1
|
Sorrentino U, O'Neill AG, Kollman JM, Jinnah HA, Zech M. Purine Metabolism and Dystonia: Perspectives of a Long-Promised Relationship. Ann Neurol 2025; 97:809-825. [PMID: 40026236 PMCID: PMC12010064 DOI: 10.1002/ana.27227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
Dystonia research focuses on the identification of converging biological pathways, allowing to define molecular drivers that serve as treatment targets. We summarize evidence supporting the concept that aberrations in purine metabolism intersect with dystonia pathogenesis. The recent discovery of IMPDH2-related dystonia introduced a gain-of-function paradigm in purinergic system defects, offering new perspectives to understand purine-pool imbalances in brain diseases. We discuss commonalities between known dystonia-linked mechanisms and mechanisms emerging from studies of purine metabolism disorders including Lesch-Nyhan disease. Together, we hypothesize that a greater appreciation of the relevance of purine perturbances in dystonia can offer fresh avenues for therapeutic intervention. ANN NEUROL 2025;97:809-825.
Collapse
Affiliation(s)
- Ugo Sorrentino
- Institute of Human Genetics, Technical University of Munich, School of Medicine and HealthMunichGermany
| | | | | | - Hyder A. Jinnah
- Departments of Neurology, Human Genetics and PediatricsEmory University School of MedicineAtlantaGA
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine and HealthMunichGermany
- Institute of Neurogenomics, Helmholtz MunichNeuherbergGermany
- Institute for Advanced Study, Technical University of MunichGarchingGermany
| |
Collapse
|
2
|
Chang CC, Peng M, Keppeke GD, Tsai LK, Zhang Z, Pai LM, Sung LY, Liu JL. Y12C mutation disrupts IMPDH cytoophidia and alters cancer metabolism. FEBS J 2025. [PMID: 40186514 DOI: 10.1111/febs.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/17/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Guanosine triphosphate (GTP) is a building block for DNA and RNA, and plays a pivotal role in various cellular functions, serving as an energy source, enzyme cofactor and a key component of signal transduction. The activity of the rate-limiting enzyme in de novo GTP synthesis, inosine monophosphate dehydrogenase (IMPDH), is regulated by nucleotide binding. Recent studies have illuminated that IMPDH octamers can assemble into linear polymers, adding another dimension to its enzymatic regulation. This polymerisation reduces IMPDH's sensitivity to the inhibitory effects of GTP binding, thereby augmenting its activity under conditions with elevated GTP levels. Within cells, IMPDH polymers may cluster to form the distinctive structure known as the cytoophidium, which is postulated to reflect the cellular demand for increased GTP concentrations. Nevertheless, the functional significance of IMPDH polymerisation in in vivo metabolic regulation remains unclear. In this study, we report the widespread presence of IMPDH cytoophidia in various human cancer tissues. Utilising the ABEmax base editor, we introduced a Y12C point mutation into IMPDH2 across multiple cancer cell lines. This mutation disrupts the polymerisation interface of IMPDH and prevents cytoophidium assembly. In some cancer xenografts, the absence of IMPDH polymers led to a downregulation of IMPDH, as well as the glycolytic and pentose phosphate pathways. Furthermore, mutant HeLa-cell-derived xenografts were notably smaller than their wild-type counterparts. Our data suggest that IMPDH polymerisation and cytoophidium assembly could be instrumental in modulating metabolic homeostasis in certain cancers, offering insights into the clinical relevance of IMPDH cytoophidium.
Collapse
Affiliation(s)
- Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Gerson Dierley Keppeke
- School of Life Science and Technology, ShanghaiTech University, China
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Li-Mei Pai
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
3
|
Singh S, Kistwal T, Datta A, Anand R. Substrate-Induced Dynamic Regulation of the Catalytic Loop in Assisting Allosteric Communication in Formylglycinamidine Synthetase. J Phys Chem Lett 2025; 16:1582-1589. [PMID: 39904913 DOI: 10.1021/acs.jpclett.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Bifunctional enzymes that execute tandem chemical reactions progress through orchestrated conformational states to achieve chemical synchronization. In these allosterically regulated systems, specific stimuli, such as substrate and cofactor binding, determine reactivity. Here, we employ a combination of steady-state and time-resolved fluorescence methods to monitor the conformational dynamics of a catalytic loop in formylglycinamidine synthetase, an enzyme that catalyzes a crucial step toward the synthesis of precursors of DNA and RNA. We show that the catalytic loop harbors adaptive structural elements that change secondary structure in response to substrate binding and, thereby, enable allosteric cues to the 25 Å distal NH3-producing site. To exclusively track the conformational changes in the loop, a fluorescent unnatural amino acid was introduced into the 1300-amino acid protein, allowing for a unique signal that was not masked by the indigenous fluorescent amino acids. The study highlights the role of flexible small elements that act as triggers of the allosteric cycle and maps states that are essential for function.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Tanuja Kistwal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
4
|
Zhou B, Zhao Q, Hou G, He J, Sha N, Zheng K, Peng H, Wang W, Zhou Y, Chen T, Jiang Y. IMPDH2 dephosphorylation under FGFR signaling promotes S-phase progression and tumor growth. Cell Rep 2025; 44:115116. [PMID: 39739531 DOI: 10.1016/j.celrep.2024.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/06/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Inosine monophosphate dehydrogenase 2 (IMPDH2) is highly expressed in human cancers; however, its physiological relevance under growth signaling remains to be investigated. Here, we show that IMPDH2 serine 122 is phosphorylated by CDK1, and this modification attenuates the catalytic activity of IMPDH2 for IMP oxidation and simultaneously represses its allosteric modulation by purine nucleotides. Fibroblast growth factor receptor (FGFR) signaling activation triggers IMPDH2-Ser122 dephosphorylation mediated by protein phosphatase 2A (PP2A), which is dependent on FGFR3-mediated PPP2R1A-Tyr261 phosphorylation leading to PPP2CA-PPP2R1A-IMPDH2 interactions. In turn, Ser122 dephosphorylation positively modulates IMPDH2 activity and contributes to guanine nucleotide synthesis and purine homeostasis, thereby facilitating S-phase completion and cell proliferation. Accordingly, IMPDH2 dephosphorylation is implicated in FGFR activation-enhanced tumorigenesis, and the low level of IMPDH2-Ser122 phosphorylation predicts the poor prognosis of patients with colorectal cancer. These findings illustrate a regulatory mechanism of purine nucleotide production under FGFR signaling, in which the oncogenic effect of reinforced IMPDH2 activity is underscored.
Collapse
Affiliation(s)
- Bei Zhou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Zhao
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofang Hou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing He
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Sha
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Zheng
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Peng
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Wang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuhui Jiang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Ivanova A, Munoz DG, Woulfe J. Depletion of nuclear cytoophidia in Alzheimer's disease. FREE NEUROPATHOLOGY 2025; 6:8. [PMID: 40070795 PMCID: PMC11894473 DOI: 10.17879/freeneuropathology-2025-6282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
There is considerable evidence for a role for metabolic dysregulation, including disordered purine nucleotide metabolism, in the pathogenesis of Alzheimer's disease (AD). Purine nucleotide synthesis in the brain is regulated with high fidelity to co-ordinate supply with demand. The assembly of some purine biosynthetic enzymes into linear filamentous aggregates called "cytoophidia" (Gk. Cellular "snakes") represents one post-translational mechanism to regulate enzyme activity. Cytoophidia comprised of the nucleotide biosynthetic enzymes inosine monophosphate dehydrogenase (IMPDH) and phosphoribosyl pyrophosphate synthetase (PRPS) have been described in neuronal nuclei (nuclear cytoophidia; NCs). In light of the involvement of purine nucleotide dysmetabolism in AD, the rationale for this study was to determine whether there are disease-specific qualitative or quantitative alterations in PRPS cytoophidia in the AD brain. Double fluorescence immunostaining for PRPS and the neuronal marker MAP2 was performed on tissue microarrays of cores of temporal cortex extracted from post-mortem tissue blocks from a large cohort of participants with neuropathologically confirmed AD, Lewy body disease (LBD), progressive supranuclear palsy, and corticobasal degeneration, as well as age-matched cognitively unimpaired control participants. The latter group included individuals with substantial beta-amyloid deposition. NCs were significantly reduced in frequency in AD samples relative to those from controls, including those with a high beta-amyloid load, or participants with LBD or 4 repeat tauopathies. Moreover, double staining for PRPS and hyperphosphorylated tau revealed evidence for an association between NCs and neurofibrillary tangles. The results of this study contribute to our understanding of metabolic contributions to AD pathogenesis and provide a novel avenue for future studies. Moreover, because PRPS filamentation is responsive to a variety of drugs and metabolites, they may have implications for the development of biologically rational therapies.
