1
|
dos Reis RG, Singulani MP, Forlenza OV, Gattaz WF, Talib LL. Kynurenine pathway metabolite alterations in Down syndrome and Alzheimer's disease. Alzheimers Dement 2025; 21:e70197. [PMID: 40399749 PMCID: PMC12094884 DOI: 10.1002/alz.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 05/23/2025]
Abstract
INTRODUCTION Down syndrome (DS) is a genetic disorder that leads to intellectual disability and accelerated aging, increasing the risk of Alzheimer's disease (AD). The pathophysiology of AD and DS is multifactorial, involving amyloid precursor protein overexpression, neuroinflammation, and oxidative stress. This study investigates kynurenine pathway metabolites in elderly individuals with DS (with/without cognitive decline), AD, and cognitively healthy controls to clarify their roles in these pathogeneses. METHODS A cross-sectional study was conducted involving DS, AD, and healthy participants. Plasma levels of tryptophan, kynurenine, 3-hydroxykynurenine, anthranilic acid, 3-hydroxyanthranilic acid, and quinolinic acid were analyzed by Liquid Chromatography coupled with Tandem Mass spectrometry (LC-MS/MS) methodology. RESULTS Elevated kynurenine and other neuroprotective metabolites were found in DS individuals without cognitive decline, while significant differences in neurotoxic metabolites were observed between groups. DISCUSSION Our findings suggest a link between kynurenine pathway dysregulation and cognitive decline, indicating alterations in DS and AD. HIGHLIGHTS There are altered kynurenine pathway metabolites in Down syndrome and Alzheimer's disease. Elevated neuroprotective metabolites are found in Down syndrome without cognitive decline. Significant differences in neurotoxic metabolites among study groups were analyzed. There is a potential link between kynurenine pathway dysregulation and cognitive decline. The study provides insights into metabolic changes in aging and neurodegeneration.
Collapse
Affiliation(s)
- Rafaela Gomes dos Reis
- Laboratory of Neuroscience (LIM‐27)Departamento e Instituto de PsiquiatriaHospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloSão PauloBrazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN)Conselho Nacional de Desenvolvimento Científico e TecnológicoSão PauloSão PauloBrazil
| | - Monique Patricio Singulani
- Laboratory of Neuroscience (LIM‐27)Departamento e Instituto de PsiquiatriaHospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloSão PauloBrazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN)Conselho Nacional de Desenvolvimento Científico e TecnológicoSão PauloSão PauloBrazil
- Centro de Neurociências Translacionais (CNT)Faculdade de Medicina da Universidade de São PauloSão PauloSão PauloBrazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM‐27)Departamento e Instituto de PsiquiatriaHospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloSão PauloBrazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN)Conselho Nacional de Desenvolvimento Científico e TecnológicoSão PauloSão PauloBrazil
- Centro de Neurociências Translacionais (CNT)Faculdade de Medicina da Universidade de São PauloSão PauloSão PauloBrazil
| | - Wagner Farid Gattaz
- Laboratory of Neuroscience (LIM‐27)Departamento e Instituto de PsiquiatriaHospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloSão PauloBrazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN)Conselho Nacional de Desenvolvimento Científico e TecnológicoSão PauloSão PauloBrazil
| | - Leda Leme Talib
- Laboratory of Neuroscience (LIM‐27)Departamento e Instituto de PsiquiatriaHospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloSão PauloBrazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN)Conselho Nacional de Desenvolvimento Científico e TecnológicoSão PauloSão PauloBrazil
- Centro de Neurociências Translacionais (CNT)Faculdade de Medicina da Universidade de São PauloSão PauloSão PauloBrazil
| |
Collapse
|
2
|
Lopez-Atalaya JP, Bhojwani-Cabrera AM. Type I interferon signalling and interferon-responsive microglia in health and disease. FEBS J 2025. [PMID: 40299722 DOI: 10.1111/febs.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
Recent evidence suggests that type I interferon (IFN-I) signalling extends beyond its canonical roles in antiviral defence and immunomodulation. Over the past decade, dysregulated IFN-I signalling has been linked to genetic disorders and neurodegenerative diseases, where it may contribute to neurological impairments. Microglia have emerged as key mediators of IFN-I responses in the central nervous system. A distinct transcriptional state responsive to interferons has recently been identified in microglia. The activation of the IFN-I pathway in these cells is now recognised as pivotal in both development and neurodegeneration. This review is divided into two main sections: the first examines the broader role of IFN-I signalling in the central nervous system, particularly its contribution to neurological dysfunction; the second focuses on the specific state of interferon-responsive microglia, exploring its mechanisms and relevance in neurodegenerative conditions. Finally, we discuss how these areas intersect and their implications for both healthy and diseased states.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - Aysha M Bhojwani-Cabrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
3
|
Szabo C. Role of cystathionine-β-synthase and hydrogen sulfide in down syndrome. Neurotherapeutics 2025:e00584. [PMID: 40187942 DOI: 10.1016/j.neurot.2025.e00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Down syndrome (DS) is a genetic condition where the person affected by it is born with an additional - full or partial - copy of chromosome 21. DS presents with characteristic morphological features and is associated with a wide range of biochemical alterations and maladaptations. Cystathionine-β-synthase (CBS) - one of the key mammalian enzymes responsible for the biogenesis of the gaseous transmitter hydrogen sulfide (H2S) - is located on chromosome 21, and people with DS exhibit a significant upregulation of this enzyme in their brain and other organs. Even though 3-mercaptopyruvate sulfurtransferase - another key mammalian enzyme responsible for the biogenesis of H2S and of reactive polysulfides - is not located on chromosome 21, there is also evidence for the upregulation of this enzyme in DS cells. The hypothesis that excess H2S in DS impairs mitochondrial function and cellular bioenergetics was first proposed in the 1990s and has been substantiated and expanded upon over the past 25 years. DS cells are in a state of metabolic suppression due to H2S-induced, reversible inhibition of mitochondrial Complex IV activity. The impairment of aerobic ATP generation in DS cells is partially compensated by an upregulation of glycolysis. The DS-associated metabolic impairment can be reversed by pharmacological CBS inhibition or CBS silencing. In rodent models of DS, CBS upregulation and H2S overproduction contribute to the development of cognitive dysfunction, alter brain electrical activity, and promote reactive gliosis: pharmacological inhibition or genetic correction of CBS overactivation reverses these alterations. CBS can be considered a preclinically validated drug target for the experimental therapy of DS.
Collapse
Affiliation(s)
- Csaba Szabo
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Switzerland.
| |
Collapse
|
4
|
Santoro JD, Eduthan NP, Khoshnood MM, Jafarpour S, Boyd NK, Vogel BN, Nguyen L, Kazerooni L, Britton E, Lyford HR, Galbraith MD, Rachubinski AL, Espinosa JM. Evidence of blood-brain barrier dysfunction and CSF immunoglobulin synthesis in Down Syndrome Regression Disorder. Ann Clin Transl Neurol 2025; 12:805-820. [PMID: 39996411 PMCID: PMC12040517 DOI: 10.1002/acn3.52299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/29/2024] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVES This study sought to evaluate proteomic, metabolomic, and immune signatures in the cerebrospinal fluid of individuals with Down Syndrome Regression Disorder (DSRD). METHODS A prospective case-control study comparing proteomic, metabolomic, and immune profiles in individuals with DSRD was performed. Samples were obtained from a biorepository of affected individuals and compared to clinically available data and previously obtained neurodiagnostic studies. Individuals with DSRD were compared to individuals with established neuroinflammatory conditions (e.g., multiple sclerosis), and neurotypical controls undergoing a lumbar puncture for headaches. Samples underwent high-throughput proteomic, metabolomic, and immune marker profiling. Data was compared across groups and clinical phenotypes. Gene set enrichment analysis and pathway analyses were utilized to analyze the data. RESULTS In total, 34 individuals with DSRD, 22 neuroinflammatory controls, and 27 neurotypical controls were enrolled in the study. We observed a highly significant concordance in dysregulated proteomics signatures in DSRD and neuroinflammatory controls versus healthy controls, most prominently upregulation of many immunoglobulin sequences. In addition, individuals with DSRD displayed strong upregulation of liver-derived plasma proteins and erythrocyte proteins in the CSF, indicating poor blood-brain barrier integrity. The immune marker profile of DSRD is clearly similar to other neuroimmunological conditions, including strong elevation of MIP3-α, eotaxin, and IFN-γ. INTERPRETATION Individuals with DSRD have unique CSF proteomic and metabolomic signatures consistent with neuroinflammation and increased blood-brain barrier permeability. The CSF of individuals with DSRD was more comparable to individuals with neuroinflammatory disorders than neurotypical controls, indicating the potential for an immune etiology of disease.
Collapse
Affiliation(s)
- Jonathan D. Santoro
- Division of Neurology, Department of PediatricsChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of NeurologyKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down SyndromeUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Mellad M. Khoshnood
- Division of Neurology, Department of PediatricsChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of NeurologyKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Saba Jafarpour
- Division of Neurology, Department of PediatricsChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of NeurologyKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Natalie K. Boyd
- Division of Neurology, Department of PediatricsChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Benjamin N. Vogel
- Division of Neurology, Department of PediatricsChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Lina Nguyen
- Division of Neurology, Department of PediatricsChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Lilia Kazerooni
- Division of Neurology, Department of PediatricsChildren's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Eleanor Britton
- Linda Crnic Institute for Down SyndromeUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Hannah R. Lyford
- Linda Crnic Institute for Down SyndromeUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down SyndromeUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of PharmacologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down SyndromeUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Division of Developmental Pediatrics, Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down SyndromeUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of PharmacologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
5
|
Su D, Peters M, Soltys V, Chan YF. Copy number normalization distinguishes differential signals driven by copy number differences in ATAC-seq and ChIP-seq. BMC Genomics 2025; 26:306. [PMID: 40155863 PMCID: PMC11951689 DOI: 10.1186/s12864-025-11442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
A common objective across ATAC-seq and ChIP-seq analyses is to identify differential signals across contrasted conditions. However, in differential analyses, the impact of copy number variation is often overlooked. Here, we demonstrated copy number differences among samples could drive, if not dominate, differential signals. To address this, we propose a pipeline featuring copy number normalization. By comparing the averaged signal per gene copy, it effectively segregates differential signals driven by copy number from other factors. Further applying it to Down syndrome unveiled distinct dosage-dependent and -independent changes on chromosome 21. Thus, we recommend copy number normalization as a general approach.
