. However, this increased frequency of PD-L1-expressing cells was not attributed to the expression of the cells themselves. Instead, it was entirely dependent on the direct interaction of the cells with PD-L1-expressing platelets. Notably, the platelet-dependent acquisition of PD-L1 on circulating immune cells of patients with lung cancer was observed in various other cancer types and was mechanistically associated with a surge in thrombopoiesis, resulting in the increased production of PD-L1-expressing reticulated platelets. Clinically, patients with enhanced thrombopoiesis and concurrently high PD-L1-expressing platelets exhibited a better response to anti-PD-1 therapy. CONCLUSIONS These findings highlight the role of tumor-associated thrombopoiesis in generating PD-L1-expressing platelets that may serve as a resource for PD-L1-positive cells in the circulation and act as a predictive biomarker for anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Saei Jeong
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Young Ju Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Jeong Eun Noh
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Kyung Na Rho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Hee-Ok Kim
- Selecxine Inc, Seoul, Korea (the Republic of)
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Deok Hwan Yang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Eu Chang Hwang
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Department of Urology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Woo Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Sook Jung Yun
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Department of Dermatology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Ju Sik Yun
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Chonnam National University Hwasun Hospital, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- National Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
- BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasun-eup, Hwasun-gun, Jeollanam-do, Korea (the Republic of)
| |
Collapse
|
3
|
Miller-Handley H, Harper G, Pham G, Turner LH, Shao TY, Russi AE, Erickson JJ, Ford ML, Araki K, Way SS. Immune suppression sustained allograft acceptance requires PD1 inhibition of CD8+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:192-198. [PMID: 40073258 PMCID: PMC11904129 DOI: 10.1093/jimmun/vkae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 03/14/2025]
Abstract
Organ transplant recipients require continual immune-suppressive therapies to sustain allograft acceptance. Although medication nonadherence is a major cause of rejection, the mechanisms responsible for graft loss in this clinically relevant context among individuals with preceding graft acceptance remain uncertain. Here, we demonstrate that skin allograft acceptance in mice maintained with clinically relevant immune-suppressive therapies, tacrolimus and mycophenolate, sensitizes hypofunctional PD1hi graft-specific CD8+ T cells. Uninterrupted immune-suppressive therapy is required because drug discontinuation triggers allograft rejection, replicating the requirement for immune-suppressive therapy adherence in transplant recipients. Graft-specific CD8+ T cells in allograft-accepted mice show diminished effector differentiation and cytokine production, with reciprocally increased PD1 expression. Allograft acceptance-induced PD1 expression is essential, as PDL1 blockade reinvigorates graft-specific CD8+ T cell activation with ensuing allograft rejection despite continual immune-suppressive therapy. Thus, PD1 sustained CD8+ T cell inhibition is essential for allograft acceptance maintained by tacrolimus plus mycophenolate. This necessity for PD1 in sustaining allograft acceptance explains the high rates of rejection in transplant recipients with cancer administered immune checkpoint inhibitors targeting PD1/PDL1, highlighting shared immune suppression pathways exploited by tumor cells and current therapies for averting allograft rejection.
Collapse
Affiliation(s)
- Hilary Miller-Handley
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
- Department of Medicine, University of Cincinnati College of Medicine
| | - Gavin Harper
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Lucien H. Turner
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Abigail E. Russi
- Division of Gastroenterology, Hepatology and Advanced Nutrition, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - John J. Erickson
- Division of Neonatology, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Mandy L. Ford
- Winship Cancer Institute, Emory University School of Medicine
| | - Koichi Araki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital, Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
4
|
Kanazawa R, Goto R, Harada T, Ota T, Kobayashi N, Shibuya K, Ganchiku Y, Watanabe M, Zaitsu M, Kawamura N, Shimamura T, Taketomi A. Early graft-infiltrating lymphocytes are not associated with graft rejection in a mouse model of skin transplantation. Scand J Immunol 2024; 100:e13397. [PMID: 39080853 DOI: 10.1111/sji.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 11/05/2024]
Abstract
Graft-infiltrating lymphocytes (GILs) play an important role in promoting rejection after organ transplantation. We recently reported that GILs that accumulated up to 3 days post-transplantation did not promote rejection, whereas GILs present 3-5 days post-transplantation promoted rejection in a mouse heart transplantation model. However, the immunological behaviour of GILs in murine skin transplantation remains unclear. GILs were isolated on days 3, 5 or 7 post-transplantation from C57BL/6 (B6) allogeneic skin grafts transplanted onto BALB/c mice. BALB/c Rag2-/- γc-/- mice (BRGs) underwent B6 skin graft transplantation 10 weeks after adoptive transfer of day 3, 5, or 7 GILs. BRGs reconstituted with day 5 or 7 GILs completely rejected B6 grafts. However, when B6 grafts harvested from recipient BALB/c mice on day 5 or 7 were re-transplanted into BRGs, half of the re-transplanted day 5 grafts established long-term survival, although all re-transplanted day 7 grafts were rejected. BRGs reconstituted with day 3 GILs did not reject B6 grafts. Consistently, re-transplantation using day 3 skin grafts resulted in no rejection. Administration of anti-CD25 antibodies did not prevent the phenomenon observed for the day 3 skin grafts. Furthermore, BRGs reconstituted with splenocytes from naïve BALB/c mice immediately rejected the naïve B6 skin grafts and the re-transplanted day 3 B6 grafts, suggesting that day 3 GILs were unable to induce allograft rejection during the rejection process. In conclusion, the immunological role of GILs depends on the time since transplantation. Day 3 GILs had neither protective nor alloreactive effects in the skin transplant model.
Collapse
Affiliation(s)
- Ryo Kanazawa
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Takuya Harada
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Takuji Ota
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Kazuaki Shibuya
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Masaaki Watanabe
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Ota T, Goto R, Harada T, Forgioni A, Kanazawa R, Ganchiku Y, Kawamura N, Watanabe M, Fukai M, Shimamura T, Taketomi A. TCF1highPD-1+Ly108+CD8+ T Cells Are Associated with Graft Preservation in Sensitized Mice Treated with Non-Fc Receptor-Binding CD3 Antibodies. Immunohorizons 2024; 8:295-306. [PMID: 38587418 PMCID: PMC11066723 DOI: 10.4049/immunohorizons.2300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The non-Fc-binding anti-CD3 Ab [anti-CD3F(ab')2] can induce graft acceptance depending on the therapeutic window in a rodent heart transplant model. The delayed protocol allows for early graft infiltration of lymphocytes, which may behave in an inhibitory manner. We investigated the most effective protocol for anti-CD3F(ab')2 in sensitized conditions to confirm the evidence for clinical application. C57BL/6 mice were sensitized with BALB/c tail skin grafts and transplanted with BALB/c heart grafts at 8-12 wk after sensitization. Fifty micrograms of anti-CD3F(ab')2 was administered daily for 5 consecutive days on days 1-5 (day 1 protocol) or days 3-7 (delayed protocol). In nonsensitized mice, the delayed protocol significantly prolonged graft survival after transplantation from BALB/c to naive B6 (median survival time [MST], >100 d). In contrast, the delayed protocol was unable to prevent graft rejection in sensitized mice (MST, 5 d). A significantly increased percentage of granzyme B+ CD8+ T cells was observed in the graft on day 3 posttransplantation in sensitized conditions. Further, the day 1 protocol significantly prolonged graft survival (MST, 18 d), even in sensitized conditions. Day 1 treatment significantly increased the percentage of Foxp3+CD25+CD4+ T cells and phenotypically changed CD8+ T cells in the graft (i.e., caused a significant increase in the proportion of Ly108+TCF1highPD-1+CD8+ T cells). In conclusion, different timings of delayed anti-CD3F(ab')2 treatment promoted allograft preservation in association with phenotypic changes in CD4+ and CD8+ T cells in the graft under sensitized conditions.
Collapse
Affiliation(s)
- Takuji Ota
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Takuya Harada
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Agustina Forgioni
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Ryo Kanazawa
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Masaaki Watanabe
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo, Japan
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Van Meerhaeghe T, Murakami N, Le Moine A, Brouard S, Sprangers B, Degauque N. Fine-tuning tumor- and allo-immunity: advances in the use of immune checkpoint inhibitors in kidney transplant recipients. Clin Kidney J 2024; 17:sfae061. [PMID: 38606169 PMCID: PMC11008728 DOI: 10.1093/ckj/sfae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 04/13/2024] Open
Abstract
Cancer is a common complication after kidney transplantation. Kidney transplant recipients (KTR) have a 2- to 4-fold higher risk of developing cancer compared to the general population and post-transplant malignancy is the third most common cause of death in KTR. Moreover, it is well known that certain cancer types are overrepresented after transplantation, especially non-melanoma skin cancer. Immune checkpoint inhibitors (ICI) have revolutionized the treatment of cancer, with remarkable survival benefit in a subgroup of patients. ICI are monoclonal antibodies that block the binding of specific co-inhibitory signaling molecules. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1), and its ligand programmed cell death ligand 1 (PD-L1) are the main targets of ICI. Solid organ transplant recipients (SOTR) have been excluded from clinical trials owing to concerns about tumor response, allo-immunity, and risk of transplant rejection. Indeed, graft rejection has been estimated as high as 48% and represents an emerging problem. The underlying mechanisms of organ rejection in the context of treatment with ICI are poorly understood. The search for restricted antitumoral responses without graft rejection is of paramount importance. This review summarizes the current knowledge of the use of ICI in KTR, the potential mechanisms involved in kidney graft rejection during ICI treatment, potential biomarkers of rejection, and how to deal with rejection in clinical practice.