Collapse
Affiliation(s)
| | | | - John Woulfe
- Department of Laboratory Medicine, St. Michael’s Hospital, Unity Health & Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Li W, Chen J, Guo Z. Targeting metabolic pathway enhance CAR-T potency for solid tumor. Int Immunopharmacol 2024; 143:113412. [PMID: 39454410 DOI: 10.1016/j.intimp.2024.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have great potential in cancer therapy, particularly in treating hematologic malignancies. However, their efficacy in solid tumors remains limited, with a significant proportion of patients failing to achieve long-term complete remission. One major challenge is the premature exhaustion of CAR-T cells, often due to insufficient metabolic energy. The survival, function and metabolic adaptation of CAR-T cells are key determinants of their therapeutic efficacy. We explore how targeting metabolic pathways in the tumor microenvironment can enhance CAR-T cell therapy by addressing metabolic competition and immunosuppression that impair CAR-T cell function. Tumors undergo metabolically reprogrammed to meet their rapid proliferation, thereby modulating metabolic pathways in immune cells to promote immunosuppression. The distinct metabolic requirements of tumors and T cells create a competitive environment, affecting the efficacy of CAR-T cell therapy. Recent research on glucose, lipid and amino acid metabolism, along with the interactions between tumor and immune cell metabolism, has revealed that targeting these metabolic processes can enhance antitumor immune responses. Combining metabolic interventions with existing antitumor therapies can fulfill the metabolic demands of immune cells, providing new ideas for tumor immunometabolic therapies. This review discusses the latest advances in the immunometabolic mechanisms underlying tumor immunosuppression, their implications for immunotherapy, and summarizes potential metabolic targets to improve the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Wenying Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Alijani N, Yazdanparast R. Induction of IMPDH-Based Cytoophidia by a Probable IMP-Dependent ARL13B-IMPDH Interaction. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2287-2291. [PMID: 39865040 DOI: 10.1134/s0006297924120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 01/28/2025]
Abstract
Inosine Monophosphate Dehydrogenase (IMPDH) catalyzes rate-limiting step of the reaction converting inosine monophosphate (IMP) to guanine nucleotides. IMPDH is up-regulated in the healthy proliferating cells and also in tumor cells to meet their elevated demand for guanine nucleotides. An exclusive regulatory mechanism for this enzyme is filamentation, through which IMPDH can resist allosteric inhibition by the end product, GTP. It has been proven that intracellular IMP, which rises during the proliferative state, potentially promotes IMPDH filamentation. On the other hand, interaction of IMPDH with ADP-ribosylation factor-like protein 13B (ARL13B) directs guanine biosynthesis toward the de novo pathway. However, ARL13B is not localized in the IMPDH-based cytoophidia, super structures composed of bundled IMPDH filaments and other proteins. Here, we hypothesized that ARL13B could increase availability of the de novo-produced IMP for IMPDH by interacting with the IMP-free IMPDH and microtubules adjacent to the purinosome. Following IMP-binding, IMPDH would be released from ARL13B and preferentially associated with its cytoophidia. Considering clinical side effects of catalytic inhibitors of IMPDH and their ability to induce IMPDH cytoophidia, we suggest that combination of proper doses of IMPDH catalytic inhibitors and inhibitors of the de novo IMP biosynthesis could be more effective in controlling cell proliferation.
Collapse
Affiliation(s)
- Najva Alijani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran.
| |
Collapse
|
8
|
Chen YJ, Iyer SV, Hsieh DCC, Li B, Elias HK, Wang T, Li J, Ganbold M, Lien MC, Peng YC, Xie XP, Jayewickreme CD, van den Brink MRM, Brady SF, Lim SK, Parada LF. Gliocidin is a nicotinamide-mimetic prodrug that targets glioblastoma. Nature 2024; 636:466-473. [PMID: 39567689 PMCID: PMC11665509 DOI: 10.1038/s41586-024-08224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma is incurable and in urgent need of improved therapeutics1. Here we identify a small compound, gliocidin, that kills glioblastoma cells while sparing non-tumour replicative cells. Gliocidin activity targets a de novo purine synthesis vulnerability in glioblastoma through indirect inhibition of inosine monophosphate dehydrogenase 2 (IMPDH2). IMPDH2 blockade reduces intracellular guanine nucleotide levels, causing nucleotide imbalance, replication stress and tumour cell death2. Gliocidin is a prodrug that is anabolized into its tumoricidal metabolite, gliocidin-adenine dinucleotide (GAD), by the enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) of the NAD+ salvage pathway. The cryo-electron microscopy structure of GAD together with IMPDH2 demonstrates its entry, deformation and blockade of the NAD+ pocket3. In vivo, gliocidin penetrates the blood-brain barrier and extends the survival of mice with orthotopic glioblastoma. The DNA alkylating agent temozolomide induces Nmnat1 expression, causing synergistic tumour cell killing and additional survival benefit in orthotopic patient-derived xenograft models. This study brings gliocidin to light as a prodrug with the potential to improve the survival of patients with glioblastoma.
Collapse
Affiliation(s)
- Yu-Jung Chen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Swathi V Iyer
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Chun-Cheng Hsieh
- Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Buren Li
- Structure Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harold K Elias
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- National Institutes of Health, Bethesda, MD, USA
| | - Tao Wang
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Neuroscience Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - Jing Li
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mungunsarnai Ganbold
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle C Lien
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Chun Peng
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuanhua P Xie
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenura D Jayewickreme
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - S Kyun Lim
- KOBIOLABS, Inc., Seongnam-si, South Korea
| | - Luis F Parada
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Maekawa S, Nishikawa I, Horiguchi G. Impaired inosine monophosphate dehydrogenase leads to plant-specific ribosomal stress responses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:1091-1104. [PMID: 39235732 DOI: 10.1007/s10265-024-01578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Nucleotides are the building blocks of living organisms and their biosynthesis must be tightly regulated. Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in GTP synthesis that is essential for biological activities, such as RNA synthesis. In animals, the suppression of IMPDH function causes ribosomal stress (also known as nucleolar stress), a disorder in ribosome biogenesis that results in cell proliferation defects and apoptosis. Despite its importance, plant IMPDH has not been analyzed in detail. Therefore, we analyzed the phenotypes of mutants of the two IMPDH genes in Arabidopsis thaliana and investigated their relationship with ribosomal stress. Double mutants of IMPDH1 and IMPDH2 were lethal, and only the impdh2 mutants showed growth defects and transient chlorophyll deficiency. These results suggested that IMPDH1 and IMPDH2 are redundant and essential, whereas IMPDH2 has a crucial role. In addition, the impdh2 mutants showed a reduction in nucleolus size and resistance to several translation inhibitors, which is a known response to ribosomal stress. Furthermore, the IMPDH1/impdh1 impdh2 mutants showed more severe growth defects and phenotypes such as reduced plastid rRNA levels and abnormal processing patterns than the impdh2 mutants. Finally, multiple mutations of impdh with as2, which has abnormal leaf polarity, caused the development of needle-like leaves because of the enhancement of the as2 phenotype, which is a typical effect observed in mutants of genes involved in ribosome biogenesis. These results indicated that IMPDH is closely related to ribosome biogenesis, and that mutations in the genes lead to not only known responses to ribosomal stress, but also plant-specific responses.
Collapse
Affiliation(s)
- Shugo Maekawa
- Institute of Natural Sciences, Senshu University, Higashimita 2-1-1, Tama, Kawasaki, Kanagawa, 214-8580, Japan.
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan.
| | - Ikuto Nishikawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka City, Fukuoka, 812-8582, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo, 171-8501, Japan
| |
Collapse
|
10
|
Nasalingkhan C, Sirinonthanawech N, Sato BK, Wilhelm JE, Noree C. Localization and regulation of yeast aldehyde dehydrogenase Ald4p structures. Heliyon 2024; 10:e39048. [PMID: 39640825 PMCID: PMC11620093 DOI: 10.1016/j.heliyon.2024.e39048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Previously, we identified yeast strains, namely SWORD, showing more robust Ald4p-GFP filament formation than the typical ALD4::GFP strains. Here, we report that Ald4p-GFP in SWORD strains favorably polymerize into gigantic structures in the cytoplasm, despite the enzyme being established as a mitochondrial resident. In addition, we have found that nocodazole, a microtubule destabilizer, has no effect on Ald4p high-order assembly, suggesting no direct association between microtubule dynamics and Ald4p structure formation. Ald4p assembly cannot be induced by sodium azide treatment, indicating that ATP is not a primary effector of Ald4p polymerization. Interestingly, addition of exogenous acetaldehyde, a substrate of the enzyme, can significantly enhance the structure formation of Ald4p, implying that structure formation may be related to enzymatic activity.
Collapse
Affiliation(s)
- Channarong Nasalingkhan
- Institute of Molecular Biosciences, Mahidol University 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Naraporn Sirinonthanawech
- Institute of Molecular Biosciences, Mahidol University 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Brian K. Sato
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, 2238 McGaugh Hall, Irvine, CA, 92697, USA
| | - James E. Wilhelm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive (MC0347), La Jolla, CA, 92093-0347, USA
| | - Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
11
|
Bairagya HR. Dynamics of nucleoplasm in human leukemia cells: A thrust towards designing anti-leukemic agents. J Mol Graph Model 2024; 131:108807. [PMID: 38908255 DOI: 10.1016/j.jmgm.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
The human inosine monophosphate dehydrogenase (hIMPDH) is a metabolic enzyme that possesses a unique ability to self-assemble into higher-order structures, forming cytoophidia. The hIMPDH II isoform is more active in chronic myeloid leukemia (CML) cancer cells, making it a promising target for anti-leukemic therapy. However, the structural details and molecular mechanisms of the dynamics of hIMPDHcytoophidia assembly in vitro need to be better understood, and it is crucial to reconstitute the computational nucleoplasm model with cytophilic-like polymers in vitro to characterize their structure and function. Finally, a computational model and its dynamics of the nucleoplasm for CML cells have been proposed in this short review. This research on nucleoplasm aims to aid the scientific community's understanding of how metabolic enzymes like hIMPDH function in cancer and normal cells. However, validating and justifying the computational results from modeling and simulation with experimental data is essential. The new insights gained from this research could explain the structure/topology, geometrical, and electronic consequences of hIMPDH inhibitors on leukemic and normal cells. They could lead to further advancements in the knowledge of nucleoplasmic chemical reaction dynamics.
