1
|
Sun N, Wei R, Jia B, Lou T, Li Z, Nie X, Yu W, Wang M, Li Q. Research trends and key contributors in studies on influenza vaccines for children: A 20-year bibliometric analysis. Hum Vaccin Immunother 2025; 21:2443281. [PMID: 39703145 DOI: 10.1080/21645515.2024.2443281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Globally, there are over 3 million severe cases of influenza each year, leading to up to half a million deaths. This study provides a comprehensive analysis of the current status of children's influenza vaccine research over the past 20 years and explores potential future research trends, including improvements in vaccine coverage and strategies to address vaccine hesitancy. We extracted all research data on children's influenza vaccines from 2004 to 2024 using the Web of Science Core Collection (WOSCC). The contributions of various countries/regions, institutions, authors, and journals in this field were assessed, and research hotspots as well as promising future trends were predicted through keyword analysis using CiteSpace and VOSviewer. A total of 2,598 related publications from 2004 to 2024 were identified and collected for analysis. The United States (USA) and England emerged as the leading contributors with the highest number of published papers. AstraZeneca was identified as a key leader among research institutions, and Ambrose Christopher S was recognized as the most productive author in this field. The journals Vaccine and Human Vaccines & Immunotherapeutics stood out as the most prominent publications in this area. The keyword analysis highlighted that international research collaboration maybe a promising strategy for bridging global gaps; Addressing vaccine hesitancy could potentially increase vaccination coverage; Live attenuated vaccines, intranasal administration and universal vaccines are promising directions for future development. These insights highlight potential avenues for improving influenza vaccine coverage and inform strategies to mitigate vaccine hesitancy, crucial for protecting children and enhancing public health.
Collapse
Affiliation(s)
- Ning Sun
- Department of Comprehensive Internal Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Post-Doctoral Research Station, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wei
- Department of Comprehensive Internal Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bochao Jia
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Taiwei Lou
- Department of Comprehensive Internal Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zirong Li
- Department of Comprehensive Internal Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaowei Nie
- Department of General Medicine, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Wenxiao Yu
- Department of Andrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miaoran Wang
- Department of Comprehensive Internal Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Post-Doctoral Research Station, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Li
- Department of Comprehensive Internal Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Ze L, Shaohui S, Jinhai H, Hui G. Evaluation of the cross-protection of the Vero cell-derived attenuated influenza vaccines with compound adjuvant, through intranasal immunization. APMIS 2024; 132:741-753. [PMID: 38961516 DOI: 10.1111/apm.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
This study was to evaluate the sufficient safety and effect of the novel influenza vaccine program. It prepared new reassortant influenza virus, with high yield on Vero cells. According to the plaque counting, one dose LAIV was composed with 105 PFU of H1, H3, BY, and BV, respectively. Then mixed this LAIV with compound adjuvant, containing 500 μg/mL of carbopol971P and 50 μg/mL of tetanus toxin. That vaccination was called catt-flu. And it employed the GYZZ02 vaccine (commercialized freeze-dried LAIV, listed in China) as cohort analysis control. All mice received two doses of the vaccine, administered on days 0 and 14, respectively. That catt-flu program could induce more cross-protection with neutralizing antibody against heterogeneous types of influenza virus, not only based on HA but also NA protective antigen, through convenient nasal immunization, which had non-inferiority titter compared with the chicken embryo-derived GYZZ02 vaccine on safe and effect. The Vero cell-derived vaccine (LAIV) combined compound catt adjuvant (contain carbopol971P and tetanus toxin) could provide another safety and protective program of influenza vaccine by intranasal administration, as catt-flu program.
Collapse
Affiliation(s)
- Liu Ze
- School of Life Sciences, Tianjin University, Tianjin, China
- The Zhongyi Anke Biotech Co., Ltd, Tianjin, China
| | - Song Shaohui
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan, China
| | - Huang Jinhai
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Gao Hui
- The Zhongyi Anke Biotech Co., Ltd, Tianjin, China
| |
Collapse
|
3
|
Honda T, Toyama S, Matsumoto Y, Sanada T, Yasui F, Koseki A, Kono R, Yamamoto N, Kamishita T, Kodake N, Miyazaki T, Kohara M. Intranasally Inoculated SARS-CoV-2 Spike Protein Combined with Mucoadhesive Polymer Induces Broad and Long-Lasting Immunity. Vaccines (Basel) 2024; 12:794. [PMID: 39066433 PMCID: PMC11281581 DOI: 10.3390/vaccines12070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Current mRNA vaccines against SARS-CoV-2 effectively induce systemic and cell-mediated immunity and prevent severe disease. However, they do not induce mucosal immunity that targets the primary route of respiratory infection, and their protective effects wane after a few months. Intranasal vaccines have some advantages, including their non-invasiveness and the additional ability to activate mucosal immunity. In this study, we aimed to explore the effectiveness of an intranasally inoculated spike protein of SARS-CoV-2 mixed with a carboxy-vinyl polymer (S-CVP), a viscous agent. Intranasally inoculated S-CVP strongly induced antigen-specific IgG, including neutralizing antibodies, in the mucosal epithelium and serum and cellular immunity compared to the spike protein mixed with aluminum potassium sulfate. Furthermore, IgA production was detected only with S-CVP vaccination. S-CVP-inoculation in mice significantly suppressed the viral load and inflammation in the lung and protected mice against SARS-CoV-2 challenges, including an early circulating strain and the Omicron BA.1 variant in a manner dependent on CD8+ cells and monocytes/neutrophils. Surprisingly, high antibody responses and protective effects against multiple variants of SARS-CoV-2, including Omicron BA.5, persisted for at least 15 months after the S-CVP immunization. Hence, we propose intranasal inoculation with S-CVP as a promising vaccine strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
- Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yusuke Matsumoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Aya Koseki
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| | | | | | | | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.H.)
| |
Collapse
|
4
|
Mao J, Eom GD, Yoon KW, Kim MJ, Chu KB, Kang HJ, Quan FS. Crossprotection induced by virus-like particles containing influenza dual-hemagglutinin and M2 ectodomain. Nanomedicine (Lond) 2024; 19:741-754. [PMID: 38390688 DOI: 10.2217/nnm-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Aims: To develop an effective universal vaccine against antigenically different influenza viruses. Materials & methods: We generated influenza virus-like particles (VLPs) expressing the H1 and H3 antigens with or without M2e5x. VLP-induced immune responses and crossprotection against H1N1, H3N2 or H5N1 viruses were assessed to evaluate their protective efficacy. Results: H1H3M2e5x immunization elicited higher crossreactive IgG antibodies than H1H3 VLPs. Upon challenge, both VLPs enhanced lung IgG, IgA and germinal center B-cell responses compared with control. While these VLPs conferred protection, H1H3M2e5x showed greater lung viral load reduction than H1H3 VLPs with minimal body weight loss. Conclusion: Utilizing VLPs containing dual-hemagglutinin, along with M2e5x, can be a vaccination strategy for inducing crossprotection against influenza A viruses.