Collapse
Affiliation(s)
- Tess Van Meerhaeghe
- Departement of Nephrology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Naoka Murakami
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Boston, USA
| | - Alain Le Moine
- Departement of Nephrology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Brouard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| | - Ben Sprangers
- Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
- Department of Nephrology, Ziekenhuis Oost Limburg, Genk, Belgium
| | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, Nantes, France
| |
Collapse
|
7
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
8
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Sonnenburg A, Stahlmann R, Kreutz R, Peiser M. A new cell line based coculture system for skin sensitisation testing in one single assay using T cells, aryl hydrocarbon receptor knockout, and co-inhibitory blockage. Arch Toxicol 2023; 97:1677-1689. [PMID: 37147507 PMCID: PMC10182954 DOI: 10.1007/s00204-023-03506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Established in vitro assays for regulatory testing of skin sensitisation partly suffer from only moderate sensitivity, specificity, and predictivity when testing specific groups of chemicals. This may be due to limited biomarker response in vitro in cell types that interact as crucial players of in vivo skin sensitisation pathogenesis. Here, we propose a molecular approach to overcome this limitation. In our model, we apply genome editing and blocking of immunoregulatory molecules to increase the range of biomarker modulation by sensitising chemicals. To this end, aryl hydrocarbon receptor (AhR) knockout was done by CRISPR/Cas9 technology in THP-1 cells and combined with Programmed Cell Death-Ligand (PD-L)1 blockade. AhR-knockout THP-1 in coculture with HaCaT keratinocytes showed increased CD54 expression compared to wild type cells after stimulation with 10 µmol/L dinitrochlorobenzene (DNCB) that was further enhanced by anti-PD-L1. After stimulation of AhR-knockout THP-1 with 200 µmol/L mercaptobenzothiazol or 10 µmol/L DNCB, cocultivated Jurkat T cells significantly increased expression of T cell receptor-associated CD3. No such increase was detected after prior treatment of THP-1 with 150 µmol/L of irritant sodium lauryl sulphate. Additionally, higher levels of inflammatory cytokines MIP-3α, MIP-1β, TNF-α, and IL-8 were found in supernatants of enhanced loose-fit co-culture based sensitisation assay (eLCSA) after substance treatment. Hence, eLCSA allowed to discriminate between sensitisers and non-sensitisers. Thus, inhibition of immunoinhibitory pathway signalling by combining AhR knockout and PD-L1 antibody blockage into an assay involving main acting cell types in skin sensitisation may increase sensitivity and specificity of such assays and allow potency derivation.
Collapse
Affiliation(s)
- Anna Sonnenburg
- Institute for Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| | - Ralf Stahlmann
- Institute for Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Institute for Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Peiser
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
10
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
11
|
Jiang J, Huang H, Chen R, Lin Y, Ling Q. Immunotherapy for hepatocellular carcinoma recurrence after liver transplantation, can we harness the power of immune checkpoint inhibitors? Front Immunol 2023; 14:1092401. [PMID: 36875077 PMCID: PMC9978931 DOI: 10.3389/fimmu.2023.1092401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death globally and liver transplantation (LT) can serve as the best curative treatment option. However, HCC recurrence after LT remains the major obstacle to the long-term survival of recipients. Recently, immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many cancers and provided a new treatment strategy for post-LT HCC recurrence. Evidence has been accumulated with the real-world application of ICIs in patients with post-LT HCC recurrence. Notably, the use of these agents as immunity boosters in recipients treated with immunosuppressors is still controversial. In this review, we summarized the immunotherapy for post-LT HCC recurrence and conducted an efficacy and safety evaluation based on the current experience of ICIs for post-LT HCC recurrence. In addition, we further discussed the potential mechanism of ICIs and immunosuppressive agents in regulating the balance between immune immunosuppression and lasting anti-tumor immunity.
Collapse
Affiliation(s)
- Jingyu Jiang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yimou Lin
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Sonnenburg A, Stahlmann R, Kreutz R, Peiser M. Aryl hydrocarbon receptor knockout and antibody blockade of programmed cell death ligand1 increase co-stimulatory molecules on THP-1 and specific cytokine response of human T cells. Toxicol In Vitro 2023; 86:105502. [DOI: 10.1016/j.tiv.2022.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
13
|
Quach HT, Hou Z, Bellis RY, Saini JK, Amador-Molina A, Adusumilli PS, Xiong Y. Next-generation immunotherapy for solid tumors: combination immunotherapy with crosstalk blockade of TGFβ and PD-1/PD-L1. Expert Opin Investig Drugs 2022; 31:1187-1202. [PMID: 36448335 PMCID: PMC10085570 DOI: 10.1080/13543784.2022.2152323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION In solid tumor immunotherapy, less than 20% of patients respond to anti-programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) agents. The role of transforming growth factor β (TGFβ) in diverse immunity is well-established; however, systemic blockade of TGFβ is associated with toxicity. Accumulating evidence suggests the role of crosstalk between TGFβ and PD-1/PD-L1 pathways. AREAS COVERED We focus on TGFβ and PD-1/PD-L1 signaling pathway crosstalk and the determinant role of TGFβ in the resistance of immune checkpoint blockade. We provide the rationale for combination anti-TGFβ and anti-PD-1/PD-L1 therapies for solid tumors and discuss the current status of dual blockade therapy in preclinical and clinical studies. EXPERT OPINION The heterogeneity of tumor microenvironment across solid tumors complicates patient selection, treatment regimens, and response and toxicity assessment for investigation of dual blockade agents. However, clinical knowledge from single-agent studies provides infrastructure to translate dual blockade therapies. Dual TGFβ and PD-1/PD-L1 blockade results in enhanced T-cell infiltration into tumors, a primary requisite for successful immunotherapy. A bifunctional fusion protein specifically targets TGFβ in the tumor microenvironment, avoiding systemic toxicity, and prevents interaction of PD-1+ cytotoxic cells with PD-L1+ tumor cells.
Collapse
Affiliation(s)
- Hue Tu Quach
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Rebecca Y. Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jasmeen K. Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Director, Mesothelioma Program; Head, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
14
|
Ye F, Wu P, Zhu Y, Huang G, Tao Y, Liao Z, Guan Y. Construction of the prognostic signature of alternative splicing revealed the prognostic predictor and immune microenvironment in head and neck squamous cell carcinoma. Front Genet 2022; 13:989081. [PMID: 36338975 PMCID: PMC9633855 DOI: 10.3389/fgene.2022.989081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSC) is a prevalent and heterogeneous malignancy with poor prognosis and high mortality rates. There is significant evidence of alternative splicing (AS) contributing to tumor development, suggesting its potential in predicting prognosis and therapeutic efficacy. This study aims to establish an AS-based prognostic signature in HNSC patients. Methods: The expression profiles and clinical information of 486 HNSC patients were downloaded from the TCGA database, and the AS data were downloaded from the TCGA SpliceSeq database. The survival-associated AS events were identified by conducting a Cox regression analysis and utilized to develop a prognostic signature by fitting into a LASSO-regularized Cox regression model. Survival analysis, univariate and multivariate Cox regression analysis, and receiver operating characteristic (ROC) curve analysis were performed to evaluate the signature and an independent cohort was used for validation. The immune cell function and infiltration were analyzed by CIBERSORT and the ssGSEA algorithm. Results: Univariate Cox regression analysis identified 2726 survival-associated AS events from 1714 genes. The correlation network reported DDX39B, PRPF39, and ARGLU1 as key splicing factors (SF) regulating these AS events. Eight survival-associated AS events were selected and validated by LASSO regression to develop a prognostic signature. It was confirmed that this signature could predict HNSC outcomes independent of other variables via multivariate Cox regression analysis. The risk score AUC was more than 0.75 for 3 years, highlighting the signature’s prediction capability. Immune infiltration analysis reported different immune cell distributions between the two risk groups. The immune cell content was higher in the high-risk group than in the low-risk group. The correlation analysis revealed a significant correlation between risk score, immune cell subsets, and immune checkpoint expression. Conclusion: The prognostic signature developed from survival-associated AS events could predict the prognosis of HNSC patients and their clinical response to immunotherapy. However, this signature requires further research and validation in larger cohort studies.