Collapse
Affiliation(s)
- Dingwen Su
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany.
| | - Moritz Peters
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Volker Soltys
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany.
- University of Groningen, Groningen Institute of Evolutionary Life Sciences (GELIFES), Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
6
|
Ludwig MP, Wilson JR, Galbraith MD, Bhandari N, Dunn LN, Black JC, Sullivan KD. NF-κB signaling directs a program of transient amplifications at innate immune response genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.641929. [PMID: 40161744 PMCID: PMC11952383 DOI: 10.1101/2025.03.11.641929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The cellular response to pathogens involves an intricate response directed by key innate immune signaling pathways which is characterized by cell-to-cell heterogeneity. How this heterogeneity is established and regulated remains unclear. We describe a program of transient site-specific gains (TSSG) producing extrachromosomal DNA (ecDNA) of immune-related genes in response to innate immune signaling. Activation of NF-κB drives TSSG of the interferon receptor gene cluster through inducible recruitment of the transcription factor RelA and the pre-replication complex member MCM2 to an epigenetically regulated TSSG control element. Targeted recruitment of RelA or p300 are sufficient to induce TSSG formation. RelA and MCM2 specify a program of TSSG for at least six and as many as 179 regions enriched in innate immune response genes. Identification of this program reveals regulated production of ecDNA as a mechanism of heterogeneity in the host response.
Collapse
Affiliation(s)
- Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- These Authors Contributed Equally
| | - Jason R. Wilson
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- These Authors Contributed Equally
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Nirajan Bhandari
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren N. Dunn
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C. Black
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lead Contact
| |
Collapse
|
7
|
Wagemann O, Nübling G, Martínez‐Murcia FJ, Wlasich E, Loosli SV, Sandkühler K, Stockbauer A, Prix C, Katzdobler S, Petrera A, Hauck SM, Fortea J, Romero‐Zaliz R, Jiménez‐Mesa C, Górriz Sáez JM, Höglinger G, Levin J. Exploratory analysis of the proteomic profile in plasma in adults with Down syndrome in the context of Alzheimer's disease. Alzheimers Dement 2025; 21:e70040. [PMID: 40110647 PMCID: PMC11923571 DOI: 10.1002/alz.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Adults with Down syndrome (DS) show increased risk for Alzheimer's disease (AD) due to the triplication of chromosome 21 encoding the amyloid precursor protein gene. Further, this triplication possibly contributes to dysregulation of the immune system, furthering AD pathophysiology. METHODS Using Olink Explore 3072, we measured ∼3000 proteins in plasma from 73 adults with DS and 15 euploid, healthy controls (HC). Analyses for differentially expressed proteins (DEP) were carried out, and pathway and protein network enrichment using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and STRING database was investigated. Within DS, the LASSO (least absolute shrinkage and selection operator) feature selection was applied. RESULTS We identified 253 DEP between DS and HC and 142 DEP between symptomatic and asymptomatic DS. Several pathways regarding inflammatory and neurodevelopmental processes were dysregulated in both analyses. LASSO feature selection within DS returned 15 proteins as potential blood markers. DISCUSSION This exploratory proteomic analysis found potential new blood biomarkers for diagnosing DS-AD in need of further investigation. HIGHLIGHTS Inflammatory pathways are dysregulated in symptomatic versus asymptomatic DS. NFL and GFAP are confirmed as powerful biomarkers in DS with clinical and/or cognitive decline. Further circulating proteins were identified as potential blood biomarkers for symptomatic DS.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Georg Nübling
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Francisco Jesús Martínez‐Murcia
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Elisabeth Wlasich
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Sandra V. Loosli
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- Department of NeurologyUniversity Hospital ZurichZurichSwitzerland
| | - Katja Sandkühler
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Anna Stockbauer
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Catharina Prix
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
| | - Sabrina Katzdobler
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
| | - Agnese Petrera
- Metabolomics and Proteomics CoreHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics CoreHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Juan Fortea
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant PauBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNEDMadridSpain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de DownBarcelonaSpain
| | - Rocío Romero‐Zaliz
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
- Information and Communication Technologies Research Centre (CITIC‐UGR)University of Calle Periodista Rafael Gómez MonteroGranadaSpain
| | - Carmen Jiménez‐Mesa
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Juan M. Górriz Sáez
- Department of Signal TheoryTelematics and CommunicationsAndalusian Institute in Data Science and Computational Intelligence (DaSCI) at University of GranadaGranadaSpain
| | - Günter Höglinger
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Johannes Levin
- Department of NeurologyUniversity Hospital, Ludwig‐Maximilians‐University (LMU) MunichMunichGermany
- German Center for Neurodegenerative Disease (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
8
|
Rubio AD, Hamilton L, Bausch M, Jin M, Papetti A, Jiang P, Yelamanchili SV. A Comprehensive Review on Utilizing Human Brain Organoids to Study Neuroinflammation in Neurological Disorders. J Neuroimmune Pharmacol 2025; 20:23. [PMID: 39987404 PMCID: PMC11846768 DOI: 10.1007/s11481-025-10181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/26/2025] [Indexed: 02/24/2025]
Abstract
Most current information about neurological disorders and diseases is derived from direct patient and animal studies. However, patient studies in many cases do not allow replication of the early stages of the disease and, therefore, offer limited opportunities to understand disease progression. On the other hand, although the use of animal models allows us to study the mechanisms of the disease, they present significant limitations in developing drugs for humans. Recently, 3D-cultured in vitro models derived from human pluripotent stem cells have surfaced as a promising system. They offer the potential to connect findings from patient studies with those from animal models. In this comprehensive review, we discuss their application in modeling neurodevelopmental conditions such as Down Syndrome or Autism, neurodegenerative diseases such as Alzheimer's or Parkinson's, and viral diseases like Zika virus or HIV. Furthermore, we will discuss the different models used to study prenatal exposure to drugs of abuse, as well as the limitations and challenges that must be met to transform the landscape of research on human brain disorders.
Collapse
Affiliation(s)
- Adrian Domene Rubio
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Luke Hamilton
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Mark Bausch
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ava Papetti
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA.
| |
Collapse
|
9
|
Cozzolino KA, Sanford L, Hunter S, Molison K, Erickson B, Courvan MCS, Jones T, Ajit D, Galbraith MD, Espinosa JM, Bentley D, Allen MA, Dowell RD, Taatjes DJ. Mediator kinase inhibition suppresses hyperactive interferon signaling in Down syndrome. eLife 2025; 13:RP100197. [PMID: 39928031 PMCID: PMC11810109 DOI: 10.7554/elife.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Kira A Cozzolino
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - Lynn Sanford
- Department of Molecular, Cellular, and Developmental Biology, University of ColoradoBoulderUnited States
- BioFrontiers Institute, University of ColoradoBoulderUnited States
| | - Samuel Hunter
- Department of Molecular, Cellular, and Developmental Biology, University of ColoradoBoulderUnited States
- BioFrontiers Institute, University of ColoradoBoulderUnited States
| | - Kayla Molison
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - Benjamin Erickson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
- UC-Denver RNA Bioscience InitiativeAuroraUnited States
| | - Meaghan CS Courvan
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Department of Molecular, Cellular, and Developmental Biology, University of ColoradoBoulderUnited States
- BioFrontiers Institute, University of ColoradoBoulderUnited States
- Crnic Institute Boulder BranchBoulderUnited States
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Taylor Jones
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - Deepa Ajit
- Metabolon Inc, DurhamMorrisvilleUnited States
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Pharmacology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - David Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
- UC-Denver RNA Bioscience InitiativeAuroraUnited States
| | - Mary Ann Allen
- BioFrontiers Institute, University of ColoradoBoulderUnited States
| | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of ColoradoBoulderUnited States
- BioFrontiers Institute, University of ColoradoBoulderUnited States
| | - Dylan J Taatjes
- Department of Biochemistry, University of ColoradoBoulderUnited States
| |
Collapse
|
10
|
Lee SE, Baxter LL, Duran MI, Morris SD, Mosley IA, Fuentes KA, Pennings JLA, Guedj F, Bianchi DW. Analysis of genotype effects and inter-individual variability in iPSC-derived trisomy 21 neural progenitor cells. Hum Mol Genet 2025; 34:85-100. [PMID: 39533854 PMCID: PMC12034096 DOI: 10.1093/hmg/ddae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Trisomy of human chromosome 21 (T21) gives rise to Down syndrome (DS), the most frequent live-born autosomal aneuploidy. T21 triggers genome-wide transcriptomic alterations that result in multiple atypical phenotypes with highly variable penetrance and expressivity in individuals with DS. Many of these phenotypes, including atypical neurodevelopment, emerge prenatally. To enable in vitro analyses of the cellular and molecular mechanisms leading to the neurological alterations associated with T21, we created and characterized a panel of genomically diverse T21 and euploid induced pluripotent stem cells (iPSCs). We subsequently differentiated these iPSCs to generate a panel of neural progenitor cells (NPCs). Alongside characterizing genotype effects from T21, we found that T21 NPCs showed inter-individual variability in growth rates, oxidative stress, senescence characteristics, and gene and protein expression. Pathway enrichment analyses of T21 NPCs identified vesicular transport, DNA repair, and cellular response to stress pathways. These results demonstrate T21-associated variability at the cellular level and suggest that cell lines from individuals with DS should not solely be analyzed as a homogenous population. Examining large cohorts of genetically diverse samples may more fully reveal the effects of aneuploidy on transcriptomic and phenotypic characteristics in T21 cell types. A panel of genomically diverse T21 and euploid induced pluripotent stem cells (iPSCs) were created and subsequently differentiated into neural progenitor cells (NPCs). T21 NPCs showed reduced growth, increased oxidative stress, and inter-individual variability in gene and protein expression. This inter-individual variability suggests that studies with large cohorts of genetically diverse T21 samples may more fully reveal the effects of aneuploidy.
Collapse
Affiliation(s)
- Sarah E Lee
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Laura L Baxter
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Monica I Duran
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Samuel D Morris
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Iman A Mosley
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Kevin A Fuentes
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, BA 3720, the Netherlands
| | - Faycal Guedj
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Diana W Bianchi
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
11
|
Malueg M, Moo KG, Arnett A, Edwards TH, Ruskin SL, Lambert K, Subramanyam A, Dufort MJ, Gersuk VH, Partridge R, Buckner JH, Khor B. Defining a novel DYRK1A-gp130/IL-6R-pSTAT axis that regulates Th17 differentiation. Immunohorizons 2025; 9:vlae005. [PMID: 39846842 PMCID: PMC11841973 DOI: 10.1093/immhor/vlae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/05/2024] [Indexed: 01/24/2025] Open
Abstract
Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). We generated a conditional knockout mouse model to validate DYRK1A as a regulator of Th17 differentiation that acts in a dose-dependent fashion at least in part by modulating interleukin (IL)-6 signaling through multiple mechanisms. We identified a new role for DYRK1A in regulating surface expression of IL-6 receptor subunits in naïve CD4+ T cells, consistent with DYRK1A's impact on Th17 differentiation. Physiologic relevance is supported by findings in people with Down syndrome, in which increased expression of DYRK1A, encoded on chromosome 21, is linked to increased IL-6 responsiveness. Our findings highlight DYRK1A as a druggable target of broad therapeutic and prognostic interest in autoimmunity and immune function.