Collapse
Affiliation(s)
- Hridoy R Bairagya
- Computational Drug Design and Bio-molecular Simulation Lab, Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal, 741249, India.
| |
Collapse
|
12
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. EMBO Rep 2024; 25:3990-4012. [PMID: 39075237 PMCID: PMC11387764 DOI: 10.1038/s44319-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Lynch EM, Hansen H, Salay L, Cooper M, Timr S, Kollman JM, Webb BA. Structural basis for allosteric regulation of human phosphofructokinase-1. Nat Commun 2024; 15:7323. [PMID: 39183237 PMCID: PMC11345425 DOI: 10.1038/s41467-024-51808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively. Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Lauren Salay
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Madison Cooper
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Stepan Timr
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Bradley A Webb
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
14
|
McCartney ME, Wheeler GM, O’Neill AG, Patel JH, Litt ZR, Calise SJ, Kollman JM, Wills AE. Appendage regeneration requires IMPDH2 and creates a sensitized environment for enzyme filament formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605679. [PMID: 39131357 PMCID: PMC11312571 DOI: 10.1101/2024.07.29.605679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Regeneration of lost tissue requires biosynthesis of metabolites needed for cell proliferation and growth. Among these are the critical purine nucleotides ATP and GTP. The abundance and balance of these purines is regulated by inosine monophosphate dehydrogenase 2 (IMPDH2), which catalyzes the committing step of GTP synthesis. IMPDH2 assembles into filaments that resist allosteric inhibition under conditions of high GTP demand. Here we asked whether IMPDH2 is required in the highly proliferative context of regeneration, and whether its assembly into filaments takes place in regenerating tissue. We find that inhibition of IMPDH2 leads to impaired tail regeneration and reduced cell proliferation in the tadpole Xenopus tropicalis. We find that both endogenous and fluorescent fusions of IMPDH2 robustly assemble into filaments throughout the tadpole tail, and that the regenerating tail creates a sensitized condition for filament formation. These findings clarify the role of purine biosynthesis in regeneration and reveal that IMPDH2 enzyme filament formation is a biologically relevant mechanism of regulation in vertebrate regeneration.
Collapse
Affiliation(s)
| | - Gavin M. Wheeler
- Department of Biochemistry. University of Washington, Seattle WA
| | - Audrey G. O’Neill
- Department of Biochemistry. University of Washington, Seattle WA
- Program in Biological Physics, Structure, and Design. University of Washington, Seattle WA
| | - Jeet H. Patel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia PA
| | - Zoey R. Litt
- Department of Biochemistry. University of Washington, Seattle WA
| | - S. John Calise
- Department of Biochemistry. University of Washington, Seattle WA
| | | | - Andrea E. Wills
- Department of Biochemistry. University of Washington, Seattle WA
| |
Collapse
|
15
|
Bulvas O, Knejzlík Z, Sýs J, Filimoněnko A, Čížková M, Clarová K, Rejman D, Kouba T, Pichová I. Deciphering the allosteric regulation of mycobacterial inosine-5'-monophosphate dehydrogenase. Nat Commun 2024; 15:6673. [PMID: 39107302 PMCID: PMC11303537 DOI: 10.1038/s41467-024-50933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.
Collapse
Affiliation(s)
- Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Sýs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anatolij Filimoněnko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Čížková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kamila Clarová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Woulfe J, Munoz D. Roncoroni Re-Visited: The Neuronal Intranuclear Rodlet Comes of Age. J Comp Neurol 2024; 532:e25662. [PMID: 39136357 DOI: 10.1002/cne.25662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 01/31/2025]
Abstract
Despite myriad technological advances in neuroscience, the nervous system harbors morphological phenomena that continue to defy explanation. First described by the classical microscopists, including Santiago Ramon y Cajal, at the end of the 19th century, the neuronal intranuclear rodlet (INR) has mystified neurohistologists and microscopists for centuries. In this review article, we will provide an overview of the discovery of the INR as well as the subsequent attempts to elucidate its nature and functional significance. We outline our own studies of this structure over the past three decades, focusing on its elusive nature, its interactions with other nuclear organelles, and on disease-related quantitative changes in Alzheimer's disease. We then describe our somewhat serendipitous discovery that these structures are filamentous aggregates of the nucleotide-synthesizing metabolic enzyme inosine monophosphate dehydrogenase. The filamentation of metabolic enzymes to form mesoscale cellular structures called "rods and rings" or "cytoophidia" (Greek for "cellular snakes") is a recently described phenomenon that remains to be systematically investigated in the nervous system. Thus, this review provides an intriguing historical juxtaposition in neuroscience, inculcating the neuronal INR, once a mere morphological curiosity, into one of the most rapidly evolving fields in contemporary cell biology.
Collapse
Affiliation(s)
- John Woulfe
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital and The University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David Munoz
- St. Michael's Hospital, Unity Health Toronto and Laboratory Medicine & Pathobiology, University of Toronto, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Bearne SL. Biochemical communication between filament-forming enzymes: Potential Regulatory Roles of Metabolites in Enzyme Co-assemblies with CTP Synthase. Bioessays 2024; 46:e2400063. [PMID: 38975656 DOI: 10.1002/bies.202400063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 07/09/2024]
Abstract
A host of metabolic enzymes reversibly self-assemble to form membrane-less, intracellular filaments under normal physiological conditions and in response to stress. Often, these enzymes reside at metabolic control points, suggesting that filament formation affords an additional regulatory mechanism. Examples include cytidine-5'-triphosphate (CTP) synthase (CTPS), which catalyzes the rate-limiting step for the de novo biosynthesis of CTP; inosine-5'-monophosphate dehydrogenase (IMPDH), which controls biosynthetic access to guanosine-5'-triphosphate (GTP); and ∆1-pyrroline-5-carboxylate (P5C) synthase (P5CS) that catalyzes the formation of P5C, which links the Krebs cycle, urea cycle, and proline metabolism. Intriguingly, CTPS can exist in co-assemblies with IMPDH or P5CS. Since GTP is an allosteric activator of CTPS, the association of CTPS and IMPDH filaments accords with the need to coordinate pyrimidine and purine biosynthesis. Herein, a hypothesis is presented furnishing a biochemical connection underlying co-assembly of CTPS and P5CS filaments - potent inhibition of CTPS by glutamate γ-semialdehyde, the open-chain form of P5C.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
18
|
Shan Z, Rivero-Gamez A, Lyumkis D, Horton NC. Two-metal ion mechanism of DNA cleavage by activated, filamentous SgrAI. J Biol Chem 2024; 300:107576. [PMID: 39009341 PMCID: PMC11367474 DOI: 10.1016/j.jbc.2024.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Enzymes that form filamentous assemblies with modulated enzymatic activities have gained increasing attention in recent years. SgrAI is a sequence specific type II restriction endonuclease that forms polymeric filaments with accelerated DNA cleavage activity and expanded DNA sequence specificity. Prior studies have suggested a mechanistic model linking the structural changes accompanying SgrAI filamentation to its accelerated DNA cleavage activity. In this model, the conformational changes that are specific to filamentous SgrAI maximize contacts between different copies of the enzyme within the filament and create a second divalent cation binding site in each subunit, which in turn facilitates the DNA cleavage reaction. However, our understanding of the atomic mechanism of catalysis is incomplete. Herein, we present two new structures of filamentous SgrAI solved using cryo-EM. The first structure, resolved to 3.3 Å, is of filamentous SgrAI containing an active site mutation that is designed to stall the DNA cleavage reaction, which reveals the enzymatic configuration prior to DNA cleavage. The second structure, resolved to 3.1 Å, is of WT filamentous SgrAI containing cleaved substrate DNA, which reveals the enzymatic configuration at the end of the enzymatic cleavage reaction. Both structures contain the phosphate moiety at the cleavage site and the biologically relevant divalent cation cofactor Mg2+ and define how the Mg2+ cation reconfigures during enzymatic catalysis. The data support a model for the activation mechanism that involves binding of a second Mg2+ in the SgrAI active site as a direct result of filamentation induced conformational changes.
Collapse
Affiliation(s)
- Zelin Shan
- The Salk Institute of Biological Sciences, La Jolla, California, USA
| | - Andres Rivero-Gamez
- The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego La Jolla, California, USA
| | - Dmitry Lyumkis
- The Salk Institute of Biological Sciences, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego La Jolla, California, USA.