Collapse
Affiliation(s)
- Fan Ye
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Pingan Wu
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yaqiong Zhu
- Department of Otolaryngology Head and Neck Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guan Huang
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ying Tao
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhencheng Liao
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yafeng Guan
- Department of Surgery, Division of Otolaryngology, Head and Neck Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Yafeng Guan,
| |
Collapse
|
15
|
Wu Y, Yu S, Qiao H. Understanding the functional inflammatory factors involved in therapeutic response to immune checkpoint inhibitors for pan-cancer. Front Pharmacol 2022; 13:990445. [PMID: 36120342 PMCID: PMC9474995 DOI: 10.3389/fphar.2022.990445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) fight tumor progression by activating immune conditions. The inflammatory factors are playing a functional role in programmed death-1 (PD-1) or other immune checkpoints. They are involved in regulating the expression of programmed death ligand-1 (PD-L1), the only predictor recognized by the guidelines in response to ICIs. In addition, abundant components of the tumor microenvironment (TME) all interact with various immune factors contributing to the response to ICIs, including infiltration of various immune cells, extracellular matrix, and fibroblasts. Notably, the occurrence of immune-related adverse events (irAEs) in patients receiving ICIs is increasingly observed in sundry organs. IrAEs are often regarded as an inflammatory factor-mediated positive feedback loop associated with better response to ICIs. It deserves attention because inflammatory factors were observed to be different when targeting different immune checkpoints or in the presence of different irAEs. In the present review, we address the research progresses on regulating inflammatory factors for an intentional controlling anti-cancer response with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Bourque J, Kousnetsov R, Hawiger D. Roles of Hopx in the differentiation and functions of immune cells. Eur J Cell Biol 2022; 101:151242. [DOI: 10.1016/j.ejcb.2022.151242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
|
17
|
Shen DD, Bi YP, Pang JR, Zhao LJ, Zhao LF, Gao Y, Wang B, Liu HM, Liu Y, Wang N, Zheng YC, Liu HM. Generation, secretion and degradation of cancer immunotherapy target PD-L1. Cell Mol Life Sci 2022; 79:413. [PMID: 35819633 PMCID: PMC11073444 DOI: 10.1007/s00018-022-04431-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is a rapidly developing and effective method for the treatment of a variety of malignancies in recent years. As a significant immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) play the most significant role in cancer immune escape and cancer immunotherapy. Though PD-L1 have become an important target for drug development and there have been various approved drugs and clinic trials targeting it, and various clinical response rate and adverse reactions prevent many patients from benefiting from it. In recent years, combination trials have become the main direction of PD-1/PD-L1 antibodies development. Here, we summarized PD-L1 biofunctions and key roles in various cancers along with the development of PD-L1 inhibitors. The regulators that are involved in controlling PD-L1 expression including post-translational modification, mRNA level regulation as well as degradation and exosome secretory pathway of PD-L1 were focused. This systematic summary may provide comprehensive understanding of different regulations on PD-L1 as well as a broad prospect for the search of the important regulator of PD-L1. The regulatory factors of PD-L1 can be potential targets for immunotherapy and increase strategies of immunotherapy in combination.
Collapse
Affiliation(s)
- Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya-Ping Bi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Wang
- The School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi-Chao Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
18
|
Parker J, Roth O. Comparative assessment of immunological tolerance in fish with natural immunodeficiency. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104393. [PMID: 35276317 DOI: 10.1016/j.dci.2022.104393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Natural occurrences of immunodeficiency by definition should lead to compromised immune function. The major histocompatibility complexes (MHC) are key components of the vertebrate adaptive immune system, charged with mediating allorecognition and antigen presentation functions. To this end, the genomic loss of the MHC II pathway in Syngnathus pipefishes raises questions regarding their immunological vigilance and allorecognition capabilities. Utilising allograft and autograft fin-transplants, we compared the allorecognition immune responses of two pipefish species, with (Nerophis ophidion) and without (Syngnathus typhle) a functional MHC II. Transcriptome-wide assessments explored the immunological tolerance and potential compensatory measures occupying the role of the absent MHC II. Visual observations suggested a more acute rejection response in N. ophidion allografts compared with S. typhle allografts. Differentially expressed genes involved in innate immunity, angiogenesis and tissue recovery were identified among transplantees. The intriguing upregulation of the cytotoxic T-cell implicated gzma in S. typhle allografts, suggests a prominent MHC I related response, which may compensate for the MHC II and CD4 loss. MHC I related downregulation in N. ophidion autografts hints at an immunological tolerance related reaction. These findings may indicate alternative measures evolved to cope with the MHC II genomic loss enabling the maintenance of appropriate tolerance levels. This study provides intriguing insights into the immune and tissue recovery mechanisms associated with syngnathid transplantation, and can be a useful reference for future studies focusing on transplantation transcriptomics in non-model systems.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany; Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany.
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany; Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| |
Collapse
|
19
|
Yang ZY, Jiang CW, Zhang WL, Sun G. Treatment with eFT-508 increases chemosensitivity in breast cancer cells by modulating the tumor microenvironment. J Transl Med 2022; 20:276. [PMID: 35717238 PMCID: PMC9206753 DOI: 10.1186/s12967-022-03474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Patients with triple-negative breast cancer (TNBC) are better responders to neoadjuvant chemotherapy; however, they are poor in the durability of response with decreased overall and progression-free survival. Methods Given that significant improvements have been reported with PD-L1-PD-1 blockade in different cancers, we evaluated the in vitro and in vivo effectiveness of Tomivosertib (eFT-508), an anthracycline, adriamycin, and MNK1/2 inhibitor, which has been previously shown to inhibit translation of PD-L1 in mice model of liver cancer, alone or in combination using BC cell lines and an orthotopic xenograft mice model using the TNBC cell line MDA-MB-231. Results Within the context of The Cancer Genome Atlas (TCGA) dataset, expression of CD274 mRNA, which encodes programmed death-ligand 1 (PD-L1), was found to be significantly overexpressed in TNBC patients compared to patients with HER2 + or luminal breast cancer (BC). Even within TNBC sub-types, CD274 expression was significantly higher in the immune modulatory subtype (TNBC-IM). BC cells exhibited high IC50 = 0.85 ± 0.07 nM with Adriamycin and significantly lower IC50 = 0.23 ± 0.04 nM with eFT-508 (P < 0.01). Combination treatment showed in vitro synergism on chemosensitivity. Combination therapy also exhibited a synergistic effect on inhibition of tumor growth and lung colonization in vivo. Mass cytometry-based evaluation of the tumor microenvironment revealed significant attenuation of both PD-L1 and PD-L2 following mono- or combination therapy with eFT-508. Conclusions Treatment with eFT-508 restored effector and cytotoxic function of tumor-infiltrating CD8 + T cells in mice. The remarkable efficacy observed both in vitro and in vivo, and clinical synergism with adriamycin, highlights the potential of eFT-508 as an alternative, yet more efficacious, therapeutic option for patients with TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03474-9.
Collapse
Affiliation(s)
- Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Cheng-Wei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Wen-Long Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Guang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
20
|
Chen W, Huang Y, Pan W, Xu M, Chen L. Strategies for developing PD-1 inhibitors and future directions. Biochem Pharmacol 2022; 202:115113. [DOI: 10.1016/j.bcp.2022.115113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
|
21
|
Sofi S, Mehraj U, Qayoom H, Aisha S, Asdaq SMB, Almilaibary A, Mir MA. Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 2022; 39:106. [PMID: 35486263 DOI: 10.1007/s12032-022-01731-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Presently, breast cancer (BC) is one of the most common malignancies diagnosed and the leading cause of tumor-related deaths among women worldwide. Cell cycle dysregulation is one of the hallmarks of cancer, resulting in uncontrolled cell proliferation. Cyclin-dependent kinases (CDKs) are central to the cell cycle control system, and deregulation of these kinases leads to the development of malignancies, including breast cancer. CDKs and cyclins have been reported as crucial components involved in tumor cell proliferation and metastasis. Given the aggressive nature, tumor heterogeneity, and chemoresistance, there is an urgent need to explore novel targets and therapeutics to manage breast cancer effectively. Inhibitors targeting CDKs modulate the cell cycle, thus throwing light upon their therapeutic aspect where the progression of tumor cells could be inhibited. This article gives a comprehensive account of CDKs in breast cancer progression and metastasis and recent developments in the modulation of CDKs in treating malignancies. We have also explored the expression pattern and prognostic significance of CDKs in breast cancer patients. The article will also shed light on the Implications of CDK inhibition and TGF-β signaling in breast cancer.