Collapse
Affiliation(s)
- Matthew Malueg
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Keagan G Moo
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Azlann Arnett
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Thomas H Edwards
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Susan L Ruskin
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Katharina Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Aditi Subramanyam
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Rebecca Partridge
- Department of Pediatrics, Virginia Mason Medical Center, Issaquah, WA, United States
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Bernard Khor
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
12
|
Rachubinski AL, Wallace E, Gurnee E, Enriquez-Estrada BA, Worek KR, Smith KP, Araya P, Waugh KA, Granrath RE, Britton E, Lyford HR, Donovan MG, Eduthan NP, Hill AA, Martin B, Sullivan KD, Patel L, Fidler DJ, Galbraith MD, Dunnick CA, Norris DA, Espinosa JM. JAK inhibition decreases the autoimmune burden in Down syndrome. eLife 2024; 13:RP99323. [PMID: 39737640 DOI: 10.7554/elife.99323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025] Open
Abstract
Background Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined. Methods We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints. Results We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression. Conclusions JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS. Funding NIAMS, Global Down Syndrome Foundation. Clinical trial number NCT04246372.
Collapse
Affiliation(s)
- Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Elizabeth Wallace
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Emily Gurnee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Belinda A Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kayleigh R Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Eleanor Britton
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Hannah R Lyford
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Micah G Donovan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Amanda A Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Barry Martin
- Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Lina Patel
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
- Department of Psychiatry, Child and Adolescent Division, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Deborah J Fidler
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, United States
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Cory A Dunnick
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - David A Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, United States
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
13
|
Santoro JD, Jafarpour S, Keehan L, Khoshnood MM, Kazerooni L, Boyd NK, Vogel BN, Nguyen L, Manning M, Nagesh D, Spinazzi NA, Besterman AD, Quinn EA, Rafii MS. Diagnostic abnormalities, disease severity and immunotherapy responsiveness in individuals with Down syndrome regression disorder. Sci Rep 2024; 14:30865. [PMID: 39730779 DOI: 10.1038/s41598-024-81819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
INTRODUCTION Down Syndrome Regression Disorder (DSRD) is a neuropsychiatric condition causing insomnia, catatonia, encephalopathy, and obsessive-compulsive behavior in otherwise healthy individuals with Down syndrome (DS). Smaller cohorts have identified heterogenous diagnostic abnormalities which have predicted immunotherapy responsiveness although pattern analysis in a large cohort has never been performed. METHODS A multi-center, retrospective study of individuals with DSRD was performed. Individuals met international consensus criteria for DRSD and were aged 10-30 years. Clinical, demographic, and diagnostic data was extracted for all individuals. Serum studies were compared to a group of individuals with DS only. RESULTS A total of 164 individuals with DSRD were identified. Individuals with DSRD were more likely to have a positive antinuclear antibody, low complement 3, abnormal cytokines, and elevated ferritin levels. In a minority of individuals, EEG (30%), MRI (33%) and cerebrospinal fluid (CSF) (21%) were abnormal. Individuals with CSF abnormalities demonstrated greater disease severity at diagnosis on the BFCRS and NPI-Q (p = 0.02 and p < 0.001). Abnormalities in cytokines (p = 0.03), neuroimaging (p < 0.001), and CSF (p = 0.02) were predictive of immunotherapy responsiveness. When MRI and LP were both abnormal or when EEG, MRI and LP were all abnormal, the odds of immunotherapy responsiveness approached 100% (p = 0.01, 95%CI: 1.75-105.1, OR: 13.56 and p = 0.02, 95%CI: 1.37-86.87, OR: 10.91, respectively). CONCLUSIONS In a population of individuals diagnosed with DSRD, abnormalities in serum cytokine levels, neuroimaging findings, and CSF analysis emerged as indicators of disease severity and responsiveness to immunotherapy.
Collapse
Affiliation(s)
- Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA.
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Saba Jafarpour
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Laura Keehan
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mellad M Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lilia Kazerooni
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Lina Nguyen
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Melanie Manning
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deepti Nagesh
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Noemi A Spinazzi
- Benioff Children's Hospital, University of California San Francisco, Oakland, CA, USA
| | - Aaron D Besterman
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Eileen A Quinn
- Department of Pediatrics, University of Toledo, Toledo, OH, USA
| | - Michael S Rafii
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| |
Collapse
|
14
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen LL, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. Cell 2024; 187:7621-7636.e19. [PMID: 39672162 PMCID: PMC11682929 DOI: 10.1016/j.cell.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues and functions as a decoy receptor that potently inhibits interferon signaling, including in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David M Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lily L Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cody J Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Liliana D Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara L Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
15
|
Gillenwater LA, Galbraith MD, Rachubinski AL, Eduthan NP, Sullivan KD, Espinosa JM, Costello JC. Integrated analysis of immunometabolic interactions in Down syndrome. SCIENCE ADVANCES 2024; 10:eadq3073. [PMID: 39671500 PMCID: PMC11641111 DOI: 10.1126/sciadv.adq3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Down syndrome (DS), caused by trisomy 21 (T21), results in immune and metabolic dysregulation. People with DS experience co-occurring conditions at higher rates than the euploid population. However, the interplay between immune and metabolic alterations and the clinical manifestations of DS are poorly understood. Here, we report an integrated analysis of immunometabolic pathways in DS. Using multi-omics data, we infered cytokine-metabolite relationships mediated by specific transcriptional programs. We observed increased mediation of immunometabolic interactions in those with DS compared to euploid controls by genes in interferon response, heme metabolism, and oxidative phosphorylation. Unsupervised clustering of immunometabolic relationships in people with DS revealed subgroups with different frequencies of co-occurring conditions. Across the subgroups, we observed distinct mediation by DNA repair, Hedgehog signaling, and angiogenesis. The molecular stratification associates with the clinical heterogeneity observed in DS, suggesting that integrating multiple omic profiles reveals axes of coordinated dysregulation specific to DS co-occurring conditions.
Collapse
Affiliation(s)
- Lucas A. Gillenwater
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Uguagliati B, Grilli M. Astrocytic Alterations and Dysfunction in Down Syndrome: Focus on Neurogenesis, Synaptogenesis, and Neural Circuits Formation. Cells 2024; 13:2037. [PMID: 39768129 PMCID: PMC11674571 DOI: 10.3390/cells13242037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Down syndrome (DS) is characterized by severe neurodevelopmental alterations that ultimately lead to the typical hallmark of DS: intellectual disability. In the DS brain, since the prenatal life stages, the number of astrocytes is disproportional compared to the healthy brain. This increase is due to a shift from neuron to astrocyte differentiation during brain development. Astrocytes are involved in numerous functions during brain development, including balancing pro-neurogenic and pro-gliogenic stimuli, sustaining synapse formation, regulating excitatory/inhibitory signal equilibrium, and supporting the maintenance and integration of functional neural circuits. The enhanced number of astrocytes in the brain of DS individuals leads to detrimental consequences for brain development. This review summarizes the mechanisms underlying astrocytic dysfunction in DS, and particularly the dysregulation of key signaling pathways, which promote astrogliogenesis at the expense of neurogenesis. It further examines the implications of astrocytic alterations on dendritic branching, spinogenesis and synaptogenesis, and the impact of the abnormal astrocytic number in neural excitability and in the maintenance of the inhibitory/excitatory balance. Identifying deregulated pathways and the consequences of astrocytic alterations in early DS brain development may help in identifying new therapeutic targets, with the ultimate aim of ameliorating the cognitive disability that affects individuals with DS.
Collapse
Affiliation(s)
- Beatrice Uguagliati
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
17
|
Alldred MJ, Ibrahim KW, Pidikiti H, Chiosis G, Mufson EJ, Stutzmann GE, Ginsberg SD. Down syndrome frontal cortex layer III and layer V pyramidal neurons exhibit lamina specific degeneration in aged individuals. Acta Neuropathol Commun 2024; 12:182. [PMID: 39605035 PMCID: PMC11603868 DOI: 10.1186/s40478-024-01891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Selective vulnerability of neuronal populations occurs in both Down syndrome (DS) and Alzheimer's disease (AD), resulting in disproportional degeneration of pyramidal neurons (PNs) affecting memory and executive function. Elucidating the cellular mechanisms underlying the selective vulnerability of these populations will provide pivotal insights for disease progression in DS and AD. Single population RNA-sequencing analysis was performed on neurons critical for executive function, prefrontal cortex Brodmann area 9 (BA9) layer III (L3) and layer V (L5) excitatory PNs in postmortem human DS and age- and sex-matched control (CTR) brains. Data mining was performed on differentially expressed genes (DEGs) from PNs in each lamina with DEGs divergent between lamina identified and interrogated. Bioinformatic inquiry of L3 PNs revealed more unique/differentially expressed DEGs (uDEGs) than in L5 PNs in DS compared to CTR subjects, indicating gene dysregulation shows both spatial and cortical laminar projection neuron dependent dysregulation. DS triplicated human chromosome 21 (HSA21) comprised a subset of DEGs only dysregulated in L3 or L5 neurons, demonstrating partial cellular specificity in HSA21 expression. These HSA21 uDEGs had a disproportionally high number of noncoding RNAs, suggesting lamina specific dysfunctional gene regulation. L3 uDEGs revealed overall more dysregulation of cellular pathways and processes, many relevant to early AD pathogenesis, while L5 revealed processes suggestive of frank AD pathology. These findings indicate that trisomy differentially affects a subpopulation of uDEGs in L3 and L5 BA9 projection neurons in aged individuals with DS, which may inform circuit specific pathogenesis underlying DS and AD.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyrillos W Ibrahim
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, 845-398-2170, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Chorvinsky E, Bhattacharya S, Bera BS, Welham A, Ismat K, Lawlor CM, Preciado D, Gomez JL, Morizono H, Pillai DK, Gutierrez MJ, Jaiswal JK, Nino G. Dysregulated airway epithelial antiviral immunity in Down Syndrome impairs type III IFN response and amplifies airway inflammation during RSV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624921. [PMID: 39651190 PMCID: PMC11623526 DOI: 10.1101/2024.11.22.624921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Trisomy 21 (TS21), also known as Down syndrome (DS), increases pediatric mortality risk from respiratory syncytial virus (RSV) by nine-fold, yet its underlying immunological basis remains unclear. Here, we investigated RSV-induced immunological responses in TS21 airway epithelial cells (AECs), the primary site of respiratory virus entry and host defense. TS21 AECs exhibit hyperactive interferon (IFN) signaling and reduced RSV infectivity, but they also show impaired type-III IFN responses during viral infection. Furthermore, TS21 AECs demonstrate heightened production of proinflammatory mediators CXCL5 and CXCL10 both before and after RSV exposure. Infants with DS suffering from severe viral bronchiolitis demonstrate dysregulated airway immune responses in vivo, characterized by diminished type-III IFN levels and increased CXCL5/CXCL10 secretion. Our results indicate that RSV severity in DS is not due to impaired viral control but to dysregulated airway proinflammatory responses, offering new therapeutic opportunities to mitigate the severity of RSV infection in children with DS.