Collapse
Affiliation(s)
- Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, GA 30303, USA
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
5
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Matsumura T, Takahashi Y, Hamaguchi I. Systemically inoculated adjuvants stimulate pDC-dependent IgA response in local site. Mucosal Immunol 2023; 16:275-286. [PMID: 36935091 DOI: 10.1016/j.mucimm.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The stimulation of local immunity by vaccination is desirable for controlling virus replication in the respiratory tract. However, the local immune stimulatory effects of adjuvanted vaccines administered through the non-mucosal route are poorly understood. Here, we clarify the mechanisms by which non-mucosal inoculation of adjuvants stimulates the plasmacytoid dendritic cell (pDC)-dependent immunoglobulin (Ig)A response in the lungs. After systemic inoculation with type 1 interferon (IFN)-inducing adjuvants, type 1 IFN promotes CXCL9/10/11 release from alveolar endothelial and epithelial cells and recruits CXCR3-expressing pDCs into the lungs. Because adjuvant-activated pulmonary pDCs highly express major histocompatibility complex II, cluster of differentiation 80, and cluster of differentiation 86, transplantation of such cells into the lungs successfully enhances antigen-specific IgA production by the intranasally sensitized vaccine. In contrast, pDC accumulation in the lungs and subsequent IgA production are impaired in pDC-depleted mice and Ifnar1-/- mice. Notably, the combination of systemic inoculation with type 1 IFN-inducing adjuvants and intranasal antigen sensitization protects mice against influenza virus infection due to the pDC-dependent IgA response and type I IFN response. Our results provide insights into the novel mucosal vaccine strategies using non-mucosal inoculated adjuvants.
Collapse
Affiliation(s)
- Eita Sasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Hideki Asanuma
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
6
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti DE, Scodeller EA, Guzmán CA. Protective Efficacy of a Mucosal Influenza Vaccine Formulation Based on the Recombinant Nucleoprotein Co-Administered with a TLR2/6 Agonist BPPcysMPEG. Pharmaceutics 2023; 15:pharmaceutics15030912. [PMID: 36986773 PMCID: PMC10057018 DOI: 10.3390/pharmaceutics15030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Current influenza vaccines target highly variable surface glycoproteins; thus, mismatches between vaccine strains and circulating strains often diminish vaccine protection. For this reason, there is still a critical need to develop effective influenza vaccines able to protect also against the drift and shift of different variants of influenza viruses. It has been demonstrated that influenza nucleoprotein (NP) is a strong candidate for a universal vaccine, which contributes to providing cross-protection in animal models. In this study, we developed an adjuvanted mucosal vaccine using the recombinant NP (rNP) and the TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl-poly-ethylene-glycol (BPPcysMPEG). The vaccine efficacy was compared with that observed following parenteral vaccination of mice with the same formulation. Mice vaccinated with 2 doses of rNP alone or co-administered with BPPcysMPEG by the intranasal (i.n.) route showed enhanced antigen-specific humoral and cellular responses. Moreover, NP-specific humoral immune responses, characterized by significant NP-specific IgG and IgG subclass titers in sera and NP-specific IgA titers in mucosal territories, were remarkably increased in mice vaccinated with the adjuvanted formulation as compared with those of the non-adjuvanted vaccination group. The addition of BPPcysMPEG also improved NP-specific cellular responses in vaccinated mice, characterized by robust lymphoproliferation and mixed Th1/Th2/Th17 immune profiles. Finally, it is notable that the immune responses elicited by the novel formulation administered by the i.n. route were able to confer protection against the influenza H1N1 A/Puerto Rico/8/1934 virus.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Diego Esteban Cargnelutti
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Eduardo A. Scodeller
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
- Correspondence: ; Tel.: +49-531-61814600; Fax: +49-531-618414699
| |
Collapse
|
7
|
Peng P, Deng H, Li Z, Chen Y, Fang L, Hu J, Wu K, Xue J, Wang D, Liu B, Long Q, Chen J, Wang K, Tang N, Huang AL. Distinct immune responses in the early phase to natural SARS-CoV-2 infection or vaccination. J Med Virol 2022; 94:5691-5701. [PMID: 35906179 PMCID: PMC9353276 DOI: 10.1002/jmv.28034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 01/06/2023]
Abstract
Immune responses elicited by viral infection or vaccination play key roles in the viral elimination and the prevention of reinfection, as well as the protection of healthy persons. As one of the most widely used Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there have been increasing concerns about the necessity of additional doses of inactivated vaccines, due to the waning immune response several months after vaccination. To further optimize inactivated SARS-CoV-2 vaccines, we compared immune responses to SARS-CoV-2 elicited by natural infection and immunization with inactivated vaccines in the early phase. We observed the lower antibody levels against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in the early phase of postvaccination with a slow increase, compared to the acute phase of SARS-CoV-2 natural infection. Specifically, IgA antibodies have the most significant differences. Moreover, we further analyzed cytokine expression between these two groups. A wide variety of cytokines presented high expression in the infected individuals, while a few cytokines were elicited by inactivated vaccines. The differences in antibody responses and cytokine levels between natural SARS-CoV-2 infection and vaccination with the inactivated vaccines may provide implications for the optimization of inactivated SARS-CoV-2 vaccines and the additional application of serological tests.