Collapse
Affiliation(s)
- Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Shariqa Aisha
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | | | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, 65511, Kingdom of Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
22
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
23
|
Bourque J, Opejin A, Surnov A, Iberg CA, Gross C, Jain R, Epstein JA, Hawiger D. Landscape of Hopx expression in cells of the immune system. Heliyon 2021; 7:e08311. [PMID: 34805566 PMCID: PMC8590040 DOI: 10.1016/j.heliyon.2021.e08311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Homeodomain only protein (Hopx) is a regulator of cell differentiation and function, and it has also emerged as a crucial marker of specific developmental and differentiation potentials. Hopx expression and functions have been identified in some stem cells, tumors, and in certain immune cells. However, expression of Hopx in immune cells remains insufficiently characterized. Here we report a comprehensive pattern of Hopx expression in multiple types of immune cells under steady state conditions. By utilizing single-cell RNA sequencing (scRNA-seq) and flow cytometric analysis, we characterize a constitutive expression of Hopx in specific subsets of CD4+ and CD8+ T cells and B cells, as well as natural killer (NK), NKT, and myeloid cells. In contrast, Hopx expression is not present in conventional dendritic cells and eosinophils. The utility of identifying expression of Hopx in immune cells may prove vital in delineating specific roles of Hopx under multiple immune conditions.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Adeleye Opejin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Alexey Surnov
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Cindy Gross
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| | - Rajan Jain
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan A Epstein
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63118, USA
| |
Collapse
|
24
|
Asgari A, Lesyk G, Poitras E, Govindasamy N, Terry K, To R, Back V, Rudzinski JK, Lewis JD, Jurasz P. Platelets stimulate programmed death-ligand 1 expression by cancer cells: Inhibition by anti-platelet drugs. J Thromb Haemost 2021; 19:2862-2872. [PMID: 34333838 DOI: 10.1111/jth.15478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Platelets facilitate hematogenous metastasis in part by promoting cancer cell immunoevasion, although our understanding of platelet function in modulating the adaptive immune system in cancer is limited. A major negative regulator of the adaptive response is the immune checkpoint protein Programmed Death Ligand 1 (PD-L1). OBJECTIVES As platelets secrete factors that may increase PD-L1 expression, we investigated whether they up-regulate cancer cell PD-L1, thus promoting immunoevasion, and whether common anti-platelet drugs inhibit this process. METHODS Platelets were isolated from human volunteers. A549 lung, PD-L1 null A549, and 786-O renal cancer cells were incubated with and without platelets, and cancer cell PD-L1 expression was measured by qPCR and flow cytometry. Additionally, platelet-cancer cell incubations were performed in the presence of common anti-platelet drugs, and with growth factor neutralizing antibodies. Following incubation with platelets, A549 were co-cultured with T-cells and interleukin-2 (IL-2) levels were measured by flow cytometry as a marker of T-cell activation. RESULTS Platelets increased PD-L1 mRNA and surface protein expression by A549 and 786-0 cells. Combined neutralization of VEGF and PDGF prevented the platelet-induced up-regulation of PD-L1 by A549, as did the anti-platelet drug eptifibatide. A549 incubated with platelets demonstrated a reduced ability to activate human T-cells, an effect reversed by eptifibatide. CONCLUSIONS As platelets promote immunoevasion of the adaptive immune response by increasing cancer cell PD-L1 expression and as anti-platelet drugs prevent this immunoevasive response, the investigation of anti-platelet drugs as adjuvant therapy to immune checkpoint inhibitors may be warranted in the treatment of cancer.
Collapse
Affiliation(s)
- Amir Asgari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gabriela Lesyk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Erika Poitras
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kara Terry
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel To
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Valentina Back
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jan K Rudzinski
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Decker JT, Ma JA, Shea LD, Jeruss JS. Implications of TGFβ Signaling and CDK Inhibition for the Treatment of Breast Cancer. Cancers (Basel) 2021; 13:5343. [PMID: 34771508 PMCID: PMC8582459 DOI: 10.3390/cancers13215343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
TGFβ signaling enacts tumor-suppressive functions in normal cells through promotion of several cell regulatory actions including cell-cycle control and apoptosis. Canonical TGFβ signaling proceeds through phosphorylation of the transcription factor, SMAD3, at the C-terminus of the protein. During oncogenic progression, this tumor suppressant phosphorylation of SMAD3 can be inhibited. Overexpression of cyclins D and E, and subsequent hyperactivation of cyclin-dependent kinases 2/4 (CDKs), are often observed in breast cancer, and have been associated with poor prognosis. The noncanonical phosphorylation of SMAD3 by CDKs 2 and 4 leads to the inhibition of tumor-suppressive function of SMAD3. As a result, CDK overactivation drives oncogenic progression, and can be targeted to improve clinical outcomes. This review focuses on breast cancer, and highlights advances in the understanding of CDK-mediated noncanonical SMAD3 phosphorylation. Specifically, the role of aberrant TGFβ signaling in oncogenic progression and treatment response will be examined to illustrate the potential for therapeutic discovery in the context of cyclins/CDKs and SMAD3.
Collapse
Affiliation(s)
- Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5932, USA
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (J.T.D.); (J.A.M.); (L.D.S.)
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109-5932, USA
| |
Collapse
|
26
|
Stuelten CH, Zhang YE. Transforming Growth Factor-β: An Agent of Change in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:764727. [PMID: 34712672 PMCID: PMC8545984 DOI: 10.3389/fcell.2021.764727] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Transforming Growth Factor-β (TGF-β) is a key regulator of embryonic development, adult tissue homeostasis, and lesion repair. In tumors, TGF-β is a potent inhibitor of early stage tumorigenesis and promotes late stage tumor progression and metastasis. Here, we review the roles of TGF-β as well as components of its signaling pathways in tumorigenesis. We will discuss how a core property of TGF-β, namely its ability to change cell differentiation, leads to the transition of epithelial cells, endothelial cells and fibroblasts to a myofibroblastoid phenotype, changes differentiation and polarization of immune cells, and induces metabolic reprogramming of cells, all of which contribute to the progression of epithelial tumors.
Collapse
Affiliation(s)
- Christina H. Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Ying E. Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
27
|
Eftekhar SP, Yazdanpanah N, Rezaei N. Immune checkpoint inhibitors and cardiotoxicity: possible mechanisms, manifestations, diagnosis and management. Expert Rev Anticancer Ther 2021; 21:1211-1228. [PMID: 34511008 DOI: 10.1080/14737140.2021.1979396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a new class of anticancer drugs that enhance the immune system function and activate T cells against cancerous cells. Although cardiac complications are not common, they could be accompanied with high morbidity and mortality. AREAS COVERED Regarding the importance of cardiac complications and their subsequent burden on individuals and the healthcare system, this review attempts to discuss the mechanism, diagnosis, and management of myocarditis, besides recapitulating the possible mechanism of other cardiac adverse events. Moreover, we briefly discuss the concurrent administration of other chemotherapeutic agents. EXPERT OPINION Due to insufficient knowledge concerning the physiopathology of immune-related adverse events (irAEs) and their potential further complications, cardiovascular complications in particular and in the context of this paper's focus, cooperation of oncologists, immunologists, and cardiologists is necessary for the management of patients. Experimental approaches such as using corticosteroids are becoming a part of guidelines for managing cardiac irAEs. However, a unique algorithm for diagnosis and management is necessary, especially in myocarditis cases. Furthermore, more studies are required to resolve current challenges, including prevention of myocarditis, concurrent administration of other chemotherapeutic agents, and re-introducing patients with ICIs.
Collapse
Affiliation(s)
- Seyed Parsa Eftekhar
- School of Medicine, Babol University of Medical Sciences, Babol, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Babol, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Abstract
Cancer is the second leading cause of death in the worldwide. With the growing
burden of cancer, the studies on early diagnosis, treatment and prevention of
cancer are rapidly increasing. Recently, many new therapeutic strategies have
been discovered, among which immunotherapy has dramatically changed the outlook
for cancer treatment. Several clinical trials are underway around the world to
produce potential treatments. However, these trials set certain strict joining
conditions, so that the clinical data cannot be fully applied in the real world.
To help clinical oncologists with treatment decision-making, this review
collected recent studies on special populations receiving immunotherapy,
including organ transplant patients, pregnant women, pediatric patients,
patients with pulmonary tuberculosis, patients with human immunodeficiency
virus, and patients with autoimmune diseases and mental illness.