Collapse
|
19
|
Cozzolino K, Sanford L, Hunter S, Molison K, Erickson B, Courvan MCS, Jones T, Ajit D, Galbraith MD, Espinosa JM, Bentley DL, Allen MA, Dowell RD, Taatjes DJ. Mediator kinase inhibition suppresses hyperactive interferon signaling in Down syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.05.547813. [PMID: 37461585 PMCID: PMC10349994 DOI: 10.1101/2023.07.05.547813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75min - 24h timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad up-regulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Kira Cozzolino
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Lynn Sanford
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Samuel Hunter
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Kayla Molison
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Benjamin Erickson
- Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- UC-Denver RNA Bioscience Initiative
| | - Meaghan C S Courvan
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
- Crnic Institute Boulder Branch
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taylor Jones
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| | - Deepa Ajit
- Metabolon, Inc., Durham, North Carolina, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Dept. of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Dept. of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David L Bentley
- Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- UC-Denver RNA Bioscience Initiative
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Robin D Dowell
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, 80303, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
| |
Collapse
|
20
|
Crow YJ. CNS disease associated with enhanced type I interferon signalling. Lancet Neurol 2024; 23:1158-1168. [PMID: 39424561 PMCID: PMC7616788 DOI: 10.1016/s1474-4422(24)00263-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 10/21/2024]
Abstract
The ability to mount an interferon-mediated innate immune response is essential in protection against neurotropic viruses, but antiviral type I interferons also have neurotoxic potential. The production of type I interferons can be triggered by self-derived nucleic acids, and the brain can be susceptible to inappropriate upregulation of type I interferon signalling. Homoeostatic dysregulation of type I interferons has been implicated in rare inborn errors of immunity (referred to as type I interferonopathies) and more common neurodegenerative disorders (eg, Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis). Recent developments include new insights into the pathogenesis of these disorders that involve dysregulated type I interferon signalling, as well as advances in their diagnosis and management. The role of type I interferons in brain cellular health suggests the future therapeutic potential of approaches that target these interferons and their signalling.
Collapse
Affiliation(s)
- Yanick J Crow
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France.
| |
Collapse
|
21
|
Russo ML, Sousa AMM, Bhattacharyya A. Consequences of trisomy 21 for brain development in Down syndrome. Nat Rev Neurosci 2024; 25:740-755. [PMID: 39379691 PMCID: PMC11834940 DOI: 10.1038/s41583-024-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The appearance of cognitive deficits and altered brain morphology in newborns with Down syndrome (DS) suggests that these features are driven by disruptions at the earliest stages of brain development. Despite its high prevalence and extensively characterized cognitive phenotypes, relatively little is known about the cellular and molecular mechanisms that drive the changes seen in DS. Recent technical advances, such as single-cell omics and the development of induced pluripotent stem cell (iPSC) models of DS, now enable in-depth analyses of the biochemical and molecular drivers of altered brain development in DS. Here, we review the current state of knowledge on brain development in DS, focusing primarily on data from human post-mortem brain tissue. We explore the biological mechanisms that have been proposed to lead to intellectual disability in DS, assess the extent to which data from studies using iPSC models supports these hypotheses, and identify current gaps in the field.
Collapse
Affiliation(s)
- Matthew L Russo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Rachubinski AL, Wallace E, Gurnee E, Estrada BAE, Worek KR, Smith KP, Araya P, Waugh KA, Granrath RE, Britton E, Lyford HR, Donovan MG, Eduthan NP, Hill AA, Martin B, Sullivan KD, Patel L, Fidler DJ, Galbraith MD, Dunnick CA, Norris DA, Espinosa JM. JAK inhibition decreases the autoimmune burden in Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.13.24308783. [PMID: 38946973 PMCID: PMC11213071 DOI: 10.1101/2024.06.13.24308783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmune disorders and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined. Here, we report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS. We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. We then report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints. Analysis of the first 10 participants to complete the 16-week study shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS. ClinicalTrials.gov identifier: NCT04246372.
Collapse
Affiliation(s)
- Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Wallace
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily Gurnee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Kayleigh R. Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P. Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A. Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Current address: Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ross E. Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor Britton
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah R. Lyford
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Micah G. Donovan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amanda A. Hill
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Barry Martin
- Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lina Patel
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Psychiatry, Child and Adolescent Division, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah J. Fidler
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, 23 USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cory A. Dunnick
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David A. Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
23
|
Rachubinski AL, Patel LR, Sannar EM, Kammeyer RM, Sanders J, Enriquez-Estrada BA, Worek KR, Fidler DJ, Santoro JD, Espinosa JM. JAK inhibition in Down Syndrome Regression Disorder. J Neuroimmunol 2024; 395:578442. [PMID: 39216159 PMCID: PMC11533451 DOI: 10.1016/j.jneuroim.2024.578442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Down Syndrome Regression Disorder (DRSD) is an uncommon but devastating condition affecting primarily adolescents and young adults with Down syndrome (DS). Individuals with DS display a dysregulated immune system associated with hyperactive interferon signaling, which is associated with a high incidence of autoimmune conditions. While the cause of DSRD is unknown, increasing evidence indicates that it may have an immune basis, and some individuals with DSRD have responded to intravenous immunoglobulin therapy. This case series describes three individuals with probable DSRD who received the JAK inhibitor tofacitinib and saw improvement in DSRD symptoms across multiple domains of neurological function.
Collapse
Affiliation(s)
- Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19(th) Avenue, Aurora, CO 80045, United States; Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, 13123 E. 16(th) Ave. B065 Aurora, CO 80045, United States.
| | - Lina R Patel
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19(th) Avenue, Aurora, CO 80045, United States
| | - Elise M Sannar
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, 13123 E. 16(th) Ave. Aurora, CO 80045, United States
| | - Ryan M Kammeyer
- Department of Neurology, Section of Neuroimmunology, University of Colorado School of Medicine 13123 E. 16(th) Ave. Aurora, CO 80045, United States
| | - Jessica Sanders
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, 13123 E. 16(th) Ave. B065 Aurora, CO 80045, United States
| | - Belinda A Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19(th) Avenue, Aurora, CO 80045, United States
| | - Kayleigh R Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19(th) Avenue, Aurora, CO 80045, United States
| | - Deborah J Fidler
- Human Development and Family Studies, Colorado State University, 313 Behavioral Sciences, Fort Collins, CO 80523, United States
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82 Los Angeles, CA 90027, United States; Department of Neurology, Keck School of Medicine at the University of Southern California, 1520 San Pablo St, Los Angeles, CA 90033, United States
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, 12700 East 19(th) Avenue, Aurora, CO 80045, United States; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19(th) Avenue 6126 Aurora, CO 80045, United States.
| |
Collapse
|
24
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
Ma X, Li W, Ma J, Han Z, Deng S, Wang S. Autophagy is a promising process for linking inflammation and redox homeostasis in Down syndrome. Front Pharmacol 2024; 15:1491563. [PMID: 39415838 PMCID: PMC11479988 DOI: 10.3389/fphar.2024.1491563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Trisomy 21, characterized by the presence of an additional chromosome 21, leads to a set of clinical features commonly referred to as Down syndrome (DS). The pathological phenotypes observed in DS are caused by a combination of factors, such as mitochondrial dysfunction, neuroinflammation, oxidative stress, disrupted metabolic patterns, and changes in protein homeostasis and signal transduction, and these factors collectively induce neurological alterations. In DS, the triplication of chromosome 21 and the micronuclei arising from the missegregation of chromosomes are closely associated with inflammation and the development of redox imbalance. Autophagy, an essential biological process that affects cellular homeostasis, is a powerful tool to facilitate the degradation of redundant or dysfunctional cytoplasmic components, thereby enabling the recycling of their constituents. Targeting the autophagy process has been suggested as a promising method to balance intracellular inflammation and oxidative stress and improve mitochondrial dysfunction. In this review, we summarize the role of autophagy in regulating inflammation and redox homeostasis in DS and discuss their crosslinks. A comprehensive elucidation of the roles of autophagy in DS offers novel insights for the development of therapeutic strategies aimed at aneuploidy-associated diseases.
Collapse
Affiliation(s)
- Xuehai Ma
- Xinjiang Key Laboratory of Mental Development and Learning Science, College of Psychology, Xinjiang Normal University, Urumqi, Xinjiang, China
| | - Weimin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Institute of Physical Education, Xinjiang Normal University, Urumqi, China
| | - Jun Ma
- Xinjiang Urumqi Youai Hospital, Urumqi, Xinjiang, China
| | - Zhongcheng Han
- People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
26
|
Gavazzi F, Gonzalez CD, Arnold K, Swantkowski M, Charlton L, Modesti N, Dar AA, Vanderver A, Bennett M, Adang LA. Nucleotide metabolism, leukodystrophies, and CNS pathology. J Inherit Metab Dis 2024; 47:860-875. [PMID: 38421058 PMCID: PMC11358362 DOI: 10.1002/jimd.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kaley Arnold
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meghan Swantkowski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Charlton
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asif A. Dar
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Donovan MG, Rachubinski AL, Smith KP, Araya P, Waugh KA, Enriquez-Estrada B, Britton EC, Lyford HR, Granrath RE, Schade KA, Kinning KT, Paul Eduthan N, Sullivan KD, Galbraith MD, Espinosa JM. Multimodal analysis of dysregulated heme metabolism, hypoxic signaling, and stress erythropoiesis in Down syndrome. Cell Rep 2024; 43:114599. [PMID: 39120971 PMCID: PMC11479675 DOI: 10.1016/j.celrep.2024.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 08/11/2024] Open
Abstract
Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by delayed neurodevelopment, accelerated aging, and increased risk of many co-occurring conditions. Hypoxemia and dysregulated hematopoiesis have been documented in DS, but the underlying mechanisms and clinical consequences remain ill defined. We report an integrative multi-omic analysis of ∼400 research participants showing that people with DS display transcriptomic signatures indicative of elevated heme metabolism and increased hypoxic signaling across the lifespan, along with chronic overproduction of erythropoietin, elevated biomarkers of tissue-specific hypoxia, and hallmarks of stress erythropoiesis. Elevated heme metabolism, transcriptional signatures of hypoxia, and stress erythropoiesis are conserved in a mouse model of DS and associated with overexpression of select triplicated genes. These alterations are independent of the hyperactive interferon signaling characteristic of DS. These results reveal lifelong dysregulation of key oxygen-related processes that could contribute to the developmental and clinical hallmarks of DS.