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
19
|
Lynch EM, Lu Y, Park JH, Shao L, Kollman J, Rego EH. Evolutionarily divergent Mycobacterium tuberculosis CTP synthase filaments are under selective pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605180. [PMID: 39091829 PMCID: PMC11291164 DOI: 10.1101/2024.07.25.605180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The final and rate-limiting enzyme in pyrimidine biosynthesis, CTP synthase (CTPS) , is essential for the viability of Mycobacterium tuberculosis and other mycobacteria. Its product, CTP, is critical for RNA, DNA, lipid and cell wall synthesis, and is involved in chromosome segregation. In various organisms across the tree of life, CTPS assembles into higher-order filaments, leading us to hypothesize that M. tuberculosis CTPS (mtCTPS) also forms higher-order structures. Here, we show that mtCTPS does assemble into filaments but with an unusual architecture not seen in other organisms. Through a combination of structural, biochemical, and cellular techniques, we show that polymerization stabilizes the active conformation of the enzyme and resists product inhibition, potentially allowing for the highly localized production of CTP within the cell. Indeed, CTPS filaments localize near the CTP-dependent complex needed for chromosome segregation, and cells expressing mutant enzymes unable to polymerize are altered in their ability to robustly form this complex. Intriguingly, mutants that alter filament formation are under positive selection in clinical isolates of M. tuberculosis, pointing to a critical role needed to withstand pressures imposed by the host and/or antibiotics. Taken together, our data reveal an unexpected mechanism for the spatially organized production of a critical nucleotide in M. tuberculosis, which may represent a vulnerability of the pathogen that can be exploited with chemotherapy.
Collapse
Affiliation(s)
- Eric M. Lynch
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Yao Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Jin Ho Park
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Justin Kollman
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| |
Collapse
|
20
|
Wang L, Yang R, Kong Y, Zhou J, Chen Y, Li R, Chen C, Tang X, Chen X, Xia J, Chen X, Cheng B, Ren X. Integrative single-cell and bulk transcriptomes analyses reveals heterogeneity of serine-glycine-one-carbon metabolism with distinct prognoses and therapeutic vulnerabilities in HNSCC. Int J Oral Sci 2024; 16:44. [PMID: 38886346 PMCID: PMC11183126 DOI: 10.1038/s41368-024-00310-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/03/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024] Open
Abstract
Metabolic heterogeneity plays a central role in sustaining uncontrolled cancer cell proliferation and shaping the tumor microenvironment (TME), which significantly compromises the clinical outcomes and responses to therapy in head and neck squamous cell carcinoma (HNSCC) patients. This highlights the urgent need to delineate the intrinsic heterogeneity and biological roles of metabolic vulnerabilities to advance precision oncology. The metabolic heterogeneity of malignant cells was identified using single-cell RNA sequencing (scRNA-seq) profiles and validated through bulk transcriptomes. Serine-glycine-one-carbon (SGOC) metabolism was screened out to be responsible for the aggressive malignant properties and poor prognosis in HNSCC patients. A 4-SGOC gene prognostic signature, constructed by LASSO-COX regression analysis, demonstrated good predictive performance for overall survival and therapeutic responses. Patients in the low-risk group exhibited greater infiltration of exhausted CD8+ T cells, and demonstrated better clinical outcomes after receiving immunotherapy and chemotherapy. Conversely, high-risk patients exhibited characteristics of cold tumors, with enhanced IMPDH1-mediated purine biosynthesis, resulting in poor responses to current therapies. IMPDH1 emerged as a potential therapeutic metabolic target. Treatment with IMPDH inhibitors effectively suppressed HNSCC cell proliferation and metastasis and induced apoptosis in vitro and in vivo by triggering GTP-exhaustion nucleolar stress. Our findings underscore the metabolic vulnerabilities of HNSCC in facilitating accurate patient stratification and individualized precise metabolic-targeted treatment.
Collapse
Affiliation(s)
- Lixuan Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rongchun Yang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Kong
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhou
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yingyao Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rui Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuwen Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xinran Tang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobing Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
21
|
Peng M, Keppeke GD, Tsai LK, Chang CC, Liu JL, Sung LY. The IMPDH cytoophidium couples metabolism and fetal development in mice. Cell Mol Life Sci 2024; 81:210. [PMID: 38717553 PMCID: PMC11078715 DOI: 10.1007/s00018-024-05233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
The cytoophidium is an evolutionarily conserved subcellular structure formed by filamentous polymers of metabolic enzymes. In vertebrates, inosine monophosphate dehydrogenase (IMPDH), which catalyses the rate-limiting step in guanosine triphosphate (GTP) biosynthesis, is one of the best-known cytoophidium-forming enzymes. Formation of the cytoophidium has been proposed to alleviate the inhibition of IMPDH, thereby facilitating GTP production to support the rapid proliferation of certain cell types such as lymphocytes, cancer cells and pluripotent stem cells (PSCs). However, past studies lacked appropriate models to elucidate the significance of IMPDH cytoophidium under normal physiological conditions. In this study, we demonstrate that the presence of IMPDH cytoophidium in mouse PSCs correlates with their metabolic status rather than pluripotency. By introducing IMPDH2 Y12C point mutation through genome editing, we established mouse embryonic stem cell (ESC) lines incapable of forming IMPDH polymers and the cytoophidium. Our data indicate an important role of IMPDH cytoophidium in sustaining a positive feedback loop that couples nucleotide biosynthesis with upstream metabolic pathways. Additionally, we find that IMPDH2 Y12C mutation leads to decreased cell proliferation and increased DNA damage in teratomas, as well as impaired embryo development following blastocoel injection. Further analysis shows that IMPDH cytoophidium assembly in mouse embryonic development begins after implantation and gradually increases throughout fetal development. These findings provide insights into the regulation of IMPDH polymerisation in embryogenesis and its significance in coordinating cell metabolism and development.
Collapse
Affiliation(s)
- Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Gerson D Keppeke
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
22
|
Rausio H, Cervera A, Heuser VD, West G, Oikkonen J, Pianfetti E, Lovino M, Ficarra E, Taimen P, Hynninen J, Lehtonen R, Hautaniemi S, Carpén O, Huhtinen K. PIK3R1 fusion drives chemoresistance in ovarian cancer by activating ERK1/2 and inducing rod and ring-like structures. Neoplasia 2024; 51:100987. [PMID: 38489912 PMCID: PMC10955102 DOI: 10.1016/j.neo.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Gene fusions are common in high-grade serous ovarian cancer (HGSC). Such genetic lesions may promote tumorigenesis, but the pathogenic mechanisms are currently poorly understood. Here, we investigated the role of a PIK3R1-CCDC178 fusion identified from a patient with advanced HGSC. We show that the fusion induces HGSC cell migration by regulating ERK1/2 and increases resistance to platinum treatment. Platinum resistance was associated with rod and ring-like cellular structure formation. These structures contained, in addition to the fusion protein, CIN85, a key regulator of PI3K-AKT-mTOR signaling. Our data suggest that the fusion-driven structure formation induces a previously unrecognized cell survival and resistance mechanism, which depends on ERK1/2-activation.
Collapse
Affiliation(s)
- Heidi Rausio
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland; Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland.
| | - Alejandra Cervera
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Vanina D Heuser
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland
| | - Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elena Pianfetti
- Department of Engineering, Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Lovino
- Department of Engineering, Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Ficarra
- Department of Engineering, Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland; Department of Pathology, Turku University Hospital, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Rainer Lehtonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUSLAB, University Hospital, Helsinki, Finland
| | - Kaisa Huhtinen
- Institute of Biomedicine and FICAN West Cancer Centre, Faculty of Medicine, University of Turku, Turku, Finland; Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
McCorvie TJ, Adamoski D, Machado RAC, Tang J, Bailey HJ, Ferreira DSM, Strain-Damerell C, Baslé A, Ambrosio ALB, Dias SMG, Yue WW. Architecture and regulation of filamentous human cystathionine beta-synthase. Nat Commun 2024; 15:2931. [PMID: 38575566 PMCID: PMC10995199 DOI: 10.1038/s41467-024-46864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Raquel A C Machado
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Jiazhi Tang
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Henry J Bailey
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany
| | - Douglas S M Ferreira
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Claire Strain-Damerell
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andre L B Ambrosio
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Sandra M G Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Wyatt W Yue
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
24
|
Calise SJ, O’Neill AG, Burrell AL, Dickinson MS, Molfino J, Clarke C, Quispe J, Sokolov D, Buey RM, Kollman JM. Light-sensitive phosphorylation regulates retinal IMPDH1 activity and filament assembly. J Cell Biol 2024; 223:e202310139. [PMID: 38323936 PMCID: PMC10849882 DOI: 10.1083/jcb.202310139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and assembles into filaments in cells, which desensitizes the enzyme to feedback inhibition and boosts nucleotide production. The vertebrate retina expresses two splice variants IMPDH1(546) and IMPDH1(595). In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of S477 phosphorylation. The S477D mutation resensitized both variants to GTP inhibition but only blocked assembly of IMPDH1(595) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of a high-activity assembly interface, still allowing assembly of low-activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, S477 phosphorylation acts as a mechanism for downregulating retinal GTP synthesis in the dark when nucleotide turnover is decreased.