Collapse
Affiliation(s)
- Pai Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Zhihong Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Yao Chen
- Health management center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Jianjiang Xue
- University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Deqiang Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Beizhong Liu
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing, China
| | - Quanxin Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, the Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Liao Y, Jin Y, Zhang H, Yang J, Fu J, Lv H. Immunogenicity of a trivalent influenza vaccine and persistence of induced immunity in adults aged ≥60 years in Taizhou City, Zhejiang Province, China, during the 2018-2019 season. Hum Vaccin Immunother 2022; 18:2071061. [PMID: 35687101 PMCID: PMC9302525 DOI: 10.1080/21645515.2022.2071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Yearly administration of influenza vaccine with recommendations can help control seasonal influenza epidemics in adults aged ≥60 years. Here, we describe the results of a prospective study observing the immunogenicity and persistence of induced immunity of a trivalent inactivated split-virion influenza vaccine (TIV) in adults aged ≥60 years during the 2018–2019 season in Taizhou City, Zhejiang Province in China. A total of 422 participants completed the study period. Vaccinated participants (284) received a single dose of TIV, but unvaccinated participants (138) didn’t receive any vaccine. Study participants vaccinated with TIV had significantly higher GMTs of Hemagglutination Inhibition (HI) antibodies against AH1N1, AH2N3, and B/Victoria strains (all p < .0001) at day 30 post-vaccination compared with unvaccinated participants, but the antibody response to the B/Victoria strain was the weakest. Rates of seroprotection and seroconversion were generally higher in the TIV-vaccinated group. At day 180 post-vaccination, the seroconversion rates (95%CI) in the vaccinated group were 99.6% (99.0%–100.3%), 97.9% (96.2%–99.6%), and 68.3% (62.9%–73.8%) for antibodies against three influenza strains, respectively; these rates were significantly different compared with unvaccinated group only for strains AH3N2 and B/Victoria (p = .002 and p < .0001, respectively). These results confirm that in adults aged ≥60 years, a single dose of TIV can induce a protective immune response against influenza, but the protective HI antibody levels induced against strain B/Victoria do not persist through 6 months.
Collapse
Affiliation(s)
- Yuting Liao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yan Jin
- Department of Immunization Program, Taizhou Municipal Center for Disease Control and Prevention, Taizhou, Zhejiang, China
| | - Hangjie Zhang
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Juan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Jian Fu
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Huakun Lv
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Feng H, Sun R, Song G, Zhu S, Nie Z, Lin L, Yi R, Wu S, Wang G, He Y, Wang S, Wang P, Wu L, Shu J. A Glycolipid α-GalCer Derivative, 7DW8-5 as a Novel Mucosal Adjuvant for the Split Inactivated Influenza Vaccine. Viruses 2022; 14:v14061174. [PMID: 35746644 PMCID: PMC9230830 DOI: 10.3390/v14061174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Influenza virus infects the host and transmits through the respiratory tract (i.e., the mouth and nose); therefore, the development of intranasal influenza vaccines that mimic the natural infection, coupled with an efficient mucosal adjuvant, is an attractive alternative to current parenteral vaccines. However, with the withdrawal of cholera toxin and Escherichia coli heat-labile endotoxin from clinical use due to side effects, there are no approved adjuvants for intranasal vaccines. Therefore, safe and effective mucosal adjuvants are urgently needed. Previously, we reported that one derivative of α-Galactosylceramide (α-GalCer), 7DW8-5, could enhance the protective efficacy of split influenza vaccine by injection administration. However, the mucosal adjuvanticity of 7DW8-5 is still unclear. In this study, we found that 7DW8-5 promotes the production of secret IgA antibodies and IgG antibodies and enhances the protective efficacy of the split influenza vaccine by intranasal administration. Furthermore, co-administration of 7DW8-5 with the split influenza vaccine significantly reduces the virus shedding in the upper and lower respiratory tract after lethal challenge. Our results demonstrate that 7DW8-5 is a novel mucosal adjuvant for the split influenza vaccine.
Collapse
Affiliation(s)
- Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
- Correspondence: (H.F.); (L.W.); (J.S.)
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Guanru Song
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Liming Lin
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Ruonan Yi
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Shixiang Wu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Genzhu Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Siquan Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Pei Wang
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Correspondence: (H.F.); (L.W.); (J.S.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.S.); (G.S.); (S.Z.); (Z.N.); (L.L.); (R.Y.); (S.W.); (G.W.); (Y.H.); (S.W.); (P.W.)
- Correspondence: (H.F.); (L.W.); (J.S.)
| |
Collapse
|
10
|
Shah AU, Li Y, Ouyang W, Wang Z, Zuo J, Shi S, Yu Q, Lin J, Yang Q. From nasal to basal: single-cell sequencing of the bursa of Fabricius highlights the IBDV infection mechanism in chickens. Cell Biosci 2021; 11:212. [PMID: 34915931 PMCID: PMC8675306 DOI: 10.1186/s13578-021-00728-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chickens, important food animals and model organisms, are susceptible to many RNA viruses that invade via the nasal cavity. To determine the nasal entry site of the virus and clarify why avians are susceptible to RNA viruses, infectious bursal disease virus (IBDV) was selected because it is a typical avian RNA virus that infects chickens mainly via the nasal route. RESULTS First, we found that IBDV infected the posterior part of the nasal cavity in chickens, which is rich in lymphoid tissue and allows the virus to be easily transferred to the blood. Via the blood circulation, IBDV infected peripheral blood mononuclear cells (PBMCs) and was transferred to the bursa of Fabricius to damage the IgM + B lymphocyte population. Subsequently, the single-cell RNA sequencing (scRNA-seq) results suggested the more detailed response of different bursal cell populations (B cells, epithelial cells, dendritic cells, and fibroblasts) to IBDV. Regarding B cells, IBDV infection greatly decreased the IgM + B cell population but increased the IgA + B cell population in the bursal follicles. In contrast to B cells, bursal epithelial cells, especially basal cells, accumulated a large number of IBDV particles. Furthermore, we found that both innate RNA sensors and interferon-stimulated genes (ISGs) were highly expressed in the IBDV-infected groups, while dicer and ago2 expression was largely blocked by IBDV infection. This result suggests that dicer-related RNA interference (RNAi) might be an effective antiviral strategy for IBDV infection in avian. CONCLUSION Our study not only comprehensively elaborates on the transmission of airborne IBDV via the intranasal route and establishes the main target cell types for productive IBDV infection but also provides sufficient evidence to explain the cellular antiviral mechanism against IBDV infection.