Collapse
Affiliation(s)
- Qianyun Shan
- The Second Clinical Medical College, 70571Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (89680Zhejiang Cancer Hospital), People's Republic of China.,Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, People's Republic of China
| | - Hongyang Lu
- The Second Clinical Medical College, 70571Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (lung and esophagus), Cancer Hospital of the University of Chinese Academy of Sciences (89680Zhejiang Cancer Hospital), People's Republic of China.,Department of Thoracic Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, People's Republic of China
| |
Collapse
|
29
|
Multifaceted Role of the Transforming Growth Factor β on Effector T Cells and the Implication for CAR-T Cell Therapy. IMMUNO 2021. [DOI: 10.3390/immuno1030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Evading the immune system is one of the hallmarks of cancer. Tumors escape anti-tumor immunity through cell-intrinsic means and the assembly of an immunosuppressive tumor microenvironment. By significantly boosting the host immune system, cancer immunotherapies targeting immune checkpoint receptors (CTLA-4 and PD-1) improved survival in patients even with cancers previously considered rapidly fatal. Nevertheless, an important group of patients is refractory or relapse rapidly. The factors involved in the heterogeneous responses observed are still poorly understood. Other immunotherapeutic approaches are being developed that may widen the options, including adoptive cell therapy using CAR-T cells alone or in combination. Despite impressive results in B cell malignancies, many caveats and unanswered questions remain in other cancers, thus limiting the potential of this approach to treat aggressive diseases. In particular, a complex TME could impair the survival, proliferation, and effector functions of CAR-T cells. Recent reports highlight the potential of targeting TGF-β signaling to improve CAR-T cell therapy. TGF-β is a well-known regulatory cytokine with pleiotropic effects in the TME, including immunosuppression. This review summarizes recent work investigating the potential effects of TGF-β within the TME, with a focus on CAR-T behavior and efficacy. We also discuss several key questions to be addressed to accelerate clinical translation of this approach.
Collapse
|
30
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021; 40:184. [PMID: 34088360 PMCID: PMC8178863 DOI: 10.1186/s13046-021-01987-7] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023] Open
Abstract
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed death 1 (PD-1)/ programmed cell death-ligand 1 (PD-L1) are two most representative immune checkpoint pathways, which negatively regulate T cell immune function during different phases of T-cell activation. Inhibitors targeting CTLA-4/B7 and PD1/PD-L1 pathways have revolutionized immunotherapies for numerous cancer types. Although the combined anti-CTLA-4/B7 and anti-PD1/PD-L1 therapy has demonstrated promising clinical efficacy, only a small percentage of patients receiving anti-CTLA-4/B7 or anti-PD1/PD-L1 therapy experienced prolonged survival. Regulation of the expression of PD-L1 and CTLA-4 significantly impacts the treatment effect. Understanding the in-depth mechanisms and interplays of PD-L1 and CTLA-4 could help identify patients with better immunotherapy responses and promote their clinical care. In this review, regulation of PD-L1 and CTLA-4 is discussed at the levels of DNA, RNA, and proteins, as well as indirect regulation of biomarkers, localization within the cell, and drugs. Specifically, some potential drugs have been developed to regulate PD-L1 and CTLA-4 expressions with high efficiency.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
31
|
Affiliation(s)
- Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
32
|
Du XX, He C, Lu X, Guo YL, Chen ZH, Cai LJ. YAP/STAT3 promotes the immune escape of larynx carcinoma by activating VEGFR1-TGFβ signaling to facilitate PD-L1 expression in M2-like TAMs. Exp Cell Res 2021; 405:112655. [PMID: 34044017 DOI: 10.1016/j.yexcr.2021.112655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022]
Abstract
Larynx carcinoma (LC) is the most prevalent head and neck cancer among adults. LC xenograft mouse model was generated to verify the effect of VEGF on macrophage polarization and tumor growth in vivo. EdU assay was performed to measure the cell proliferation. Transwell assay was applied to assess cell migration. The expression of YAP and STAT3 was also significantly increased in LC tumor tissues. Moreover, both YAP and STAT3 overexpression in LC cells promoted the proliferation, migration, as well as the secretion of PD-L1 in M2-like TAMs. Mechanistically, the interaction between YAP and STAT3 facilitated the transcription of VEGF. Moreover, with a co-culture system, VEGF secretion in LC cells enhanced PD-L1 expression in M2-like TAMs via activating VEGFR1-TGFβ signaling pathway. Furthermore, VEGF secreted from LC cells also promoted the tumor growth of LC in vivo. We revealed that dysregulated YAP/STAT3 activity in LC cells could enhance the secretion of VEGF, which then functioned on M2-like TAMs via activating VEGFR1-TGFββ pathway to promote the expression of PD-L1 and immunosuppressive function of M2-like TAMs. Therefore, VEGF and PD-L1 might have a pivotal crosstalk between M2-like TAMs and LC cells, which provided a novel therapeutic target in regulating the metastasis of LC in future.
Collapse
Affiliation(s)
- Xiao-Xiao Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Key Laboratory of Organ Transplantation, Ministry of Education & NHC Key Laboratory of Organ Transplantation & Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, PR China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China & Henan Key Laboratory of Digestive Organ Transplantation & Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities & ZhengZhou Key Laboratory of Hepatobiliary, Zhengzhou, 450052, PR China
| | - Chao He
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiang Lu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yu-Liang Guo
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Key Laboratory of Organ Transplantation, Ministry of Education & NHC Key Laboratory of Organ Transplantation & Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, PR China
| | - Zhong-Hua Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Key Laboratory of Organ Transplantation, Ministry of Education & NHC Key Laboratory of Organ Transplantation & Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, PR China
| | - Lan-Jun Cai
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
33
|
Raes L, De Smedt SC, Raemdonck K, Braeckmans K. Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnol Adv 2021; 49:107760. [PMID: 33932532 DOI: 10.1016/j.biotechadv.2021.107760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Genetically engineered T cells have sparked interest in advanced cancer treatment, reaching a milestone in 2017 with two FDA-approvals for CD19-directed chimeric antigen receptor (CAR) T cell therapeutics. It is becoming clear that the next generation of CAR T cell therapies will demand more complex engineering strategies and combinations thereof, including the use of revolutionary gene editing approaches. To date, manufacturing of CAR T cells mostly relies on γ-retroviral or lentiviral vectors, but their use is associated with several drawbacks, including safety issues, high manufacturing cost and vector capacity constraints. Non-viral approaches, including membrane permeabilization and carrier-based techniques, have therefore gained a lot of interest to replace viral transductions in the manufacturing of T cell therapeutics. This review provides an in-depth discussion on the avid search for alternatives to viral vectors, discusses key considerations for T cell engineering technologies, and provides an overview of the emerging spectrum of non-viral transfection technologies for T cells. Strengths and weaknesses of each technology will be discussed in relation to T cell engineering. Altogether, this work emphasizes the potential of non-viral transfection approaches to advance the next-generation of genetically engineered T cells.
Collapse
Affiliation(s)
- Laurens Raes
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
34
|
Russo F, Citro A, Squeri G, Sanvito F, Monti P, Gregori S, Roncarolo MG, Annoni A. InsB9-23 Gene Transfer to Hepatocyte-Based Combined Therapy Abrogates Recurrence of Type 1 Diabetes After Islet Transplantation. Diabetes 2021; 70:171-181. [PMID: 33122392 DOI: 10.2337/db19-1249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/22/2020] [Indexed: 11/13/2022]
Abstract
The induction of antigen (Ag)-specific tolerance represents a therapeutic option for autoimmune diabetes. We demonstrated that administration of a lentiviral vector enabling expression of insulin B chain 9-23 (InsB9-23) (LV.InsB) in hepatocytes arrests β-cell destruction in prediabetic NOD mice by generating InsB9-23-specific FoxP3+ T regulatory cells (Tregs). LV.InsB in combination with a suboptimal dose of anti-CD3 monoclonal antibody (combined therapy [CT], 1 × 5 μg [CT5]) reverts diabetes and prevents recurrence of autoimmunity after islet transplantation in ∼50% of NOD mice. We investigated whether CT optimization could lead to abrogation of recurrence of autoimmunity. Therefore, alloislets were transplanted after optimized CT tolerogenic conditioning (1 × 25 μg [CT25]). Diabetic NOD mice conditioned with CT25 when glycemia was <500 mg/dL remained normoglycemic for 100 days after alloislet transplantation and displayed reduced insulitis, but independently from the graft. Accordingly, cured mice showed T-cell unresponsiveness to InsB9-23 stimulation and increased Treg frequency in islet infiltration and pancreatic lymph nodes. Additional studies revealed a complex mechanism of Ag-specific immune regulation driven by CT25, in which both Tregs and PDL1 costimulation cooperate to control diabetogenic cells, while transplanted islets play a crucial role, although transient, recruiting diabetogenic cells. Therefore, CT25 before alloislet transplantation represents an Ag-specific immunotherapy to resolve autoimmune diabetes in the presence of residual endogenous β-cell mass.