Collapse
Affiliation(s)
- S. John Calise
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Audrey G. O’Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L. Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Josephine Molfino
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Charlie Clarke
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Sokolov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rubén M. Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Lynch EM, Hansen H, Salay L, Cooper M, Timr S, Kollman JM, Webb BA. Structural basis for allosteric regulation of human phosphofructokinase-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585110. [PMID: 38559074 PMCID: PMC10980016 DOI: 10.1101/2024.03.15.585110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phosphofructokinase-1 (PFK1) catalyzes the rate-limiting step of glycolysis, committing glucose to conversion into cellular energy. PFK1 is highly regulated to respond to the changing energy needs of the cell. In bacteria, the structural basis of PFK1 regulation is a textbook example of allostery; molecular signals of low and high cellular energy promote transition between an active R-state and inactive T-state conformation, respectively Little is known, however, about the structural basis for regulation of eukaryotic PFK1. Here, we determine structures of the human liver isoform of PFK1 (PFKL) in the R- and T-state by cryoEM, providing insight into eukaryotic PFK1 allosteric regulatory mechanisms. The T-state structure reveals conformational differences between the bacterial and eukaryotic enzyme, the mechanisms of allosteric inhibition by ATP binding at multiple sites, and an autoinhibitory role of the C-terminus in stabilizing the T-state. We also determine structures of PFKL filaments that define the mechanism of higher-order assembly and demonstrate that these structures are necessary for higher-order assembly of PFKL in cells.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University
| | - Lauren Salay
- Department of Biochemistry, University of Washington
| | - Madison Cooper
- Department of Biochemistry and Molecular Medicine, West Virginia University
| | - Stepan Timr
- Department of Computational Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences
| | | | - Bradley A Webb
- Department of Biochemistry and Molecular Medicine, West Virginia University
| |
Collapse
|
26
|
Feng S, Aplin C, Nguyen TTT, Milano SK, Cerione RA. Filament formation drives catalysis by glutaminase enzymes important in cancer progression. Nat Commun 2024; 15:1971. [PMID: 38438397 PMCID: PMC10912226 DOI: 10.1038/s41467-024-46351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the 'glutamine addiction' of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide a view of the conformational states essential for catalysis. Filament formation guides an 'activation loop' to assume a specific conformation that works together with a 'lid' to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.
Collapse
Affiliation(s)
- Shi Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thuy-Tien T Nguyen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
27
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
28
|
Zhao Y, Duan K, Fan Y, Li S, Huang L, Tu Z, Sun H, Cook GM, Yang J, Sun P, Tan Y, Ding K, Li Z. Catalyst-free late-stage functionalization to assemble α-acyloxyenamide electrophiles for selectively profiling conserved lysine residues. Commun Chem 2024; 7:31. [PMID: 38355988 PMCID: PMC10866925 DOI: 10.1038/s42004-024-01107-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Covalent probes coupled with chemical proteomics represent a powerful method for investigating small molecule and protein interactions. However, the creation of a reactive warhead within various ligands to form covalent probes has been a major obstacle. Herein, we report a convenient and robust process to assemble a unique electrophile, an α-acyloxyenamide, through a one-step late-stage coupling reaction. This procedure demonstrates remarkable tolerance towards other functional groups and facilitates ligand-directed labeling in proteins of interest. The reactive group has been successfully incorporated into a clinical drug targeting the EGFR L858R mutant, erlotinib, and a pan-kinase inhibitor. The resulting probes have been shown to be able to covalently engage a lysine residue proximal to the ATP-binding pocket of the EGFR L858R mutant. A series of active sites, and Mg2+, ATP-binding sites of kinases, such as K33 of CDK1, CDK2, CDK5 were detected. This is the first report of engaging these conserved catalytic lysine residues in kinases with covalent inhibition. Further application of this methodology to natural products has demonstrated its success in profiling ligandable conserved lysine residues in whole proteome. These findings offer insights for the development of new targeted covalent inhibitors (TCIs).
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Kang Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Youlong Fan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shengrong Li
- Guangdong Second Provincial General Hospital, Postdoctoral Station of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Liyan Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhengchao Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 TatChee Avenue, Kowloon, Hong Kong, 999077, China
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | - Jing Yang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Pinghua Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Ke Ding
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
29
|
Ghadirian N, Morgan RD, Horton NC. DNA Sequence Control of Enzyme Filamentation and Activation of the SgrAI Endonuclease. Biochemistry 2024; 63:326-338. [PMID: 38207281 DOI: 10.1021/acs.biochem.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Enzyme polymerization (also known as filamentation) has emerged as a new layer of enzyme regulation. SgrAI is a sequence-dependent DNA endonuclease that forms polymeric filaments with enhanced DNA cleavage activity as well as altered DNA sequence specificity. To better understand this unusual regulatory mechanism, full global kinetic modeling of the reaction pathway, including the enzyme filamentation steps, has been undertaken. Prior work with the primary DNA recognition sequence cleaved by SgrAI has shown how the kinetic rate constants of each reaction step are tuned to maximize activation and DNA cleavage while minimizing the extent of DNA cleavage to the host genome. In the current work, we expand on our prior study by now including DNA cleavage of a secondary recognition sequence, to understand how the sequence of the bound DNA modulates filamentation and activation of SgrAI. The work shows that an allosteric equilibrium between low and high activity states is modulated by the sequence of bound DNA, with primary sequences more prone to activation and filament formation, while SgrAI bound to secondary recognition sequences favor the low (and nonfilamenting) state by up to 40-fold. In addition, the degree of methylation of secondary sequences in the host organism, Streptomyces griseus, is now reported for the first time and shows that as predicted, these sequences are left unprotected from the SgrAI endonuclease making sequence specificity critical in this unusual filament-forming enzyme.
Collapse
Affiliation(s)
- Niloofar Ghadirian
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Richard D Morgan
- New England Biolabs, Inc., Ipswich, Massachusetts 01938, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
30
|
Woulfe J, Munoz DG, Gray DA, Jinnah HA, Ivanova A. Inosine monophosphate dehydrogenase intranuclear inclusions are markers of aging and neuronal stress in the human substantia nigra. Neurobiol Aging 2024; 134:43-56. [PMID: 37992544 DOI: 10.1016/j.neurobiolaging.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
We explored mechanisms involved in the age-dependent degeneration of human substantia nigra (SN) dopamine (DA) neurons. Owing to its important metabolic functions in post-mitotic neurons, we investigated the developmental and age-associated changes in the purine biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH). Tissue microarrays prepared from post-mortem samples of SN from 85 neurologically intact participants humans spanning the age spectrum were immunostained for IMPDH combined with other proteins. SN DA neurons contained two types of IMPDH structures: cytoplasmic IMPDH filaments and intranuclear IMPDH inclusions. The former were not age-restricted and may represent functional units involved in sustaining purine nucleotide supply in these highly metabolically active cells. The latter showed age-associated changes, including crystallization, features reminiscent of pathological inclusion bodies, and spatial associations with Marinesco bodies; structures previously associated with SN neuron dysfunction and death. We postulate dichotomous roles for these two subcellularly distinct IMPDH structures and propose a nucleus-based model for a novel mechanism of SN senescence that is independent of previously known neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- John Woulfe
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - David G Munoz
- Li Ka Shing Knowledge Institute & Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, St. Michael's Hospital, Unity Health, University of Toronto, Toronto, Ontario, Canada
| | - Douglas A Gray
- Center for Cancer Therapeutics, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics & Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyona Ivanova
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children and Neurosurgery Research Department, St. Michael's Hospital, Toronto Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Toyoda S, Handa T, Yong H, Takahashi H, Shiwaku H. IMPDH2 forms spots at branching sites and distal ends of astrocyte stem processes. Genes Cells 2024; 29:150-158. [PMID: 38009721 DOI: 10.1111/gtc.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in the de novo GTP biosynthesis pathway. Recent studies suggest that IMPDH2, an isoform of IMPDH, can localize to specific subcellular compartments under certain conditions and regulate site-specific GTP availability and small GTPase activity in invasive cancer cells. However, it is unclear whether IMPDH2 plays a site-specific regulatory role in subcellular functions in healthy cells. In this study, we focused on brain cells and examined the localization pattern of IMPDH2. We discovered that IMPDH2 forms localized spots in the astrocytes of the adult mouse hippocampus. Further analysis of spot distribution in primary astrocyte cultures revealed that IMPDH2 spots are predominantly localized on branching sites and distal ends of astrocyte stem processes. Our findings suggest a potential unidentified role for IMPDH2 and GTP synthesis specifically at specialized nodes of astrocyte branches.
Collapse
Affiliation(s)
- Saori Toyoda
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Takehisa Handa
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Huang Yong
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| |
Collapse
|
32
|
Flores-Mendez M, Ohl L, Roule T, Zhou Y, Tintos-Hernández JA, Walsh K, Ortiz-González XR, Akizu N. IMPDH2 filaments protect from neurodegeneration in AMPD2 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576443. [PMID: 38328116 PMCID: PMC10849482 DOI: 10.1101/2024.01.20.576443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that AMPD deficiency in mice primarily leads to hippocampal dentate gyrus degeneration despite causing a generalized reduction of brain GTP levels. Remarkably, we found that neurodegeneration resistant regions accumulate micron sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis. In contrast, IMPDH2 filaments are barely detectable in the hippocampal dentate gyrus, which shows a progressive neuroinflammation and neurodegeneration. Furthermore, using a human AMPD2 deficient neural cell culture model, we show that blocking IMPDH2 polymerization with a dominant negative IMPDH2 variant, impairs AMPD2 deficient neural progenitor growth. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation in neurons with available GTP precursor molecules, providing resistance to neurodegeneration. Our findings open the possibility of exploring the involvement of IMPDH2 assembly as a therapeutic intervention for neurodegeneration.