Collapse
Affiliation(s)
- Abid Ullah Shah
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.,College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuchen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Wei Ouyang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, People's Republic of China
| | - Zhisheng Wang
- Institute of Veterinary Immunology and Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jinjiao Zuo
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Song Shi
- Shanghai OE Biotech. Co., Ltd, Shanghai, 201114, People's Republic of China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jian Lin
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| |
Collapse
|
11
|
Ardizzone CM, Albritton HL, Lillis RA, Bagnetto CEL, Shen L, Cavacini LA, Kozlowski PA, Quayle AJ. Human genital antibody-mediated inhibition of Chlamydia trachomatis infection and evidence for ompA genotype-specific neutralization. PLoS One 2021; 16:e0258759. [PMID: 34662351 PMCID: PMC8523062 DOI: 10.1371/journal.pone.0258759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
The endocervix, the primary site of Chlamydia trachomatis (Ct) infection in women, has a unique repertoire of locally synthesized IgG and secretory IgA (SIgA) with contributions from serum IgG. Here, we assessed the ability of genital and serum-derived IgG and IgA from women with a recent positive Ct test to neutralize Ct elementary bodies (EBs) and inhibit inclusion formation in vitro in human endocervical epithelial cells. We also determined if neutralization was influenced by the major outer membrane protein (MOMP) of the infecting strain, as indicated by ompA gene sequencing and genotyping. At equivalent low concentrations of Ct EB (D/UW-3/Cx + E/UW-5/Cx)-specific antibody, genital-derived IgG and IgA and serum IgA, but not serum IgG, significantly inhibited inclusion formation, with genital IgA being most effective, followed by genital IgG, then serum IgA. The well-characterized Ct genotype D strain, D/UW-3/Cx, was neutralized by serum-derived IgG from patients infected with genotype D strains, genital IgG from patients infected with genotype D or E strains, and by genital IgA from patients infected with genotype D, E, or F strains. Additionally, inhibition of D/UW-3/Cx infection by whole serum, rather than purified immunoglobulin, was associated with levels of serum EB-specific IgG rather than the genotype of infecting strain. In contrast, a Ct genotype Ia clinical isolate, Ia/LSU-56/Cx, was neutralized by whole serum in a genotype and genogroup-specific manner, and inhibition also correlated with EB-specific IgG concentrations in serum. Taken together, these data suggest that (i) genital IgA most effectively inhibits Ct infection in vitro, (ii) human antibody-mediated inhibition of Ct infection is significantly influenced by the ompA genotype of the infecting strain, (iii) the genital antibody repertoire develops or matures differently compared to systemic antibody, and (iv) ompA genotype-specificity of inhibition of infection by whole serum can be overcome by high concentrations of Ct-specific IgG.
Collapse
Affiliation(s)
- Caleb M. Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Rebecca A. Lillis
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Caitlyn E. L. Bagnetto
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Lisa A. Cavacini
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
12
|
[Influenza in the Elderly]. Nihon Ronen Igakkai Zasshi 2021; 58:54-59. [PMID: 33627562 DOI: 10.3143/geriatrics.58.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Torikai Y, Sasaki Y, Sasaki K, Kyuno A, Haruta S, Tanimoto A. Evaluation of Systemic and Mucosal Immune Responses Induced by a Nasal Powder Delivery System in Conjunction with an OVA Antigen in Cynomolgus Monkeys. J Pharm Sci 2020; 110:2038-2046. [PMID: 33278410 PMCID: PMC7836740 DOI: 10.1016/j.xphs.2020.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
An immune response for a nasal ovalbumin (OVA) powder formulation with an applied nasal delivery platform technology, consisting of a powdery nasal carrier and a device, was evaluated in monkeys with similar upper respiratory tracts and immune systems to those of humans, in order to assess the applicability to a vaccine antigen. Nasal distribution and retention studies using a 3D nasal cavity model and manganese-enhanced MRI were conducted by administering nasal dye and manganese powder formulations with the applied technology. Systemic and mucosal immune responses for the nasal OVA powder formulation were evaluated by determining serum IgG and nasal wash IgA antibody titers. The nasal dye and manganese powder formulations showed wider distribution and longer retention time than did a nasal liquid formulation. The nasal OVA powder formulation also showed comparable and higher antigen-specific IgG antibody titer to an injection and nasal liquid formulation, respectively. Furthermore, antigen-specific IgA antibody response was detected only for the nasal OVA powder formulation. The present study suggests that the technology, originally designed for drug absorption, is promising for nasal vaccines, enabling both a mucosal immunity response as the first line of defense and systemic immunity response as a second line of defense against infection.
Collapse
Affiliation(s)
- Yusuke Torikai
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 850-8544, Japan; R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan.
| | - Yuji Sasaki
- Department of Pathology, Drug and Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Keita Sasaki
- R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Akifumi Kyuno
- R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Shunji Haruta
- R&D Department, TR Company, Shin Nippon Biomedical Laboratories, Ltd., 2438 Miyanoura, Kagoshima, 891-1394, Japan
| | - Akihide Tanimoto
- Department of Molecular and Cellular Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 850-8544, Japan
| |
Collapse
|
14
|
Biswas M, Yamazaki T, Chiba J, Akashi-Takamura S. Broadly Neutralizing Antibodies for Influenza: Passive Immunotherapy and Intranasal Vaccination. Vaccines (Basel) 2020; 8:vaccines8030424. [PMID: 32751206 PMCID: PMC7565570 DOI: 10.3390/vaccines8030424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses cause annual epidemics and occasional pandemics. The high diversity of viral envelope proteins permits viruses to escape host immunity. Therefore, the development of a universal vaccine and broadly neutralizing antibodies (bnAbs) is essential for controlling various mutant viruses. Here, we review some potentially valuable bnAbs for influenza; one is a novel passive immunotherapy using a variable domain of heavy chain-only antibody (VHH), and the other is polymeric immunoglobulin A (pIgA) induced by intranasal vaccination. Recently, it was reported that a tetravalent multidomain antibody (MDAb) was developed by genetic fusion of four VHHs, which are bnAbs against the influenza A or B viruses. The transfer of a gene encoding the MDAb–Fc fusion protein provided cross-protection against both influenza A and B viruses in vivo. An intranasal universal influenza vaccine, which can induce neutralizing pIgAs in the upper respiratory tract, is currently undergoing clinical studies. A recent study has revealed that tetrameric IgAs formed in nasal mucosa are more broadly protective against influenza than the monomeric and dimeric forms. These broadly neutralizing antibodies have high potential to control the currently circulating influenza virus.
Collapse
Affiliation(s)
- Mrityunjoy Biswas
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan; (M.B.); (S.A.-T.)
| | - Tatsuya Yamazaki
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan; (M.B.); (S.A.-T.)