Collapse
Affiliation(s)
- Micah G Donovan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Belinda Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor C Britton
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah R Lyford
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyndal A Schade
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
28
|
Cardiello JF, Westfall J, Dowell R, Allen MA. Characterizing primary transcriptional responses to short term heat shock in Down syndrome. PLoS One 2024; 19:e0307375. [PMID: 39116081 PMCID: PMC11309423 DOI: 10.1371/journal.pone.0307375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Heat shock stress induces genome-wide changes in transcription regulation, activating a coordinated cellular response to enable survival. We noticed many heat shock genes are up-regulated in blood samples from individuals with trisomy 21. We characterized the immediate transcriptional response to heat shock of two lymphoblastoid cell lines derived from brothers with and without trisomy 21. The trisomy 21 cells displayed a more robust heat shock response after just one hour at 42°C than the matched disomic cells.
Collapse
Affiliation(s)
- Joseph F. Cardiello
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States of America
- Department of Chemistry & Biochemistry, Colorado College, Colorado Springs, CO, United States of America
| | - Jessica Westfall
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States of America
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States of America
- Linda Crnic Institute, University of Colorado, Denver, CO, United States of America
- BioFrontiers-Crnic Boulder Branch, University of Colorado, Boulder, CO, United States of America
| | - Mary Ann Allen
- BioFrontiers Institute, University of Colorado, Boulder, CO, United States of America
- Linda Crnic Institute, University of Colorado, Denver, CO, United States of America
- BioFrontiers-Crnic Boulder Branch, University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
29
|
Alldred MJ, Pidikiti H, Ibrahim KW, Lee SH, Heguy A, Hoffman GE, Roussos P, Wisniewski T, Wegiel J, Stutzmann GE, Mufson EJ, Ginsberg SD. Analysis of microisolated frontal cortex excitatory layer III and V pyramidal neurons reveals a neurodegenerative phenotype in individuals with Down syndrome. Acta Neuropathol 2024; 148:16. [PMID: 39105932 PMCID: PMC11578391 DOI: 10.1007/s00401-024-02768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 08/07/2024]
Abstract
We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Kyrillos W Ibrahim
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Wisniewski
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Jafarpour S, Banerjee AK, Khoshnood MM, Vogel BN, Boyd NK, Nguyen L, Partridge R, Santoro SL, Gombolay GY, Fisher KS, de Asua DR, Del Ortega MC, Franklin C, Rafii MS, Santoro JD. De novo variants in immune regulatory genes in Down syndrome regression disorder. J Neurol 2024; 271:5567-5576. [PMID: 38909119 PMCID: PMC11319504 DOI: 10.1007/s00415-024-12521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Down Syndrome Regression Disorder (DSRD) is a rare and poorly understood disorder of the central nervous system, characterized by acute or subacute neuropsychiatric symptoms in previously healthy individuals with Down syndrome (DS). Many patients exhibit immunotherapy-responsiveness, indicative of immune dysregulation as a potential underlying etiology. While hypotheses are emerging regarding the role of interferon signaling in DSRD and other autoimmune conditions associated with DS, it is unclear why a small subset of individuals with DS develop DSRD. The aim of this study was to investigate genes of immune regulation in persons with DSRD. METHODS This study included individuals with DSRD aged 10-30 years with trio exome sequencing performed during the diagnostic work up. Descriptive statistics and univariate analysis (Chi-square and Fisher's exact test) were used to describe and compare the characteristics of individuals with and without variants. RESULTS Forty-one individuals with DSRD had trio exome sequencing results. Eight (20%) had heterozygous de novo variants of immune regulatory genes, with four variants being pathogenic or likely pathogenic (UNC13D, XIAP, RNASEH2A, and DNASE1L3). All genes harboring pathogenic variants were associated with interferon type-1 inflammatory response. Individuals harboring variants were more likely to have a preceding trigger (p = 0.03, 95% CI 1.21-97.06), rapid clinical decline in less than 1 month (p = 0.01, 95% CI 1.67-52.06), and MRI abnormalities (p < 0.001, 95% CI 4.89-527.71). DISCUSSION A distinct subset of individuals with DSRD exhibited pathogenic variants in immune regulation genes associated with interferon-mediated inflammatory response, coinciding with previously established links between these genes and interferonopathies such as Aicardi-Goutieres syndrome. Our observations suggest that these variants might potentially contribute to the development of DSRD in individuals with DS.
Collapse
Affiliation(s)
- Saba Jafarpour
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Abhik K Banerjee
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Mellad M Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Los Angeles General Hospital, Los Angeles, CA, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | - Lina Nguyen
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA
| | | | - Stephanie L Santoro
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Down Syndrome Program, Massachusetts General Hospital, Boston, MA, USA
| | - Grace Y Gombolay
- Division of Neurology, Department of Pediatrics, Emory School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kristen S Fisher
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Diego Real de Asua
- Adult Down Syndrome Outpatient Clinic, Department of Internal Medicine, Fundación de Investigación Biomédica, Hospital Universitario de La Princesa, Madrid, Spain
| | | | - Cathy Franklin
- Department of Psychiatry, Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Michael S Rafii
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, Mailstop 82, Los Angeles, CA, 90027, USA.
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Carvalho ES, Penha JG, Maeda NY, Abud KCO, Souza MFS, Castro CRP, Dos Santos JX, Pereira J, Lopes AA. Down syndrome and postoperative hemodynamics in patients undergoing surgery for congenital cardiac communications. Sci Rep 2024; 14:16612. [PMID: 39025999 PMCID: PMC11258288 DOI: 10.1038/s41598-024-67097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Although Down syndrome (DS) is considered a risk factor for hemodynamic instabilities (mainly pulmonary hypertension-PH) following surgery for congenital cardiac communications, many DS patients do surprising well postoperatively. We prospectively analyzed perioperative factors for a possible correlation with post-cardiopulmonary bypass (CPB) inflammatory reaction and postoperative PH in pediatric subjects. Sixty patients were enrolled (age 3 to 35 months), 39 of them with DS. Clinical and echocardiographic parameters (anatomical and hemodynamic) were computed preoperatively. Pulmonary and systemic mean arterial pressures (PAP and SAP) were assessed invasively intra and postoperatively. Immediate postoperative PAP/SAP ratio (PAP/SAPIPO) and the behavior of pressure curves were selected as primary outcome. Serum levels of 36 inflammatory proteins were measured by chemiluminescence preoperatively and 4 h post CPB. Of all factors analyzed, peripheral oxygen saturation (O2Sat, bedside assessment) was the only preoperative predictor of PAP/SAPIPO at multivariate analysis (p = 0.007). Respective values in non-DS, DS/O2Sat ≥ 95% and DS/O2Sat < 95% subgroups were 0.34 (0.017), 0.40 (0.027) and 0.45 (0.026), mean (SE), p = 0.004. The difference between non-DS and DS groups regarding postoperative PAP curves (upward shift in DS patients, p = 0.015) became nonsignificant (p = 0.114) after adjustment for preoperative O2Sat. Post-CPB levels of at least 5 cytokines were higher in patients with O2Sat < 95% versus those at or above this level, even within the DS group (p < 0.05). Thus, a baseline O2Sat < 95% representing pathophysiological phenomena in the airways and the distal lung, rather than DS in a broad sense, seems to be associated with post-CPB inflammation and postoperative PH in these patients.
Collapse
Affiliation(s)
- Eloisa Sassá Carvalho
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliano Gomes Penha
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Kelly Cristina O Abud
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Claudia R P Castro
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Johnny X Dos Santos
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliana Pereira
- Laboratory of Medical Investigation On Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo, São Paulo, Brazil
| | - Antonio Augusto Lopes
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil.
- Department of Pediatric Cardiology and Adult Congenital Heart Disease, Heart Institute (InCor) - HCFMUSP, Av. Dr. Eneas de Carvalho Aguiar, 44, São Paulo, 05403-000, Brazil.
| |
Collapse
|
32
|
Crow YJ, Casanova JL. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol 2024; 9:eadm8185. [PMID: 38968338 DOI: 10.1126/sciimmunol.adm8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR 1163, Paris, France
- University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Imagine Institute, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
33
|
Wang S, Leng L, Wang Q, Gu Y, Li J, An Y, Deng Q, Xie P, Cheng C, Chen X, Zhou Q, Lu J, Chen F, Liu L, Yang H, Wang J, Xu X, Hou Y, Gong F, Hu L, Lu G, Shang Z, Lin G. A single-cell transcriptome atlas of human euploid and aneuploid blastocysts. Nat Genet 2024; 56:1468-1481. [PMID: 38839885 DOI: 10.1038/s41588-024-01788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
Aneuploidy is frequently detected in early human embryos as a major cause of early pregnancy failure. However, how aneuploidy affects cellular function remains elusive. Here, we profiled the transcriptomes of 14,908 single cells from 203 human euploid and aneuploid blastocysts involving autosomal and sex chromosomes. Nearly all of the blastocysts contained four lineages. In aneuploid chromosomes, 19.5% ± 1.2% of the expressed genes showed a dosage effect, and 90 dosage-sensitive domains were identified. Aneuploidy leads to prevalent genome-wide transcriptome alterations. Common effects, including apoptosis, were identified, especially in monosomies, partially explaining the lower cell numbers in autosomal monosomies. We further identified lineage-specific effects causing unstable epiblast development in aneuploidies, which was accompanied by the downregulation of TGF-β and FGF signaling, which resulted in insufficient trophectoderm maturation. Our work provides crucial insights into the molecular basis of human aneuploid blastocysts and may shed light on the cellular interaction during blastocyst development.