Collapse
Affiliation(s)
- Marco Flores-Mendez
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Ohl
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesus A Tintos-Hernández
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Kelsey Walsh
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xilma R Ortiz-González
- Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Naiara Akizu
- Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Yu J, Yuan H, Guo J, Dong Z, Li S, Fu Q, Aode B, Baoyin S, Bao L, Wu L. Combining multi-omics analysis to identify host-targeted targets for the control of Brucella infection. Microb Biotechnol 2023; 16:2345-2366. [PMID: 37882474 PMCID: PMC10686141 DOI: 10.1111/1751-7915.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 10/27/2023] Open
Abstract
Human infections caused by Brucella (called brucellosis) are among the most common zoonoses worldwide with an estimated 500,000 cases each year. Since chronic Brucella infections are extremely difficult to treat, there is an urgent need for more effective therapeutics. As a facultative intracellular bacterium, Brucella is strictly parasitic in the host cell. Here, we performed proteomic and transcriptomic and metabolomic analyses on Brucella infected patients, mice and cells that provided an extensive "map" of physiological changes in brucellosis patients and characterized the metabolic pathways essential to the response to infection, as well as the associated cellular response and molecular mechanisms. This is the first report utilizing multi-omics analysis to investigate the global response of proteins and metabolites associated with Brucella infection, and the data can provide a comprehensive insight to understand the mechanism of Brucella infection. We demonstrated that Brucella increased nucleotide synthesis in the host, consistent with increased biomass requirement. We also identified IMPDH2, a key regulatory complex that controls nucleotide synthesis during Brucella infection. Pharmacological targeting of IMPDH2, the rate-limiting enzyme in guanine nucleotide biosynthesis, efficiently inhibits B. abortus growth both in vitro and in vivo. Through screening a library of natural products, we identified oxymatrine, an alkaloid obtained primarily from Sophora roots, is a novel and selective IMPDH2 inhibitor. In further in vitro bacterial inhibition assays, oxymatrine effectively inhibited the growth of B. abortus, which was impaired by exogenous supplementation of guanosine, a salvage pathway of purine nucleotides. This moderately potent, structurally novel compound may provide clues for further design and development of efficient IMPDH2 inhibitors and also demonstrates the potential of natural compounds from plants against Brucella.
Collapse
Affiliation(s)
- Jiuwang Yu
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Hongwei Yuan
- Department of PathologyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Jiarong Guo
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Zhiheng Dong
- Department of PharmacyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Sha Li
- Department of PharmacyAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Quan Fu
- Department of LaboratoryAffiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Bilige Aode
- Department of Mongolian MedicineInner Mongolia Xilin Gol League Mongolian Medical HospitalXilinhaoteChina
| | - Sachula Baoyin
- Mongolia Medical SchoolInner Mongolia Medical UniversityHohhotChina
| | - Lidao Bao
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| | - Lan Wu
- TCM Hospital of Mongolian Medicine in HohhotHohhotChina
| |
Collapse
|
34
|
Calise SJ, O’Neill AG, Burrell AL, Dickinson MS, Molfino J, Clarke C, Quispe J, Sokolov D, Buey RM, Kollman JM. Light-sensitive phosphorylation regulates enzyme activity and filament assembly of human IMPDH1 retinal splice variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558867. [PMID: 37790411 PMCID: PMC10542554 DOI: 10.1101/2023.09.21.558867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in de novo guanosine triphosphate (GTP) synthesis and is controlled by feedback inhibition and allosteric regulation. IMPDH assembles into micron-scale filaments in cells, which desensitizes the enzyme to feedback inhibition by GTP and boosts nucleotide production. The vertebrate retina expresses two tissue-specific splice variants IMPDH1(546) and IMPDH1(595). IMPDH1(546) filaments adopt high and low activity conformations, while IMPDH1(595) filaments maintain high activity. In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of phosphorylation in IMPDH1 variants. The S477D mutation re-sensitized both variants to GTP inhibition, but only blocked assembly of IMPDH1(595) filaments and not IMPDH1(546) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of the high activity assembly interface, still allowing assembly of low activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, phosphorylation at S477 acts as a mechanism for downregulating retinal GTP synthesis in the dark, when nucleotide turnover is decreased. Like IMPDH1, many other metabolic enzymes dynamically assemble filamentous polymers that allosterically regulate activity. Our work suggests that posttranslational modifications may be yet another layer of regulatory control to finely tune activity by modulating filament assembly in response to changing metabolic demands.
Collapse
Affiliation(s)
- S. John Calise
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Audrey G. O’Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L. Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Josephine Molfino
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Charlie Clarke
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Sokolov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rubén M. Buey
- Metabolic Engineering Group, Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
35
|
Keppeke GD, Chang CC, Zhang Z, Liu JL. Effect on cell survival and cytoophidium assembly of the adRP-10-related IMPDH1 missense mutation Asp226Asn. Front Cell Dev Biol 2023; 11:1234592. [PMID: 37731818 PMCID: PMC10507268 DOI: 10.3389/fcell.2023.1234592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction: Inosine monophosphate dehydrogenase 1 (IMPDH1) is a critical enzyme in the retina, essential for the correct functioning of photoreceptor cells. Mutations in IMPDH1 have been linked to autosomal dominant retinitis pigmentosa subtype 10 (adRP-10), a genetic eye disorder. Some of these mutations such as the Asp226Asn (D226N) lead to the assembly of large filamentous structures termed cytoophidia. D226N also gives IMPDH1 resistance to feedback inhibition by GDP/GTP. This study aims to emulate the adRP-10 condition with a long-term expression of IMPDH1-D226N in vitro and explore cytoophidium assembly and cell survival. We also assessed whether the introduction of an additional mutation (Y12C) to disrupt the cytoophidium has an attenuating effect on the toxicity caused by the D226N mutation. Results: Expression of IMPDH1-D226N in HEp-2 cells resulted in cytoophidium assembly in ∼70% of the cells, but the presence of the Y12C mutation disrupted the filaments. Long-term cell survival was significantly affected by the presence of the D226N mutation, with a decrease of ∼40% in the cells expressing IMPDH1-D226N when compared to IMPDH1-WT; however, survival was significantly recovered in IMPDH1-Y12C/D226N, with only a ∼10% decrease when compared to IMPDH1-WT. On the other hand, the IMPDH1 expression level in the D226N-positive cells was <30% of that of the IMPDH1-WT-positive cells and only slightly higher in the Y12C/D226N, suggesting that although cell survival in Y12C/D226N was recovered, higher expression levels of the mutated IMPDH1 were not tolerated by the cells in the long term. Conclusion: The IMPDH1-D226N effect on photoreceptor cell survival may be the result of a sum of problems: nucleotide unbalance plus a toxic long-life cytoophidium, supported by the observation that by introducing Y12C in IMPDH1 the cytoophidium was disrupted and cell survival significantly recovered, but not the sensibility to GDP/GTP regulation since higher expression levels of IMPDH1-D226N were not tolerated.
Collapse
Affiliation(s)
- Gerson Dierley Keppeke
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Mor-Shaked H, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Neurodevelopmental disorder mutations in the purine biosynthetic enzyme IMPDH2 disrupt its allosteric regulation. J Biol Chem 2023; 299:105012. [PMID: 37414152 PMCID: PMC10407431 DOI: 10.1016/j.jbc.2023.105012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023] Open
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
37
|
Lu GM, Hu HH, Chang CC, Zhong J, Zhou X, Guo CJ, Zhang T, Li YL, Yin B, Liu JL. Structural basis of human PRPS2 filaments. Cell Biosci 2023; 13:100. [PMID: 37248548 DOI: 10.1186/s13578-023-01037-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND PRPP synthase (PRPS) transfers the pyrophosphate groups from ATP to ribose-5-phosphate to produce 5-phosphate ribose-1-pyrophosphate (PRPP), a key intermediate in the biosynthesis of several metabolites including nucleotides, dinucleotides and some amino acids. There are three PRPS isoforms encoded in human genome. While human PRPS1 (hPRPS1) and human PRPS2 (hPRPS2) are expressed in most tissues, human PRPS3 (hPRPS3) is exclusively expressed in testis. Although hPRPS1 and hPRPS2 share 95% sequence identity, hPRPS2 has been shown to be less sensitive to allosteric inhibition and specifically upregulated in certain cancers in the translational level. Recent studies demonstrate that PRPS can form a subcellular compartment termed the cytoophidium in multiple organisms across prokaryotes and eukaryotes. Forming filaments and cytoophidia is considered as a distinctive mechanism involving the polymerization of the protein. Previously we solved the filament structures of Escherichia coli PRPS (ecPRPS) using cryo-electron microscopy (cryo-EM) 1. RESULTS Order to investigate the function and molecular mechanism of hPRPS2 polymerization, here we solve the polymer structure of hPRPS2 at 3.08 Å resolution. hPRPS2 hexamers stack into polymers in the conditions with the allosteric/competitive inhibitor ADP. The binding modes of ADP at the canonical allosteric site and at the catalytic active site are clearly determined. A point mutation disrupting the inter-hexamer interaction prevents hPRPS2 polymerization and results in significantly reduced catalytic activity. CONCLUSION Findings suggest that the regulation of hPRPS2 polymer is distinct from ecPRPS polymer and provide new insights to the regulation of hPRPS2 with structural basis.