Collapse
Affiliation(s)
- Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute (DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Squeri
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute (DRI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | | | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
35
|
Role of PD-L1 in Gut Mucosa Tolerance and Chronic Inflammation. Int J Mol Sci 2020; 21:ijms21239165. [PMID: 33271941 PMCID: PMC7730745 DOI: 10.3390/ijms21239165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) mucosa is among the most complex systems in the body. It has a diverse commensal microbiome challenged continuously by food and microbial components while delivering essential nutrients and defending against pathogens. For these reasons, regulatory cells and receptors are likely to play a central role in maintaining the gut mucosal homeostasis. Recent lessons from cancer immunotherapy point out the critical role of the B7 negative co-stimulator PD-L1 in mucosal homeostasis. In this review, we summarize the current knowledge supporting the critical role of PD-L1 in gastrointestinal mucosal tolerance and how abnormalities in its expression and signaling contribute to gut inflammation and cancers. Abnormal expression of PD-L1 and/or the PD-1/PD-L1 signaling pathways have been observed in the pathology of the GI tract. We also discuss the current gap in our knowledge with regards to PD-L1 signaling in the GI tract under homeostasis and pathology. Finally, we summarize the current understanding of how this pathway is currently targeted to develop novel therapeutic approaches.
Collapse
|
36
|
Regulation of CD47 expression in cancer cells. Transl Oncol 2020; 13:100862. [PMID: 32920329 PMCID: PMC7494507 DOI: 10.1016/j.tranon.2020.100862] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD47 is overexpressed in various types of cancers and it can directly bind with SIRPα, which is mainly located on macrophages. The binding of CD47-SIRPα transmits a “don't eat me” signal, which can prevent cancer cells from immune clearance. Targeting the phagocytosis checkpoint of CD47-SIRPα axis has shown remarkable anticancer effect in preclinical and clinical research, which indicates the potential application of CD47-SIRPα blockade for cancer treatment. In this case, the comprehensive description of the regulation of CD47 in different types of cancer cells has significant implications for furthering our understanding of the role of CD47 in cancer. Based on the current reports, we summarized the regulatory factors, i.e., cytokines, oncogenes, microRNAs as well as enzymes, of CD47 expression in cancer cells. Accordingly, we also proposed several points needing further research, hoping to provide useful insights for the future investigation on the regulation of CD47 in cancers. Cytokines, oncogenes, microRNAs and enzymes regulate CD47 expression in cancer. CD47 expression could be regulated at the transcriptional, post-transcriptional and post-translational modification level. Further studies are required to determine other factors that regulate CD47 expression.
Collapse
|
37
|
Yoshihara E, O'Connor C, Gasser E, Wei Z, Oh TG, Tseng TW, Wang D, Cayabyab F, Dai Y, Yu RT, Liddle C, Atkins AR, Downes M, Evans RM. Immune-evasive human islet-like organoids ameliorate diabetes. Nature 2020; 586:606-611. [PMID: 32814902 PMCID: PMC7872080 DOI: 10.1038/s41586-020-2631-z] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/18/2020] [Indexed: 01/06/2023]
Abstract
While stem cell-derived islets hold promise as a therapy for insulin-dependent diabetes, challenges remain in achieving this goal1–6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells (iPSCs) and show that non-canonical WNT4 signaling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD-SCID mice. Overexpression of the immune checkpoint protein PD-L1 protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo interferon gamma stimulation induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.
Collapse
Affiliation(s)
- Eiji Yoshihara
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.,The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA, USA.,David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Emanuel Gasser
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zong Wei
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tiffany W Tseng
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Wang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Fritz Cayabyab
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yang Dai
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead, New South Wales, Australia
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA. .,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
38
|
Coronel MM, Martin KE, Hunckler MD, Barber G, O’Neill EB, Medina JD, Opri E, McClain CA, Batra L, Weaver JD, Lim HS, Qiu P, Botchwey EA, Yolcu ES, Shirwan H, García AJ. Immunotherapy via PD-L1-presenting biomaterials leads to long-term islet graft survival. SCIENCE ADVANCES 2020; 6:eaba5573. [PMID: 32923626 PMCID: PMC7455180 DOI: 10.1126/sciadv.aba5573] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/14/2020] [Indexed: 05/18/2023]
Abstract
Antibody-mediated immune checkpoint blockade is a transformative immunotherapy for cancer. These same mechanisms can be repurposed for the control of destructive alloreactive immune responses in the transplantation setting. Here, we implement a synthetic biomaterial platform for the local delivery of a chimeric streptavidin/programmed cell death-1 (SA-PD-L1) protein to direct "reprogramming" of local immune responses to transplanted pancreatic islets. Controlled presentation of SA-PD-L1 on the surface of poly(ethylene glycol) microgels improves local retention of the immunomodulatory agent over 3 weeks in vivo. Furthermore, local induction of allograft acceptance is achieved in a murine model of diabetes only when receiving the SA-PD-L1-presenting biomaterial in combination with a brief rapamycin treatment. Immune characterization revealed an increase in T regulatory and anergic cells after SA-PD-L1-microgel delivery, which was distinct from naïve and biomaterial alone microenvironments. Engineering the local microenvironment via biomaterial delivery of checkpoint proteins has the potential to advance cell-based therapies, avoiding the need for systemic chronic immunosuppression.
Collapse
Affiliation(s)
- María M. Coronel
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Karen E. Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael D. Hunckler
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Graham Barber
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B. O’Neill
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Juan D. Medina
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Enrico Opri
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Claire A. McClain
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lalit Batra
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Jessica D. Weaver
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hong S. Lim
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Edward A. Botchwey
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Esma S. Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
39
|
Shah S, DeBerge M, Iovane A, Yan S, Qiu L, Wang JJ, Kanwar YS, Hummel M, Zhang ZJ, Abecassis MM, Luo X, Thorp EB. MCMV Dissemination from Latently-Infected Allografts Following Transplantation into Pre-Tolerized Recipients. Pathogens 2020; 9:pathogens9080607. [PMID: 32722544 PMCID: PMC7460028 DOI: 10.3390/pathogens9080607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Transplantation tolerance is achieved when recipients are unresponsive to donor alloantigen yet mobilize against third-party antigens, including virus. After transplantation, cytomegalovirus (CMV) reactivation in latently-infected transplants reduces allograft viability. To determine if pre-tolerized recipients are resistant to viral dissemination in this setting, we transfused chemically-fixed donor splenocytes (1-ethyl-3- (3′-dimethyl-aminopropyl)-carbo-diimide (ECDI)-treated splenocytes (ECDIsp)) to induce donor antigen tolerance without immunosuppression. In parallel, we implanted donor islet cells to validate operational tolerance. These pre-tolerized recipients were implanted with murine CMV (MCMV) latently-infected donor kidneys (a validated model of CMV latency) to monitor graft inflammation and viral dissemination. Our results indicate that tolerance to donor islets was sustained in recipients after implantation of donor kidneys. In addition, kidney allografts implanted after ECDIsp and islet implantation exhibited low levels of fibrosis and tubulitis. In contrast, kidney cellular and innate immune infiltrates trended higher in the CMV group and exhibited increased markers of CD8+ T cell activation. Tolerance induction was unable to prevent increases in MCMV-specific CD8+ T cells or dissemination of viral IE-1 DNA. Our data suggest that latently-infected allografts are inherently more susceptible to inflammation that is associated with viral dissemination in pre-tolerized recipients. Thus, CMV latently-infected allografts require enhanced strategies to protect allograft integrity and viral spread.
Collapse
Affiliation(s)
- Sahil Shah
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - Matthew DeBerge
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (M.D.); (Y.S.K.)
| | - Andre Iovane
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
| | - Shixian Yan
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
| | - Longhui Qiu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (M.D.); (Y.S.K.)
| | - Mary Hummel
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Zheng J. Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA;
| | - Edward B. Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (M.D.); (Y.S.K.)
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (A.I.); (S.Y.); (L.Q.); (J.-J.W.); (M.H.); (Z.J.Z.)
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-503-4309
| |
Collapse
|
40
|
Xie M, Wei J, Xu J. Inducers, Attractors and Modulators of CD4 + Treg Cells in Non-Small-Cell Lung Cancer. Front Immunol 2020; 11:676. [PMID: 32425930 PMCID: PMC7212357 DOI: 10.3389/fimmu.2020.00676] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated deaths worldwide, with non-small cell-lung cancer (NSCLC) accounting for approximately 80% of cases. Immune escape has been demonstrated to play a key role in the initiation and progression of NSCLC, although the underlying mechanisms are diverse and their puzzling nature is far from being understood. As a critical participant in immune escape, the CD4+ T cell subset of regulatory T (Treg) cells, with their immunosuppressive functions, has been implicated in the occurrence of many types of cancers. Additionally, therapies based on Treg blockade have benefited a portion of cancer patients, including those with NSCLC. Accumulating literature has noted high Treg infiltration in NSCLC tumor tissues, bone marrow, lymph nodes and/or blood; moreover, the tumor milieu is involved in regulating the proliferation, differentiation, recruitment and suppressive functions of Treg cells. Multifarious mechanisms by which CD4+ Treg cells are generated, attracted and modulated in the NSCLC milieu will be discussed in this review.