Collapse
Affiliation(s)
- Shengpeng Wang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lizhi Leng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | | | - Yifan Gu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | | | | | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingyuan Xie
- Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Can Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
| | - Xueqin Chen
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
| | - Qinwei Zhou
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Jia Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
| | - Fang Chen
- BGI Research, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI Research, Shenzhen, China
| | - Longqi Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huanming Yang
- BGI Research, Shenzhen, China
- James D. Watson Institute of Genome Science, Hangzhou, China
| | - Jian Wang
- BGI Research, Shenzhen, China
- James D. Watson Institute of Genome Science, Hangzhou, China
| | - Xun Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yong Hou
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Liang Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
- National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Zhouchun Shang
- BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Changsha, China.
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China.
- National Engineering and Research Center of Human Stem Cell, Changsha, China.
| |
Collapse
|
34
|
Shaker MR, Slonchak A, Al-Mhanawi B, Morrison SD, Sng JDJ, Cooper-White J, Khromykh AA, Wolvetang EJ. Choroid plexus defects in Down syndrome brain organoids enhance neurotropism of SARS-CoV-2. SCIENCE ADVANCES 2024; 10:eadj4735. [PMID: 38838150 DOI: 10.1126/sciadv.adj4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Why individuals with Down syndrome (DS) are more susceptible to SARS-CoV-2-induced neuropathology remains elusive. Choroid plexus (ChP) plays critical roles in barrier function and immune response modulation and expresses the ACE2 receptor and the chromosome 21-encoded TMPRSS2 protease, suggesting its substantial role in establishing SARS-CoV-2 infection in the brain. To explore this, we established brain organoids from DS and isogenic euploid iPSC that consist of a core of functional cortical neurons surrounded by a functional ChP-like epithelium (ChPCOs). DS-ChPCOs recapitulated abnormal DS cortical development and revealed defects in ciliogenesis and epithelial cell polarity in ChP-like epithelium. We then demonstrated that the ChP-like epithelium facilitates infection and replication of SARS-CoV-2 in cortical neurons and that this is increased in DS. Inhibiting TMPRSS2 and furin activity reduced viral replication in DS-ChPCOs to euploid levels. This model enables dissection of the role of ChP in neurotropic virus infection and euploid forebrain development and permits screening of therapeutics for SARS-CoV-2-induced neuropathogenesis.
Collapse
Affiliation(s)
- Mohammed R Shaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Bahaa Al-Mhanawi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sean D Morrison
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
- GVN Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- UQ Centre in Stem Cell Engineering and Regenerative Engineering (UQ StemCARE), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
35
|
Hom B, Boyd NK, Vogel BN, Nishimori N, Khoshnood MM, Jafarpour S, Nagesh D, Santoro JD. Down Syndrome and Autoimmune Disease. Clin Rev Allergy Immunol 2024; 66:261-273. [PMID: 38913142 PMCID: PMC11422465 DOI: 10.1007/s12016-024-08996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/25/2024]
Abstract
Down syndrome is the most common genetic cause of intellectual disability and has previously been associated with a variety of autoimmune disorders affecting multiple organ systems. The high prevalence of autoimmune disease, in conjunction with other inflammatory and infectious diseases, in this population suggests an intrinsic immune dysregulation associated with triplication of chromosome 21. Emerging data on the role of chromosome 21 in interferon activation, cytokine production, and activation of B-cell mediated autoimmunity are emerging hypotheses that may explain the elevated prevalence of autoimmune thyroid disease, celiac disease, type I diabetes, autoimmune skin disease, and a variety of autoimmune neurologic conditions. As the life expectancy for individuals with Down syndrome increases, knowledge of the epidemiology, clinical features, management and underlying causes of these conditions will become increasingly important. Disorders such as Hashimoto's thyroiditis are prevalent in between 13 and 34% of individuals with Down syndrome but only 3% of the neurotypical population, a pattern similarly recognized in individuals with Celiac Disease (5.8% v 0.5-2%), alopecia areata (27.7% v. 2%), and vitiligo (4.4% v. 0.05-1.55%), respectively. Given the chronicity of autoimmune conditions, early identification and management can significantly impact the quality of life of individuals with Down syndrome. This comprehensive review will highlight common clinical autoimmune conditions observed in individuals with Down syndrome and explore our current understanding of the mechanisms of disease in this population.
Collapse
Affiliation(s)
- Brian Hom
- Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA90027, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA90027, USA
| | - Nicole Nishimori
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA90027, USA
| | - Mellad M Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA90027, USA
| | - Saba Jafarpour
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA90027, USA
| | - Deepti Nagesh
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA90027, USA
- Department of Neurology, Keck School of Medicineat the, University of Southern California , Los Angeles, CA, USA
| | - Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA90027, USA.
- Department of Neurology, Keck School of Medicineat the, University of Southern California , Los Angeles, CA, USA.
| |
Collapse
|
36
|
Hall T, Gurbuxani S, Crispino JD. Malignant progression of preleukemic disorders. Blood 2024; 143:2245-2255. [PMID: 38498034 PMCID: PMC11181356 DOI: 10.1182/blood.2023020817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT The spectrum of myeloid disorders ranges from aplastic bone marrow failure characterized by an empty bone marrow completely lacking in hematopoiesis to acute myeloid leukemia in which the marrow space is replaced by undifferentiated leukemic blasts. Recent advances in the capacity to sequence bulk tumor population as well as at a single-cell level has provided significant insight into the stepwise process of transformation to acute myeloid leukemia. Using models of progression in the context of germ line predisposition (trisomy 21, GATA2 deficiency, and SAMD9/9L syndrome), premalignant states (clonal hematopoiesis and clonal cytopenia of unknown significance), and myelodysplastic syndrome, we review the mechanisms of progression focusing on the hierarchy of clonal mutation and potential roles of transcription factor alterations, splicing factor mutations, and the bone marrow environment in progression to acute myeloid leukemia. Despite major advances in our understanding, preventing the progression of these disorders or treating them at the acute leukemia phase remains a major area of unmet medical need.
Collapse
Affiliation(s)
- Trent Hall
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sandeep Gurbuxani
- Section of Hematopathology, Department of Pathology, University of Chicago, Chicago, IL
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
37
|
Granholm ACE, Englund E, Gilmore A, Head E, Yong WH, Perez SE, Guzman SJ, Hamlett ED, Mufson EJ. Neuropathological findings in Down syndrome, Alzheimer's disease and control patients with and without SARS-COV-2: preliminary findings. Acta Neuropathol 2024; 147:92. [PMID: 38801558 PMCID: PMC11130011 DOI: 10.1007/s00401-024-02743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aβ), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aβ deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.
Collapse
Affiliation(s)
- Ann-Charlotte E Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Research Complex II, Aurora, CO, USA.
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Research Complex II, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Samuel J Guzman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
38
|
Gansa W, Da Rosa JMC, Menon K, Sazeides C, Stewart O, Bogunovic D. Dysregulation of the Immune System in a Natural History Study of 1299 Individuals with Down Syndrome. J Clin Immunol 2024; 44:130. [PMID: 38776031 DOI: 10.1007/s10875-024-01725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/26/2024] [Indexed: 06/04/2024]
Abstract
Dysregulation of the immune system in individuals with Down syndrome is thought to play a major role in the pathophysiology of many clinical presentations. This natural history of disease study took a comprehensive evaluation of the prevalence of different immune related diagnoses in a cohort of 1299 patients with Down syndrome compared to a 2605 patient control cohort at the Mount Sinai Health System in New York, NY over the past 18 years. We conducted a stepwise analysis of the odds of receiving a diagnosis at the Chapter, Sub-chapter and Diagnosis level of the ICD-CM-10 code system. Individuals in our Down syndrome cohort had higher odds of a diagnosis with inflammatory and autoimmune presentations such as Alopecia areata (OR 6.06, p = 0.01), Other sepsis (OR 4.79, p < 0.001, Purpura and other hemorrhagic conditions (OR 2.31, p < 0.001), and Rosacea (OR 3.11, p < 0.001). They also presented with lower odds of a diagnosis of Herpesviral infection (OR 0.42, p = 0.01), and Viral warts (OR 0.51, p = 0.04). We posit that dysregulation of the immune system in individuals with Down syndrome has impact on infectious diseases, including lowering the incidence of viral disease and increasing its severity. Our data also suggests inflammation and autoimmune mediated diseases, in particular of the skin, are exacerbated in individuals with Down syndrome. Finally, there may be a need for greater clinical attention to non-emergent conditions within the Down syndrome patient population as those can also greatly affect quality of life.
Collapse
Affiliation(s)
- William Gansa
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Joel M Correa Da Rosa
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Kartikeya Menon
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Christos Sazeides
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - O'Jay Stewart
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Department of Pediatrics, Hiroshima University, Hiroshima, Japan.
- Department of Pediatrics, Columbia University Medical Center, New York City, NY, USA.