Collapse
Affiliation(s)
- Guang-Ming Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tianyi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Boqi Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
38
|
Singh S, Anand R. Diverse strategies adopted by nature for regulating purine biosynthesis via fine-tuning of purine metabolic enzymes. Curr Opin Chem Biol 2023; 73:102261. [PMID: 36682088 DOI: 10.1016/j.cbpa.2022.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
Purine nucleotides, generated by de novo synthesis and salvage pathways, are essential for metabolism and act as building blocks of genetic material. To avoid an imbalance in the nucleotide pool, nature has devised several strategies to regulate/tune the catalytic performance of key purine metabolic enzymes. Here, we discuss some recent examples, such as stress-regulating alarmones that bind to select pathway enzymes, huge ensembles like dynamic metabolons and self-assembled filaments that highlight the layered fine-control prevalent in the purine metabolic pathway to fulfill requisite purine demands. Examples of enzymes that turn-on only under allosteric control, are regulated via long-distance communication that facilitates transient conduits have additionally been explored.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; DBT-Wellcome Trust India Alliance Senior Fellow, Mumbai 400076, India.
| |
Collapse
|
39
|
Hvorecny KL, Kollman JM. Greater than the sum of parts: Mechanisms of metabolic regulation by enzyme filaments. Curr Opin Struct Biol 2023; 79:102530. [PMID: 36709625 PMCID: PMC10023394 DOI: 10.1016/j.sbi.2023.102530] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/28/2023]
Abstract
Recent work in structural biology is shedding light on how many of the enzymes of intermediary metabolism are self- and co-assembling into large, filamentous polymers or agglomerates to organize and regulate the complex and essential biochemical pathways in cells. Filament assembly provides an additional layer of regulation by modulating the intrinsic allostery of the enzyme protomers which tunes activity in response to a variety of environmental cues. Enzyme filaments dynamically assemble and disassemble in response to changes in metabolite levels and environmental cues, shifting metabolic flux on a more rapid timescale than transcriptional or translational reprogramming. Here we present recent examples of high-resolution structures of filaments from proteins in intermediary metabolism and we discuss how filament assembly modulates the activities of these and other proteins.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
O'Neill AG, Burrell AL, Zech M, Elpeleg O, Harel T, Edvardson S, Shaked HM, Rippert AL, Nomakuchi T, Izumi K, Kollman JM. Point mutations in IMPDH2 which cause early-onset neurodevelopmental disorders disrupt enzyme regulation and filament structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532669. [PMID: 36993700 PMCID: PMC10055058 DOI: 10.1101/2023.03.15.532669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report identification of two additional affected individuals with missense variants in IMPDH2 and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.
Collapse
Affiliation(s)
- Audrey G O'Neill
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Simon Edvardson
- Alyn Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alyssa L Rippert
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Hvorecny KL, Hargett K, Quispe JD, Kollman JM. Human PRPS1 filaments stabilize allosteric sites to regulate activity. Nat Struct Mol Biol 2023; 30:391-402. [PMID: 36747094 PMCID: PMC10033377 DOI: 10.1038/s41594-023-00921-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
The universally conserved enzyme phosphoribosyl pyrophosphate synthetase (PRPS) assembles filaments in evolutionarily diverse organisms. PRPS is a key regulator of nucleotide metabolism, and mutations in the human enzyme PRPS1 lead to a spectrum of diseases. Here we determine structures of human PRPS1 filaments in active and inhibited states, with fixed assembly contacts accommodating both conformations. The conserved assembly interface stabilizes the binding site for the essential activator phosphate, increasing activity in the filament. Some disease mutations alter assembly, supporting the link between filament stability and activity. Structures of active PRPS1 filaments turning over substrate also reveal coupling of catalysis in one active site with product release in an adjacent site. PRPS1 filaments therefore provide an additional layer of allosteric control, conserved throughout evolution, with likely impact on metabolic homeostasis. Stabilization of allosteric binding sites by polymerization adds to the growing diversity of assembly-based enzyme regulatory mechanisms.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kenzee Hargett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joel D Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Liu CJ, Ma ZZ, Gong WZ, Mao XH, Wen HQ, Wang XH. The Role of Purine Metabolism-Related Genes PPAT and IMPDH1 in the Carcinogenesis of Intrahepatic Cholangiocarcinoma Based on Metabonomic and Bioinformatic Analyses. JOURNAL OF ONCOLOGY 2023; 2023:5141836. [PMID: 36711025 PMCID: PMC9883099 DOI: 10.1155/2023/5141836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the role of tumor microenvironment and serum differential metabolites in intrahepatic cholangiocarcinoma (ICC) carcinogenesis, providing new evidence for ICC treatment. Serum samples from healthy individuals and ICC patients were collected for metabolomic analysis. The purine metabolites such as inosine, guanosine, hypoxanthine, and xanthine were increased in patient serum. TCGA database samples were collected, and the correlation between purine metabolism-related genes and ICC clinical features was analyzed using R language to obtain the differential genes including PPAT, PFAS, ATIC, and IMPDH2. High PPAT expression was associated with poor ICC prognosis. A PPAT silencing model in HCCC-9810 cells was constructed. The cell phenotype was examined by qRT-PCR, CCK-8, transwell, and flow cytometry, showing a decrease in IMPDH1 expression, colony and invasive cells numbers, and an increase in apoptosis. Guanosine reversed IMPDH1 expression in HCCC-9810 cells, promoting the secretion of inflammatory factors IL-6, IL-8, OPN, VEGF, and VCAM-1 and intensifying epithelial-mesenchymal transition (EMT) progression in the cells. In nude mice, the IMPDH1 inhibitory drug MMF inhibited tumor growth and reduced the expression of tumor stem cell characteristic markers CD133 and SOX2. Guanosine accelerated the malignant progression of ICC inhibition of purine metabolism-related genes, PPAT and IMPDH2, suppressed the malignant phenotype in HCCC-9810 cells, and inhibited tumor growth.
Collapse
Affiliation(s)
- Chang-Jun Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China
| | - Zhong-Zhi Ma
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China
| | - Wei-Zhi Gong
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China
| | - Xian-Hai Mao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China
| | - Hao-Quan Wen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China
| | - Xiao-Hui Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China
| |
Collapse
|
43
|
The role of filamentation in activation and DNA sequence specificity of the sequence-specific endonuclease SgrAI. Biochem Soc Trans 2022; 50:1703-1714. [PMID: 36398769 PMCID: PMC9788392 DOI: 10.1042/bst20220547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Filament formation by metabolic, biosynthetic, and other enzymes has recently come into focus as a mechanism to fine-tune enzyme activity in the cell. Filamentation is key to the function of SgrAI, a sequence-specific DNA endonuclease that has served as a model system to provide some of the deepest insights into the biophysical characteristics of filamentation and its functional consequences. Structure-function analyses reveal that, in the filamentous state, SgrAI stabilizes an activated enzyme conformation that leads to accelerated DNA cleavage activity and expanded DNA sequence specificity. The latter is thought to be mediated by sequence-specific DNA structure, protein-DNA interactions, and a disorder-to-order transition in the protein, which collectively affect the relative stabilities of the inactive, non-filamentous conformation and the active, filamentous conformation of SgrAI bound to DNA. Full global kinetic modeling of the DNA cleavage pathway reveals a slow, rate-limiting, second-order association rate constant for filament assembly, and simulations of in vivo activity predict that filamentation is superior to non-filamenting mechanisms in ensuring rapid activation and sequestration of SgrAI's DNA cleavage activity on phage DNA and away from the host chromosome. In vivo studies demonstrate the critical requirement for accelerated DNA cleavage by SgrAI in its biological role to safeguard the bacterial host. Collectively, these data have advanced our understanding of how filamentation can regulate enzyme structure and function, while the experimental strategies used for SgrAI can be applied to other enzymatic systems to identify novel functional roles for filamentation.
Collapse
|
44
|
Bennett JA, Steward LR, Rudolph J, Voss AP, Aydin H. The structure of the human LACTB filament reveals the mechanisms of assembly and membrane binding. PLoS Biol 2022; 20:e3001899. [PMID: 36534696 PMCID: PMC9815587 DOI: 10.1371/journal.pbio.3001899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/05/2023] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are complex organelles that play a central role in metabolism. Dynamic membrane-associated processes regulate mitochondrial morphology and bioenergetics in response to cellular demand. In tumor cells, metabolic reprogramming requires active mitochondrial metabolism for providing key metabolites and building blocks for tumor growth and rapid proliferation. To counter this, the mitochondrial serine beta-lactamase-like protein (LACTB) alters mitochondrial lipid metabolism and potently inhibits the proliferation of a variety of tumor cells. Mammalian LACTB is localized in the mitochondrial intermembrane space (IMS), where it assembles into filaments to regulate the efficiency of essential metabolic processes. However, the structural basis of LACTB polymerization and regulation remains incompletely understood. Here, we describe how human LACTB self-assembles into micron-scale filaments that increase their catalytic activity. The electron cryo-microscopy (cryoEM) structure defines the mechanism of assembly and reveals how highly ordered filament bundles stabilize the active state of the enzyme. We identify and characterize residues that are located at the filament-forming interface and further show that mutations that disrupt filamentation reduce enzyme activity. Furthermore, our results provide evidence that LACTB filaments can bind lipid membranes. These data reveal the detailed molecular organization and polymerization-based regulation of human LACTB and provide new insights into the mechanism of mitochondrial membrane organization that modulates lipid metabolism.