- Correspondence: ; Tel.: +81-56-162-3311
| | - Joe Chiba
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan;
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan; (M.B.); (S.A.-T.)
| |
Collapse
|
15
|
Takeda Y, Okuyama Y, Nakano H, Yaoita Y, Machida K, Ogawa H, Imai K. Antiviral Activities of Hibiscus sabdariffa L. Tea Extract Against Human Influenza A Virus Rely Largely on Acidic pH but Partially on a Low-pH-Independent Mechanism. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:9-19. [PMID: 31620998 PMCID: PMC7223586 DOI: 10.1007/s12560-019-09408-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/01/2019] [Indexed: 05/28/2023]
Abstract
Influenza A virus (IAV) infection is perennially one of the leading causes of death worldwide. Effective therapy and vaccination are needed to control viral expansion. However, current anti-IAV drugs risk inducing drug-resistant virus emergence. Although intranasal administration of whole inactivated virus vaccine can induce efficient protective immunity, formalin and β-propiolactone are the currently used and harmful inactivating agents. Here, we analyzed the antiviral activity of hibiscus (Hibiscus sabdariffa L.) tea extract against human IAV and evaluated its potential as a novel anti-IAV drug and a safe inactivating agent for whole inactivated vaccine. The in vitro study revealed that the pH of hibiscus tea extract is acidic, and its rapid and potent antiviral activity relied largely on the acidic pH. Furthermore, the mouse study showed that the acidic extract was not effective for either therapeutic or vaccination purposes. However, hibiscus tea extract and protocatechuic acid, one of the major components of the extract, showed not only potent acid-dependent antiviral activity but also weak low-pH-independent activity. The low-pH-independent activity did not affect the conformation of immunodominant hemagglutinin protein. Although this low-pH-independent activity is very limited, it may be suitable for the application to medication and vaccination because this activity is not affected by the neutral blood environment and does not lose antigenicity of hemagglutinin. Further study of the low-pH-independent antiviral mechanism and attempts to enhance the antiviral activity may establish a novel anti-IAV therapy and vaccination strategy.
Collapse
Affiliation(s)
- Yohei Takeda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Yuko Okuyama
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Hiroto Nakano
- Division of Sustainable and Environmental Engineering, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585, Japan
| | - Yasunori Yaoita
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Koich Machida
- Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - Kunitoshi Imai
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| |
Collapse
|
16
|
Pan SC, Hsu WT, Lee WS, Wang NC, Chen TJ, Liu MC, Pai HC, Hsu YS, Chang M, Hsieh SM. A double-blind, randomized controlled trial to evaluate the safety and immunogenicity of an intranasally administered trivalent inactivated influenza vaccine with the adjuvant LTh(αK): A phase II study. Vaccine 2019; 38:1048-1056. [PMID: 31812463 DOI: 10.1016/j.vaccine.2019.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Intranasal influenza vaccines may provide protective efficacy by inducing both systemic antibodies and local secretory IgA. Live attenuated intranasal vaccines are not feasible for high-risk groups. A previously constructed inactivated vaccine with adjuvant revealed an association with neurological events in some studies. In this phase II trial, we aimed to evaluate the safety and immunogenicity of an intranasal influenza vaccine with a novel adjuvant, heat-labile enterotoxin (LT)-derived from E. coli (LTh(αK)). METHODS This study is a multicenter, randomized controlled, double-blind, phase II trial of an intranasal influenza vaccine containing 22.5 μg of the hemagglutinin (HA) antigen of three influenza strains in combination with 2 different LTh(αK) adjuvant doses (group 1: 30 μg; group 2: 45 μg) in subjects 20-70 years old. The control vaccine was 22.5 μg of influenza HA antigen alone (group 3). The vaccine was intranasally administered on days 1 and 8. Serum anti-HA antibody and nasal secretory IgA were measured, and adverse events (AEs) were recorded prevaccination and 29 (±2) days postvaccination. RESULTS Of 354 participants randomized in the study, 340 received two vaccine doses. AEs were mostly mild, and there was no discontinuation related to the vaccine. Only a higher frequency of diarrhea after the first dose was noted among group 2 (11.5%) than among group 3 (2.8%), and there was no significant difference after the second dose. The three groups had comparable serum anti-HA antibody immunogenicity. However, the adjuvanted vaccines induced greater mucosal IgA antibody production than the control vaccine. In a subgroup analysis, group 1 participants achieved adequate immunogenicity among both 20- to 60- and 61- to 70-year-old participants. CONCLUSION The intranasal influenza vaccine adjuvanted with LTh(αK) is generally safe and could provide systemic and local antibody responses. Adjuvanted vaccines were significantly more immunogenic than the nonadjuvanted control vaccine in mucosal immunity. ClinicalTrials.gov Identifier: NCT03784885.
Collapse
Affiliation(s)
- Sung-Ching Pan
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Hsu
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Sen Lee
- Department of Internal Medicine, Wan Fang Medical Center, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ning-Chi Wang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Che Liu
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hui-Chen Pai
- Advagene Biopharma Co., Ltd., Taipei, Taiwan; Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yu-Shen Hsu
- Advagene Biopharma Co., Ltd., Taipei, Taiwan; Development Center for Biotechnology, New Taipei City, Taiwan
| | - Mingi Chang
- Advagene Biopharma Co., Ltd., Taipei, Taiwan; Development Center for Biotechnology, New Taipei City, Taiwan
| | - Szu-Min Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
17
|
Babazadeh A, Mohseni Afshar Z, Javanian M, Mohammadnia-Afrouzi M, Karkhah A, Masrour-Roudsari J, Sabbagh P, Koppolu V, Vasigala VK, Ebrahimpour S. Influenza Vaccination and Guillain-Barré Syndrome: Reality or Fear. J Transl Int Med 2019; 7:137-142. [PMID: 32010599 PMCID: PMC6985921 DOI: 10.2478/jtim-2019-0028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is an inflammatory disorder and an acute immune-mediated demyelinating neuropathy that causes reduced signal transmissions, progressive muscle weakness, and paralysis. The etiology of the syndrome still remains controversial and uncertain. GBS can be initiated and triggered by respiratory tract infections such as influenza, and intestinal infections such as Campylobacter jejuni. In addition, there is considerable evidence suggesting links between influenza vaccination and GBS. As reported previously, the incidence of GBS in individuals receiving swine flu vaccine was about one to two cases per million. Despite the influenza vaccine efficacy, its association with an immune-mediated demyelinating process can be challenging as millions of people get vaccinated every year. In this review we will discuss the association between influenza infection and vaccination with GBS by focusing on the possible immunopathological mechanisms.