| |
Collapse
|
39
|
Zhang S, Wang R, Zhang L, Birchler JA, Sun L. Inverse and Proportional Trans Modulation of Gene Expression in Human Aneuploidies. Genes (Basel) 2024; 15:637. [PMID: 38790266 PMCID: PMC11121296 DOI: 10.3390/genes15050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Genomic imbalance in aneuploidy is often detrimental to organisms. To gain insight into the molecular basis of aneuploidies in humans, we analyzed transcriptome data from several autosomal and sex chromosome aneuploidies. The results showed that in human aneuploid cells, genes located on unvaried chromosomes are inversely or proportionally trans-modulated, while a subset of genes on the varied chromosomes are compensated. Less genome-wide modulation is found for sex chromosome aneuploidy compared with autosomal aneuploidy due to X inactivation and the retention of dosage sensitive regulators on both sex chromosomes to limit the effective dosage change. We also found that lncRNA and mRNA can have different responses to aneuploidy. Furthermore, we analyzed the relationship between dosage-sensitive transcription factors and their targets, which illustrated the modulations and indicates genomic imbalance is related to stoichiometric changes in components of gene regulatory complexes.In summary, this study demonstrates the existence of trans-acting effects and compensation mechanisms in human aneuploidies and contributes to our understanding of gene expression regulation in unbalanced genomes and disease states.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
40
|
Santoro JD, Jafarpour S, Khoshnood MM, Boyd NK, Vogel BN, Nguyen L, Saucier LE, Partridge R, Tiongson E, Ramos-Platt L, Nagesh D, Ho E, Rosser T, Ahsan N, Mitchell WG, Rafii MS. Safety and tolerability of intravenous immunoglobulin infusion in Down syndrome regression disorder. Am J Med Genet A 2024; 194:e63524. [PMID: 38169137 DOI: 10.1002/ajmg.a.63524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
Three large multi-center studies have identified the clinical utility of intravenous immunoglobulin (IVIg) in the treatment of Down syndrome regression disorder (DSRD). Yet the tolerability of infusions in individuals with DS and the safety of IVIg remains unknown in this population. This study sought to evaluate the safety and tolerability of IVIg in individuals with DSRD compared to a real-world cohort of individuals with pediatric onset neuroimmunologic disorders. A single-center, retrospective chart review evaluating clinically documented infusion reactions was performed for individuals meeting international consensus criteria for DSRD and having IVIg infusions between 2019 and 2023. Infusion reactions were evaluated for severity and need for alterations in infusion plan. This cohort was compared against an age and sex matched cohort of children with neuroimmunologic conditions who had also received IVIg infusions. In total, 127 individuals with DSRD and 186 individuals with other neuroimmunologic disorders were enrolled. There was no difference in the overall rate of adverse reactions (AEs) between the DSRD and general neuroimmunology cohorts (p = 0.31, 95% CI: 0.80-2.00), but cardiac-related AEs specifically were more common among the DSRD group (p = 0.02, 95% CI: 1.23-17.54). When AEs did occur, there was no difference in frequency of pharmacologic intervention (p = 0.12, 95% CI: 0.34-1.13) or discontinuation of therapy (p = 0.74, 95% CI: 0.06-7.44). There was a higher incidence of lab abnormalities on IVIG among the general neuroimmunology cohort (p = 0.03, 95% CI: 0.24-0.94) compared to the DSRD cohort. Transaminitis was the most common laboratory abnormality in the DSRD group. In a large cohort of individuals with DSRD, there were no significant differences in the safety and tolerability of IVIg compared to a cohort of children and young adults with neuroimmunologic conditions.
Collapse
Affiliation(s)
- Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Saba Jafarpour
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Mellad M Khoshnood
- Department of Pediatrics, Los Angeles General Hospital, Los Angeles, California, USA
| | - Natalie K Boyd
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Benjamin N Vogel
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Lina Nguyen
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Laura E Saucier
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | | - Emmanuelle Tiongson
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Leigh Ramos-Platt
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Deepti Nagesh
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Eugenia Ho
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Tena Rosser
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Nusrat Ahsan
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Wendy G Mitchell
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Michael S Rafii
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, California, USA
| |
Collapse
|
41
|
Ramacieri G, Locatelli C, Semprini M, Pelleri MC, Caracausi M, Piovesan A, Cicilloni M, Vigna M, Vitale L, Sperti G, Corvaglia LT, Pirazzoli GL, Strippoli P, Catapano F, Vione B, Antonaros F. Zinc metabolism and its role in immunity status in subjects with trisomy 21: chromosomal dosage effect. Front Immunol 2024; 15:1362501. [PMID: 38694501 PMCID: PMC11061464 DOI: 10.3389/fimmu.2024.1362501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Trisomy 21 (T21), which causes Down syndrome (DS), is the most common chromosomal aneuploidy in humankind and includes different clinical comorbidities, among which the alteration of the immune system has a heavy impact on patient's lives. A molecule with an important role in immune response is zinc and it is known that its concentration is significantly lower in children with T21. Different hypotheses were made about this metabolic alteration and one of the reasons might be the overexpression of superoxide dismutase 1 (SOD1) gene, as zinc is part of the SOD1 active enzymatic center. Methods The aim of our work is to explore if there is a linear correlation between zinc level and immune cell levels measured in a total of 217 blood samples from subjects with T21. Furthermore, transcriptome map analyses were performed using Transcriptome Mapper (TRAM) software to investigate whether a difference in gene expression is detectable between subjects with T21 and euploid control group in tissues and cells involved in the immune response such as lymphoblastoid cells, thymus and white blood cells. Results Our results have confirmed the literature data stating that the blood zinc level in subjects with T21 is lower compared to the general population; in addition, we report that the T21/control zinc concentration ratio is 2:3, consistent with a chromosomal dosage effect due to the presence of three copies of chromosome 21. The transcriptome map analyses showed an alteration of some gene's expression which might explain low levels of zinc in the blood. Discussion Our data suggest that zinc level is not associated with the levels of immunity cells or proteins analyzed themselves and rather the main role of this ion might be played in altering immune cell function.
Collapse
Affiliation(s)
- Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Specialist School of Child Neuropsychiatry - University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Michela Semprini
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Vigna
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giacomo Sperti
- Speciality School of Paediatrics - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luigi Tommaso Corvaglia
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Colvin KL, Wolter-Warmerdam K, Hickey F, Yeager ME. Altered peripheral blood leukocyte subpopulations, function, and gene expression in children with Down syndrome: implications for respiratory tract infection. Eur J Med Genet 2024; 68:104922. [PMID: 38325643 DOI: 10.1016/j.ejmg.2024.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES We tested the hypothesis that aberrant expression of Hsa21-encoded interferon genes in peripheral blood immune cells would correlate to immune cell dysfunction in children with Down syndrome (DS). STUDY DESIGN We performed flow cytometry to quantify peripheral blood leukocyte subtypes and measured their ability to migrate and phagocytose. In matched samples, we measured gene expression levels for constituents of interferon signaling pathways. We screened 49 children, of which 29 were individuals with DS. RESULTS We show that the percentages of two peripheral blood myeloid cell subtypes (alternatively-activated macrophages and low-density granulocytes) in children with DS differed significantly from typical children, children with DS circulate a very different pattern of cytokines vs. typical individuals, and higher expression levels of type III interferon receptor Interleukin-10Rb in individuals with DS correlated with reduced migratory and phagocytic capacity of macrophages. CONCLUSIONS Increased susceptibility to severe and chronic infection in children with DS may result from inappropriate numbers and subtypes of immune cells that are phenotypically and functionally altered due to trisomy 21 associated interferonopathy.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Bioengineering, University of Colorado Denver, Aurora, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, USA
| | | | - Francis Hickey
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
| | - Michael E Yeager
- Department of Bioengineering, University of Colorado Denver, Aurora, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, USA.
| |
Collapse
|
43
|
Tanaka T, Kudo K, Kanezaki R, Yuzawa K, Toki T, Okuse R, Kobayashi A, Sato T, Kamio T, Terui K, Ito E. Antileukemic effect of azacitidine, a DNA methyltransferase inhibitor, on cell lines of myeloid leukemia associated with Down syndrome. Exp Hematol 2024; 132:104179. [PMID: 38342295 DOI: 10.1016/j.exphem.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Myeloid leukemia associated with Down syndrome (ML-DS) responds well to chemotherapy and has a favorable prognosis, but the clinical outcome of patients with refractory or relapsed ML-DS is dismal. We recently reported a case of relapsed ML-DS with an effective response to a DNA methyltransferase inhibitor, azacitidine (AZA). However, the efficacy of AZA for refractory or relapsed ML-DS remains uncertain. Here, we investigated the effects and mechanism of action of AZA on three ML-DS cell lines derived from relapsed cases. AZA inhibited the proliferation of all examined ML-DS cell lines to the same extent as that of AZA-sensitive acute myeloid leukemia non-Down syndrome cell lines. Transient low-dose AZA treatment exerted durable antileukemic effects on ML-DS cells. The inhibitory effect included cell cycle arrest, apoptosis, and reduction of aldehyde dehydrogenase activity. Comprehensive differential gene expression analysis showed that AZA induced megakaryocytic differentiation in all ML-DS cell lines examined. Furthermore, AZA induced activation of type I interferon-stimulated genes, primarily involved in antiproliferation signaling, without stimulation of the interferon receptor-mediated autocrine system. Activation of the type I interferon pathway by stimulation with interferon-α exerted antiproliferative effects on ML-DS cells, suggesting that AZA exerts its antileukemic effects on ML-DS cells at least partially through the type I interferon pathway. Moreover, the effect of AZA on normal hematopoiesis did not differ significantly between individuals with non-Down syndrome and Down syndrome. In summary, this study suggests that AZA is a potentially effective treatment option for ML-DS disease control, including relapsed cases, and has reduced side effects.
Collapse
Affiliation(s)
- Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryo Okuse
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
44
|
Ramba M, Bogunovic D. The immune system in Down Syndrome: Autoimmunity and severe infections. Immunol Rev 2024; 322:300-310. [PMID: 38050836 PMCID: PMC10950520 DOI: 10.1111/imr.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Over 200,000 individuals in the United States alone live with Down Syndrome (DS), the most common genetic disorder associated with intellectual disability. DS has a constellation of features across the body, including dysregulation of the immune system. Individuals with DS have both a higher frequency of autoimmunity and more severe infections than the general population, highlighting the importance of understanding the immune system in this population. Individuals with DS present with dysregulation of both the innate and adaptive immune systems. Elevated cytokine levels, increased type I and type II IFN signaling, a shift toward memory phenotypes in T cells, and a decrease in the size of the B-cell compartment are observed in individuals with DS, which contribute to both autoinflammation and severe infections. Herein, we discuss the current knowledge of the immune system in individuals with Down Syndrome as well as ideas of necessary further investigations to decipher the mechanisms by which trisomy 21 leads to immune dysregulation, with the ultimate goal of identifying clinical targets to improve treatment.
Collapse
Affiliation(s)
- Meredith Ramba
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
45
|
Barwe SP, Kolb EA, Gopalakrishnapillai A. Down syndrome and leukemia: An insight into the disease biology and current treatment options. Blood Rev 2024; 64:101154. [PMID: 38016838 DOI: 10.1016/j.blre.2023.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
Children with Down syndrome (DS) have a 10- to 20-fold greater predisposition to develop acute leukemia compared to the general population, with a skew towards myeloid leukemia (ML-DS). While ML-DS is known to be a subtype with good outcome, patients who relapse face a dismal prognosis. Acute lymphocytic leukemia in DS (DS-ALL) is considered to have poor prognosis. The relapse rate is high in DS-ALL compared to their non-DS counterparts. We have a better understanding about the mutational spectrum of DS leukemia. Studies using animal, embryonic stem cell- and induced pluripotent stem cell-based models have shed light on the mechanism by which these mutations contribute to disease initiation and progression. In this review, we list the currently available treatment strategies for DS-leukemias along with their outcome with emphasis on challenges with chemotherapy-related toxicities in children with DS. We focus on the mechanisms of initiation and progression of leukemia in children with DS and highlight the novel molecular targets with greater success in preclinical trials that have the potential to progress to the clinic.