Collapse
Affiliation(s)
- Jeremy A. Bennett
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Lottie R. Steward
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Adam P. Voss
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
45
|
Darekar S, Laín S. Asymmetric inheritance of cytoophidia could contribute to determine cell fate and plasticity: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia: The onset of alternative differentiation patterns in daughter cells may rely on the acquisition of either CTPS or IMPDH cytoophidia. Bioessays 2022; 44:e2200128. [PMID: 36209393 DOI: 10.1002/bies.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 12/20/2022]
Abstract
Two enzymes involved in the synthesis of pyrimidine and purine nucleotides, CTP synthase (CTPS) and IMP dehydrogenase (IMPDH), can assemble into a single or very few large filaments called rods and rings (RR) or cytoophidia. Most recently, asymmetric cytoplasmic distribution of organelles during cell division has been described as a decisive event in hematopoietic stem cell fate. We propose that cytoophidia, which could be considered as membrane-less organelles, may also be distributed asymmetrically during mammalian cell division as previously described for Schizosaccharomyces pombe. Furthermore, because each type of nucleotide intervenes in distinct processes (e.g., membrane synthesis, glycosylation, and G protein-signaling), alterations in the rate of synthesis of specific nucleotide types could influence cell differentiation in multiple ways. Therefore, we hypothesize that whether a daughter cell inherits or not CTPS or IMPDH filaments determines its fate and that this asymmetric inheritance, together with the dynamic nature of these structures enables plasticity in a cell population.
Collapse
Affiliation(s)
- Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Knejzlík Z, Doležal M, Herkommerová K, Clarova K, Klíma M, Dedola M, Zborníková E, Rejman D, Pichová I. The mycobacterial guaB1 gene encodes a guanosine 5'-monophosphate reductase with a cystathionine-β-synthase domain. FEBS J 2022; 289:5571-5598. [PMID: 35338694 PMCID: PMC9790621 DOI: 10.1111/febs.16448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022]
Abstract
Mycobacteria express enzymes from both the de novo and purine-salvage pathways. However, the regulation of these processes and the roles of individual metabolic enzymes have not been sufficiently detailed. Both Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msm) possess three guaB genes, but information is only available on guaB2, which encodes an essential inosine 5'-monophosphate dehydrogenase (IMPDH) involved in de novo purine biosynthesis. This study shows that guaB1, annotated in databases as a putative IMPDH, encodes a guanosine 5'-monophosphate reductase (GMPR), which recycles guanosine monophosphate to inosine monophosphate within the purine-salvage pathway and contains a cystathionine-β-synthase domain (CBS), which is essential for enzyme activity. GMPR activity is allosterically regulated by the ATP/GTP ratio in a pH-dependent manner. Bioinformatic analysis has indicated the presence of GMPRs containing CBS domains across the entire Actinobacteria phylum.
Collapse
Affiliation(s)
- Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Michal Doležal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Herkommerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Kamila Clarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Matteo Dedola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Eva Zborníková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
47
|
Buey RM, Fernández‐Justel D, Jiménez A, Revuelta JL. The gateway to guanine nucleotides: Allosteric regulation of IMP dehydrogenases. Protein Sci 2022; 31:e4399. [PMID: 36040265 PMCID: PMC9375230 DOI: 10.1002/pro.4399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an evolutionarily conserved enzyme that mediates the first committed step in de novo guanine nucleotide biosynthetic pathway. It is an essential enzyme in purine nucleotide biosynthesis that modulates the metabolic flux at the branch point between adenine and guanine nucleotides. IMPDH plays key roles in cell homeostasis, proliferation, and the immune response, and is the cellular target of several drugs that are widely used for antiviral and immunosuppressive chemotherapy. IMPDH enzyme is tightly regulated at multiple levels, from transcriptional control to allosteric modulation, enzyme filamentation, and posttranslational modifications. Herein, we review recent developments in our understanding of the mechanisms of IMPDH regulation, including all layers of allosteric control that fine-tune the enzyme activity.
Collapse
Affiliation(s)
- Rubén M. Buey
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - David Fernández‐Justel
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| | - José L. Revuelta
- Metabolic Engineering Group, Department of Microbiology and GeneticsUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
48
|
Chang CC, Peng M, Zhong J, Zhang Z, Keppeke GD, Sung LY, Liu JL. Molecular crowding facilitates bundling of IMPDH polymers and cytoophidium formation. Cell Mol Life Sci 2022; 79:420. [PMID: 35833994 PMCID: PMC11072341 DOI: 10.1007/s00018-022-04448-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
The cytoophidium is a unique type of membraneless compartment comprising of filamentous protein polymers. Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step of de novo GTP biosynthesis and plays critical roles in active cell metabolism. However, the molecular regulation of cytoophidium formation is poorly understood. Here we show that human IMPDH2 polymers bundle up to form cytoophidium-like aggregates in vitro when macromolecular crowders are present. The self-association of IMPDH polymers is suggested to rely on electrostatic interactions. In cells, the increase of molecular crowding with hyperosmotic medium induces cytoophidia, while the decrease of that by the inhibition of RNA synthesis perturbs cytoophidium assembly. In addition to IMPDH, CTPS and PRPS cytoophidium could be also induced by hyperosmolality, suggesting a universal phenomenon of cytoophidium-forming proteins. Finally, our results indicate that the cytoophidium can prolong the half-life of IMPDH, which is proposed to be one of conserved functions of this subcellular compartment.
Collapse
Affiliation(s)
- Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ziheng Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gerson Dierley Keppeke
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, 04023-062, Brazil
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
49
|
Hu HH, Lu GM, Chang CC, Li Y, Zhong J, Guo CJ, Zhou X, Yin B, Zhang T, Liu JL. Filamentation modulates allosteric regulation of PRPS. eLife 2022; 11:79552. [PMID: 35736577 PMCID: PMC9232217 DOI: 10.7554/elife.79552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoribosyl pyrophosphate (PRPP) is a key intermediate in the biosynthesis of purine and pyrimidine nucleotides, histidine, tryptophan, and cofactors NAD and NADP. Abnormal regulation of PRPP synthase (PRPS) is associated with human disorders, including Arts syndrome, retinal dystrophy, and gouty arthritis. Recent studies have demonstrated that PRPS can form filamentous cytoophidia in eukaryotes. Here, we show that PRPS forms cytoophidia in prokaryotes both in vitro and in vivo. Moreover, we solve two distinct filament structures of E. coli PRPS at near-atomic resolution using Cryo-EM. The formation of the two types of filaments is controlled by the binding of different ligands. One filament type is resistant to allosteric inhibition. The structural comparison reveals conformational changes of a regulatory flexible loop, which may regulate the binding of the allosteric inhibitor and the substrate ATP. A noncanonical allosteric AMP/ADP binding site is identified to stabilize the conformation of the regulatory flexible loop. Our findings not only explore a new mechanism of PRPS regulation with structural basis, but also propose an additional layer of cell metabolism through PRPS filamentation.
Collapse
Affiliation(s)
- Huan-Huan Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guang-Ming Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chia-Chun Chang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yilan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiale Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen-Jun Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xian Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Boqi Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianyi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Fernández-Justel D, Marcos-Alcalde Í, Abascal F, Vidaña N, Gómez-Puertas P, Jiménez A, Revuelta JL, Buey RM. Diversity of mechanisms to control bacterial GTP homeostasis by the mutually exclusive binding of adenine and guanine nucleotides to IMP dehydrogenase. Protein Sci 2022; 31:e4314. [PMID: 35481629 PMCID: PMC9462843 DOI: 10.1002/pro.4314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
IMP dehydrogenase(IMPDH) is an essential enzyme that catalyzes the rate‐limiting step in the guanine nucleotide pathway. In eukaryotic cells, GTP binding to the regulatory domain allosterically controls the activity of IMPDH by a mechanism that is fine‐tuned by post‐translational modifications and enzyme polymerization. Nonetheless, the mechanisms of regulation of IMPDH in bacterial cells remain unclear. Using biochemical, structural, and evolutionary analyses, we demonstrate that, in most bacterial phyla, (p)ppGpp compete with ATP to allosterically modulate IMPDH activity by binding to a, previously unrecognized, conserved high affinity pocket within the regulatory domain. This pocket was lost during the evolution of Proteobacteria, making their IMPDHs insensitive to these alarmones. Instead, most proteobacterial IMPDHs evolved to be directly modulated by the balance between ATP and GTP that compete for the same allosteric binding site. Altogether, we demonstrate that the activity of bacterial IMPDHs is allosterically modulated by a universally conserved nucleotide‐controlled conformational switch that has divergently evolved to adapt to the specific particularities of each organism. These results reconcile the reported data on the crosstalk between (p)ppGpp signaling and the guanine nucleotide biosynthetic pathway and reinforce the essential role of IMPDH allosteric regulation on bacterial GTP homeostasis. PDB Code(s): 7PJI and 7PMZ;
Collapse
Affiliation(s)
- David Fernández-Justel
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Íñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain.,Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Nerea Vidaña
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), Madrid, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - José L Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|