Collapse
Affiliation(s)
- Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Zeinab Mohseni Afshar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Mousa Mohammadnia-Afrouzi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Ahmad Karkhah
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Jila Masrour-Roudsari
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Parisa Sabbagh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Veerendra Koppolu
- Scientist Biopharmaceutical Development Medimmune Gaithersburg, MD 20878, USA
| | | | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| |
Collapse
|
18
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
19
|
Sanchez-Guzman D, Le Guen P, Villeret B, Sola N, Le Borgne R, Guyard A, Kemmel A, Crestani B, Sallenave JM, Garcia-Verdugo I. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials 2019; 217:119308. [PMID: 31279103 DOI: 10.1016/j.biomaterials.2019.119308] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
Most of current influenza virus vaccines fail to develop a strong immunity at lung mucosae (site of viral entry) due to sub-optimal vaccination protocols (e.g. inactivated virus administered by parenteral injections). Mucosal immunity could be improved by using locally-delivered vaccines containing appropriate adjuvants. Here we show, in a mouse model, that inclusion of silver nanoparticles (AgNPs) in virus-inactivated flu vaccine resulted in reduction of viral loads and prevention of excessive lung inflammation following influenza infection. Concomitantly, AgNPs enhanced specific IgA secreting plasma cells and antibodies titers, a hallmark of successful mucosal immunity. Moreover, vaccination in the presence of AgNPs but not with gold nanoparticles, protected mice from lethal flu. Compared with other commercial adjuvants (squalene/oil-based emulsion) or silver salts, AgNPs stimulated stronger antigen specific IgA production with lower toxicity by promoting bronchus-associated lymphoid tissue (BALT) neogenesis, and acted as a bona fide mucosal adjuvant.
Collapse
Affiliation(s)
- Daniel Sanchez-Guzman
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Pierre Le Guen
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France; Department of Pneumology A, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Berengere Villeret
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Nuria Sola
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Remi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205, Cedex 13, Paris, France
| | - Alice Guyard
- Department of Pathology, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Alix Kemmel
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Bruno Crestani
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France; Department of Pneumology A, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Jean-Michel Sallenave
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Ignacio Garcia-Verdugo
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France.
| |
Collapse
|
20
|
Lu C, Zanker D, Lock P, Jiang X, Deng J, Duan M, Liu C, Faou P, Hickey MJ, Chen W. Memory regulatory T cells home to the lung and control influenza A virus infection. Immunol Cell Biol 2019; 97:774-786. [DOI: 10.1111/imcb.12271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Chunni Lu
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Damien Zanker
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Peter Lock
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Xiangrui Jiang
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Jieru Deng
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Mubing Duan
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Chuanxin Liu
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Pierre Faou
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases Department of Medicine Monash Medical Centre Monash University Clayton VIC Australia
| | - Weisan Chen
- La Trobe Institute for Molecular Science School of Molecular Science La Trobe University Bundoora VIC Australia
| |
Collapse
|
21
|
Yang AQ, Yang HY, Guo SJ, Xie YE. MF59 adjuvant enhances the immunogenicity and protective immunity of the OmpK/Omp22 fusion protein from Acineterbacter baumannii through intratracheal inoculation in mice. Scand J Immunol 2019; 90:e12769. [PMID: 31006127 DOI: 10.1111/sji.12769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023]
Abstract
Acinetobacter baumannii (A baumannii) is an emerging nosocomial pathogenic bacterium which leads to hospital infections. The increase in drug-resistant A baumannii strains makes it difficult to control by using common antibiotics. The development of effective vaccines is an alternative means to avoid A baumannii infections. In the present study, Balb/c mice were inoculated intratracheally with 30 μg of OmpK/Omp22 fusion protein alone or OmpK/Omp22 formulated with MF59 adjuvant. After two times of boosting at day 14 and 21, the antigen-specific antibody levels and the protective immunity against A baumannii challenge were evaluated. The results showed that the OmpK/Omp22 formulated with MF59 immunized mice produced much higher level of antigen-specific antibodies compared to mice immunized with OmpK/Omp22 alone (P < 0.01). Mice immunized with 30 μg of OmpK/Omp22 formulated with MF59 also provided more potent protection post-challenge, which showed lower bacterial loads in the blood and lung tissue, lower level of blood inflammatory cytokines and higher survival rate (83.3%) than mice immunized with OmpK/Omp22 alone (P < 0.001). In conclusion, this study demonstrated that OmpK/Omp22 fusion protein adjuvanted with MF59 induced superior immune response and better protection than OmpK/Omp22 alone through intratracheal inoculation in mice.
Collapse
Affiliation(s)
- Ai-Qiong Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hai-Yan Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - San-Jun Guo
- Institute of Immunology and Molecular Biology, North Sichuan Medical College, Nanchong, China
| | - Yong-En Xie
- Institute of Immunology and Molecular Biology, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
22
|
Pan SC, Hsieh SM, Lin CF, Hsu YS, Chang M, Chang SC. A randomized, double-blind, controlled clinical trial to evaluate the safety and immunogenicity of an intranasally administered trivalent inactivated influenza vaccine with adjuvant LTh(αK): A phase I study. Vaccine 2019; 37:1994-2003. [DOI: 10.1016/j.vaccine.2019.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 11/27/2022]
|
23
|
Virus-Like Particles-Based Mucosal Nanovaccines. NANOVACCINES 2019. [PMCID: PMC7120988 DOI: 10.1007/978-3-030-31668-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Virus-like particles (VLPs) are protein complexes that resemble a virus and constitute highly immunogenic entities as they mimic the pathogen at an important degree. Among nanovaccines, those based on VLPs are the most successful thus far with some formulations already commercialized (e.g., those against hepatitis B and E viruses and human papillomavirus). This chapter highlights the advantages of VLPs-based vaccines, describing approaches for their design and transmittance of the state of the art for mucosal VLPs-based vaccines development. Several candidates have been produced in insect cells, plants, and E. coli and mammalian cells; they have been mainly evaluated in i.n. and oral immunization schemes. i.n. vaccines against the influenza virus and the Norwalk virus are the most advanced applications. For the latter, i.n. formulations are under clinical evaluation. Perspectives for the field comprise the expansion of the use of low-cost platforms such as plants and bacteria, the development of multiepitopic/multivalent vaccines, and computationally designed VLPs. Mucosal VLPs-based vaccines stand as a major promising approach in vaccinology and the initiation of more clinical trials is envisaged in a short time.