Collapse
Affiliation(s)
- Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jia Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
41
|
Strait AA, Wang XJ. The role of transforming growth factor-beta in immune suppression and chronic inflammation of squamous cell carcinomas. Mol Carcinog 2020; 59:745-753. [PMID: 32301180 DOI: 10.1002/mc.23196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Despite a decline in the incidence of squamous cell carcinomas (SCCs) over the past 20 years, their survival rate has remained nearly the same, indicating that treatment options have not improved relative to other cancer types. Immunotherapies have a high potential for a sustained effect in SCC patients, but their response rate is low. Here, we review the suppressive role of transforming growth factor-beta (TGFβ) on the antitumor immune response in SCC and present its potential as a therapeutic target in combination with the current range of immunotherapies available for SCC patients. We conclude that SCCs are an optimal cancer type to study the effectiveness of TGFβ inhibition due to the prevalence of dysregulated TGFβ signaling in them.
Collapse
Affiliation(s)
- Alexander A Strait
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
42
|
Chu Z, Sun C, Sun L, Feng C, Yang F, Xu Y, Zhao Y. Primed macrophages directly and specifically reject allografts. Cell Mol Immunol 2020; 17:237-246. [PMID: 30948792 PMCID: PMC7052205 DOI: 10.1038/s41423-019-0226-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/10/2019] [Indexed: 11/09/2022] Open
Abstract
Monocytes and macrophages have long been associated with acute and chronic allograft rejection; this is mediated by their abilities to promote inflammation, kill target cells via antibody-dependent cytotoxicity and modulate adaptive immunity. Our present study showed that allogeneic antigen-primed macrophages acutely rejected skin grafts with specificity after adoptive transfer into MHC-matched immunodeficient mice. The ability of primed macrophages to reject allografts essentially requires the help of CD4+ T cells and does not require the help of CD8+ T cells. Moreover, the primed, perforin-deficient macrophages rejected the skin grafts in a significantly delayed pattern compared with WT macrophages, indicating that the perforin pathway of the primed macrophages is likely involved in the rejection process. Thus, primed macrophages are endowed with adaptive immunity-like features, such as specificity, with the help of CD4+ T cells during the immune response to allografts. The present study challenges our traditional views of macrophage functions and highlights the biological functions of macrophages beyond innate immunity in mammals.
Collapse
Grants
- This work was supported by grants from the National Key R&D Program of China (2017YFA0105002, 2017YFA0104402, Y.Z.), National Science and Technology Major Project (2017ZX10201101), the National Natural Science Foundation for General and Key Programs (C81530049, C81130055, C31470860, Y.Z.), Knowledge Innovation Program of Chinese Academy of Sciences (XDA04020202-19, Y.Z.), and the China Manned Space Flight Technology Project (TZ-1, Y.Z.).
Collapse
Affiliation(s)
- Zhulang Chu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenming Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
43
|
Madelon N, Montanari E, Gruaz L, Pimenta J, Muller YD, Bühler LH, Puga Yung GL, Seebach JD. Prolongation of rat-to-mouse islets xenograft survival by co-transplantation of autologous IL-10 differentiated murine tolerogenic dendritic cells. Xenotransplantation 2020; 27:e12584. [PMID: 31984564 DOI: 10.1111/xen.12584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/06/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tolerogenic dendritic cells (DCs) represent a promising approach to promote transplantation tolerance. In this study, the potential of autologous bone marrow (BM)-derived murine DC to protect rat-to-mouse islets xenografts was analyzed. METHODS Tolerogenic DCs were generated by differentiating BM cells in the presence of granulocyte-macrophage colony-stimulating factor and interleukin 10 (IL-10, IL-10 DC). The phenotype of IL-10 DC was characterized in vitro by expression of costimulatory/inhibitory molecules (flow cytometry) and cytokines (Luminex and ELISA), their function by phagocytosis and T-cell stimulation assays. To study transplant tolerance in vivo, rat islets were transplanted alone or in combination with autologous murine IL-10 DC under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. Xenograft survival was evaluated by monitoring glycemia, cellular infiltration of xenografts by microscopy and flow cytometry 10 days post-transplantation. RESULTS Compared with control DC, IL-10 DC exhibited lower levels of major histocompatibility complex class II, costimulatory molecules (CD40, CD86, CD205), lower production of pro-inflammatory cytokines (IL-12p70, TNF, IL-6), and higher production of IL-10. Phagocytosis of xenogeneic rat splenocytes was not impaired in IL-10 DC, whereas stimulation of T-cell proliferation was reduced in the presence of IL-10 DC. Xenograft survival of rat islets in diabetic mice co-transplanted with autologous murine IL-10 DC was significantly prolonged from 12 to 21 days, without additional immunosuppressive treatment. Overall, infiltration of xenografts by T cells and myeloid cells was not different in IL-10 DC recipient mice, but enriched for CD8+ T cells and myeloid cells with suppressor-associated phenotype. CONCLUSIONS Autologous IL-10-differentiated DC with tolerogenic properties prolong rat-to-mouse islets xenograft survival, potentially by locally inducing immune regulatory cells, indicating their potential for regulatory immune cell therapy in xenotransplantation.
Collapse
Affiliation(s)
- Natacha Madelon
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Elisa Montanari
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Lyssia Gruaz
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Joel Pimenta
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Yannick D Muller
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Leo H Bühler
- Department of Surgery, Medical Faculty, Cell Isolation and Transplantation Center, Geneva University Hospitals, Geneva, Switzerland
| | - Gisella L Puga Yung
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| | - Jörg D Seebach
- Laboratory of Translational Immunology, Division of Immunology and Allergology, Department of Medical Specialties, Medical Faculty, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
44
|
Payandeh Z, Khalili S, Somi MH, Mard-Soltani M, Baghbanzadeh A, Hajiasgharzadeh K, Samadi N, Baradaran B. PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol 2020; 235:5461-5475. [PMID: 31960962 DOI: 10.1002/jcp.29494] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is still considered as the third most frequent cancer in the world. Microsatellite instability (MSI), inflammation, and microRNAs have been demonstrated as the main contributing factors in CRC. Subtype 1 CRC is defined by NK cells infiltration, induction of Th1 lymphocyte and cytotoxic T cell responses as well as upregulation of immune checkpoint proteins including programmed cell death-1 (PD-1). Based on the diverse features of CRC, such as the stage and localization of the tumor, several treatment approaches are available. However, the efficiency of these treatments may be decreased due to the development of diverse resistance mechanisms. It has been proven that monoclonal antibodies (mAbs) can increase the effectiveness of CRC treatments. Nowadays, several mAbs including nivolumab and pembrolizumab have been approved for the treatment of CRC. Immune checkpoint receptors including PD-1 can be inhibited by these antibodies. Combination therapy gives an opportunity for advanced treatment for CRC patients. In this review, an update has been provided on the molecular mechanisms involved in MSI colorectal cancer immune microenvironment by focusing on PD-ligand 1 (PD-L1) and treatment of patients with advanced immunotherapy, which were examined in the different clinical trial phases. Considering induced expression of PD-L1 by conventional chemotherapeutics, we have summarized the role of PD-L1 in CRC, the chemotherapy effects on the PD-1/PD-L1 axis and novel combined approaches to enhance immunotherapy of CRC by focusing on PD-L1.
Collapse
Affiliation(s)
- Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasser Samadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical, Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Lanuza PM, Pesini C, Arias MA, Calvo C, Ramirez-Labrada A, Pardo J. Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer? Front Immunol 2020; 10:3010. [PMID: 31998304 PMCID: PMC6962251 DOI: 10.3389/fimmu.2019.03010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint receptors (IC) positively or negatively regulate the activation of the host immune response, preventing unwanted reactions against self-healthy tissues. In recent years the term IC has been mainly used for the inhibitory ICs, which are critical to control Natural Killer (NK) and Cytotoxic CD8+ T cells due to its high cytotoxic potential. Due to the different nature of the signals that regulate T and NK cell activation, specific ICs have been described that mainly regulate either NK cell or T cell activity. Thus, strategies to modulate NK cell activity are raising as promising tools to treat tumors that do not respond to T cell-based immunotherapies. NK cell activation is mainly regulated by ICs and receptors from the KIR, NKG2 and NCRs families and the contribution of T cell-related ICs is less clear. Recently, NK cells have emerged as contributors to the effect of inhibitors of T cell-related ICs like CTLA4, LAG3 or the PD1/PD-L1 axes in cancer patients, suggesting that these ICs also regulate the activity of NK cells under pathological conditions. Strikingly, in contrast to NK cells from cancer patients, the level of expression of these ICs is low on most subsets of freshly isolated and in vitro activated NK cells from healthy patients, suggesting that they do not control NK cell tolerance and thus, do not act as conventional ICs under non-pathological conditions. The low level of expression of T cell-related ICs in “healthy” NK cells suggest that they should not be restricted to the detrimental effects of these inhibitory mechanisms in the cancer microenvironment. After a brief introduction of the regulatory mechanisms that control NK cell anti-tumoral activity and the conventional ICs controlling NK cell tolerance, we will critically discuss the potential role of T cell-related ICs in the control of NK cell activity under both physiological and pathological (cancer) conditions. This discussion will allow to comprehensively describe the chances and potential limitations of using allogeneic NK cells isolated from a healthy environment to overcome immune subversion by T cell-related ICs and to improve the efficacy of IC inhibitors (ICIs) in a safer way.