Collapse
Affiliation(s)
- Sonali P Barwe
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - E Anders Kolb
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA
| | - Anilkumar Gopalakrishnapillai
- Lisa Dean Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, Delaware, 19803, USA.
| |
Collapse
|
46
|
Aldecoa I, Barroeta I, Carroll SL, Fortea J, Gilmore A, Ginsberg SD, Guzman SJ, Hamlett ED, Head E, Perez SE, Potter H, Molina‐Porcel L, Raha‐Chowdhury R, Wisniewski T, Yong WH, Zaman S, Ghosh S, Mufson EJ, Granholm A. Down Syndrome Biobank Consortium: A perspective. Alzheimers Dement 2024; 20:2262-2272. [PMID: 38270275 PMCID: PMC10984425 DOI: 10.1002/alz.13692] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/26/2024]
Abstract
Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.
Collapse
Affiliation(s)
- Iban Aldecoa
- Pathology DepartmentHospital Clinic de Barcelona‐University of BarcelonaBarcelonaSpain
- Neurological Tissue Bank of the BiobankHospital Clinic de Barcelona‐FCRB/IDIBAPSBarcelonaSpain
| | - Isabel Barroeta
- Neurology DepartmentHospital de la Santa Creu i Sant Pau, NeurologyBarcelonaSpain
| | - Steven L. Carroll
- Department of Pathology & Laboratory MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Juan Fortea
- Neurology DepartmentHospital de la Santa Creu i Sant Pau, NeurologyBarcelonaSpain
| | - Anah Gilmore
- University of Colorado Denver Anschutz Medical Campus, NeurosurgeryAuroraColoradoUSA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline InstituteOrangeburgNew YorkUSA
- Departments of PsychiatryNeuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Samuel J. Guzman
- Department of PathologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Eric D. Hamlett
- Department of Pathology & Laboratory MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California Irvine, UCI School of Medicine D440 Medical Sciences IIrvineCaliforniaUSA
| | - Sylvia E. Perez
- Barrow Neurological InstituteTranslational Neurosciences and NeurologyPhoenixArizonaUSA
| | - Huntington Potter
- University of Colorado Denver Anschutz Medical Campus, NeurologyAuroraColoradoUSA
| | - Laura Molina‐Porcel
- Pathology DepartmentHospital Clinic de Barcelona‐University of BarcelonaBarcelonaSpain
- Alzheimer's Disease and Other Cognitive Disorders UnitNeurology Service, Hospital Clínic, IDIBAPS, University of BarcelonaBarcelonaSpain
| | - Ruma Raha‐Chowdhury
- Department of PsychiatryCambridge Intellectual & Developmental Disabilities Research GroupUniversity of CambridgeCambridgeUK
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - William H. Yong
- Department of Pathology and Laboratory MedicineUniversity of California Irvine, UCI School of Medicine D440 Medical Sciences IIrvineCaliforniaUSA
| | - Shahid Zaman
- Department of PsychiatryCambridge Intellectual & Developmental Disabilities Research GroupUniversity of CambridgeCambridgeUK
| | - Sujay Ghosh
- Department of ZoologyCytogenetics and Genomics Research UnitKolkataIndia
| | - Elliott J. Mufson
- Barrow Neurological InstituteTranslational Neurosciences and NeurologyPhoenixArizonaUSA
| | | |
Collapse
|
47
|
Chen CC, Silberman RE, Ma D, Perry JA, Khalid D, Pikman Y, Amon A, Hemann MT, Rowe RG. Inherent genome instability underlies trisomy 21-associated myeloid malignancies. Leukemia 2024; 38:521-529. [PMID: 38245602 DOI: 10.1038/s41375-024-02151-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Constitutional trisomy 21 (T21) is a state of aneuploidy associated with high incidence of childhood acute myeloid leukemia (AML). T21-associated AML is preceded by transient abnormal myelopoiesis (TAM), which is triggered by truncating mutations in GATA1 generating a short GATA1 isoform (GATA1s). T21-associated AML emerges due to secondary mutations in hematopoietic clones bearing GATA1s. Since aneuploidy generally impairs cellular fitness, the paradoxically elevated risk of myeloid malignancy in T21 is not fully understood. We hypothesized that individuals with T21 bear inherent genome instability in hematopoietic lineages that promotes leukemogenic mutations driving the genesis of TAM and AML. We found that individuals with T21 show increased chromosomal copy number variations (CNVs) compared to euploid individuals, suggesting that genome instability could be underlying predisposition to TAM and AML. Acquisition of GATA1s enforces myeloid skewing and maintenance of the hematopoietic progenitor state independently of T21; however, GATA1s in T21 hematopoietic progenitor cells (HPCs) further augments genome instability. Increased dosage of the chromosome 21 (chr21) gene DYRK1A impairs homology-directed DNA repair as a mechanism of elevated mutagenesis. These results posit a model wherein inherent genome instability in T21 drives myeloid malignancy in concert with GATA1s mutations.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Stem Cell Transplantation Program, Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Rebecca E Silberman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- RA Capital, Boston, MA, USA
| | - Duanduan Ma
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Swanson Biotechnology Center, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - R Grant Rowe
- Stem Cell Transplantation Program, Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Pechous RD, Malaviarachchi PA, Xing Z, Douglas A, Crane SD, Theriot HM, Zhang Z, Ghaffarieh A, Huang L, Yu YE, Zhang X. SARS-CoV-2 Infection Causes Heightened Disease Severity and Mortality in a Mouse Model of Down Syndrome. Biomedicines 2024; 12:543. [PMID: 38540156 PMCID: PMC10967796 DOI: 10.3390/biomedicines12030543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 11/03/2024] Open
Abstract
Recent epidemiological studies suggest that individuals with Down syndrome are more susceptible to SARS-CoV-2 infection and have higher rates of hospitalization and mortality than the general population. However, the main drivers behind these disparate health outcomes remain unknown. Herein, we performed experimental infections with SARS-CoV-2 in a well-established mouse model of Down syndrome. We observed similar SARS-CoV-2 replication kinetics and dissemination in the primary and secondary organs between mice with and without Down syndrome, suggesting that both groups have similar susceptibilities to SARS-CoV-2 infection. However, Down syndrome mice exhibited more severe disease as defined by clinical features including symptoms, weight loss, pulmonary function, and survival of mice. We found that increased disease severity in Down syndrome mice could not be attributed solely to increased infectivity or a more dramatic pro-inflammatory response to infection. Rather, results from RNA sequencing suggested that differences in the expression of genes from other physiological pathways, such as deficient oxidative phosphorylation, cardiopulmonary dysfunction, and deficient mucociliary clearance in the lungs may also contribute to heightened disease severity and mortality in Down syndrome mice following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roger D. Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Priyangi A. Malaviarachchi
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhuo Xing
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Avrium Douglas
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Samantha D. Crane
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hayley M. Theriot
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zijing Zhang
- Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alireza Ghaffarieh
- Departments of Ophthalmology and Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
49
|
Lana-Elola E, Aoidi R, Llorian M, Gibbins D, Buechsenschuetz C, Bussi C, Flynn H, Gilmore T, Watson-Scales S, Haugsten Hansen M, Hayward D, Song OR, Brault V, Herault Y, Deau E, Meijer L, Snijders AP, Gutierrez MG, Fisher EMC, Tybulewicz VLJ. Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome. Sci Transl Med 2024; 16:eadd6883. [PMID: 38266108 PMCID: PMC7615651 DOI: 10.1126/scitranslmed.add6883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear. Here, we show that hearts from human fetuses with DS and embryonic hearts from the Dp1Tyb mouse model of DS show reduced expression of mitochondrial respiration genes and cell proliferation genes. Using systematic genetic mapping, we determined that three copies of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) gene, encoding a serine/threonine protein kinase, are associated with congenital heart disease pathology. In embryos from Dp1Tyb mice, reducing Dyrk1a gene copy number from three to two reversed defects in cellular proliferation and mitochondrial respiration in cardiomyocytes and rescued heart septation defects. Increased dosage of DYRK1A protein resulted in impairment of mitochondrial function and congenital heart disease pathology in mice with DS, suggesting that DYRK1A may be a useful therapeutic target for treating this common human condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Véronique Brault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Yann Herault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Emmanuel Deau
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | - Laurent Meijer
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | | | | | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | | |
Collapse
|
50
|
Rodriguez-Rodriguez C, González-Mancha N, Ochoa-Echeverría A, Liébana R, Merida I. Partial loss of Sorting Nexin 27 resembles age- and Down syndrome-associated T cell dysfunctions. Immun Ageing 2024; 21:2. [PMID: 38166948 PMCID: PMC10759489 DOI: 10.1186/s12979-023-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Sorting Nexin 27 (SNX27)-retromer complex facilitates cargo recycling from endosomes to the plasma membrane. SNX27 downregulation in neurons, as the result of Trisomy 21 (T21), has been linked with cognitive deficits due to impairment of AMPA and NMDA receptor recycling. Studies in human T cell lines likewise demonstrated that SNX27 regulates the correct delivery of cargoes to the immune synapse limiting the activation of pro-inflammatory pathways. Nevertheless, the physiological consequences of partial SNX27 loss in T cell homeostasis are still unclear. RESULTS In this study, we have explored the consequences of T cell specific partial SNX27 downregulation in mice. T cells with partial SNX27 deficiency show a marked deficit in the CD4+ T cell pool, a hallmark of aging in mice and humans, and a well-characterized comorbidity of individuals with Down syndrome (DS). When analyzed ex vivo, CD4+ T cells with partial SNX27 deletion demonstrate enhanced proliferation but diminished IL-2 production. In contrast, the CD8+ population show enhanced expression of pro-inflammatory cytokines and lytic enzymes. CONCLUSIONS This mouse model supports the relevance of SNX27 in the organization of the immune synapse, previously described in cell lines, as well as in the control of T cell homeostasis. Individuals with DS experiment an acceleration of the aging process, which particularly affects the immune and central nervous systems. Thus, we hypothesize that reduced SNX27 expression in DS could contribute to the dysregulation of these systems and further research in SNX27 will shed light on the molecular factors underlying the phenotypes observed in people with DS and its contribution to aging.
Collapse
Affiliation(s)
- Cristina Rodriguez-Rodriguez
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Natalia González-Mancha
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Rosa Liébana
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Isabel Merida
- Department of Immunology and Oncology, Spanish National Centre for Biotechnology (CNB-CSIC), UAM Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|