Collapse
|
24
|
Protein Microarray Analysis of the Specificity and Cross-Reactivity of Influenza Virus Hemagglutinin-Specific Antibodies. mSphere 2018; 3:3/6/e00592-18. [PMID: 30541779 PMCID: PMC6291623 DOI: 10.1128/msphere.00592-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Current seasonal influenza virus vaccines engender antibody-mediated protection that is hemagglutinin (HA) subtype specific and relatively short-lived. Coverage for other subtypes or even variants within a subtype could be improved from a better understanding of the factors that promote HA-specific antibody cross-reactivity. Current assays to evaluate cross-reactivity, such as the ELISA, require a separate test for each antigen and are neither high-throughput nor sample-sparing. To address this need, we produced an array of 283 purified HA proteins from influenza A virus subtypes H1 to H16 and H18 and influenza B virus. To evaluate performance, arrays were probed with sera from individuals before and after a booster dose of inactivated heterologous H5N1 vaccine and naturally infected cases at presentation and follow-up during the 2010 to 2011 influenza season, when H3N2 was prevalent. The response to the H5 vaccine boost was IgG only and confined to H5 variants. The response to natural H3N2 infection consisted of IgG and IgA and was reactive with all H3 variants displayed, as well as against other group 2 HA subtypes. In both groups, responses to HA1 proteins were subtype specific. In contrast, baseline signals were higher, and responses broader, against full-length HA proteins (HA1+HA2) compared to HA1 alone. We propose that these elevated baseline signals and breadth come from the recognition of conserved epitopes in the stalk domain by cross-reactive antibodies accumulated from previous exposure(s) to seasonal influenza virus. This array is a valuable high-throughput alternative to the ELISA for monitoring specificity and cross-reactivity of HA antibodies and has many applications in vaccine development.IMPORTANCE Seasonal influenza is a serious public health problem because the viral infection spreads easily from person to person and because of antigenic drift in neutralizing epitopes. Influenza vaccination is the most effective way to prevent the disease, although challenging because of the constant evolution of influenza virus subtypes. Our high-throughput protein microarrays allow for interrogation of subunit-specific IgG and IgA responses to 283 different HA proteins comprised of HA1 and HA2 domains as well as full-length HA proteins. This provides a tool that allows for novel insights into the response to exposure to influenza virus antigens. Data generated with our technology will enhance our understanding of the factors that improve the strength, breadth, and durability of vaccine-mediated immune responses and develop more effective vaccines.
Collapse
|
25
|
Hiradate Y, Sasaki E, Momose H, Asanuma H, Furuhata K, Takai M, Aoshi T, Yamada H, Ishii KJ, Tanemura K, Mizukami T, Hamaguchi I. Development of screening method for intranasal influenza vaccine and adjuvant safety in preclinical study. Biologicals 2018; 55:43-52. [DOI: 10.1016/j.biologicals.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
|
26
|
Neutralizing Anti-Hemagglutinin Monoclonal Antibodies Induced by Gene-Based Transfer Have Prophylactic and Therapeutic Effects on Influenza Virus Infection. Vaccines (Basel) 2018; 6:vaccines6030035. [PMID: 29949942 PMCID: PMC6161145 DOI: 10.3390/vaccines6030035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Hemagglutinin (HA) of influenza virus is a major target for vaccines. HA initiates the internalization of the virus into the host cell by binding to host sialic acid receptors; therefore, inhibition of HA can significantly prevent influenza virus infection. However, the high diversity of HA permits the influenza virus to escape from host immunity. Moreover, the vaccine efficacy is poor in some high-risk populations (e.g., elderly or immunocompromised patients). Passive immunization with anti-HA monoclonal antibodies (mAbs) is an attractive therapy; however, this method has high production costs and requires repeated inoculations. To address these issues, several methods for long-term expression of mAb against influenza virus have been developed. Here, we provide an overview of methods using plasmid and viral adeno-associated virus (AAV) vectors that have been modified for higher expression of neutralizing antibodies in the host. We also examine two methods of injection, electro-transfer and hydrodynamic injection. Our results show that antibody gene transfer is effective against influenza virus infection even in immunocompromised mice, and antibody expression was detected in the serum and upper respiratory tract. We also demonstrate this method to be effective following influenza virus infection. Finally, we discuss the perspective of passive immunization with antibody gene transfer for future clinical trials.
Collapse
|
27
|
Takaki H, Ichimiya S, Matsumoto M, Seya T. Mucosal Immune Response in Nasal-Associated Lymphoid Tissue upon Intranasal Administration by Adjuvants. J Innate Immun 2018; 10:515-521. [PMID: 29860261 DOI: 10.1159/000489405] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/12/2018] [Indexed: 12/23/2022] Open
Abstract
The nasal administration of vaccines directed against diseases caused by upper respiratory tract infections of pathogens, such as the influenza virus, mimics the natural infection of pathogens and induces immunoglobulin A (IgA) production in the nasal cavity to effectively protect viral entry. Therefore, the development of a nasally administered vaccine is a research objective. Because the antigenicity of influenza split vaccines is low, nasal inoculation with the vaccine alone does not induce strong IgA production in the nasal cavity. However, the addition of adjuvants activates the innate immune response, enhancing antigen-specific IgA production and the T-cell response. Although the development of suitable adjuvants for nasal vaccinations is in progress, the mechanism by which adjuvants promote the immune response is still unclear. In this review, we discuss the mucosal immune response, especially in the nasal-associated lymphoid tissue, induced in response to the intranasal inoculation of an influenza vaccine and adjuvants in animal models.
Collapse
Affiliation(s)
- Hiromi Takaki
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, .,Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo,
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Misako Matsumoto
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Seya
- Department of Vaccine Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Intranasal vaccination with M2e5x virus-like particles induces humoral and cellular immune responses conferring cross-protection against heterosubtypic influenza viruses. PLoS One 2018; 13:e0190868. [PMID: 29324805 PMCID: PMC5764335 DOI: 10.1371/journal.pone.0190868] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022] Open
Abstract
Current influenza vaccines do not provide broad cross-protection. Here, we report that intranasal vaccination with virus-like particles containing the highly conserved multiple ectodomains of matrix protein 2 (M2e5x VLP) of influenza virus induces broad cross-protection by M2-specific humoral and cellular immune responses. M2e5x VLP intranasal vaccination prevented severe weight loss, attenuated inflammatory cytokines and cellular infiltrates, and lowered viral loads, and induced germinal center phenotypic B and plasma cells. In addition, depletion studies demonstrate the protective roles of CD4 and CD8 T cells induced by M2e5x VLP intranasal vaccination. Thus, this study provides evidence that mucosal delivery of M2e5x VLP vaccine provides cross-protection by inducing humoral and cellular immune responses.