Collapse
Affiliation(s)
- Pilar M Lanuza
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Carlota Calvo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Medical Oncopediatry Department, Aragón Health Research Institute (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julian Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Aragón i + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
46
|
Ai L, Xu A, Xu J. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:33-59. [PMID: 32185706 DOI: 10.1007/978-981-15-3266-5_3] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunotherapies that target PD-1/PD-L1 axis have shown unprecedented success in a wide variety of human cancers. PD-1 is one of the key coinhibitory receptors expressed on T cells upon T cell activation. After engagement with its ligands, mainly PD-L1, PD-1 is activated and recruits the phosphatase SHP-2 in proximity to T cell receptor (TCR) and CD28 signaling. This event results in dephosphorylation and attenuation of key molecules in TCR and CD28 pathway, leading to inhibition of T cell proliferation, activation, cytokine production, altered metabolism and cytotoxic T lymphocytes (CTLs) killer functions, and eventual death of activated T cells. Bodies evolve coinhibitory pathways controlling T cell response magnitude and duration to limit tissue damage and maintain self-tolerance. However, tumor cells hijack these inhibitory pathways to escape host immune surveillance by overexpression of PD-L1. This provides the scientific rationale for clinical application of immune checkpoint inhibitors in oncology. The aberrantly high expression of PD-L1 in tumor microenvironment (TME) can be attributable to the "primary" activation of multiple oncogenic signaling and the "secondary" induction by inflammatory factors such as IFN-γ. Clinically, antibodies targeting PD-1/PD-L1 reinvigorate the "exhausted" T cells in TME and show remarkable objective response and durable remission with acceptable toxicity profile in large numbers of tumors such as melanoma, lymphoma, and mismatch-repair deficient tumors. Nevertheless, most patients are still refractory to anti-PD-1/PD-L1 therapy. Identifying the predictive biomarkers and design rational PD-1-based combination therapy become the priorities in cancer immunotherapy. PD-L1 expression, cytotoxic T lymphocytes infiltration, and tumor mutation burden (TMB) are generally considered as the most important factors affecting the effectiveness of PD-1/PD-L1 blockade. The revolution in cancer immunotherapy achieved by PD-1/PD-L1 blockade offers the paradigm for scientific translation from bench to bedside. The next decades will without doubt witness the renaissance of immunotherapy.
Collapse
Affiliation(s)
- Luoyan Ai
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Antao Xu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
47
|
Qin W, Hu L, Zhang X, Jiang S, Li J, Zhang Z, Wang X. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front Immunol 2019; 10:2298. [PMID: 31636634 PMCID: PMC6787287 DOI: 10.3389/fimmu.2019.02298] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
The recent success of PD-1 and PD-L1 blockade in cancer therapy illustrates the important role of the PD-1/PD-L1 pathway in the regulation of antitumor immune responses. However, signaling regulated by the PD-1/PD-L pathway is also associated with substantial inflammatory effects that can resemble those in autoimmune responses, chronic infection, and sepsis, consistent with the role of this pathway in balancing protective immunity and immunopathology, as well as in homeostasis and tolerance. Targeting PD-1/PD-L1 to treat cancer has shown benefits in many patients, suggesting a promising opportunity to target this pathway in autoimmune and inflammatory disorders. Here, we systematically evaluate the diverse biological functions of the PD-1/PD-L pathway in immune-mediated diseases and the relevant mechanisms that control these immune reactions.
Collapse
Affiliation(s)
- Weiting Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lipeng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Sedhom R, Antonarakis ES. Clinical implications of mismatch repair deficiency in prostate cancer. Future Oncol 2019; 15:2395-2411. [PMID: 31237441 PMCID: PMC6714067 DOI: 10.2217/fon-2019-0068] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint blockade holds great promise in the treatment of solid tumors but has not yet been approved for use in advanced prostate cancer. This is largely due to the relatively modest response in clinical trials in unselected patients and the lack of available biomarkers to predict clinical benefit. Germline and somatic mismatch repair (MMR) gene deficiencies are more prevalent than previously thought, especially in the metastatic setting, in patients with high-grade Gleason scores and in patients with variant histologies. An early signal suggests that patients with deficiency in MMR may respond well to immunotherapy. Both germline and somatic genetic testing are recommended, yet questions remain on the best modality for testing given lack of standardization and false-negative results in patients with complex genomic structural rearrangements. Expanded panels, such as next generation sequencing may increase the sensitivity without compromising specificity. Future studies are still needed to explore the relationships of hypermutation, tumor mutational burden, tumor-infiltrating lymphocytes and microsatellite instability-H status as predictors of response to immunotherapy. The drivers of variable response is largely unknown, and a more mature understanding of the mechanisms of resistance in deficiencies in MMR tumors may help to more precisely inform use of immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Ramy Sedhom
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA
| |
Collapse
|
49
|
Shen X, Zhang L, Li J, Li Y, Wang Y, Xu ZX. Recent Findings in the Regulation of Programmed Death Ligand 1 Expression. Front Immunol 2019; 10:1337. [PMID: 31258527 PMCID: PMC6587331 DOI: 10.3389/fimmu.2019.01337] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
With the recent approvals for the application of monoclonal antibodies that target the well-characterized immune checkpoints, immune therapy shows great potential against both solid and hematologic tumors. The use of these therapeutic monoclonal antibodies elicits inspiring clinical results with durable objective responses and improvements in overall survival. Agents targeting programmed cell death protein 1 (PD-1; also known as PDCD1) and its ligand (PD-L1) achieve a great success in immune checkpoints therapy. However, the majority of patients fail to respond to PD-1/PD-L1 axis inhibitors. Expression of PD-L1 on the membrane of tumor and immune cells has been shown to be associated with enhanced objective response rates to PD-1/PD-L1 inhibition. Thus, an improved understanding of how PD-L1 expression is regulated will enable us to better define its role as a predictive marker. In this review, we summarize recent findings in the regulation of PD-L1 expression.
Collapse
Affiliation(s)
- Xiangfeng Shen
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yulin Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| |
Collapse
|
50
|
Exhausted and Senescent T Cells at the Maternal-Fetal Interface in Preterm and Term Labor. J Immunol Res 2019; 2019:3128010. [PMID: 31263712 PMCID: PMC6556261 DOI: 10.1155/2019/3128010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Successful pregnancy requires a tightly-regulated equilibrium of immune cell interactions at the maternal-fetal interface (i.e., the decidual tissues), which plays a central role in the inflammatory process of labor. Most of the innate immune cells in this compartment have been well characterized; however, adaptive immune cells are still under investigation. Herein, we performed immunophenotyping of the decidua basalis and decidua parietalis to determine whether exhausted and senescent T cells are present at the maternal-fetal interface and whether the presence of pathological (i.e., preterm) or physiological (i.e., term) labor and/or placental inflammation alter such adaptive immune cells. In addition, decidual exhausted T cells were sorted to test their functional status. We found that (1) exhausted and senescent T cells were present at the maternal-fetal interface and predominantly expressed an effector memory phenotype, (2) exhausted CD4+ T cells increased in the decidua parietalis as gestational age progressed, (3) exhausted CD4+ and CD8+ T cells decreased in the decidua basalis of women who underwent labor at term compared to those without labor, (4) exhausted CD4+ T cells declined with the presence of placental inflammation in the decidua basalis of women with preterm labor, (5) exhausted CD8+ T cells decreased with the presence of placental inflammation in the decidua basalis of women who underwent labor at term, (6) both senescent CD4+ and CD8+ T cells declined with the presence of placental inflammation in the decidua basalis of women who underwent preterm labor, and (7) decidual exhausted T cells produced IFNγ and TNFα upon in vitro stimulation. Collectively, these findings indicate that exhausted and senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with labor at term or preterm labor and placental inflammation. Importantly, decidual T cell function can be restored upon stimulation.
Collapse
|