Collapse
|
29
|
cGAMP Promotes Germinal Center Formation and Production of IgA in Nasal-Associated Lymphoid Tissue. Med Sci (Basel) 2017; 5:medsci5040035. [PMID: 29258267 PMCID: PMC5753664 DOI: 10.3390/medsci5040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Induction of immunoglobulin (Ig) A in the mucosa of the upper respiratory tract and the nasal cavity protects against influenza virus infection. Cyclic dinucleotides (CDNs) are used as mucosal adjuvants to enhance the immunogenicity of intranasal influenza hemagglutinin (HA) vaccines. The adjuvant activity of 2'3' cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) on Ig production was investigated in nasal-associated lymphoid tissue (NALT), serum of wild-type C57BL/6J, and stimulator of interferon genes (STING)-deficient mice, which do not recognize cGAMP. Mice were vaccinated intranasally with a HA vaccine with or without the cGAMP adjuvant. IgA and IgG production, T-cell responses, germinal center formation, and cytokine expression in NALT were assayed. cGAMP enhanced IgA and IgG production, and promoted T-cell responses. Intranasal administration of cGAMP activated both NALT and systemic immune cells, induced a favorable cytokine environment for IgA induction, and promoted germinal center formation. The cGAMP effect was STING-dependent. Taken together, cGAMP as an HA vaccine adjuvant promoted a STING-dependent NALT environment suitable for the enhancement of IgA production.
Collapse
|
30
|
Mameli C, D’auria E, Erba P, Nannini P, Zuccotti GV. Influenza vaccine response: future perspectives. Expert Opin Biol Ther 2017; 18:1-5. [DOI: 10.1080/14712598.2018.1391786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chiara Mameli
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, University of Milan, Milan, Italy
| | - Enza D’auria
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, University of Milan, Milan, Italy
| | - Paola Erba
- Department of Pediatrics, L. Sacco Hospital, University of Milan, Milan, Italy
| | - Pilar Nannini
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, University of Milan, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Jermacane D, Gobin M, Young N, Yates J, Owusu GO. An outbreak of acute respiratory illnesses in primary school children with low vaccine uptake, UK, 2016. Vaccine 2017; 35:5527-5530. [DOI: 10.1016/j.vaccine.2017.07.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 07/27/2017] [Indexed: 10/18/2022]
|
32
|
The road to a more effective influenza vaccine: Up to date studies and future prospects. Vaccine 2017; 35:5388-5395. [PMID: 28866292 DOI: 10.1016/j.vaccine.2017.08.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
Influenza virus causes an acute respiratory infection in humans. Frequent point mutations in the influenza genome and occasional exchange of genetic segments between virus strains help the virus evade the pre-existing immunity, resulting in epidemics and pandemics. Although vaccination is the most effective intervention, mismatches between circulating viruses and vaccine strains reduce vaccine efficacy. Furthermore, current injectable vaccines induce IgG antibodies in serum (which limit progression of influenza symptoms) but not secretory IgA antibodies in the respiratory mucosa (which prevent virus infection efficiently). Therefore, numerous studies have attempted to improve influenza vaccines. The discovery of broadly neutralizing antibodies has progressed research into antigen design. Studies designed to improve vaccine efficacy by changing the vaccine administration route have also been conducted. A thorough understanding of the mechanisms underlying the action of various vaccines is essential if we are to develop a universal influenza vaccine. Therefore, evaluating the quality and quantity of antibodies induced by vaccines, which determine vaccine efficacy, is critical. However, at present vaccine evaluation relies on hemagglutination inhibition tests, which only measure the quantity of antibody produced. Antibody repertoires comprise a set of antibodies with specific genetic or molecular features that correspond to their functions. Genetically and functionally similar antibodies may be produced by multiple individuals exposed to an identical stimulus. Therefore, it may be possible to evaluate and compare multiple vaccine strategies in terms of the quality and quantity of an antibody response induced by a vaccine by examining antibody repertoires. Recent studies have used single cell expression and high-throughput immunoglobulin sequencing to provide a detailed picture of antibody responses. These novel methods may be critical for detailed characterization of antibody repertoires induced by various vaccination strategies.
Collapse
|
33
|
Immunogenicity and Cross Protection in Mice Afforded by Pandemic H1N1 Live Attenuated Influenza Vaccine Containing Wild-Type Nucleoprotein. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9359276. [PMID: 28210631 PMCID: PMC5292185 DOI: 10.1155/2017/9359276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/21/2016] [Indexed: 01/31/2023]
Abstract
Since conserved viral proteins of influenza virus, such as nucleoprotein (NP) and matrix 1 protein, are the main targets for virus-specific CD8+ cytotoxic T-lymphocytes (CTLs), we hypothesized that introduction of the NP gene of wild-type virus into the genome of vaccine reassortants could lead to better immunogenicity and afford better protection. This paper describes in vitro and in vivo preclinical studies of two new reassortants of pandemic H1N1 live attenuated influenza vaccine (LAIV) candidates. One had the hemagglutinin (HA) and neuraminidase (NA) genes from A/South Africa/3626/2013 H1N1 wild-type virus on the A/Leningrad/134/17/57 master donor virus backbone (6 : 2 formulation) while the second had the HA, NA, and NP genes of the wild-type virus on the same backbone (5 : 3 formulation). Although both LAIVs induced similar antibody immune responses, the 5 : 3 LAIV provoked greater production of virus-specific CTLs than the 6 : 2 variant. Furthermore, the 5 : 3 LAIV-induced CTLs had higher in vivo cytotoxic activity, compared to 6 : 2 LAIV. Finally, the 5 : 3 LAIV candidate afforded greater protection against infection and severe illness than the 6 : 2 LAIV. Inclusion in LAIV of the NP gene from wild-type influenza virus is a new approach to inducing cross-reactive cell-mediated immune responses and cross protection against pandemic influenza.
Collapse
|